Front. Syst. Neurosci. Frontiers in Systems Neuroscience Front. Syst. Neurosci. 1662-5137 Frontiers Media S.A. 10.3389/fnsys.2015.00068 Neuroscience Original Research Modeling human perception of orientation in altered gravity Clark Torin K. 1 2 * Newman Michael C. 3 Oman Charles M. 1 Merfeld Daniel M. 2 Young Laurence R. 1 1Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology Cambridge, MA, USA 2Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA 3National Aerospace Training and Research Center Southampton, PA, USA

Edited by: Ajitkumar Mulavara, Universities Space Research Association, USA

Reviewed by: Kara H. Beaton, Johns Hopkins University School of Medicine, USA; Paul MacNeilage, University Hospital of Munich, Germany

*Correspondence: Torin K. Clark, Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 70 Vassar St., Rm. 37-219, Cambridge, MA 02139, USA tkc@mit.edu

05 05 2015 2015 9 68 31 01 2015 12 04 2015 Copyright © 2015 Clark, Newman, Oman, Merfeld and Young. 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.

orientation perception hyper-gravity vestibular mathematical model observer

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Astronauts experience a series of altered gravity environments during space exploration missions: hyper-gravity during launch and re-entry, microgravity while on orbit or in transit, and hypo-gravity if landing on the moon or in the future on Mars. It is well-known that altered gravity affects sensorimotor function (Young et al., 1984; Parker et al., 1985). However, the effect of altered gravity on orientation perception remains poorly quantified. For example, astronauts often anecdotally report a sensation of tumbling upside down, or an “inversion illusion,” upon initial exposure to microgravity (Oman et al., 1986; Paloski et al., 2008), but to our knowledge these perceptions have not been quantified.

      In addition, mathematical models of dynamic orientation perception are limited to normal Earth 1 G environments. To consider the effect of altered gravity in mathematical models of orientation perception, we first focus on hyper-gravity (i.e., >1 Earth G normally experienced) and then considering hypo-gravity (i.e., <1 Earth G). Since many hyper-gravity experiments use centrifugation, here and throughout we use “G” to refer to the net gravito-inertial force (GIF), or the combination of gravity and linear acceleration. Since by Einstein's equivalence principle forces of gravity and acceleration are ambiguous, we often refer to the net GIF level as the “gravity level.” One-G is equal to the 9.81 m/s2 of gravitational acceleration regularly experienced on Earth.

      Previous experimental efforts have focused on perception of static tilts in hyper-gravity in the dark (Noble, 1949; Colenbrander, 1963; Schone, 1964; Miller and Graybiel, 1966; Schone and Parker, 1967; Schone et al., 1967; Correia et al., 1968; Cohen, 1973; Chelette et al., 1995; Jia et al., 2002). In most of these studies, a short-radius centrifuge was used to create a hyper-gravity environment and then subjects reported their static roll tilt perceptions using a subjective visual vertical (SVV) task (Aubert, 1861). Subjects typically overestimated their roll tilt angle in hyper-gravity.

      For pitch tilt perception, other studies found that hyper-gravity caused a perception of being pitched nose up when the actual pitch angle was <30° forward (Schone, 1964; Correia et al., 1968; Cohen, 1973). When pitched nose down by roughly 30°, perception was unaffected by hyper-gravity. At this orientation, the approximate plane of the utricular component of the otolith organs is roughly perpendicular to the increased stimulation in hyper-gravity (Corvera et al., 1958; Curthoys et al., 1999).

      To explain these results, there have been several models proposed for static orientation perception in hyper-gravity (Schone, 1964). First, Schöne hypothesized perceived tilt (e.g., pitch or roll) to be proportional to the shear force stimulation in the utricular plane. We note that the concept of a utricular “plane” is a simplification, since the utricular maculae are actually three-dimensional surfaces. For roll tilt, this relationship is given in Equation (1), where θ is roll tilt angle (either perceived or actual), G is the magnitude of the gravitational environment, or GIF, in Earth G's, and K is the proportionality constant.

      θper=KGsin(θact)

      The proportionality coefficient was initially estimated as 64°/G of shear force stimulation based upon pitch perception measures (Schone, 1964), however later data for roll tilt appear to support an estimate of 50–60°/G (Schone and Parker, 1967; Schone et al., 1967). Here we fix K = 60°/G. Correia et al. (1968) found the “utricular shear hypothesis” to be a poor fit; specifically, different combinations of angle and gravity level which yielded the same utricular shear force [G*sin(θ)] were perceived as different angles of tilt. A “tangent model” was found to be a better empirical fit (Equation 2) (Correia et al., 1968).

      θper=atan(Gtan(θact))

      They hypothesized that the tangent model accounted for the “utricular compression component” influencing the otolith response. Alternatively Schöne et al. proposed the utricular shear hypothesis remains valid, but that it approaches a physiological limit at shear force magnitudes >1 G (Schone and Parker, 1967; Schone et al., 1967; Ormsby and Young, 1976).

      Mittelstaedt proposed another model (Mittelstaedt, 1983a,b) for static tilt perception which postulated perception was driven by two distinct entities: graviceptor (e.g., otolith) cues and an “idiotropic vector” which draws perceptual reports toward the subject's body axis. The model was originally proposed to explain perceptual biases in 1 G (i.e., A- and E-effects) (Aubert, 1861; Muller, 1916), however by incorporating the complexities of non-linear transduction (Fernandez and Goldberg, 1976b) and the pitched up morphology of the utricle and saccule (Corvera et al., 1958; Curthoys et al., 1999), the model can produce overestimation in hyper-gravity. See the Appendix of Clark et al. (2015) for details on model implementation. Building upon the concepts of non-linear otolith function, Dai and colleagues proposed a model to predict tilt perception over a range of altered gravity levels and orientations (Dai et al., 1989). More recently, a model was developed to predict static orientation perception in altered gravity environments using otolith and tactile cues (Bortolami et al., 2006).

      However, each of these models only considers static tilts in hyper-gravity. Several mathematical models have been proposed for dynamic orientation perception, as reviewed by Macneilage et al. (2008). Concepts from engineering estimation and control theory have been employed such as Kalman filters (Borah et al., 1988), extended and unscented Kalman filters (Selva, 2009), and particle filters (Laurens and Droulez, 2007; Karmali and Merfeld, 2012). In the integration of cues from the semicircular canals and otolith organs, it has been hypothesized that the central nervous system (CNS) employs internal models (Merfeld et al., 1999; Green and Angelaki, 2004) as well as an understanding of three-dimensional rotations (Glasauer, 1992; Holly and McCollum, 1996; Holly et al., 2011).

