Front. Vet. Sci. Frontiers in Veterinary Science Front. Vet. Sci. 2297-1769 Frontiers Media S.A. 10.3389/fvets.2020.580523 Veterinary Science Original Research The Influence of Predictability and Controllability on Stress Responses to the Aversive Component of a Virtual Fence Kearton Tellisa 1 2 Marini Danila 1 2 Cowley Frances 1 Belson Sue 2 Keshavarzi Hamideh 2 Mayes Bonnie 1 2 Lee Caroline 1 2 * 1School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia 2Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Armidale, NSW, Australia

Edited by: Edward Narayan, The University of Queensland, Australia

Reviewed by: Dominique Blache, University of Western Australia, Australia; Manja Zupan Šemrov, University of Ljubljana, Slovenia

*Correspondence: Caroline Lee Caroline.lee@csiro.au

This article was submitted to Animal Behavior and Welfare, a section of the journal Frontiers in Veterinary Science

30 11 2020 2020 7 580523 06 07 2020 30 10 2020 Copyright © 2020 Kearton, Marini, Cowley, Belson, Keshavarzi, Mayes and Lee. 2020 Kearton, Marini, Cowley, Belson, Keshavarzi, Mayes and Lee

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

To ensure animal welfare is not compromised, virtual fencing must be predictable and controllable, and this is achieved through associative learning. To assess the influence of predictability and controllability on physiological and behavioral responses to the aversive component of a virtual fence, two methods of training animals were compared. In the first method, positive punishment training involved sheep learning that after an audio stimulus, an electrical stimulus would follow only when they did not respond by stopping or turning at the virtual fence (predictable controllability). In the second method, classical conditioning was used to associate an audio stimulus with an electrical stimulus on all occasions (predictable uncontrollability). Eighty Merino ewes received one of the following treatments: control (no training and no stimuli in testing); positive punishment training with an audio stimulus in testing (PP); classical conditioning training with only an audio stimulus in testing (CC1); and classical conditioning training with an audio stimulus followed by electrical stimulus in testing (CC2). The stimuli were applied manually with an electronic collar. Training occurred on 4 consecutive days with one session per sheep per day. Sheep were then assessed for stress responses to the cues by measuring plasma cortisol, body temperature and behaviors. Predictable controllability (PP) sheep showed no differences in behavioral and physiological responses compared with the control treatment (P < 0.05). Predictable uncontrollability of receiving the aversive stimulus (CC2) induced a higher cortisol and body temperature response compared to the control but was not different to CC1 and PP treatments. CC2 treatment sheep showed a higher number of turning behaviors (P < 0.001), and more time spent running (P < 0.001) than the control and PP treatment groups, indicating that predictability without controllability was stressful. The behavior results also indicate that predicting the event without receiving it (CC1) was less stressful than predicting the event then receiving it (CC2), suggesting that there is a cost to confirmation of uncontrollability. These results demonstrate that a situation of predictability and controllability such as experienced when an animal successfully learns to avoid the aversive component of a virtual fence, induces a comparatively minimal stress response and does not compromise animal welfare.

animal welfare behavior cortisol body temperature electric shock Bayesian brain positive punishment

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The experience of stress in animals has psychological foundations, in which cognitive evaluation of the experience influences how stressful it is for the animal. In a series of experiments conducted in the 1970's, Weiss (1) demonstrated that the predictability and controllability of an electric shock influenced the degree of the stress response observed. Research has continued to investigate this phenomenon, with Greiveldinger et al. (2) finding that the predictability of a sudden event (sudden appearance of a panel above the feeding trough) reduced the number of startle responses observed and lambs showed less tachycardia when a light signal preceded the sudden event. The role of controllability of a stressor on animal welfare has been described in early work with rats using degree of gastric ulceration responses to electrical shocks (1, 3) which were reduced when the animals had predictability and controllability over their experience of the aversive event. Lambs which were taught to control an aversive event showed ear position and heart rate differences compared with control lambs, suggesting the perception of the aversive event was less stressful for lambs which could interrupt it (4). Long-term lack of predictability and controllability over stressors has been shown to lead to increased fearfulness in lambs as indicated through behavioral and physiological responses (5), as well as a pessimistic judgement bias (6). Predictability of stimuli have also been reviewed in relation to implications for captive animal welfare (7). The application of this research in a practical context has been investigated by Lee et al. (8) with the development of a framework in which the predictability and controllability of an animal's situation can be used in the assessment of the welfare state of an animal. The framework is based on the link between stress and welfare with the animals' cognitive evaluation of the predictability and controllability of the environment and their affective state resulting in positive or negative welfare outcomes. Stress responses result when animals are unable to predict or control negative events.

      In the context of virtual fencing, associative learning is the mechanism through which an animal learns to avoid an aversive stimulus (an electrical stimulus applied through a collar) by responding to an audio stimulus (beep tone from the collar). This method is referred to as “positive punishment.” In correctly responding to a benign audio cue (9) by either stopping forward movement or turning around, the animal successfully learns to avoid the aversive stimulus (1013). Successful learning, therefore, implies that the animal learns to predict the occurrence of the aversive stimulus, and can control whether or not they receive the stimulus through their behavior. When an animal first encounters the virtual fence, the interaction is both unpredictable and uncontrollable and therefore has the potential to negatively impact welfare, so it is important to ensure that negative stimuli aren't so aversive as to create fear and distress. Positive punishment as a training technique has been utilized in numerous ways, commonly applied in horse training, in which aversive stimuli such as pressure from a whip, bit or spurs, encourages the animal to change its behavior in order to avoid receiving the aversive stimulus (14). The use of positive punishment has been criticized in dog (15), and horse training (16), due to complications with other training methods and inconsistencies in application of cues.

