Front. Sustain. Food Syst. Frontiers in Sustainable Food Systems Front. Sustain. Food Syst. 2571-581X Frontiers Media S.A. 10.3389/fsufs.2020.00026 Sustainable Food Systems Original Research Simulating the Cascading Effects of an Extreme Agricultural Production Shock: Global Implications of a Contemporary US Dust Bowl Event Heslin Alison 1 2 * Puma Michael J. 1 2 Marchand Philippe 3 Carr Joel A. 4 Dell'Angelo Jampel 5 D'Odorico Paolo 6 Gephart Jessica A. 7 Kummu Matti 8 Porkka Miina 9 Rulli Maria Cristina 10 Seekell David A. 11 Suweis Samir 12 Tavoni Alessandro 13 1Center for Climate Systems Research, Earth Institute, Columbia University, New York, NY, United States 2NASA Goddard Institute for Space Studies, New York, NY, United States 3Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada 4Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States 5Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, Netherlands 6Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States 7Department of Environmental Science, American University, Washington, DC, United States 8Water and Development Research Group, Aalto University, Espoo, Finland 9Stockholm Resilience Centre and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy 11Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden 12Department of Physics and Astronomy, University of Padova, Padova, Italy 13Department of Economics, University of Bologna, Bologna, Italy

Edited by: Stefan Siebert, University of Göttingen, Germany

Reviewed by: Maite M. Aldaya, Public University of Navarra, Spain; La Zhuo, Northwest A&F University, China

*Correspondence: Alison Heslin ah3684@columbia.edu

This article was submitted to Water-Smart Food Production, a section of the journal Frontiers in Sustainable Food Systems

20 03 2020 2020 4 26 28 11 2019 24 02 2020 Copyright © 2020 Heslin, Puma, Marchand, Carr, Dell'Angelo, D'Odorico, Gephart, Kummu, Porkka, Rulli, Seekell, Suweis and Tavoni. 2020 Heslin, Puma, Marchand, Carr, Dell'Angelo, D'Odorico, Gephart, Kummu, Porkka, Rulli, Seekell, Suweis and Tavoni

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Higher temperatures expected by midcentury increase the risk of shocks to crop production, while the interconnected nature of the current global food system functions to spread the impact of localized production shocks throughout the world. In this study, we analyze the global potential impact of a present-day event of equivalent magnitude to the US Dust Bowl, modeling the ways in which a sudden decline in US wheat production could cascade through the global network of agricultural trade. We use observations of country-level production, reserves, and trade data in a Food Shock Cascade model to explore trade adjustments and country-level inventory changes in response to a major, multiyear production decline. We find that a 4-year decline in wheat production of the same proportional magnitude as occurred during the Dust Bowl greatly reduces both wheat supply and reserves in the United States and propagates through the global trade network. By year 4 of the event, US wheat exports fall from 90.5 trillion kcal before the drought to 48 trillion to 52 trillion kcal, and the United States exhausts 94% of its reserves. As a result of reduced US exports, other countries meet their needs by leveraging their own reserves, leading to a 31% decline in wheat reserves globally. These findings demonstrate that an extreme production decline would lead to substantial supply shortfalls in both the United States and in other countries, where impacts outside the United States strongly depend on a country's reserves and on its relative position in the global trade network.

food systems international trade food crisis drought food security extreme weather

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Food production is vulnerable to climate change and associated extreme weather events. Crops are highly sensitive to temperature, rainfall, and soil characteristics, which means that production is likely to decline during periods of drought, heavy rainfall, and extreme temperature, and any resultant flooding, pest outbreaks, or erosion events (Lobell et al., 2011; Wheeler and von Braun, 2013; Sundström et al., 2014; Pacetti et al., 2017). Livestock are also vulnerable to extreme events such as heat stress, which affects production levels and animal health (Nardone et al., 2010; Renaudeau et al., 2012), and rainfall variability, which impacts pastures, forage crops, and feed grain production (Henry et al., 2012). Furthermore, both marine and inland fisheries are impacted by climate, with increased ocean temperatures changing the distribution and health of fish species (Brander, 2007; Bell et al., 2013) and rainfall and temperature shifting the spatial distribution and timing of migration and spawning of inland fish (Lynch et al., 2016).

      The tight coupling between environmental conditions and food production yields makes it essential to understand the impacts of sudden disruptions, or shocks, to the production of crops, livestock, and fish. Environmental shock events have increased in frequency since the 1970s (Gephart et al., 2017; Cottrell et al., 2019), with local to global impacts. Shocks affect local food security by damaging or destroying agricultural infrastructure and assets, including standing crops, livestock, farming equipment, and fishing boats (FAO, 2015). Subsequent decreases in crop, livestock, and fishery production directly threaten subsistence consumption and can lead to local food price spikes. Resultant reductions of income and loss of livelihoods serve to amplify these impacts (FAO, 2015).

      In addition to local outcomes, the effects of production shocks can propagate in the international food trade network, as countries seek to minimize losses in their food supply. In 2010, the Asia-Pacific Economic Cooperation (APEC) ministers declared that trade “plays a key role in achieving food security” (APEC, 2010). While international trade generally enhances food availability (Porkka et al., 2013) by increasing the diversity of food supplies (Kearney, 2010) and helping to buffer the impacts of local resource deficits and production shocks (Allan, 1998; Porkka et al., 2017), trade also serves to expose populations to food production disruptions globally. Increased trade has also introduced fragility to the global food system (Fader et al., 2013; Puma et al., 2015; Suweis et al., 2015), putting populations at risk not only of extreme weather events but also of the loss of resilience in the food system as a result of trade dependency, increased connectivity, and decreased modularity in the international food trade network (Suweis et al., 2015; Tu et al., 2019). Marchand et al. (2016) found that trade flows, as well as food reserves, are key factors affecting a country's exposure to production shocks; also, high reliance on imports can accentuate the risk of critical food supply losses (Gephart et al., 2016; Tamea et al., 2016).