      One of the better validated models is the “observer”-family of models (Merfeld et al., 1993; Merfeld and Zupan, 2002; Zupan et al., 2002; Vingerhoets et al., 2007, 2009; Newman, 2009; Rader et al., 2009), which have been used to predict a wide range of illusory perceptions. The model is based upon the “observer” concept from estimation theory (Kalman, 1960; Kalman and Bucy, 1961; Luenburger, 1971) which uses an internal model to predict and evaluate feedback measurements (Oman, 1982, 1990). While effective for a wide range of motion stimuli in 1 G, the observer models do not predict overestimation in hyper-gravity, even for static tilts. Instead, for any altered gravity environment the observer model predicts near veridical perceptions of tilt, limiting their application to a 1 G environment. However, we recently proposed a modification to the observer model, which allows for it to predict the static and dynamic overestimation of roll tilt experimentally observed across a range of conditions (Clark et al., 2015). The modification is based upon the hypothesis that the CNS treats otolith stimulation in the utricular plane different than stimulation out of the utricular plane.

      In the remainder of this paper, first in the methods we detail our two modified models: the modified utricular shear model for static orientation perception and the modified observer model that can make predictions for static and dynamic orientation perception. In the results, data for static roll tilt perception in hyper-gravity are compared to previous mathematical models. Finding systematic errors between the previous models and roll tilt perception in hyper-gravity, we next compare to our modified utricular shear model and modified observer model.

      We then transition to pitch tilt perception in hyper-gravity, comparing the modified observer and modified utricular shear models to previous available data. As a novel contribution of this paper, we show the modified observer model predictions for pitch tilt in hyper-gravity which emphasizes the criticality of the hypothesized differential weighting in the pitched-up utricular plane.

      Finally, the modified models are simulated in hypo-gravity environments, including lunar and Martian gravity levels. Novel model predictions are first made for roll tilt and then for pitch tilt, across a range of tilt angles and hypo-gravity levels.

      To summarize the various models considered and their performance in each different condition (static vs. dynamic tilts, 1 G vs. hyper-G vs. hypo-G, and roll vs. pitch) we provide Table 1 as reference. We note that none of the models considered make meaningful predictions in microgravity (i.e., 0 G), where “orientation” is no longer relative to the direction of gravity, and thus this altered gravity environment is omitted from Table 1. We also do not consider yaw tilts (e.g., supine subject in a bbq-style rotation) or combinations of different axes. The shaded boxes denote specific conditions considered in the current paper.

      Summary of previous and current models for orientation perception in altered gravity.

      √, Quality fit of the data; X, systematic errors in fitting the available data; O, model can make predictions but either the original authors do not present them or we do not consider them here; O?, model can make quantitative predictions but they are not presented here and have not yet been experimentally validated; √surd?, model makes predictions which we present here but have not yet been experimentally validated; empty, model cannot make predictions or we would not expect the predictions to be valid; gray shaded, presented in the current paper.

      It is well-known that exposure to altered gravity drives sensorimotor adaptation and a reinterpretation of sensory orientation cues (Young et al., 1984; Parker et al., 1985). In fact, we recently observed less dynamic overestimation of roll tilt in hyper-gravity on a second presentation (Clark et al., 2015). However, like almost all earlier sensory integration models of spatial orientation, the models considered here do not have adaptive mechanisms to reproduce this effect, so we will only aim to model perception on initial exposure to an altered gravity environment.

      Materials and methods

      We recently completed an experiment studying roll tilt perception in hyper-gravity (Clark et al., 2015). In this experiment, subjects reported roll tilt perception using a haptic task, in which they aligned a hand-held bar with their perceived horizontal (Wade and Curthoys, 1997; Bortolami et al., 2006; Park et al., 2006). We measured at roll tilts of −20, 10, 20, and 40° (by our convention positive angles corresponded to tilts to the left; however we found no evidence of left/right asymmetries) and net gravito-inertial levels (G-levels) of 1, 1.5, and 2 G's. This previous experiment was approved by the Environmental Tectonics Corporation/NASTAR Center's Internal Review Board and MIT's Committee on the Use of Humans as Experimental Subjects. Using this dataset, here we evaluate several previously proposed models for static orientation perception in hyper-gravity. Specifically, we consider the utricular shear model (Schone, 1964; Schone and Parker, 1967; Schone et al., 1967), tangent model (Correia et al., 1965, 1968), and Mittelstaedt's idiotropic vector model (Mittelstaedt, 1983a,b). To differentiate our recent dataset from other experiments studying static tilt perception in hyper-gravity, we refer to this study as our “current study.”

      Modified utricular shear model

      As will be seen (Figure 1) prior models do not fit our current study data well (static roll tilt in hyper-gravity). Alternatively we propose a “modified utricular shear” model. The model is empirical and ad hoc, but we provide some justification here. There is evidence showing the change in the otolith afferent firing rates are approximately proportional to the force acting along the neuron's polarization direction in monkeys (Fernandez and Goldberg, 1976a,b,c). Hence it was logical for the proposed model to be of the form G*sin(θ), since that is the physical quantity causing changes in firing rates. On a micro-level, θ may refer to the angle between the gravity force and an individual neuron's polarization direction. However, at a population level, θ may refer to the roll angle for example, where each neuron's gain is proportional to how closely its polarization direction is aligned with stimulation from roll tilt. Thus, we began with the traditional utricular shear model (Equation 1), but rearranged it into 1 G and hyper-G terms and then added an additional free parameter (M) to the hyper-gravity term. This model allows for the 1 G and hyper-gravity perceptions to be fit separately, unlike the traditional utricular shear model. However, both hyper gravity levels across all angles still must be fit with a single free parameter. We fit the model to our current dataset (Clark et al., 2015), using a hierarchical regression with subject as the identifier. Model fit parameters are provided in Table 2.

      θper=ρi+Ksin(θact)[1+M(G1)]

      Comparison of previous static models for hyper-gravity roll tilt perception to experimental data. Data are means ± 1 SE (N = 48 per point). Utricular shear model (solid line) uses K = 60°/G. The tangent model is shown as the dotted line. The Mittelstaedt model (dash-dot line) uses all parameters as defined in Mittelstaedt (1983a). (AC) Show perceived roll angle; (DF) Show the same information but as error in perceived roll angle (perceived–actual). By our convention positive angles are tilts to the left.

      Modified utricular shear model for static roll tilt.

      Coefficient Units Estimate Standard error Z-values p-Values
      ρi Degrees (°) −0.29 0.83 −0.34 0.73
      K Degress/G (°/G) 64.6 1.53 42.1 <0.0005
      M Unitless 0.26 0.035 7.48 <0.0005

      In Section Comparison of Static Pitch Tilt in Hyper-Gravity to Modified Utricular Shear and Modified Observer Model, the modified utricular shear model is compared to previous pitch tilt perception data in hyper-gravity. To make this comparison, we must account for the pitched up orientation of the utricular plane (θutricule). This is done as in the traditional utricular shear model and the resulting formulation for pitch (δ) is provided in Equation (4).

      δper=Ksin(δact+θutricule)[1+M(G1)]θutricule

      The pitched up angle of the utricular plane (θutricule) is defined in Table A2 in Supplementary Material. In the application of the modified utricular shear model to pitch tilt perception (Figures 3, 6, 7), the fitted parameters (K, M) are taken from the roll tilt fits and applied directly.