      The perceptions of sheep to virtual fencing stimuli have been assessed in isolation with no prior experience in a previous study and it was found that the electrical stimulus was no more aversive than a commonly used restraint procedure with the audio cue being perceived as largely benign (9). To further test the welfare impacts of virtual fencing, the next step is to investigate the impact of these stimuli in relation to predictability and controllability. Successful learning of the virtual fencing system is proposed to be a predictable controllable situation, thereby inducing a minimal stress response to the audio cue following learning and reducing animal welfare risks (8). If the animal cannot predict or control receiving an aversive stimulus then its welfare is likely to be negatively impacted through increased fearfulness (5) and behavioral and physiological stress responses (6). Further, if the situation is on-going, negative states such as helplessness and hopelessness may result (1), with serious implications for animal welfare.

      The first hypothesis of the study was that a capacity to predict and control the aversive (positive punishment) would eliminate the behavioral and physiological responses to the virtual fence and would not differ from the Control treatment. The second hypothesis was that a capacity to predict but not control the aversive stimulus (Classic Conditioning treatments) would induce a stress response and this would be greater in those animals receiving the aversive stimulus than those receiving the audio cue alone.

      Materials and Methods

      The experiment was undertaken at CSIRO's McMaster Laboratory, Armidale, New South Wales (NSW), Australia. The protocol and conduct of the experiment was approved by the CSIRO Chiswick Animal Ethics Committee under the NSW Animal Research Act, 1985 (approval ARA 18/27).

      Animals and Habituation

      Ninety Merino non-pregnant ewes (mean body weight 49.5 kg ± 0.57 kg) comprising 80 test animals and 10 spare animals, aged 7 years, were kept in an animal house and fed standard rations of 200 g blended chaff and 700 g complete pelleted ration (Ridley Agriproducts, Australia; 9.04 MJ/kg dry matter) per animal per day, and provided with water ad libitum. The sheep were kept in paddocks prior to the experimental period to allow acclimation to feed and when not being used for training or testing. The experimental protocol is shown in Figure 1. The sheep were allocated randomly to one of four (n = 20) treatment groups and these were equally divided into four cohorts (5 per treatment, n = 20) which were tested on separate days. Cohorts 1 & 2 included 5 spare animals, with the remaining 5 spare animals allocated to cohorts 3 & 4, these spare animals were also allocated to treatment groups and underwent training.

      The experimental methodology describing the training and testing protocols of four treatment groups.

      To commence habituation, the first two cohorts were moved into individual pens, under a covered shed which was open on the north. The sheep pens were 2 × 1 m and allowed visual and social interaction. Spare sheep were kept in a larger group pen (3 × 6 m). Training was conducted in laneways adjacent to the animal house facility. All sheep were fitted with dummy collars of similar design and weight to the electronic collars for the duration of the habituation period (14 days). Habituation involved handling and restraining each sheep manually in a standing position for 20 s to simulate blood sample collection, moving to the laneway where they stayed for 1 min and then returning to their pens. All habituation, training and testing of sheep were conducted at similar times of the day. Following the completion of the testing, the first two cohorts of sheep were returned to their paddocks and the third and fourth cohorts were moved into the individual pens to commence training, habituation and testing as described for cohorts one and two. Data collected from two of the sheep were removed from the study, one due to failure to successfully learn the protocol, the other due to inadequate training.

      Experimental Design and Treatments

      Sheep were randomly allocated to one of four treatments in a randomized design, with each animal being exposed to one treatment only:

      control—no prior exposure to virtual fencing stimuli and no stimuli applied during testing,

      audio stimulus after positive punishment training that was predictably controllable (PP),

      audio stimulus after classical conditioning training that was predictably uncontrollable (CC1), and

      audio cue and electrical stimulus after classical conditioning training that was predictably uncontrollable (CC2).

      Training Protocols

      The audio stimulus used in this study was applied remotely from manually controlled dog collars (Garmin TT15, Garmin Ltd., Kansas, KS, USA) at 45–55 dB, 2.7 kHz for a period of 2 s per time. The electrical stimulus was set to level 4 (320 V, 20 μs, 16 pulses per/sec) out of a possible 18. These settings have been utilized in past studies and were effective in achieving successful learning (9, 17).

      All sheep except those in the control group underwent training under two distinct protocols: positive punishment and classical conditioning.

      Positive Punishment Protocol

      The positive punishment treatment was both predictable (audio warning cue given) and controllable (sheep can avoid receiving the shock by responding to the audio cue). The protocol described by Lee et al. (18) aimed to allow training to occur utilizing the behavior of the animal and its responses to the stimuli. Each animal underwent 4 training sessions of 3 min duration each, with one session per day. Previous work in which sheep have been trained in an individual setting have either restricted the number of interactions for welfare reasons (19) or have found that sheep create visual associations and stop interacting with the virtual fence (12, 13). During each session the animal was socially motivated to move through a laneway toward a pen of conspecifics, with the virtual fence located in between (see Figure 2). Upon approach to the virtual fence an audio cue was applied using manual controllers operated by experimenters. If the sheep did not stop or turn around, an electrical stimulus was applied. For the PP group average number of electrical stimuli received in the first training session was 3.6 ± 0.46 decreasing to 2.4 ± 0.37 by the second training session, with a maximum of 5 electrical stimuli received in any single training session. An animal was considered to have learned the system when it consistently (two or more times) showed correct responses to the audio cue by either stopping forward movement or turning around. One animal failed to successfully learn the system and it was substituted for the test phase with a spare animal.

      The laneway set up for individual testing and training of sheep.

      Classical Conditioning Protocol

      The classical conditioning (CC) protocol was predictable but uncontrollable. Each animal underwent 4 training sessions of ~3 min duration each, with one session per day. During each session the animal was socially motivated to move through a laneway toward a pen of conspecifics, with the virtual fence located in between (see Figure 2). Experimenters manually applied the stimuli throughout the training session, irrespective of the behavior exhibited by the animal. Five sequences of the audio (2 s) followed immediately by the electrical stimuli (~1 s) with 20 s interval in between the sequences were applied per day over 4 consecutive days. Training was suspended early for one animal that showed excessive stress responses, where it attempted to jump out of the laneway.