      Indeed, in 2007 and 2010, extreme local environmental conditions (e.g., droughts, extensive wildfires) and the resultant declines in regional production combined with a range of other factors, including speculation and trade restrictions, caused a spike in global food prices (Tadesse et al., 2014). Although food supply shocks are not always strongly coupled to commodity price changes, when a food supply shock does result in commodity price increases, poorer countries are at increased risk of food insecurity (Distefano et al., 2018). D'Odorico et al. (2019) raise the concern about how, under unfair policies, international trade might aggravate cross-country food inequality, but also highlight the potential that international trade has to reduce this type of inequality and become an effective tool for the fulfillment of the global right to food.

      Climate Disruptions to Food Security

      While the 2015 Paris Agreement aims to increase “the ability to adapt to the adverse impacts of climate change and foster climate resilience and low greenhouse gas emissions development, in a manner that does not threaten food production” (UNFCCC, 2015), scientists agree that the rapidly changing climate means that the world's food security is increasingly at risk. Global food security faces the increased frequency of extreme weather events (IPCC, 2019).

      History offers numerous examples of the deleterious effects of extreme weather on food production, from the Dust Bowl in the 1930s United States to the 2011 drought in East Africa. Such severe temperature and rainfall anomalies affect agricultural production and food security within the affected regions and in contemporary extreme weather events have far reaching effects through global trade. The 2010 drought in Russia, for instance, resulted in export bans and global price increases (Wegren, 2011), and the 2012 drought in the Midwestern United States resulted in sharper increases in food prices than previous production shocks of similar magnitude (Boyer et al., 2013).

      The US Dust Bowl

      The US Dust Bowl of the 1930s provides a stark example of an extreme weather event's impact on US agricultural production. The “Dust Bowl” refers to a series of critical extreme events that led to steep crop yield declines and major societal impacts including human migration. Although the North American Great Plains often experience drought, the Dust Bowl event was a deviation from typical La Niña conditions (Bennett, 1938; Schubert et al., 2004b; Worster, 2004; Cook et al., 2009). Persistent, large-scale drought conditions of low rainfall and high temperatures impacted the Great Plains region, particularly the states of Kansas, Colorado, Oklahoma, Texas, and New Mexico, with distinct and intense drought events during 1930–1931, 1933–1934, and 1936 (Riebsame et al., 1991; Schubert et al., 2004b; Glotter and Elliott, 2016).

      The severe weather events associated with the Dust Bowl affected major agricultural producing areas of the United States, and as such, declines in national agricultural productivity were substantial. During the 1930s, wheat and maize production declined by up to 36 and 48%, respectively, relative to the average yearly production from 1921 to 1930 (USDA, 2019b). Human-induced land degradation, in combination with the drought-induced loss of vegetation, caused large-scale dust storms while also contributing a feedback effect that further amplified the drought (Cook et al., 2009). Furthermore, high winds eroded 480 tons of topsoil per acre on average in the southern plains, degrading soil fertility and air quality in the region (Hansen and Libecap, 2004).

      The consequences of the drought on food supply and environmental conditions had direct impacts on livelihoods and health, resulting in substantial migration of people from the region. Even with the return of wetter weather, the loss of topsoil slowed economic and agricultural recovery in heavily affected areas (Hornbeck, 2012). Dust Bowl–affected states experienced net population losses through the 1930s, and within affected states, the share of rural populations declined, a trend that began in the 1930s and continued throughout the twentieth century (Parton et al., 2007; McLeman et al., 2014).

      Risks for Global Food Security

      Following World War II, the United States shaped the postwar international food order, becoming a central player in international food aid and trade (Friedmann, 1982). Over the second half of the twentieth century, through the influence of US policies regarding grain exports, the direction of trade, particularly of grains, shifted to flow toward developing countries. Export subsidies created new markets for US agricultural goods and substantially increased the amount of food imports globally, most dramatically global imports of wheat from the United States and other developed nations (Winders, 2009). While the policies governing agricultural trade have changed over time, the United States remains central to international food trade, especially for staple commodities.

      Because of the interconnected nature of the global food system and the role of the United States as a major exporter of agricultural products, disruptions to US production can have far-reaching impacts. The United States is a major exporter of staple foods, accounting for around 37, 17, and 16% of internationally traded soy, maize, and wheat, respectively, in 2013 (FAOSTAT, 2019c). From 2012 to 2016, the United States exported wheat and wheat products to 174 different countries (Figure 1) and maize and maize products to 162 countries over the same period (FAOSTAT, 2019b). Using the 2009 cereal trade network, Marchand et al. (2016) simulate the effects of production shocks in different origin countries. They found that the most substantial supply declines in trade partners are caused by shocks that induce a production drop in the United States.

      US wheat export destinations in trillions of kcal based on 2012–2016 yearly average from FAOSTAT detailed trade matrix.

      US production of crops—particularly staple crops of wheat, maize, and soy—remains heavily centered in the Great Plains region (USDA, 2016). This region has experienced periodic drought throughout the twentieth century to present, including severe droughts in the 1950s, 1988, and 2012 (Rosenzweig et al., 2001; Schubert et al., 2004a; Hoerling et al., 2012). Agricultural production in the Great Plains shifted over the twentieth century to rely heavily on irrigation from the Ogallala aquifer, buffering the impacts of droughts on agricultural production since the Dust Bowl (Hornbeck and Keskin, 2014). However, variability in temperature and rainfall, both droughts and floods, as well as the related spread of agricultural pests and diseases, continues to affect agricultural production (Rosenzweig et al., 2001). Additionally, aquifer overexploitation occurring in the Great Plains, particularly during times of drought, threatens the ability of groundwater to continue buffering the effects of drought on American agricultural production (Scanlon et al., 2012). Given the central role of the United States in the international agricultural trade, the consequences of a large-scale production shock would extend far beyond US consumption and food security.