      Modified observer model summary

      We recently proposed a modification (Clark et al., 2015) to a previously proposed model for dynamic orientation perception (Merfeld et al., 1993; Merfeld and Zupan, 2002). Details of the model and the modification are provided in the Supplementary Appendix. These details are particularly critical for the complexities of the pitch tilt simulations included herein. In brief, we build upon the hypothesis from Clark et al. (2015) that linear acceleration feedback errors are differentially weighted whether they are in the utricular plane or perpendicular to it. Here we consider the implications of the utricular plane being pitched up relative to the head level orientation. The utricular orientation becomes relevant for pitch tilt perceptions in altered gravity. The modified model was evaluated in a series of altered gravity environments and the model predictions were compared to experimental data when available. We emphasize that the observer model can predict orientation perception during dynamic motions and in fact matches experimental perceptions of dynamic roll tilt in hyper-gravity (Clark et al., 2015). However, to our knowledge there is not quantitative data for dynamic perception of orientation in other altered gravity paradigms (e.g., pitch tilt, hypo-gravity, etc.). Thus, here we simulate the modified observer model and calculate static perceptions (details below) in two novel paradigms. The model was simulated with static pitch tilt in hyper-gravity and compared to previous studies (Correia et al., 1968; Cohen, 1973). Finally, the model was simulated with static roll tilt and static pitch tilt in various hypo-gravity environments to make quantitative hypotheses for future experimentation.

      Results Comparison of static roll tilt in hyper-gravity to previous models

      Previous models for static roll tilt perception are often compared to data by plotting perceived angle vs. actual angle. We use this approach to compare our experimental data (Clark et al., 2015) to model predictions for the utricular shear model (Schone, 1964), tangent model (Correia et al., 1968), and Mittelstaedt's idiotropic vector model (Mittelstaedt, 1983a) in Figures 1A–C (Figure 1A = 1 G, Figure 1B = 1.5 G, and Figure 1C = 2 G). However, the perceived angle in any condition is primarily determined by the actual angle, making the additional effects of hyper-gravity and the specific model difficult to observe when plotted in this format. Thus, we also plot the error in the perceived angle (perceived–actual angle) as a function of the actual angle. The comparisons between the three previous static models and our experimental data are also provided in the error format in Figure 1 (Figure 1D = 1 G, Figure 1E = 1.5 G, and Figure 1F = 2 G).

      All three models approximately fit the dataset in 1 G across the angles tested; however none of the models appropriately explains the perceptions observed in hyper-gravity. This is accentuated when viewing the perceptual errors (Figures 1D–F). In particular, both the utricular shear and tangent model predict much greater overestimation in hyper-gravity than was measured. In the utricular shear model, the free “K” parameter (Equation 1) can be reduced to better fit the hyper-gravity static perceptions. However, this can only be done at the expense of incorrectly predicting the 1 G responses. Specifically, a smaller K parameter (Equation 1) leads to the utricular shear model predicting substantial underestimation of roll tilt in 1 G that is inconsistent with the near veridical perceptions observed. To quantify the quality of the fits between each of the models and the current data for roll tilt in 1, 1.5, and 2 G's the coefficient of determination (R2) was calculated between the model predictions and the mean responses, in terms of perceptual errors, across subjects for each angle and gravity level combination. For the tangent model R2 = 0.06 and for the utricular shear model R2 = −2.8 (negative values correspond to the model fitting the data worse than the global mean), further confirming the poor fits.

      The Mittelstaedt model does better, approximately fitting the current dataset in hyper-gravity for small tilt angles (10 and 20°). However, the model predicts a decreased amount of overestimation for larger angles (e.g., 40°). Yet the overestimation in hyper-gravity that we previously observed at 40° tilt is significantly larger than at 10 or 20°. Thus, the “shape” of the Mittelstaedt model, particularly when viewing the perceptual errors, does not match the experimental data well. The coefficient of determination for the Mittelsatedt model was R2 = 0.57. It should be mentioned, and will be shown later, that the lack of fit is not an issue with the current dataset (Clark et al., 2015) being in disagreement with previous datasets (Colenbrander, 1963; Schone, 1964; Miller and Graybiel, 1966; Correia et al., 1968) upon which these models were developed. In fact, this dataset matches previous datasets quite well considering the differing methodologies (SVV vs. haptic task). Instead the previous data only appears to fit the previous models relatively well when viewing perceived angle, which is dominated by the change in actual angle, as opposed to error in perceived angle.

      Comparison of static roll tilt in hyper-gravity to modified utricular shear and modified observer model

      Since the previously proposed models fail to sufficiently explain the overestimation measured in hyper-gravity, we propose an alternative model, the modified utricular shear model (Equation 3). The model is fit to our current dataset (Clark et al., 2015), using a hierarchical regression with subject as the identifier and the results are provided in Table 2.

      For small angles, to achieve an accurate perception in 1 G, the K coefficient should be 57.3°/G (180/π). Our fit has a slightly larger estimate (64.6°/G) which yields slight overestimation at small angles, but less underestimation at larger angles in 1 G. The K coefficient estimate is very similar to a previous traditional utricular shear fit of 64°/G (Schone, 1964).

      The estimated value of M = 0.26 implies that the overestimation seen in hyper-gravity is only about 26% of that which would be expected from the traditional utricular shear model. The model fits the current data quite well-across all of the gravity-levels and angles tested. It also, at least qualitatively, fits data from many of the previous SVV experiments well, as seen in Figure 2 (black lines). Here we focus exclusively on errors in perceived roll tilt to accentuate any differences between the model fit and the experimental data. The coefficient of determination for the modified utricular shear model was R2 = 0.97, a dramatic improvement upon previous models (only data from the current dataset were included in the R2 calculation to allow for direct comparison to the R2-values for previous models).

      Comparison of current and previous static roll tilt perception to modified utricular shear model and modified observer model predictions. Comparisons are made at (A) 1 G, (B) 1.5 G, and (C) 2 G. Many of the previous studies only provide means, in which case no error bars are included here.

      Prior experiments used a different psychophysical task for measuring perceived roll (i.e., SVV), different motion devices, and tested at larger angles than the current dataset to which the proposed modified utricular shear model was fit. The match between the model predictions and available data provides support that the model empirically predicts static roll perceptions over a large range of angles and hyper-gravity levels.

      The modified observer model was previously fit to the current data for roll tilt in hyper-gravity (Clark et al., 2015). However, for comparison, Figure 2 overlays the modified observer model predictions (gray lines) with the modified utricular shear model and other datasets. Across the angles and hyper-gravity levels considered, the two models mimic each other substantially and therefore both match the available data quite well. For the modified observer model R2 = 0.93, indicating an excellent fit. While the coefficient of determination is slightly better for the modified utricular shear model than the modified observer model, we emphasize that the modified utricular shear model was directly fit to all of the current data while the added parameter from the modified observer model was fit to just one particular case (20° tilt in 2 G's, see Supplementary Appendix for details).

      Comparison of static pitch tilt in hyper-gravity to modified utricular shear and modified observer model

      We now transition to static pitch tilt perception in hyper-gravity. Pitch perception errors in hyper-gravity are not symmetric about upright like roll errors. Specifically, pitch in hyper-gravity is characterized by perceiving oneself as being pitched nose up relative to actual orientation when upright, pitched up, or when pitched nose down by <30° (Correia et al., 1968; Cohen, 1973). To directly compare to the most complete hyper-gravic static pitch perception dataset (Correia et al., 1968), the modified observer and modified utricular shear models were simulated for pitch angles of −30, −15, 0, 15, and 30° (negative pitch angles correspond to nose down) and gravity levels of 1, 1.25, 1.5, 1.75, and 2 G's (Figure 3).