      Testing Stress Responses

      Sheep were tested 2 days after the end of their training period, with cohorts one and two tested on consecutive days, and cohorts three and four tested on consecutive days following their training period. Five animals from each treatment were tested individually on each day, totaling 20 animals per treatment over the course of the experiment, and treatment order was randomized for each cohort. Sheep were tested at 5-min intervals, when not being tested they did not have visual or auditory access to the testing arena. For testing, each sheep had their dummy collar removed and replaced with the electronic collar and was moved through a laneway into the test area (~3 × 15 m). At the end of the test area, a pen holding 3–4 conspecifics served as an attractant. The virtual fencing stimuli were applied immediately upon entry to the test laneway and the test ended after 1 min. The sheep was returned to their pen and their collar was removed.

      Body Temperature and Cortisol

      Core body temperature is a common measure in the detection of stress in sheep with stress-induced hyperthermia being reported in response to a range of short-term stressors including shearing (20) and isolation (21) and vaginal temperature is a measure of core body temperature (22). As the experiment was conducted during the southern hemisphere summer months, estrus was unlikely to be implicated in body temperature measures. Two days prior to testing, the sheep were fitted with a Thermochron iButton (Factory calibrated. Model number DS1922L-F5, accuracy 0.5°C, resolution 0.063°C, weight 3.3 g; Maxim International, San Jose, CA, USA) temperature logging device fitted to a intravaginal controlled drug release device previously leached of drug actives (CIDR®, Zoetis, Parsippany, NJ, USA) using polyolefin heat-shrink tubing (2325). Data were extracted using the program eTemperature version 8.32 (OnSolution, Castle Hill, Australia). Loggers were set to record body temperature in increments of 2-min intervals. The loggers were removed the day after testing. Temperature data was extracted at 10 min before the sheep were restrained for baseline blood sampling and subsequent release into the testing arena (time 0), and at 10, 20, 30, and 60 min following the treatment.

      Plasma cortisol is also a commonly used measure in the assessment of welfare in sheep (26). On the test days, each sheep was restrained, and a baseline blood sample (time 0) was collected prior to movement to the test area. All blood samples (10 mL) were taken via jugular venipuncture within 1 min of restraint and were collected into EDTA coated vacutainer tubes. Additional blood samples were taken at 10, 20, 30, and 60 min following the treatment. Blood samples were centrifuged at 3,000 rpm for 10 min at 4°C on the day of collection, and plasma was retained and stored at −18°C for analysis. Samples were analyzed for plasma cortisol concentration using a commercial radioimmunoassay (Plasma Cortisol RIA, MP Biomedicals, California, CA, USA). This method has been previously validated in our laboratory for use in sheep (27). The intra-assay and inter-assay coefficients of variance (CV) for quality controls containing 24.9, 51.6, and 104.9 nmol/L of cortisol were 5.9, 5.6, and 8.2% and 14.0, 13.3, and 12.5%, respectively.

      Behaviors

      The behavioral analysis consisted of a number of measures commonly used in sheep welfare analysis, including locomotor activity (28), exploratory behaviors (29), vigilance (30, 31) and avoidance behaviors (9). Video footage was recorded by video camera (Sony Handycam HDR-XR550, Sony Electronics Inc., San Diego, CA, USA), additionally, security cameras were mounted and connected to digital video recorders and captured by IVMS4200 software (Hangzhou Hikvision Digital Technology Co., Ltd). Observations made during testing were recorded and categorized according to the ethogram described in Table 1 for two measurement periods: The treatment period, lasting 10 s and encompassing the time the treatments were applied; and the remaining 50 s period following the treatment, referred to as “post-treatment.” The control treatment was also split into these two measurement periods for equivalence. Locomotion, vigilance and escape behaviors were analyzed as proportion of time spent in the behavior; exploration, turn, avoidance, shake and elimination behaviors were analyzed as count of observations.

      Ethogram of behaviors measured during the treatment and post-treatment testing periods.

      Behavior Definition
      Exploration Sniffing other sheep, sniffing ground, and sniffing surroundings
      Locomotion—stand still Standing still, all four feet on ground, and stationary
      Locomotion—walk Walking at a slow pace
      Locomotion—trot Medium pace trot
      Escape—run Fast pace run
      Turn Change of direction of at least 90 degrees
      Vigilance Vigilant = head above shoulder; Not vigilant = head parallel to or below shoulder height
      Avoidance Leap with all four feet off the ground, rear with two feet off the ground or fall so that quarters touch the ground, Stretching and rigidity of the neck around the collar, Hunched back posture.
      Shake Shaking head and/or body
      Elimination Urination and/or defecation
      Statistical Analysis

      All statistical analyses were performed in R (32) using the packages nlme (33), pscl (34), MASS (35), rcompanion (36), dunn.test (37), dplyr (38), and userfriendlyscience (39). Data was tested for normality using visual assessment of Q–Q plots and the Shapiro-Wilk test.

      A linear mixed effect model (LMM) with time series was used to analyze cortisol and temperature data. To analyze the cortisol, initial datasets were edited to remove the outliers (two observations from PP and CC2) based on drawn qqplot in R. Cortisol data were log transformed to meet the normality assumptions of LMM in which no more outliers were detected.