      Quantitative studies that assess the implications of specific natural disasters on food security via food production and trade are particularly useful, yet scarce (exceptions include Puma et al., 2015; Gephart et al., 2016, and Suweis et al., 2015). Assessing the potential impact of extreme weather events not only on food production, but also on the global trade system, is critical for understanding the far-reaching effects of production shocks in a globalized economy. This article aims to contribute to the nascent literature connecting climate shocks to food supply and trade through modeling the changes in international trade and reserves in response to a Dust Bowl–sized shock on contemporary US production.

      Methods

      Our analysis uses historical data on global wheat production, trade, and reserves to create an initial state into which we introduce production shocks. We use the historical US Dust Bowl as a temporal analog event for US production declines (e.g., Puma and Gold, 2011). The sizes of the production declines are based on observed data of percentage declines in production during the Dust Bowl relative to a 1921–1930 baseline period, which is imposed on contemporary US production values. We then simulate the cascading effects of such a disruption through the international trade network of wheat.

      Simulation Model

      Similar to the model of Marchand et al. (2016), we simulate the cascading effects of a food production shock through the global food trade network using the Food Shock Cascade (FSC) model. In this model, a shortage in food supply can be either (a) absorbed at the national level (by spending reserves or reducing consumption of the particular commodity) or (b) propagated to trade partners by decreasing exports and increasing imports.

      The model is initialized with a trade network that has a set of state variables defined at the national level (i.e., each node in the network): production P, reserves R, and domestic consumption C, as well as a trade matrix F, where Fij is the quantity exported from country i to country j. Total exports (E) and imports (I) by country correspond, respectively, to the row and column sums of F. The production, reserves, and trade data are based on public databases (see below), whereas consumption is set to match the initial net supply (S):

      C =S=P+I-E-ΔR 

      We further assume that the net transfer to reserves (ΔR) is zero initially, so that C = P + I - E for all countries at the start of the simulation.

      The simulation is defined as a sequence of behaviors that starts with countries with supply shortages (S < C) making attempts to resolve shortages, where the initial shortage deficit is due to a specified drop in production. In simulating the effects of the production decline, we model two different potential pathways through which countries, after first accessing their available reserves, could adjust their trade flows. In the Proportional Trade Allocation (PTA) version of the FSC model, countries adjust their imports and exports simultaneously, increasing imports from trading partners without supply shortages themselves and decreasing exports across all links by an equal proportion of existing trade on each link. In this way, countries in the FSC-PTA model divide the shock absorption between their imports and exports, transmitting shocks both upstream (by increasing imports) and downstream (by decreasing exports). These trade adjustments are relative to initial trade, capping import increases at 100% of initial trade volume. In the Reserves-based Trade Allocation (RTA) version, any country with the production shock first reduces its exports only, propagating the supply shock downstream to all receiving trade partners. At this stage, all countries with a shortage increase their imports. The level of import increases in the FSC-RTA are not based on prior trade levels, as in the PTA version, but instead based on the amount of reserves trading partners have available.

      The sequence of steps for each model is detailed below. Note that the national supply and shortage status of each country is updated after each step, and each step applies only to countries with an ongoing shortage.

      FSC-PTA Model

      Countries draw from their available reserves (a model parameter set to 50% of total reserves).

      Where shortage remains,

      a. If shortage is <0.001% of domestic consumption (a model parameter), countries reduce consumption to absorb shortage.

      b. If shortage is >0.001% of domestic consumption, countries reduce their exports and increase their imports from countries with available reserves by X% (where X is as high as required to absorb shortage, up to 100%).

      Repeat from (a) until no further changes occur in the trade matrix.

      All remaining shortages are absorbed at the national level by reducing consumption.

      FSC-RTA Model

      Countries with production shocks draw from their available reserves (a model parameter set to 50% of total reserves).

      Where shortage remains,

      a. If shortage is <0.001% of domestic consumption (a model parameter), countries reduce consumption to absorb shortage.

      b. If shortage is >0.001% of domestic consumption, countries reduce their exports proportionally (same % decrease for all outgoing trade links).

      Countries with a shortage from trade changes in (2b) draw from their available reserves

      Where shortage remains,

      a. If shortage is <0.001% of domestic consumption, countries reduce consumption to absorb shortage.

      b. If shortage is >0.001% of domestic consumption, countries request additional imports from incoming trade links (see below for a description of this process).

      Countries with a shortage from trade changes in (4b) draw from their available reserves.

      Where shortage remains,

      a. If shortage is <0.001% of domestic consumption, countries reduce consumption to absorb shortage.

      b. If shortage is <0.001% of domestic consumption, countries reduce their exports proportionally (same % decrease for all outgoing trade links).

      Repeat from (3) until no further changes occur in the trade matrix.

      All remaining shortages are absorbed at the national level by reducing consumption.

      The consumption reduction steps were introduced to allow for very small shortages (0.001% of domestic consumption) to be absorbed locally rather than propagated through the network.

      The process by which countries with a shortage can increase imports (step (4b) in FSC-RTA) is modeled as follows:

      For each country, define the additional imports needed (= current shortage) or the amount available for additional exports (set as 20% of current reserves).

      Countries with available amounts offer them to importers with unmet need, proportionally to the existing quantity traded on each link.