      Modified model predictions for static pitch tilt perception in hyper-gravity. Modified observer model predictions (solid gray lines with small gray symbols) and modified utricular shear model (solid black lines with small black shapes) are compared to previous experimental reports from Correia et al. (1968) (filled black symbols) and Cohen (1973) (unfilled black symbols). Head pitch angle is signified by symbol shape: 30° (•), 15° (■), 0° (◊), −15° (▲), and −30° (▼). The plot is formatted to mimic Figure 1 of Correia et al. (1968). Error bars were not originally provided.

      As desired, the modified observer and modified utricular shear models predict qualitatively different static perceptions for pitch than for roll. Whereas roll tilt perception is symmetric about upright (0° roll tilt), pitch perception is asymmetric. In particular, at upright (0° of pitch tilt) there is a noticeable effect of gravity; hyper-gravity produces a perception of being pitched nose up. Increasing hyper-gravity levels causing a sensation of nose-up pitch relative to the 1 G level is a trend that exists for all of the angles simulated except for −30° (pitched nose down). At this orientation, increasing gravity level has a negligible effect on the veridical pitch perception. Each of these characteristics is observed in the two previous experimental datasets (Correia et al., 1968; Cohen, 1973).

      To quantify the quality of the fit between the models' predictions and the perceptions, we again calculate the coefficients of determination (R2). To match the analysis for roll tilt, these are calculated using the perceptual errors (Note that Figure 3 shows the perceived angles and predicted perceived angles and not the perceived errors to mimic the format of Figure 1 from Correia et al., 1968). Also note that the perceived angles in each previous dataset (Correia et al., 1968; Cohen, 1973) are estimated from the published figures, so these coefficients of determination are approximate. Both models fit the Correia et al., 1968 dataset quite well (R2 = 0.72 for the modified observer model and R2 = 0.65 for the modified utricular shear model). Remember that neither model is explicitly “fit” to these data; instead the models are fit to roll tilt in hyper-gravity and are now simply applied to pitch tilt in hyper-gravity. The model fits to the Cohen (1973) dataset are not quite as clean (R2 = 0.29 for the modified observer model and R2 = 0.45 for the modified utricular shear model). However, most of the lack of fit is due to an offset for upright perception (0° pitch) across each gravity level (unfilled diamonds in Figure 3). In fact, it would be impossible for any model to fit both the Correia et al. (1968) and the Cohen (1973) data well, since the two datasets diverge in this condition. The major effect of increasing levels of hyper-gravity causing an increasingly pitched nose up perception is observed in both models' predictions.

      The asymmetry in the observer model's static pitch predictions, as well as those for the modified utricular shear model, can be attributed to the assumed utricular plane orientation. Only in orientations where increasing the gravity level modifies the stimulation of the otoliths in the utricular plane, will the perceptual response change with gravity level. For roll tilt, the null orientation where changes in gravity magnitude do not effect perception is upright. For pitch, nose down pitch equal to θutricle = 30° will yield accurate pitch perceptions even in hyper-gravity. Hence, the assumed orientation of the utricular plane is essential to the model's performance, including its asymmetry. It was assumed the plane was level in roll and pitched up 30° relative to the head fixed coordinate frame based upon morphological studies. The Correia et al. (1968) and Cohen (1973) data in pitch support the view that the perceptual asymmetry is tied to the utricular plane and thus also supports our assumption that the modified observer processing asymmetry originates in differential weighting of head fixed utricular vs. saccular information.

      Model predictions of static roll tilt in hypo-gravity

      We now transition to considering the model predictions of orientation perception in hypo-gravity (i.e., gravity environments <1 Earth G). Since the previous models (utricular shear, tangent, and idiotropic vector models) have systematic errors in hyper-gravity roll tilt perception, we do not further consider them for hypo-gravity, where presumably they would also have systematic errors.

      First, we focus on the modified observer model predictions in hypo-gravity for roll tilt perception. Without the modification detailed above, previous versions of the observer model predicted veridical static roll tilt perceptions in hypo-gravity. To test the modified observer model's predictions it was simulated with the example 20° static roll tilt at various gravity levels (Figure 4).

      Modified observer model predictions for static roll tilt perception across gravity levels. At <1 G (hypo-gravity), the model predicts underestimation of roll tilt angle. Lunar (~1/6 G) and Martian (~3/8 G) are highlighted (diamond and triangle, respectively).

      As intended, the modified observer model simulated the static overestimation in hyper-gravity and the near accurate static perception in 1 G (marked with a square in Figure 4). However, the modified model now makes a novel prediction: underestimation of static roll tilt in hypo-gravity (0 < |g| < 1). The amount of predicted underestimation was more extreme for lower gravity levels. Of particular interest are the lunar (~1/6 G) and Martian (~3/8 G) hypo-gravity levels, which are specially marked in Figure 4. At very low gravity levels (e.g., 0.05 G), the perception of the 20° roll tilt approaches ~13.2° or underestimation of ~34% of the actual angle. This amount of underestimation is similar to the amount of overestimation observed in 2 G. Note that simulating the model at exactly 0 G results in a singularity when the gravity vector is normalized by its magnitude, and was not simulated.

      To provide quantitative hypotheses to allow for direct comparison with future experiments, we simulated the modified observer model for static roll tilt in hypo-gravity across a range of conditions. The modified observer model's predicted error in roll tilt (perceived–actual, as above) at 0.05, 0.5, and 1 G's across a range of angles is shown in Figure 5A.

      Modified model predictions for static roll tilt perception in hypo-gravity. (A) Shows the modified observer model predictions. (B) Shows the modified utricular shear model predictions. Both models predict underestimation of roll tilt (negative errors for positive tilt angles) for acute angles in hypo-gravity.

      The amount of underestimation predicted by the modified observer model depends upon both roll tilt angle and hypo-gravity level. The magnitude of underestimation peaks at approximately 50° of roll tilt for each case of hypo-gravity simulated. For a particular angle, the underestimation is roughly proportional to the difference in G-level between the hypo-gravity level and 1 G. Thus, 0.05 G yields roughly twice as much predicted underestimation as 0.5 G.

      For comparison, Figure 5B shows the modified utricular shear model's predictions for static roll tilt in hypo-gravity. First, note that in 1 G (circles) the model predicts slight overestimation (same prediction shown in Figure 2A). However, in hypo-gravity (e.g., 0.5 G (triangles) and 0.05 G (diamonds)) the modified utricular shear model also predicts underestimation of roll tilt. The amount of underestimation is similar, though general less, for the modified utricular shear model. Since the modified utricular shear model was explicitly fit to hyper-gravity perception for angles no >40°, this model's predictions in hypo-gravity are only shown up to 40°. Unlike the modified observer model, the modified utricular shear model, if simulated at larger roll tilt angles (50–90°), predicts increasing underestimation (not shown).