      Mean ± 2.5 standard deviation (SD) was used to normalize the temperature data which resulted to remove 9 outlier observations [CC1 (1), PP (5, 4 in the same sheep and 1 for another sheep), and CC1 (3, same sheep)] from the dataset. The LMM was used as follows:

      yijklmn= μ+Treatmenti×Timej+Cohortk+β1l                  ×(Time1il-Time1¯)+Sheepm+eijklmn

      where yijklmn = response variable (plasma cortisol or temperature at time series point), μ = population mean, Treatmenti = the fixed effect of treatment (4 levels: Control, PP, CC1, CC2), Timej = the fixed effect of time of measurement (10, 20, 30, and 60 after treatment for cortisol and temperature), Cohortk = the fixed effect of cohort for cortisol as it was not significant for temperature and eliminated from the model (4 levels: 1, …, 4), β1l×(Time1il-Time1¯) = the covariate effect of cortisol at time 0 or temperature at time −10, Sheepm= random effect of sheep, and eijklmn= random effect of error. To account for the repeated measures over time, a spatial power (since time intervals were not equally spaced) covariance-structure was used in the mixed models for cortisol and body temperature.

      A further analysis with an LMM using nlme package was performed in R (32) to investigate the difference between the treatments for within time points. The mathematical model was as follows:

      yijklm= μ+Treatmenti+Cohortj+β1k               ×(Time11k-Time1¯)+Sheepl+eijklm

      where yijklm = response variable (plasma cortisol at time 10, 20, 30, and 60 for both plasma cortisol and temperature), μ= population mean, Treatmenti= the fixed effect of treatment (4 levels, control, PP, CC1, CC2), Cohortj = the fixed effect of cohort for cortisol as it was not significant for temperature and eliminated from the model (4 levels: 1, …, 4), β1k×(Time11k-Time1¯)= the covariate effect of cortisol at time 0 or temperature at time −10, Sheepl = random effect of sheep, and eijklm = random effect of error. The lsmeans function in the lsmeans package (40) was used to estimate the least square means (LS-means) for all LMMs. The groups were compared using Tukey's test which differences were considered to be significance at P < 0.05. The results then plotted using ggplot2 function of R package (32).

      Counts of behaviors were separated into the first 10 s during treatment and the 50 s post-treatment. Number of turns were analyzed using a GLM with poisson distribution, the model fitted treatment and day as a fixed effect and the interaction of treatment and day where appropriate based on ANOVA, QIC and residual deviance of the model. Number of turns in the post-treatment period was over dispersed and required analysis with quasi-poisson distribution. Due to the low occurrence of avoidance, exploration, vocalization, shake and elimination behaviors, these data were placed into a binary frame as either “did” or “did not” perform the behavior. This new data was analyzed using Fishers Exact Tests, examining the number of animals in each group which performed the behaviors. If a significant result was obtained (P < 0.05) the data was analyzed post-hoc using the package rcompanion (36).

      Locomotion data was measured as seconds duration for the treatment period, lasting 10 s, and the post-treatment period, lasting a further 50 s. Data for the treatment observation period could not be transformed to approximate normality, and therefore were subsequently analyzed using a Kruskal-Wallis test followed by Dunn multiple comparison post-hoc test with a Bonferroni correction. Stand, trot and run locomotion data for the post-treatment observation period could not be transformed to approximate normality, and therefore were subsequently analyzed using a Kruskal-Wallis test followed by Dunn multiple comparison post-hoc test with a Bonferroni correction. Walk data was square root transformed and subsequently was able to meet assumptions of normality (Shapiro-Wilk test) and equal variance (Levene test), this data was then analyzed using a linear mixed effects model with cohort as a fixed effect and individual sheep as a random effect.

      Results Plasma Cortisol

      Figure 3A shows the plasma cortisol concentration over time. Cortisol peaked at 10 min for treatments PP, CC1 and CC2. The results from LMM indicated a significant effect of time (P < 0.001), cohort (P < 0.001), and the interaction between time × treatment (P < 0.05) while treatment was not a significant (P = 0.32) factor for plasma cortisol (data not shown). At 10 min, the least square means of plasma cortisol for CC2 treatment was significantly higher than control however, PP and CC1 did not differ (P > 0.05) from the control group (Figure 3B). At other time points, there were no significant differences between treatments in plasma cortisol (data not shown).

      The trend of plasma cortisol changes (mean ± SEM, nmol/L) in response to virtual fencing stimuli on mean over the study time period (A) and at time = 10 mins after treatment in sheep. Treatment groups sharing a letter were not significantly different. PP, positive punishment training with audio stimulus in testing; CC1, Classical conditioning training with audio stimulus in testing; CC2, Classical conditioning training with audio and electrical stimulus in testing period. The measures of plasma cortisol in plot (B) are based on log transformed data.

      Body Temperature

      Body temperature increased over time with a maximum at 30 min after treatment (Figure 4A). Based on the obtained results from LMM, time (P < 0.001), and the interaction between time × treatment (P < 0.00) had significant effects of body temperature, while treatment (P = 0.13) and cohort (P = 0.72) did not significantly influence body temperature (data not shown). Estimated least squares means for the effect of treatment on body temperature for each time point are presented in Figures 4B–E. Body temperature differed between treatments at 10 min with the CC2 treatment having a higher temperature than the control (P = 0.04) and PP and CC1 did not differ from any other treatments (Figure 4B). At other time points, there were no significant differences between treatments (Figures 4C–E) however, the overall differences between treatments tended to be significant at time = 30 (P = 0.08) and time- = 60 (P = 0.06).

      The trend of core temperature changes (mean ± SEM, oC) in response to virtual fencing stimuli on mean over the study time period (A) and at the 10, 20, 30, and 60-min post treatment time points (B–E) in sheep. Treatment groups sharing a letter were not significantly different within a time point. PP, positive punishment training with audio stimulus in testing; CC1, Classical conditioning training with audio stimulus in testing; CC2, Classical conditioning training with audio and electrical stimulus in testing.