      If step (ii) results in a requesting country receiving more than they need, they accept the same fraction of all offers to obtain needed amount.

      Repeat from (i) until all needs are met or all available amounts have been allocated.

      For simulations of multiyear shocks, as in the Dust Bowl analog event, subsequent runs of the model use initial country-level production P and consumption C, as well as the initial trade matrix F. Reserve levels R are updated to reflect the declines in reserves from the previous model run.

      From simulations of production shocks, we use changes in reserve levels to calculate the stocks-to-use (STU) ratio both globally and by country as a measure of the risk to food security from such shocks. The STU ratio indicates the quantity of reserve crop relative to the demand, calculated in our analysis as the total available reserves over the initial consumption needs:

      STU0 =R0C0 and STUt=4= R0+ t=1t=4ΔRtC0
      Data

      The initial state of the trade network into which Dust Bowl–size production anomalies are introduced is created from observed data of production, reserves, and trade over the 5-year period from 2012 to 2016. Production and bilateral trade data come from the FAOSTAT online database (FAOSTAT, 2019a,b). Wheat production values are converted from metric tons (MT) to kcal by commodity-specific calorie conversions (FAO, 2019) and averaged over 2012 to 2016 to smooth yearly fluctuations. Wheat trade data are aggregated for wheat and six wheat commodities by converting each to kcal and summing the values. The sum is assigned to a specific directed country-pair forming a weighted and directed network, where values are associated with each network link, and the links connect nodes in a specific direction (see Konar et al., 2011 for additional example). The weights are based on mean traded values over a 5-year interval to account for the dynamic nature of the trade network, proportioning the trade along links according to how active countries are within the 5-year period.

      We obtain country-level wheat reserve data from the USDA Foreign Agricultural Service—Production, Supply, and Distribution database, using the mean “ending stocks” of wheat from 2012 to 2016 (USDA, 2019a). The USDA reserves data provide one aggregate value of wheat reserves for the European Union, which we apportion to European Union member countries proportional to their wheat production over the same time period.

      To simulate the effects of a Dust Bowl–size production shock, we use historical data of wheat production from the USDA National Agricultural Statistics Service (USDA, 2019b). The values of production loss used in the simulation correspond to the percentage change in the production of wheat during the height of the Dust Bowl effects on wheat production: 1933, 1934, 1935, and 1936 (highlighted in red in Figure 2). The percent decline introduced into the model is calculated from the observed production each year relative to a baseline of the average yearly production in the decade preceding the Dust Bowl, 1921–1930 (Table 1).

      US wheat production from 1920 to 1940 in metric tons based on data from the USDA National Agricultural Statistics Service (USDA, 2019b).

      US Dust Bowl Wheat Production USDA National Agricultural Statistics Service.

      Yield (MT) Percent decline (%)
      Mean 1921–1930 22,501,128 -
      1933 15,028,807 33
      1934 14,316,768 36
      1935 17,097,512 24
      1936 17,142,499 24
      Results

      We use the software R (R Core Team, 2019) to perform all data processing and simulations of the FSC model. Results from two model versions (the FSC-PTA model and the FSC-RTA model) are reported below, corresponding to two alternative ways that we propose countries could adjust trade flows in response to global supply shocks.

      Global Effects

      In simulating a US Dust Bowl–sized production shock, we introduce a decline in US wheat production for 4 consecutive years, keeping all other countries' production at their initial level. The initial production level of wheat for the United States, equal to the yearly mean from 2012 to 2016 observed production data, is 196 trillion kcal, or 58.7 million MT. In the first year of the Dust Bowl, US wheat production declined by 33%, equivalent to a contemporary supply shortage of 64.7 trillion kcal. Production declines peaked at 36% in year 2, leading to a shortage in our model of slightly over 70 trillion kcal. Years 3 and 4 experienced equal shock sizes of 24%, a shortage of 47 trillion kcal when applied to contemporary US production.

      A production decline of this magnitude has major effects both domestically in the United States and internationally because of the central role of the United States in global wheat trade. In the initial state of the model, based on 2012–2016 observed data, the United States is the world's largest exporter of wheat and wheat products, exporting more than 90 trillion kcal a year on average to a total of 174 countries out of the 217 countries in the trade network. In addition, the United States is the 12th largest importer of wheat and wheat products, importing more than 15 trillion kcal per year. In the FSC-PTA model, the production decline in the United States is transmitted equally to countries to import and export partners, drawing more imports and reducing exports. With this model, in year 4 of the simulation, US wheat exports fall to 53.4 trillion kcal, and imports increase to 19 trillion kcal, moving the United States to the eighth largest importer of wheat globally. In the FSC-RTA model, after accessing available reserves, the United States addresses additional shortages by decreasing exports, resulting in US exports declining to 48.3 trillion kcal, whereas imports remain unchanged. For both model versions, the United States drops from the largest wheat exporter to the fifth largest exporter behind Canada, Russia, France, and Australia.

      Table 2 presents key network metrics of the global wheat trade for the undisturbed trade network and at the end of the 4-year simulation for both the FSC-PTA and FSC-RTA models. The node degree is the number of trade partners of each country, a metric that indicates how central a node (i.e., country) is to the network (e.g., Konar et al., 2011). Node strength is the weight (in kilocalories) assigned to each link in the network. For both node degree and strength, we then distinguish among (1) the undirected node degree (k) and strength (s), (2) the outgoing or exporting node degree (kout) and strength (sout), and (3) the incoming or importing node degree (kin) and strength (sin). The changes in connectivity associated with each model version are significantly different. While both models lead to reductions in trade flows (as indicated by the six “strength” metrics), the FSC-RTA version does not have any changes to unweighted network connectivity (i.e., the number of links and “degree” metrics). Specifically, the FSC-RTA version maintains trade linkages, even though trade flows are reduced. In contrast, we find notable reductions in connectivity with the FSC-PTA version.