      Model predictions of static pitch tilt in hypo-gravity

      As a final novel prediction, the modified models are simulated for static pitch tilt in hypo-gravity. Specifically, we consider the same pitch tilt angles for hyper-gravity (−30, −15, 0, 15, and 30° of head tilt, where again negative pitch angles correspond to nose down), but now simulate at several hypo-gravity levels (0.05, 0.25, 0.5, 0.75 G) as well as at 1 G. The modified utricular shear and modified observer model predictions for static pitch tilt perception in hypo-gravity are presented in Figure 6 with gravity level on the ordinate (mimicking Figures 1, 3 from Correia et al., 1968).

      Model predictions for static pitch tilt perception in hypo-gravity. Modified observer model predictions (solid gray lines with gray symbols) and modified utricular shear model (solid black lines with black shapes) are presented. Head pitch angle is signified by symbol shape: 30° (•), 15° (■), 0° (◊), −15° (▲), and −30° (▼).

      First, the modified models predict nearly accurate perceptions in 1 G (far right of Figure 6, also shown in far left of Figure 3). However, going from right to left across Figure 6 shows that hypo-gravity causes a predicted perception of feeling pitched nose down relative to the actual angle. For example, the modified observer model simulated at 30° of nose up pitch (top gray line in Figure 6) in 1 G (far right end of line) shows an accurate pitch perception of 30°. However, at 0.05 G (far left end of top gray line) the modified observer model predicts a pitch perception of only 16.75° pitched nose up, or an error of −13.25° in which the simulated subject feels pitched nose down relative to their actual pitch angle. Note that in this example the simulated subject still feels pitched nose up (by 16.75°), just not as much as he/she actually is (30°).

      In hypo-gravity these predicted perceptual errors persist until pitched nose down at −30°. At this orientation, as detailed previously for hyper-gravity, the utricular plane is perpendicular to the direction of gravity and the predicted perception in independent of the magnitude of gravity. The exact predictions for pitch perception in hypo-gravity vary slightly between the modified utricular shear and modified observer models. However, both modified models predict the major effect of perceptual errors of feeling pitched nose down relative to actual pitch angle in hypo-gravity.

      To further clarify the effect of pitch tilt angle in hypo-gravity the same simulation predictions from Figure 6 are plotted in Figure 7, now with angle of the actual pitch tilt on the abscissa. To mimic Figure 5 (roll tilt in hypo-gravity), here we only consider hypo-gravity levels of 0.05, 0.5, and 1 G. Note that the ordinate shows the perceived pitch angle, and not the error in perceived pitch angle, to more clearly show the direction of the predicted perceptual errors.

      Modified model predictions for static pitch tilt perception in hypo-gravity. (A) Shows the modified observer model predictions. (B) Shows the modified utricular shear model predictions. The unity line (y = x) corresponds to accurate perception. Both models predict misperceptions of feeling pitched nose down relative to actual angle in hypo-gravity (predicted pitch perception is more negative than unity line). The exception is at an actual pitch angle of −30° (nose down), where perceptions are accurate at all hypo-gravity levels.

      Discussion

      We considered several models for tilt perception in altered gravity. First, the previously proposed utricular shear, tangent, and idiotropic vector models were unable to fit measured hyper-gravity static roll tilt perceptions. We proposed a modified version of the utricular shear model for static roll tilt perception that not only matched our recent dataset to which it was fit (Clark et al., 2015), but qualitatively fit previous results across a wide range of conditions. To address dynamic perception in altered gravity we recently proposed a modification to the observer model, detailed herein. The modification was based upon the hypothesis that the CNS weights errors in expected otolith sensory signals differentially whether they are in or perpendicular to the utricular plane. We further demonstrate that the modified observer model is able to predict roll tilt perceptions in hyper-gravity across the range of conditions considered. By assuming the utricular plane is pitched up by approximately 30° relative to the head horizontal plane, the modified observer model was able to match the available experimental perception data for static pitch tilts in hyper-gravity. Making a similar assumption about utricular plane orientation allowed for the modified utricular shear model to match data for static pitch tilt in hyper-gravity. Finally, we simulated the modified utricular shear and modified observer models for static roll tilt and static pitch tilt in hypo-gravity, making quantitative predictions across a range of conditions.

      Previous models, modified utricular shear model, and modified observer model for static roll tilt in hyper-gravity

      The current data could not be fit well-with any of the previously proposed models we considered (utricular shear, tangent, and Mittelstaedt's “idiotropic vector” model). The failures of these models to quantitatively fit the current data were primarily due to incongruences between the models and the data as opposed to the current data and previous SVV hyper-gravity roll tilt perception data (Colenbrander, 1963; Schone, 1964; Miller and Graybiel, 1966; Correia et al., 1968), which generally match quite well (a quantitative comparison is provided in Figure 2). The utricular shear and tangent models were previously only compared to data in terms of perceived angle vs. actual angle, which masks the effect of hyper-gravity with the variation in angle. When we compared to data in terms of perceptual errors (perceived–actual angle), extenuating the effect of hyper-gravity, quality of the fit becomes more evident (Figures 1D–F). Mittelstaedt's model was previously only qualitatively compared to the observed effect of hyper-gravity on roll tilt perception (Mittelstaedt, 1983a).

      We proposed a modified version of the utricular shear model that, with two free parameters, not only fit the current data across three gravity levels and four angles we tested (Clark et al., 2015), but also qualitatively fit previous data even at gravity and angle combinations which the model was not specifically trained upon. The model is a simple empirical fit, but does indicate that the amount of overestimation in hyper-gravity is only about 26% of that expected from the traditional utricular shear model. As to the underlying physiological explanation for this reduction in overestimation of roll tilt in hyper-gravity, we can only speculate. We hypothesize it may be due to the CNS utilizing information from other static graviceptors (e.g., otolith cues out of the utricular plane, proprioceptive, tactile, somatosensory, or potentially trunk graviceptors).

      We recently modified an existing, dynamic, canal–otolith interaction model with the hypothesis that the CNS treats otolith stimulation in the utricular plane differently than that out of plane. The modified observer model was previously considered for static roll tilt in hyper-gravity (Clark et al., 2015). Here we extend the comparison to a wider range of roll tilt angles and find the modified observer model matches the available data quite well (Figure 2).

      Modified utricular shear and modified observer models for static pitch tilt in hyper-gravity

      For roll tilt perception in hyper-gravity, as previously considered (Clark et al., 2015), the importance of pitched-up orientation of the utricular plane is not explicitly apparent. Specifically, the differential weighting could occur between the head horizontal plane (x–y) and vertical direction (z) and the model predictions for roll tilt would be unaffected. This is because in roll tilt the otolith shear stimulus is in the direction of both the y and y' axes, which are aligned.