      Behavior

      Locomotion observations (Table 2) showed that during the treatment period, time spent standing still [H(3) = 16.392, P ≤ 0.001], walking [H(3) = 16.961, P ≤ 0.001], and running [H(3) = 36.491, P ≤ 0.001] was significantly different. The CC2 treatment animals exhibited a lower portion of time spent standing than Control (z = 3.267, Padj = 0.007), PP (z = 3.583, Padj = 0.002), and CC1 (z = 2.863, Padj = 0.025) treatments, a lower portion of time walking than the Control (z = 3.716, Padj = 0.001), and PP (z = 3.334, Padj = 0.005) treatments; and a longer portion of time running than Control (z = −5.505, Padj ≤ 0.001), PP (z = −4.782, Padj ≤ 0.001), and CC1 (z = −3.938, Padj ≤ 0.001) treatments. There was no significant treatment difference for time spent trotting [H(3) = 0.820, P ≤ 0.845]. For the post-treatment observation period, the time spent standing still [H(3) = 7.998, P = 0.046], trotting [H(3) = 17.131, P = 0.001], and running [H(3) = 28.211, P ≤ 0.001] was significantly different. The CC2 treatment animals spent less time standing however there was no significant treatment difference on post-hoc multiple comparison analysis. The CC2 animals spent more time trotting than Control (z = −3.511, Padj = 0.003) and PP (z = −3.109, Padj = 0.011) treatments, and more time running than Control (z = −4.877, Padj ≤ 0.001), PP (z = −4.200, Padj ≤ 0.001), and CC1 (z = −3.217, Padj ≤ 0.001) treatment sheep. There was no significant treatment difference for time spent walking (F3/71 = 1.433, P = 0.241).There was a treatment effect in the number of turns displayed (P < 0.05) during treatment, with CC2 animals displaying more turns (mean = 1 ± 0.4, P < 0.05) compared to Control (−2.1, z = 4.4), PP (−1.3, z = −3.9), and CC1 (−0.7, z = −2.6). There was no difference between treatments in the number of turns post-treatment, however a trend was seen between the CC2 and control animals with CC2 animals displaying more turns (mean = 1.3 vs. 0.2 respectively, t = −1.8, P = 0.07). Behavioral responses to the treatments summarized as did or did not perform are shown in Table 3. More animals in the CC2 group displayed avoidance behaviors during treatment compared to the other groups [χ2 (3) = 8.2, P = 0.02]. A difference was also seen post-treatment, with fewer CC2 animals displaying exploratory behaviors compared to control and PP [χ2 (3) = 13.8, P = 0.003].

      Locomotion duration in seconds during the treatment period (10 s) and the post-treatment period (50 s).

      Treatment1, 2 (mean ± SEM)
      Behavior Control (n = 19) PP (n = 19) CC1 (n = 20) CC2 (n = 20) P-value
      Stand 2.7 ± 0.49b 2.7 ± 0.36b 2.4 ± 0.48b 0.7 ± 0.26a <0.001
      Walk 4.6 ± 0.76b 3.7 ± 0.54b 2.9 ± 0.63a, b 1.3 ± 0.43a <0.001
      Trot 1.9 ± 0.34a 2.4 ± 0.47a 2.8 ± 0.58a 2.3 ± 0.53a 0.845
      Run 0.67 ± 0.25a 1.1 ± 0.35a 1.8 ± 0.46a 5.7 ± 0.53b <0.001
      Post-treatment (mean ± SEM)
      Stand 40.1 ± 1.59a 40.0 ± 1.64a 34.8 ± 2.23a 32.9 ± 0.63a 0.046
      Walk3 9.7 ± 1.57a 8.9 ± 1.62a 10.0 ± 1.44a 6.6 ± 1.16a 0.241
      Trot 0.2 ± 0.12a 0.7 ± 0.5a 2.5 ± 1.0a, b 3.8 ± 1.00b 0.001
      Run 0.0 ± 0.00a 0.5 ± 0.32a 1.7 ± 0.88a 6.7 ± 2.42b <0.001

      PP, positive punishment training with audio stimulus in testing; CC1, Classical conditioning training with audio stimulus in testing; CC2, Classical conditioning training with audio and electrical stimulus in testing.

      For each behavior, means not sharing a common letter within row were statistically different.

      Post-treatment walk was analyzed by linear mixed effects (LME) model, other behaviors were analyzed by Kruskal Wallis test.

      For each behavior, means not sharing the same superscript within row were not statistically different (P < 0.05).

      Behavioral responses to virtual fencing stimuli during treatment (10 s) and post-treatment (50 s) observation periods.

      Behavior Treatment1, 2 (count)
      Control (n = 19) PP (n = 19) CC1 (n =20) CC2 (n = 20)
      Avoidance 1a 3a 2a 11b
      Exploratory 2 5 6 0
      Vocalizations 3 2 2 2
      Eliminations 3 5 1 1
      Shake 2 4 4 5
      Post-treatment (count)
      Avoidance 1 1 2 5
      Exploratory 16a 17a 13a, b 8b
      Vocalizations 7 6 7 4
      Eliminations 10 6 13 15
      Shake 5 2 0 4

      PP, positive punishment training with audio stimulus in testing; CC1, Classical conditioning training with audio stimulus in testing; CC2, Classical conditioning training with audio and electrical stimulus in testing.

      For each behavior, means not sharing a common letter within row were statistically different.

      Differing letter superscript

      within row denotes significant difference (P < 0.05).

      Counts are the total number of animals within the group that displayed the behavior.