      Global wheat network metrics for the baseline state and after 4 years of simulation for the FSC-PTA model and the FSC-RTA model.

      Network metric Symbol Baseline FSC-PTA FSC-RTA
      Total trade (kcal) gtotal 6.64 × 1014 6.43 × 1014 6.51 × 1014
      Number of nodes N 217 217 217
      Number of links L 8,190 7,893 8,190
      Number of exporting nodes Nout 162 144 162
      Number of importing nodes Nin 217 217 217
      Mean trade degree kmean 37.7 36.4 37.7
      Max trade degree kmax 187 187 187
      Mean export degree koutmean 37.7 36.4 37.7
      Max export degree Koutmax 115 101 115
      Mean import degree kinmean 75.5 72.7 75.5
      Max import degree kinmax 289 275 289
      Mean trade strength (kcal) smean 3.06 × 1012 2.96 × 1012 3.00 × 1012
      Max trade strength (kcal) smax 9.06 × 1013 7.39 × 1013 7.42 × 1013
      Mean export strength (kcal) sinmax 3.06 × 1012 2.96 × 1012 3.00 × 1012
      Max export strength (kcal) soutmax 3.54 × 1013 3.42 × 1013 3.44 × 1013
      Mean import strength (kcal) sinmean 6.12 × 1012 5.92 × 1012 6.00 × 1012
      Max import strength (kcal) sinmax 1.06 × 1014 7.66 × 1013 7.59 × 1013

      The central initial role of the United States in the global trade network causes large impacts on global reserves. As countries fill shortfalls in supply by accessing their wheat reserves (up to 50% per year), wheat reserves globally decline over the simulation by 229 trillion kcal, or 68.5 million MT. This is a loss of 31% of global wheat stocks over a 4-year period. The declines in reserves are captured in a decrease in the global STU ratio over the simulations. The global preshock STU ratio is 0.307, which means that before the production shock country reserves are 30.7% of global annual consumption needs. Following the 4-year production declines in the United States, the global STU decreases to 0.212, or 21.2% of global consumption.

      In both model versions, when countries are unable to fill shortages through reserves or trade reallocation, they reduce consumption. Consumption reductions in the FSC-PTA total 10.5 billion kcal, and the FSC-RTA model, total 150 million kcal. In the event of subsequent year production declines or concurrent production shocks globally, in which reserve levels further decline, sharp decreases in consumption would follow. As it stands, initial reserve levels are sufficiently high to shield the global food system from significant consumption declines.

      Country-Level Effects

      At the country level, vulnerability to supply shocks and the ability to shield those shocks from impacting domestic consumption depend heavily on the initial quantity of reserves held by the country, as well as the trade links from which to receive a shock and upon which to draw additional supply. Of the 131 countries with wheat reserves in the initial state, all 131 used some portion of their reserves in response to the US shortage. Fifty-two countries used more than 75% of their reserves under FSC-PTA model assumptions, and 36 countries used more than 75% of their reserves in the FSC-RTA model, over the 4 years simulated (Figure 3). The United States, where the shock originated, fully utilized the 50% of reserves available at each year iteration before adjusting trade, resulting in a 93.75% total reduction in reserves over 4 years. An additional 16 and 17 countries maximally reduced their reserves with the FSC-PTA and FSC-RTA, respectively.

      Total fractional change in reserves relative to initial reserves for the FSC-PTA and FSC RTA models.

      Accordingly, the STU ratio declined substantially in many countries. Of those countries with nonzero initial STU (i.e., countries with initial reserves), countries' STU ratios declined on average 0.085 (FSC-PTA model) and 0.067 (FSC-RTA model). The 10 countries with the highest initial reserves, serving a critical role in absorbing shortages, experienced mean STU ratio declines of 0.219 in the FSC-PTA and 0.145 in the FSC-RTA model (Table 3). In the FSC-PTA, countries access their reserves to meet new trade demands relative to their existing trade levels with partner countries with a maximum of 100% increase to trade flows on a given link. In the FSC-RTA, countries will change trade relative to their reserve levels, accessing up to 20% of their reserves to meet increased demands from trade partners. Depending on the initial levels of trade, reserves, and consumption, as well as existing levels of trade with the United States, these alternative systems of trade reallocation result in differences in STU change between the two models.

      Stocks to use in highest reserves countries.

      Initial STU Final STU FSC-PTA Final STU FSC-RTA
      China 0.628 0.591 0.493
      United States 0.636 0.040 0.040
      India 0.187 0.176 0.163
      Iran 0.576 0.567 0.508
      Canada 0.609 0.059 0.367
      Russia 0.174 0.091 0.129
      Morocco 0.505 0.472 0.479
      Australia 0.741 0.148 0.642
      Egypt 0.221 0.161 0.149
      Algeria 0.414 0.286 0.365

      Countries without reserves to buffer the effects of a shortage turn directly to trade adjustments followed by consumption declines to address the supply shock. Given the high initial starting point of global reserves, most supply shocks, even in countries without reserves, could be addressed through trade flow adjustments. Total decreases in consumption only exceeded the yearly 0.001% of supply threshold (which the models deduct from consumption rather than adjusting trade flows) in six countries in the FSC-PTA model and one country in the FSC-RTA model. Countries experiencing any consumption declines over the 4 years, both above and below the threshold, are shown in Figure 4.

      Countries with consumption declines from shock to US wheat production using the FSC-PTA and FSC-RTA models.