      The criticality of the differential weighting being in the utricular plane becomes apparent when considering pitch tilt perception in hyper-gravity. Here the shear stimulus is in the direction of the x' axis and the x' and x axes are misaligned by 30°. Matching the available experimental data (Correia et al., 1968; Cohen, 1973), the model predicts a perception of being pitched nose up relative to the actual pitch angle in hyper-gravity (Figure 3). The exception to this is for pitched nose down orientations of at least 30°. At this orientation, the utricular plane (pitched up relative to head-level by approximately 30°) is aligned perpendicularly with the increasing GIF; hyper-gravity causes compressive forces to the utricular membrane as opposed to additional utricular shear.

      Data from Correia et al. (1968) and Cohen (1973) do not provide standard errors to their measures. However, the two independent data sets are in close agreement (Figure 3) and Schone (1964) shows a similar effect of hyper-gravity on static pitch perception. In Correia et al. (1968) and Schone (1964) whole-body tilts were performed, while in Cohen (1973) the tilts were head-on-body suggesting that proprioception in the neck is not the primary cause of the pitch perception asymmetry in hyper-gravity. The Correia et al. (1968) and Cohen (1973) data sets do differ when the subject is upright (Figure 3), but only by an offset that is independent of gravity level; the effect of hyper-gravity causing a pitch nose up perception is similar between the studies. Together these datasets are consistent with the hyper-gravity pitch predictions from the observer model with the hypothesis that the CNS treats otolith stimulation in the utricular plane (pitched up by 30°) differently than out of plane stimulation. By making a similar assumption about the pitched up orientation of the utricular plane, the modified utricular shear model was able to predict the available data for static pitch tilt in hyper-gravity.

      Modified utricular shear and modified observer models for static roll and pitch tilt in hypo-gravity

      Finally, the modified observer model and modified utricular shear model were simulated with static roll tilt in hypo-gravity leading to a novel prediction: underestimation of roll tilt in hypo-gravity. For the modified observer model, the amount of underestimation was greater for more extreme (smaller) hypo-gravity levels, and peaked at approximately 45–50° of roll tilt. The modified utricular shear model also predicted underestimation in hypo-gravity with more underestimation at more extreme hypo-gravity levels. We only present the modified utricular shear model predictions up to 40° to stay within the angle limits to which the model was fit in hyper-gravity (Figure 5B). Predictions for roll tilt angles >40° may be considered outside of the scope of the modified utricular shear model.

      To our knowledge there have been two attempts at quantifying static roll perception in hypo-gravity (Dyde et al., 2009; De Winkel et al., 2012), but neither directly address the predictions in Figures 4, 5. In the experiments, subjects only reported perceptions when upright (roll = 0°) or on their side (roll = +90 or −90°). At upright, the model predicts accurate upright static perception independent of gravity level, in agreement with the hypo-gravity experiments. Similarly, at 90° of roll tilt, the model prediction of static perception is accurate across the range of hypo-gravity levels. Only at acute angles of roll tilt do the modified models predict underestimation of static roll tilt in hypo-gravity. Future experiments should test a wide range of hypo-gravity levels and angles to test the validity of these model predictions in this relevant altered gravity regime. Until then, the model predictions, extrapolated to hypo-gravity, can be used as a reasonable preliminary estimate of static roll tilt perception.

      The modified models were also simulated for static pitch tilt in hypo-gravity. The models predict a sensation of being pitched nose down relative actual pitch angle. Note this effect in hypo-gravity is opposite of that in hyper-gravity where the perception is pitch nose up relative to actual orientation. Due to the pitched up orientation of the utricular plane, the modified models make a peculiar prediction for extreme hypo-gravity levels (e.g., 0.05 G): at small pitch nose up orientations (e.g., +5°) both models predict a pitch nose-down perception (in our example, approximately −7° for the modified observer model and −4° for the modified utricular shear model, see Figure 7). Thus, the direction of pitch tilt can be misperceived in hypo-gravity. Note that for roll tilt in altered gravity the misperceptions are only gain errors (overestimation in hyper-gravity and underestimation in hypo-gravity), while direction is correct. A similar direction error is predicted for pitch tilt in hyper-gravity except it occurs for small pitch nose down tilts being misperceived as pitch nose up. To our knowledge static pitch tilt perception in hypo-gravity has not been quantified. Again, the modified models' predictions can be used as initial estimates for static pitch tilt in hypo-gravity.

      There is some previous evidence (De Winkel et al., 2012) that at small hypo-gravity levels, the magnitude of gravity is too small to be used as a reference. Beyond this level, in the prior experiment the SVV generally aligned with the body longitudinal axis, as is common in microgravity. The threshold at which gravity is no longer used as a reference for perceptual orientation was seen to vary substantially among subjects, but on average was 0.3 G's (De Winkel et al., 2012). The gravity magnitude threshold effect is not present in the current modified model simulations. In the modified observer model, as long as the magnitude of gravity is >zero, near accurate perceptions are predicted at upright and 90° of roll tilt, while acute angles result in underestimation. The previously proposed concept of an “idiotropic vector” (Mittelstaedt, 1986, 1989; Vingerhoets et al., 2009), which drives perceptions toward the body longitudinal axis, could be added to the modified observer model to capture the low hypo-gravity threshold effect when appropriate.

      Application of the models for astronaut orientation perception

      These novel models (modified utricular shear and modified observer) quantitatively match available tilt perception data in altered gravity. These advancements provide a substantial added capability for mathematical models of orientation perception. The modified utricular shear model provides a simple, one-equation prediction of static roll or pitch tilt in altered gravity. The modified observer model is more complex to evaluate, but while here we only simulated it for static tilts, it is capable of simulating dynamic motion profiles that involve sensory integration between otolith and semicircular canal cues. While previous models were either limited to static tilts (Schone, 1964; Correia et al., 1968; Mittelstaedt, 1983a; Dai et al., 1989; Bortolami et al., 2006) or 1 Earth G environments (Borah et al., 1988; Merfeld et al., 1993; Holly and McCollum, 1996; Glasauer and Merfeld, 1997; Haslwanter et al., 2000; Merfeld and Zupan, 2002; Angelaki et al., 2004; Laurens and Droulez, 2007; Vingerhoets et al., 2007; Macneilage et al., 2008; Selva and Oman, 2012), the modified observer model extends dynamic orientation perception models to altered gravity environments. In fact the modified observer model has been validated for perception of dynamic roll tilt in hyper-gravity (Clark et al., 2015). Future experiments are required to further validate predictions for dynamic perceptions in altered gravity. The observer model could be used to predict astronaut perceptions in an altered gravity environment, such as the moon or Mars, during complex motions, such as vehicle landing profiles.

      However, there are a few limitations. First, the models assume the simulated subject has normal vestibular function (i.e., is adapted to a 1 Earth G environment). Yet, astronauts in microgravity undergo sensorimotor reinterpretation and adaptation (Young et al., 1984; Parker et al., 1985). Thus, an astronaut's orientation perception when landing on the Moon (~1/6 G) is likely to be affected by the three or more days of microgravity exposure during transit. These models do not attempt to capture prior adaptation to microgravity or any other altered gravity environment. Given the lack of quantitative data for orientation perception after microgravity adaptation, it would be difficult to validate any potential implementations of capturing this process in either of the modified models.