      Discussion

      This study aimed to observe the welfare impact of predictability and controllability of the aversive component of a virtual fence. The sheep which had undergone the predictable controllability (PP) treatment had learned that responding to the audio cue allowed them to control the aversive event, and as expected, we found that the behavioral and physiological responses were not different to the control treatment. This suggests that they perceive this cue as benign once they have learnt how to respond to it. The capacity to predict through an audio warning but not control receiving the aversive stimulus (CC2) induced a higher cortisol and body temperature response compared to the control but was not different to CC1 and PP treatments. However, overall, the inability to control receiving the electrical stimulus (CC2) elicited a stronger behavioral response compared with the other treatments, suggesting that predictability without controllability may be stress inducing. The differences in behavior also suggest that hearing the audio cue (prediction) without receiving the electrical stimulus (CC1) had less impact than hearing the audio cue and receiving the electrical stimulus (CC2), thereby indicating that there is a biological cost to confirmation of uncontrollability.

      The plasma cortisol, body temperature and majority of behavioral responses to the audio cue in the animals trained using positive punishment techniques were not significantly different to the control responses, and this is in agreement with earlier work that found the naïve experience of the audio stimulus had no inherent welfare impact (9). This absence of significant differences between the control group and the group trained to the virtual fence using positive punishment suggest that this is a welfare-friendly approach to training sheep to a virtual fence.

      The stronger behavioral responses reported in the classically conditioned treatments (CC1 and CC2), particularly increased locomotion, have been linked to stress responses, and may be related to coping strategies (41). In the context of this study, it is likely that most of the running and turning behavior may be explained as an attempt for the animal to escape the situation. It should also be noted that locomotion can increase both cortisol (42) and body temperature responses (43), and may have influenced the stress responses. The importance of controllability in the modulation of the stress response is shown in previous work by Dess et al. (44) in which plasma cortisol responses in dogs exposed to electric shocks were elevated in those dogs which had no control over their experience of the noxious stimuli. Overall, the training protocol using classical conditioning, resulted in increased stress responses and escape behavior, suggesting that the inability to control their exposure to the electrical stimulus was stressful, even if animals were able to predict the aversive event. If this situation were to be on-going, then there would be serious implications for animal welfare, and may result in negative states such as helplessness and hopelessness. These findings should be considered in relation to limitations of the study, including that there was small variation in body temperature in response to the treatments and a small sample size used in the study.

      The minimal physiological and behavioral responses observed in the control treatment group indicate that the habituation period was successful in ameliorating stress responses associated with handling and blood sampling which occurred on test days. The observed effect of the treatments on cortisol responses in this study were short-lived, with all sheep returning to baseline within 20 min following the treatment, and behavioral observations reduced in effect from the treatment to the post-treatment observation periods. This is similar to cortisol responses reported in sheep exposed to the acute stress of a barking dog (45). Other previous studies have introduced a stressor for a longer period of time, making appropriate comparison difficult, for example other work exposed sheep to a barking dog for 5 min (46, 47), induced isolation stress for 10 min (48), and longer (49).

      In the classic study by Weiss (1) where rats were exposed to electric shocks, animals that had no control over receiving shocks showed a strong stress response (measured by increased corticosteroid levels and the presence of stomach wall lesions). Whereas, when rats were able to prevent receiving an electric shock by turning a wheel, the stress response was not different to controls that did not receive any shocks, indicating that controllability was an important component of the stress response. Interestingly, rats that received a light signal to indicate that a shock was coming (i.e., they were predictable), showed a similar stress response to controls that did not receive any electric shocks. Surprisingly, both the ability to predict and control the occurrence of the electric shocks were equally effective at reducing the stress response, and this was explained by the fact that the animals knew they were experiencing a safe period if they hadn't received a warning signal. In the current study, where the electric shock occurrence in both CC1 and CC2 treatments were predictable (as they were always signaled by an audio cue), but not controllable, the physiological and behavioral stress response was higher in the CC2 treatment compared to controls. As there was no unpredictable uncontrollable treatment, we could not compare the stress response without predictability. The addition of an unpredictable and uncontrollable treatment would be informative, however, this is challenging to test in practice as the test arena/test paradigm itself could become a cue (prediction) for the likelihood of an uncontrollable event occurring. Interestingly, it appears that predictability makes receving an electric shock less aversive. Rats chose predictable electric shock over unpredictable shock, even when the shock duration was up to nine time longer and three times stronger (50). Behaviors are also less disrupted by predictable shock compared with unpredictable shock (51). Further studies to compare predictability with unpredictabilty in the context of the virtual fencing model are recommended.

      These findings using virtual fencing as a model begin to provide insights into how predictability and controllability may affect stress responses and animal welfare as proposed in the framework of Lee et al. (8). Another model of relevance to virtual fencing is the Bayesian brain model as described by Colditz (52) in relation to predictive control being linked with physiological stress responses and subsequently affective experience. In this model, the predictions are iteratively refined through the sensory feedback they evoke—i.e., by the potential for the actions to modify and control the sensations. When actions (predictions) aren't able to reduce the discrepancy between expected and actual sensations then the animal becomes stressed. In virtual fencing, once an animal has learned to avoid the fence in response to the audio cue, its situation is both predictable and controllable (for example, the PP treatment), and it can be considered to have agency over its choice to interact with the virtual fence. As demonstrated in this study, the resulting physiological and behavioral stress response to predictable controllability is minimal and thus, we may infer that a negative affective state is not induced due to there being no discrepancy between expected and actual sensations.

      Conclusions

      This work highlights the importance of predictability and controllability of events for animal welfare as technology and animal management become more integrated, particularly in systems in which it is necessary for animals to learn in order to be able to be effectively managed.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Ethics Statement

      The animal study was reviewed and approved by CSIRO Chiswick Animal Ethics Committee under the NSW Animal Research Act, 1985 (approval ARA 18/27).

      Author Contributions

      TK, DM, FC, and CL contributed conception and design of the study. TK, SB, DM, and BM conducted the animal experiment. TK and HK performed the statistical analyses. TK wrote the first draft of the manuscript. TK, DM, FC, HK, and CL wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer DB declared a past co-authorship with one of the authors CL to the handling editor.