      Discussion

      In this study, we simulate the effects of a hypothetical multiyear production decline in US wheat production of equal magnitude to that which occurred during the US Dust Bowl of the 1930s. Historical data on crop yield in the United States provided the percentage of wheat lost during the height of the Dust Bowl relative to the prior decade baseline. Introducing shocks of this size into consecutive years of contemporary US production affects both US reserves and those of its trading partners.

      We used two different model versions for the simulations, representing two potential pathways through which countries may adapt to shortages in supply. In both model versions, countries with shortages first draw from available reserves before adjusting their trade flows. Differences in trade reallocation affect the outcomes of the simulation for particular countries, while the overall post-shock picture is similar. In the FSC-PTA model, shocked countries decrease exports and increase imports simultaneously by an equal percentage of existing flows (as in Marchand et al., 2016). In FSC-RTA model, countries with production shocks first decrease their exports, after which countries that received supply shortages from trade changes increase imports from their other trade partners. In both model versions, countries increase and decrease trade flows on existing trade links, without establishing new trade partners. The FSC-RTA model introduced a more flexible trade reallocation that was not based on prior trade volume but instead on a percentage of the trade partners' available food stocks. With this simulation model, up to 20% of reserves could be offered to trade partners facing a shortage regardless of the prior trade flow with those partners. Because of this 20% cap on reserve use for trade, the distribution of reserve declines globally changes, whereas the overall reductions in global reserves are the same.

      In the 4-year simulation, >30% of global wheat reserves are used in order to meet demand, with reserve decreases in every country holding wheat reserves in the initial state of the model. While countries may turn to trade as a means to address food insecurity domestically, trade exposes countries to foreign production shocks. Asia-Pacific Economic Cooperation countries, for instance, in their 2010 Ministerial Meeting on Food Security outlined the importance of globalization and open trade for ensuring access to food (APEC, 2010). In the initial period, APEC countries (excluding the United States) imported 150 trillion kcal of wheat per year and had a mean country STU ratio of 0.27 (ΣSTU0/n) and a total overall STU ratio of 0.48 (ΣR0/ΣC0). After the 4-year simulation, the mean country STU ratio in APEC countries (excluding the United States) fell from 0.27 to 0.08 (FSC-PTA model) and 0.12 (FSC-RTA model), and the total STU ratio fell from the initial 0.48 to 0.37 (FSC-PTA model) and 0.35 (FSC-RTA model). Although trade may serve to supplement domestic production and increase food security, it also exposes these populations to supply shocks in the United States, reducing regional wheat stocks by approximately 25%.

      While countries throughout the trade network are affected by the cascading shock, the initial level of US wheat reserves decreases the effects of the shock on US trade partners' reserves and consumption. The United States in the initial state has the second largest wheat stocks in the world, and, by addressing production shocks first through reserves, the supply shortages passed from the United States into the global market are lower than in a scenario in which the United States has limited reserves. In absorbing so much of the shock domestically, the United States depletes nearly all of its wheat reserves. The decreases in post-shock levels of reserves, both in the United States and globally, have consequences for future shocks and global prices. Stocks-to-use ratios correlate more closely with global prices than production data (Bobenrieth et al., 2013). Such correlation implies that the effects of an extreme event on the global market may persist beyond production recovering in the form of price spikes and volatility due to a lower STU ratio. With lower global reserves of wheat, prices would be more volatile in response to subsequent production fluctuations throughout the global system (Wright and Cafiero, 2011). In addition to the role of reserves in influencing price increases, large demand surges in the trade network are also shown to increase global prices (Headey, 2011).

      While our model and results have implications for the prices of such globally traded commodities, our simulation does not account for such changes in global prices when adjusting trade volumes. We recognize that changes in prices would likely affect the extent to which countries could increase imports during times of shortages, which, therefore, represents a limitation of the model. In such a scenario of increased prices, we would also expect consumption declines above those in our simulations. Additionally, the models function such that all countries with sufficient reserves are willing to increase exports to their trade partners with supply shortages. This does not account for other actor responses, such as hoarding, or for preferential trade relationships beyond those reflected in the initial trade volume on each link.

      Importantly, we note that any changes to food production, trade, and reserves will lead to impacts that extend beyond reducing exposure to global food shocks. Indeed, a range of negative impacts are possible, including increased depletion of local water resources, reduced ecosystem services, larger rates of food spoilage, and increased exposure to local climate extremes. It is therefore essential not to consider “food self-sufficiency” as a binary decision; rather, it is a continuum where countries need to take a nuanced view, balancing trade-offs to identify the optimal solution for their context (Clapp, 2017).

      Conclusion

      Given the level of contemporary international trade in staple agricultural products, such as wheat, production declines in major exporting countries can have major consequences on the global food system. This study provides an example scenario of a production decline analogous to what occurred during the multiyear extreme weather event of the Dust Bowl, modeling the effects on global trade, reserves, and consumption. In our simulations, the United States nearly depletes its reserves and passes the shortage along to its many trading partners by decreasing exports.

      Following such an extreme production decline, US consumption and trade partners are at increased risk of future production shocks, given the near-total depletion of reserves. In addition to the potential effects on future consumption, a severe production shock itself can have lasting impacts on producers from lost income and damaged cropland. Outside the directly impacted country, trade partners affected by reduced imports or increased export demands access reserves to address their supply shortages, also becoming more vulnerable to future shocks due to the lack (or reduction) of a buffer to insulate the population from future supply declines. Countries' strategic need for reserves to protect against future production and trade shocks may prompt increased import demands, decreased exports, or increased domestic production in the following years to replenish depleted grain stocks. Such production and trade changes carry economic and environmental consequences.