      Second, while the modified observer model fits the available data well for roll and pitch tilt perception in hyper-gravity, it has not been validated for more complex motions or other aspects of orientation perception. Specifically the modified observer model has not been validated for (1) yaw rotation or azimuth perception in altered gravity, (2) translation perception in altered gravity, and (3) cases of visual-vestibular interaction in altered gravity.

      Interestingly the modified observer model predicts an illusory perception of linear acceleration in hyper-gravity corresponding to vertical translation. The unmodified observer model also makes this prediction in hyper-gravity. This is the result of the presumption that the CNS utilizes an internal model of the physical law a^=f^g^ while assuming |g^|=1. In hyper-gravity the magnitude of the estimated GIF (f^) is >1, but the magnitude of the estimate of gravity is fixed to 1 such that the excess magnitude is attributed to an estimated linear acceleration. Yet in post-experimental debrief subjects did not report illusory sensations of translation. These effects may have been quenched by subject knowledge of the device limitations (i.e., centrifuge cab could not translate) or non-vestibular cues that are not included in the observer model (e.g., proprioceptive or somatosensory cues). A similar illusory linear acceleration is also predicted in hypo-gravity, however the direction is opposite.

      The Newman (2009) version of the observer model included pathways for visual cues and was able to mimic perceptions from many visual–vestibular interaction paradigms. The current observer model includes those pathways but deactivates them to simulate perceptions in the dark. The visual pathways can be activated and the modified observer model can predict perceptions for visual-vestibular paradigms in altered gravity. However, to our knowledge there is not a quantitative experimental dataset upon which to validate any of these predictions.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We thank Kevin Duda, Paul DiZio, and Faisal Karmali for reviewing preliminary drafts of this manuscript and helpful suggestions. This work was supported by the National Space Biomedical Research Institute (NSBRI) through NASA NCC9-58 (TC, CO, LY) and via NIDCD/NIH R01 DC04158 (DM). We also thank Bill Mitchell and NASTAR Center for additional project support. The authors declare no competing financial interests.

      Supplementary material

      The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fnsys.2015.00068/abstract