      Thank you to Troy Kalinowski, Jim Lea, and Tim Dyall (CSIRO) for technical support. A special thank you to Ian Colditz for his feedback and advice on the manuscript. Thanks to Andrew Eichorn (CSIRO) for animal management support and students and support staff from the University of New England and CSIRO for their valuable assistance with this project.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fvets.2020.580523/full#supplementary-material

      References Weiss JM. Psychological factors in stress and disease. Sci Am. (1972) 226:10413. 10.1038/scientificamerican0672-1045063587 Greiveldinger L Veissier I Boissy A. Emotional experience in sheep: predictability of a sudden event lowers subsequent emotional responses. Physiol Behav. (2007) 92:67583. 10.1016/j.physbeh.2007.05.01217588624 Tsuda A Tanaka M Hirai H Pare WP. Effects of coping behavior on gastric lesions in rats as a function of predictability of shock. J Psych Res. (1983) 25:915.6683849 Greiveldinger L Veissier I Boissy A. Behavioural and physiological responses of lambs to controllable vs. uncontrollable aversive events. Psychoneuroendocrinology. (2009) 34:80514. 10.1016/j.psyneuen.2008.10.02519084342 Destrez A Deiss V Leterrier C Boivin X Boissy A. Long-term exposure to unpredictable and uncontrollable aversive events alters fearfulness in sheep. Animal. (2013) 7:47684. 10.1017/S175173111200179623031226 Doyle RE Lee C Deiss V Fisher AD Hinch GN Boissy A. Measuring judgement bias and emothional reactivity in sheep following long-term exposure to unpredictable and aversive events. Physiol Behav. (2011) 102:50310. 10.1016/j.physbeh.2011.01.00121236279 Bassett L Buchanan-Smith HM. Effects of predictability on the welfare of captive animals. Appl Anim Behav Sci. (2007) 102:22345. 10.1016/j.applanim.2006.05.029 Lee C Colditz IG Campbell DLM. A framework to assess the impact of new animal management technologies on welfare: a case study of virtual fencing. Front Vet Sci. (2018) 5:187. 10.3389/fvets.2018.0018730186841 Kearton T Marini D Cowley F Belson S Lee C. The effect of virtual fencing stimuli on stress responses and behavior in sheep. Animals. (2019) 9:30. 10.3390/ani901003030669563 Campbell DLM Lea JM Haynes SJ Farrer WJ Leigh-Lancaster CJ Lee C. Virtual fencing of cattle using an automated collar in a feed attractant trial. Appl Anim Behav Sci. (2018) 200:717. 10.1016/j.applanim.2017.12.002 Campbell DLM Lea JM Keshavarzi H Lee C. Virtual fencing is comparable to electric tape fencing for cattle behavior and welfare. Front Vet Sci. (2019) 6:445. 10.3389/fvets.2019.0044531921906 Marini D Cowley F Belson S Lee C. The importance of an audio cue warning in training sheep to a virtual fence and differences in learning when tested individually or in small groups. Appl Anim Behav Sci. (2019) 221:104862. 10.1016/j.applanim.2019.104862 Marini D Meuleman M Belson S Rodenburg T Llewellyn R Lee C. Developing an ethically acceptable virtual fencing system for sheep. Animals. (2018) 8:33. 10.3390/ani803003329495478 Mcgreevy P Boakes R. Carrots and Sticks: Principles of Animal Training. Sydney, NSW: Darlington Press (2011). Blackwell EJ Twells C Seawright A Casey RA. The relationship between training methods and the occurrence of behavior problems, as reported by owners, in a population of domestic dogs. J Vet Behav. (2008) 3:20717. 10.1016/j.jveb.2007.10.008 Padalino B Henshall C Raidal SL Knight P Celi P Jeffcott L . Investigations into equine transport-related problem behaviors: survey results. J Equine Vet Sci. (2017) 48:16673.e62. 10.1016/j.jevs.2016.07.001 Marini D Llewellyn R Belson S Lee C. Controlling within-field sheep movement using virtual fencing. Animals. (2018) 8:31. 10.3390/ani803003129495364 Lee C Prayaga K Reed M Henshall J. Methods of training cattle to avoid a location using electrical cues. Appl Anim Behav Sci. (2007) 108:22938. 10.1016/j.applanim.2006.12.003 Brunberg EI Bøe KE Sørheim KM. Testing a new virtual fencing system on sheep. Acta Agric Scand A. (2015) 65:18. 10.1080/09064702.2015.1128478 Sanger ME Doyle RE Hinch GN Lee C. Sheep exhibit a positive judgement bias and stress-induced hyperthermia following shearing. Appl Anim Behav Sci. (2011) 131:94103. 10.1016/j.applanim.2011.02.001 Pedernera-Romano C Ruiz De La Torre JL Badiella L Manteca X. Associations between open-field behaviour and stress-induced hyperthermia in two breeds of sheep. Anim Welfare. (2011) 20:33946. George WD Godfrey RW Ketring RC Vinson MC Willard ST. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. J Anim Sci. (2014) 92:494955. 10.2527/jas.2014-808725253816 Lea JM Niemeyer DDO Reed MT Fisher AD Ferguson DM. Development and validation of a simple technique for logging body temperature in free-ranging cattle. Aust J Exp Agric. (2008) 48:7415. 10.1071/EA07422 Monk JE Belson S Colditz IG Lee C. (2018). Attention Bias Test Differentiates Anxiety and Depression in Sheep. Front Behav Neurosci. 10.3389/fnbeh.2018.0024630405371 Monk JE Lee C Belson S Colditz IG Campbell DLM. The influence of pharmacologically-induced affective states on attention bias in sheep. PeerJ. (2019) 7:e7033. 10.7717/peerj.703331211015 Niezgoda J Bobek S Wronska-Fortuna D Wierzchos E. Response of sympatho-adrenal axis and adrenal cortex to short-term restraint stress in sheep. J Vet Med A. (1993) 40:6318. 