      The Dust Bowl simulation, while a massive reduction in production levels, directly affected only one country, which began with comparatively high levels of reserves. With increasing global temperatures, the likelihood of simultaneous production losses in major producing countries increases (Tigchelaar et al., 2018). In such an event, with multiple producing countries decreasing exports, the trade system would exhaust available reserves, and countries would face consumption declines.

      We use the example of the US Dust Bowl to model the effects of a contemporary shock of equivalent production declines; however, our approach can be applied to any shock scenario to test the resilience of the trade network and identify potential weaknesses in it. Simulating the effects of such production losses in different producing areas of the world can help in identifying vulnerabilities of food supply to extreme events and target reserve levels to protect populations from food supply crises.

      Data Availability Statement

      The datasets analyzed for this study can be found at FAOSTAT (http://www.fao.org/faostat/en/#data), the USDA Foreign Agricultural Service, Production Supply and Distribution (https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads), and the USDA National Agricultural Statistics Service (http://quickstats.nass.usda.gov/results/7AC5D32C-7149-3BC8-B661-34EE5F89645D?pivot=short_desc).

      Author Contributions

      AH and MJP conceived the study. AH and PM worked on the computational framework and code with input from MJP and JG. AH performed the calculations and analyzed the data with input from MJP and PM. AH wrote the manuscript with input from MJP, PM, JC, JD'A, PD'O, JG, MK, MP, MR, DS, SS, and AT.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The handling Editor declared a past co-authorship with the MJP, PD'O, MK, and MP.

      This paper was based on original model development supported by the National Socio-Environmental Synthesis Center (SESYNC) with funding received from the National Science Foundation DBI-1052875.