      References Angelaki D. E. Shaikh A. G. Green A. M. Dickman J. D. (2004). Neurons compute internal models of the physical laws of motion. Nature 430, 560564. 10.1038/nature0275415282606 Aubert H. (1861). Eine scheinbare bedeutende drehung von objekten bei neigung des kopfes nach rechts oder links. Arch. Pathol. Anat. 20, 381393. 10.1007/BF02355256 Borah J. Young L. R. Curry R. E. (1988). Optimal estimator model for human spatial orientation. Ann. N.Y. Acad. Sci. 545, 5173. 10.1111/j.1749-6632.1988.tb19555.x3071213 Bortolami S. B. Rocca S. Daros S. Dizio P. Lackner J. R. (2006). Mechanisms of human static spatial orientation. Exp. Brain Res. 173, 374388. 10.1007/s00221-006-0387-916628400 Chelette T. L. Martin E. J. Albery W. B. (1995). The effect of head tilt on perception of self-orientation while in a greater than one G environment. J. Vestib. Res. 5, 117. 10.1016/0957-4271(95)90653-L7711943 Clark T. K. Newman M. C. Oman C. M. Merfeld D. M. Young L. R. (2015). Human perceptual overestimation of whole-body roll tilt in hyper-gravity. J. Neurophysiol. 113, 20622077. 10.1152/jn.00095.201425540216 Cohen M. M. (1973). Elevator illusion–influences of otolith organ activity and neck proprioception. Percept. Psychophys. 14, 401406. 10.3758/BF03211174 Colenbrander A. (1963). Eye and otoliths. Aeromed. Acta 9, 4591. 14284242 Correia M. J. Hixson W. C. Niven J. I. (1965). Otolith Shear and Visual Perception of Force Direction: Discrepancies and a Proposed Resolution. Pensacola, FL: Naval Aerospace Medical Institute. Correia M. J. Hixson W. C. Niven J. I. (1968). On predictive equations for subjective judgments of vertical and horizon in a force field. Acta Otolaryngol. 230, 120. 10.3109/000164868091221195650275 Corvera J. Hallpike C. S. Schuster E. H. J. (1958). A new method for the anatomical reconstruction of the human macular planes. Acta Otolayngol. 49, 416. 10.3109/0001648580913472213508213 Curthoys I. S. Betts G. A. Burgess A. M. MacDougall H. G. Cartwright A. D. Halmagyi G. M. (1999). The planes of the utricular and saccular maculae of the guinea pig. Ann. N.Y. Acad. Sci. 871, 2734. 10.1111/j.1749-6632.1999.tb09173.x10372061 Dai M. J. Curthoys I. S. Halmagyi G. M. (1989). A model of otolith stimulation. Biol. Cybern. 60, 185194. 10.1007/BF002072862923923 De Winkel K. N. Clement G. Groen E. L. Werkhoven P. J. (2012). The perception of verticality in lunar and Martian gravity conditions. Neurosci. Lett. 529, 711. 10.1016/j.neulet.2012.09.02622999922 Dyde R. T. Jenkin M. R. Jenkin H. L. Zacher J. E. Harris L. R. (2009). The effect of altered gravity states on the perception of orientation. Exp. Brain Res. 194, 647660. 10.1007/s00221-009-1741-519305984 Fernandez C. Goldberg J. M. (1971). Physiology of peripheral neurons innervating semicircular canals of squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661675. 5000363 Fernandez C. Goldberg J. M. (1976a). Physiology of peripheral neurons innervating otolith organs of squirrel-monkey. II. Directional selectivity and force-response relations. J. Neurophysiol. 39, 985995. 824413 Fernandez C. Goldberg J. M. (1976b). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugation. J. Neurophysiol. 39, 970984. 824412 Fernandez C. Goldberg J. M. (1976c). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J. Neurophysiol. 39, 9961008. 824414 Glasauer S. (1992). Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Ann. N.Y. Acad. Sci. 656, 847849. 10.1111/j.1749-6632.1992.tb25272.x1599198 Glasauer S. Merfeld D. M. (1997). Modelling three dimensional vestibular responses during complex motion stimulation, in Thee-dimensional Kinematics of Eye, Head and Limb Movements, eds Fetter M. Haslwanter T. Misslisch H. (Amsterdam: Harwood Academic Publishers), 387398. Goldberg J. M. Fernandez C. (1971). Physiology of peripheral neurons innervating semicircular canals of squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 34, 635660. 5000362 Green A. M. Angelaki D. E. (2004). An integrative neural network for detecting inertial motion and head orientation. J. Neurophysiol. 92, 905925. 10.1152/jn.01234.200315056677 Haslwanter T. Jaeger R. Mayr S. Fetter M. (2000). Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp. Brain Res. 134, 96106. 10.1007/s00221000041811026731 Holly J. E. Davis S. M. Sullivan K. E. (2011). Differences between perception and eye movements during complex motions. J. Vestib. Res. 21, 193208. 10.3233/VES-2011-041621846952 Holly J. E. McCollum G. (1996). The shape of self-motion perception. 2. Framework and principles for simple and complex motion. Neuroscience 70, 487513. 10.1016/0306-4522(95)00355-X8848155 Jia H. Yu L. Bi H. Wang K. Liu Z. Xie S. (2002). Perception of the cabin attitude changes in hypergravity. Aviat. Space Environ. Med. 73, 191193. 11908883 Kalman R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. 82D, 3545. 10.1115/1.3662552 Kalman R. E. Bucy R. S. (1961). New results in linear filtering and prediction problems. J. Basic Eng. 83D, 95108. 10.1115/1.3658902 Karmali F. Merfeld D. M. (2012). A distributed, dynamic, parallel computational model: the role of noise in velocity storage. J. Neurophysiol. 108, 390405. 10.1152/jn.00883.201122514288 Laurens J. Droulez J. (2007). Bayesian processing of vestibular information. Biol. Cybern. 96, 389404. 10.1007/s00422-006-0133-117146661 Luenburger D. G. (1971). An introduction to observers. IEEE Trans. Automat. Control 16, 596602. 10.1109/TAC.1971.1099826 Macneilage P. R. Ganesan N. Angelaki D. E. (2008). Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. J. Neurophysiol. 100, 29812996. 10.1152/jn.90677.200818842952 Merfeld D. M. Young L. R. Oman C. M. Shelhammer M. J. (1993). A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J. Vestib. Res. 3, 141161. 8275250 Merfeld D. M. Zupan L. H. (2002). Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J. Neurophysiol. 87, 819833. 10.1152/jn.00485.200111826049 Merfeld D. M. Zupan L. Peterka R. J. (1999). Humans use internal models to estimate gravity and linear acceleration. Nature 398, 615618. 10.1038/1930310217143 Miller E. F. Graybiel A. (1966). Magnitude of gravitoinertial force an independent variable in egocentric visual localization of horizontal. J. Exp. Psychol. 71, 452460. 10.1037/h00229545908830 Mittelstaedt H. (1983a). A new solution to the problem of the subjective vertical. Naturwissenschaften 70, 272281. 10.1007/BF004048336877388 Mittelstaedt H. (1983b). Towards understanding the flow of information between objective and subjective space, in Neuroethology and Behavioral Physiology, eds Huber F. Markl H. (Berlin: Springer-Verlag), 382402. Mittelstaedt H. (1986). The subjective vertical as a function of visual and extraretinal cues. Acta Psychol. 63, 6385. 10.1016/0001-6918(86)90043-03591446 Mittelstaedt H. (1989). The role of the pitched-up orientation of the otoliths in two recent models of the subjective vertical. Biol. Cybern. 61, 405416. 10.1007/BF024149022790069 Muller G. E. (1916). Uber das aubertsche phanomen. Z. Sinnesphysiol. 49, 109246. Newman M. C. (2009). A Multisensory Observer Model for Human Spatial Orientation Perception. Cambridge, MA: S. M. Massachusetts Institute of Technology. Noble C. E. (1949). The perception of the vertical. III. The visual vertical as a function of centrifugal and gravitational forces. J. Exp. Psychol. 39, 839850. 10.1037/h005745215398594 Oman C. M. (1982). A heuristic mathematical-model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol. 392, 344. 6303041 Oman C. M. (1990). Motion sickness – a synthesis and evaluation of the sensory conflict theory. Can. J. Physiol. Pharmacol. 68, 294303. 10.1139/y90-0442178753 Oman C. M. (1991). Sensory conflict in motion sickness: an observer theory approach, in Pictorial Communication in Virtual and Real Environments, eds Ellis S. R. Kaiser M. K. Grunwald A. (London: Taylor and Francis), 362367. Oman C. M. Lichtenberg B. K. Money K. E. McCoy R. K. (1986). Mit Canadian vestibular experiments on the spacelab-1 mission.4. Space motion sickness – symptoms, stimuli, and predictability. Exp. Brain Res. 64, 316334. 10.1007/BF002377493803476 Ormsby C. C. Young L. R. (1976). Perception of static orientation in a constant gravito-inertial environment. Aviat. Space Environ. Med. 47, 159164. 1082746 Paloski W. H. Oman C. M. Bloomberg J. J. Reschke M. F. Wood S. J. Harm D. L. . (2008). Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J. Gravit. Physiol. 15, 129. Park S. Gianna-Poulin C. Black F. O. Wood S. Merfeld D. M. (2006). Roll rotation cues influence roll tilt perception assayed using a somatosensory technique. J. Neurophysiol. 96, 486491. 10.1152/jn.01163.200516571732 Parker D. E. Reschke M. F. Arrott A. P. Homick J. L. Lichtenberg B. K. (1985). Otolith tilt-translation reinterpretation following prolonged weightlessness – implications for preflight training. Aviat. Space Environ. Med. 56, 601606. 3874622 Rader A. A. Oman C. M. Merfeld D. M. (2009). Motion perception during variable-radius swing motion in darkness. J. Neurophysiol. 102, 22322244. 10.1152/jn.00116.200919625542 Schone H. (1964). On the role of gravity in human spatial orientation. Aerosp. Med. 35, 764772. 14215796 Schone H. Parker D. E. (1967). Inversion of the effect of increased gravity on the subjective vertical. Naturwissenschaften 54, 288289. 10.1007/BF006208965589927 Schone H. Parker D. E. Mortag H. G. (1967). Subjective vertical as a function of body position and gravity magnitude. Natrwissenschaften 54, 288. 10.1007/BF006208955589926 Selva P. (2009). Modeling of the Vestibular System and Nonlinear Models for Human Spatial Orientation Perception. Cambridge, MA: Ph.D. L'Universite de Toulouse. Selva P. Oman C. M. (2012). Relationships between Observer and Kalman Filter models for human dynamic spatial orientation. J. Vestib. Res. 22, 6980. 10.3233/VES-2012-045123000607 Vingerhoets R. A. A. de Vrijer M. van Gisbergen J. A. M. Medendorp W. P. (2009). Fusion of visual and vestibular tilt cues in the perception of visual vertical. J. Neurophysiol. 101, 13211333. 10.1152/jn.90725.200819118112 Vingerhoets R. A. A. van Gisbergen J. A. M. Medendorp W. P. (2007). Verticality perception during off-vertical axis rotation. J. Neurophysiol. 97, 32563268. 10.1152/jn.01333.200617329621 Wade S. W. Curthoys I. S. (1997). The effect of ocular torsional position on perception of the roll-tilt of visual stimuli. Vision Res. 37, 10711078. 10.1016/S0042-6989(96)00252-09196725 Young L. R. Oman C. M. Watt D. G. D. Money K. E. Lichtenberg B. K. (1984). Spatial orientation in weightlessness and readaptation to earth's gravity. Science 225, 205208. 10.1126/science.66102156610215 Zupan L. H. Merfeld D. M. Darlot C. (2002). Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol. Cybern. 86, 209230. 10.1007/s00422-001-0290-112068787
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.mdlebaby.org.cn
      hqyixin.net.cn
      www.jesisland.com.cn
      www.hkzttp.com.cn
      www.halujie.com.cn
      www.jhzixun.com.cn
      rhqlwn.com.cn
      www.ricpsd.com.cn
      www.oxbzpt.com.cn
      www.nmjcdf.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p