10.1111/j.1439-0442.1993.tb00677.x8279214 Paull DR Lee C Colditz IG Atkinson SJ Fisher AD. The effect of a topical anaesthetic formulation, systemic flunixin and carprofen, singly or in combination, on cortisol and behavioural responses of Merino lambs to mulesing. Aust Vet J. (2007) 85:98106. 10.1111/j.1751-0813.2007.00115.x17359309 Verbeek E Ferguson D Quinquet de Monjour P Lee C. Opioid control of behaviour in sheep: Effects of morphine and naloxone on food intake, activity and the affective state. Appl Anim Behav Sci. (2012) 142:1829. 10.1016/j.applanim.2012.09.001 Beausoleil NJ Stafford KJ Mellor DJ. Sheep show more aversion to a dog than to a human in an arena test. Appl Anim Behav Sci. (2005) 91:21932. 10.1016/j.applanim.2004.10.008 Monk JE Doyle RE Colditz IG Belson S Cronin GM Lee C. Towards a more practical attention bias test to assess affective state in sheep. PLoS ONE. (2018) 13:e0190404. 10.1371/journal.pone.019040429293636 Monk JE Belson S Lee C. Pharmacologically-induced stress has minimal impact on judgement and attention biases in sheep. Sci Rep. (2019) 9:114. 10.1038/s41598-019-47691-731391491 R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing (2018). Pinheiro J Bates D DebRoy S Sarkar D. nlme: Linear and Nonlinear Mixed Effects Models (2011)24302486 Jackman S. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory. Sydney, NSW: United States Studies Centre; University of Sydney (2017). Venables WN Ripley BD. Modern applied statistics with S. In: Chambers J, Eddy W, Härdle W, Sheather S, Tierney L, editors. Statistics and Computing. 4th ed. New York, NY: Springer (2002). p. 12. 10.1007/978-0-387-21706-2 Mangiafico S. rcompanion: Functions to Support Extension Education Program Evaluation_R package (2018). Dinno A. dunn.test: Dunn's Test of Multiple Comparisons Using Rank Sums (2017). Wickham H François R Henry L Müller K. dplyr: A Grammar of Data Manipulation (2018). Peters G. Userfriendlyscience: Quantitative Analysis Made Accessible (2018). Lenth RV. Least-squares means: the R Package lsmeans. J Stat Softw. (2016) 69:133. 10.18637/jss.v069.i01 Beausoleil NJ. Physiological Responses of Domestic Sheep (Ovis aries) to the Presence of Humans and Dogs (Doctor of Philosophy), Massey University, Wellington, New Zealand (2006). Turnbull AV Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev. (1999) 79:171. 10.1152/physrev.1999.79.1.19922367 Brigg P Pethick DW Johnson KG Yovich JV. The influence of wool length on thermoregulation in sheep exercised at different ambient temperatures. In: Animal Production in Australia. Wongan Hills: Australian Society Animal Prod (1994). p. 402. Dess NK Linwick D Patterson J Overmier JB Levine S. Immediate and proactive effects of controllability and predictability on plasma cortisol responses to shocks in dogs. Behav Neurosci. (1983) 97:100516. 10.1037/0735-7044.97.6.10056651957 Lee TK Lee C Bischof R Lambert GW Clarke IJ Henry BA. Stress-induced behavioral and metabolic adaptations lead to an obesity-prone phenotype in ewes with elevated cortisol responses. Psychoneuroendocrinology. (2014) 47:16677. 10.1016/j.psyneuen.2014.05.01525001966 Cook CJ. Oxytocin and prolactin suppress cortisol responses to acute stress in both lactating and non-lactating sheep. J Dairy Res. (1997) 64:32739. 10.1017/S00220299970022409275253 Komesaroff PA Esler M Clarke IJ Fullerton MJ Funder JW. Effects of estrogen and estrous cycle on glucocorticoid and catecholamine responses to stress in sheep. Am J Physiol. (1998) 275:E6718. 10.1152/ajpendo.1998.275.4.E6719755087 Caroprese M Albenzio M Marzano A Schena L Annicchiarico G Sevi A. Relationship between cortisol response to stress and behavior, immune profile, and production performance of dairy ewes. J Dairy Sci. (2010) 93:2395403. 10.3168/jds.2009-260420494148 Minton J Apple J Parsons K Blecha F. Stress-associated concentrations of plasma cortisol cannot account for reduced lymphocyte function and changes in serum enzymes in lambs exposed to restraint and isolation stress. J Anim Sci. (1995) 73:8127. 10.2527/1995.733812x7608015 Badia P Culbertson S Harsh J. Choice of longer or stronger signalled shock over shorter or weaker unsignalled shock. J Exp Anal Behav. (1973) 19:2532. 10.1901/jeab.1973.19-2516811650 Davis H Levine S. Predictability, control, and the pituitary-adrenal response in rats. J Comp Physiol Psychol. (1982) 96:393404. 10.1037/h00778927096678 Colditz IG. Objecthood, agency and mutualism in valenced farm animal environments. Animals. (2018) 8:50. 10.3390/ani804005029614016

      Funding. This project was supported by funding through the Australian Government Department of Agriculture, Water and the Environment as part of its Rural R&D for Profit program, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) (internal funding, URL: www.csiro.au/), and the University of New England (School of Environmental and Rural Science project expense support, URL: https://www.une.edu.au/).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jdzrctc.org.cn
      www.eryao.net.cn
      www.kwltgh.com.cn
      mhchain.com.cn
      szsjdyp.com.cn
      shanpu.net.cn
      www.mrxmwp.com.cn
      ruobao.com.cn
      xfchain.com.cn
      wzszyz.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p