      References Allan J. A. (1998). Virtual water: a strategic resource global solutions to regional deficits. Groundwater 36, 545546. 10.1111/j.1745-6584.1998.tb02825.x APEC (2010). 2010 APEC Ministerial Meeting on Food Security. Niigata: Asia-Pacific economic cooperation. Available online at: https://www.apec.org/Meeting-Papers/Sectoral-Ministerial-Meetings/Food-Security/2010_food (accessed October 15, 2019). Bell J. D. Ganachaud A. Gehrke P. C. Griffiths S. P. Hobday A. J. Hoegh-Guldberg O. . (2013). Mixed responses of tropical pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591599. 10.1038/nclimate1838 Bennett H. H. (1938). Emergency and permanent control of wind erosion in the great plains. Sci. Monthly 47, 381399. Bobenrieth E. Wright B. Zeng D. (2013). Stocks-to-use ratios and prices as indicators of vulnerability to spikes in global cereal markets. Agr. Econ. 44, 4352. 10.1111/agec.12049 Boyer J. S. Byrne P. Cassman K. G. Cooper M. Delmer D. Greene T. . (2013). The U.S drought of 2012 in perspective: a call to action. Glob. Food Secur. 2, 139143. 10.1016/j.gfs.2013.08.002 Brander K. M. (2007). Global fish production and climate change. Proc. Natl. Acad. Sci. U.S.A. 104, 1970919714. 10.1073/pnas.070205910418077405 Clapp J. (2017). Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 8896. 10.1016/j.foodpol.2016.12.001 Cook B. I. Miller R. L. Seager R. (2009). Amplification of the North American ‘dust bowl' drought through human-induced land degradation. Proc. Natl. Acad. Sci U.S.A. 106, 49975001. 10.1073/pnas.081020010619289836 Cottrell R. S. Nash K. L. Halpern B. S. Remenyi T. A. Corney S. P. Fleming A. . (2019). Food production shocks across land and sea. Nat. Sust. 2, 130137. 10.1038/s41893-018-0210-1 Distefano T. Laio F. Ridolfi L. Schiavo S. (2018). Shock transmission in the international food trade network. PLoS ONE 13:E0200639. 10.1371/journal.pone.020063930089103 D'Odorico P. Carr J. A. Davis K. F. Dell'Angelo J. Seekell D. A. (2019). Food inequality, injustice, and rights. Bioscience 69, 180190. 10.1093/biosci/biz00230899122 Fader M. Gerten D. Krause M. Lucht W. Cramer W. (2013). Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 8:014046. 10.1088/1748-9326/8/1/014046 FAO (2015). The Impact of Natural Hazards and Disasters on Agriculture, Food Security, and Nutrition. Rome: Food and Agriculture Organization of the United Nations. 29955261 FAO (2019). Nutritive Factors. Food and Agriculture Organization of the United Nations. Available online at: http://www.fao.org/economic/the-statistics-division-ess/publications-studies/publications/nutritive-factors/en/ (accessed October 15, 2019). FAOSTAT (2019a). Crops. Food and Agriculture Organization of the United Nations. Available online at: http://www.fao.org/faostat/en/#data/QC (accessed October 15, 2019). FAOSTAT (2019b). Detailed Trade Matrix. Food and Agriculture Organization of the United Nations. Available online at: http://www.fao.org/faostat/en/#data/TM (accessed October 15, 2019). FAOSTAT (2019c). Food Balance Sheet. Food and Agriculture Organization of the United Nations. Available online at: http://www.fao.org/faostat/en/#data/FBS/metadata (accessed October 15, 2019). Friedmann H. (1982). The political economy of food: the rise and fall of the postwar international food order. Am. J. Sociol. 88, S248S286. 10.1086/649258 Gephart J. A. Deutsch L. Pace M. L. Troell M. Seekell D. A. (2017). Shocks to fish production: identification, trends, and consequences. Glob. Environ. Change 42, 2432. 10.1016/j.gloenvcha.2016.11.003 Gephart J. A. Rovenskaya E. Dieckmann U. Pace M. L. Brännström A. (2016). Vulnerability to shocks in the global seafood trade network. ERL 11:035008. 10.1088/1748-9326/11/3/035008 Glotter M. Elliott J. (2016). Simulating US agriculture in a modern dust bowl drought. Nat. Plants 3:16193. 10.1038/nplants.2016.19327941818 Hansen Z. K. Libecap G. D. (2004). Small farms, externalities, and the dust bowl of the 1930s. J Polit. Econ. 112, 665694. 10.1086/383102 Headey D. (2011). Rethinking the global food crisis: the role of trade shocks. Food Policy 36, 136146. 10.1016/j.foodpol.2010.10.003 Henry B. Charmley E. Eckard R. Gaughan J. B. Hegarty R. (2012). Livestock production in a changing climate: adaptation and mitigation research in Australia crop and pasture Science 63, 191202. 10.1071/CP11169 Hoerling M. P. Eischeid J. K. Quan X. W. Diaz H. F. Webb R. S. Dole R. M. . (2012). Is a transition to semipermanent drought conditions imminent in the U.S. Great Plains?. J. Clim. 25, 83808386. 10.1175/JCLI-D-12-00449.1 Hornbeck R. (2012). The enduring impact of the american dust bowl: short- and long-run adjustments to environmental catastrophe. Am. Econ. Rev. 102, 14771507. 10.1257/aer.102.4.1477 Hornbeck R. Keskin P. (2014). The historically evolving impact of the ogallala aquifer: agricultural adaptation to groundwater and drought. Am. Econ. Appl. Econ. 6, 190219. 10.1257/app.6.1.190 IPCC (2019). Climate Change and Land. Intergovernmental Panel on Climate Change. Available online at: https://www.ipcc.ch/report/srccl/ (accessed October 15, 2019). Kearney J. (2010). Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. 365, 27932807. 10.1098/rstb.2010.014920713385 Konar M. Dalin C. Suweis S. Hanasaki N. Rinaldo A Rodriguez-Iturbe I. (2011). Water for food: the global virtual water trade network. Water Resour. Res. 47, 117. 10.1029/2010WR010307 Lobell D. B. Schlenker W. Costa-Roberts J. (2011). Climate trends and global crop production since 1980. Science 333, 616620. 10.1126/science.120453121551030 Lynch A. J. Myers B. J. Chu C. Eby L. A. Falke J. A. Kovach R. P. . (2016). Climate change effects on north american inland fish populations and assemblages. Fisheries 41, 346361. 10.1080/03632415.2016.1186016 Marchand P. Carr J. A. Dell'Angelo J. Fader M. Gephart J. A. Kummu M. . (2016). Reserves and trade jointly determine exposure to food supply shocks. Environ. Res. Lett. 11:095009. 10.1088/1748-9326/11/9/095009 McLeman R. A. Dupre J. Ford L. B. Ford J. Gajewski K. Marchildon G. (2014). What we learned from the dust bowl: lessons in science, policy, and adaptation. Popul. Environ. 35, 417440. 10.1007/s11111-013-0190-z24829518 Nardone A. Ronchi B. Lacetera N. Ranieri M. S. Bernabucci U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Sci. 10th World Conference on Animal Production (WCAP), 130, 5769. 10.1016/j.livsci.2010.02.011 Pacetti T. Caporali E. Rulli M. C. (2017). Floods and food security: a method to estimate the effect of inundation on crops availability. Adv. Water Resour. 110, 494504. 10.1016/j.advwatres.2017.06.019 Parton W. J. Gutmann M. P. Ojima D. (2007). Long-term trends in population, farm income, and crop production in the great plains. BioScience 57, 737747. 10.1641/B570906 Porkka M. Guillaume J. H. Siebert S. Schaphoff S. Kummu M. (2017). The use of food imports to overcome local limits to growth. Earth's Future 5, 393407. 10.1002/2016EF000477 Porkka M. Kummu M. Siebert S. Varis O. (2013). From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8:e82714. 10.1371/journal.pone.008271424367545 Puma M. J. Bose S. Chon S. Y. Cook B. I. (2015). Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10:024007. 10.1088/1748-9326/10/2/024007 Puma M. J. Gold S. (2011). Formulating Climate Change Scenarios to Inform Climate-Resilient Development Strategies: A Guidebook for Practitioners. New York, NY: United Nations Development Programme. R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: https://www.R-project.org/ Renaudeau D. Collin A. Yahav S. de Basilio V. Gourdine J. L. Collier R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6, 707728. 10.1017/S175173111100244822558920 Riebsame W. Changnon S. A. Karl T. R. (1991). Drought And Natural Resources Management in The United States: Impacts And Implications Of The 1987-89 Drought. New York, NY: Routledge. Rosenzweig C. Iglesias A. Yang X. B. Epstein P. R. Chivian E. (2001). Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Change Human Health 2, 90104. 10.1023/A:1015086831467 Scanlon B. R. Faunt C. C. Longuevergne L. Reedy R. C. Alley W. M. McGuire V. L. . (2012). Groundwater depletion and sustainability of irrigation in the US high plains and central valley. Procee. Natl. Acad. Sci. U.S.A. 109, 93209325. 10.1073/pnas.120031110922645352 Schubert S. D. Suarez M. J. Pegion P. J. Koster R. D. Bacmeister J. T. (2004a). Causes of long-term drought in the U.S. great plains. J. Climate 17, 485503. 10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2 Schubert S. D. Suarez M. J. Pegion P. J. Koster R. D. Bacmeister J. T. (2004b). On the Cause of the 1930s. Dust Bowl. Sci. 303, 18551859. 10.1126/science.109504815031502 Sundström J. F. Albihn A. Boqvist S. Ljungvall K. Marstorp H. Martiin C. . (2014). Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases – a risk analysis in three economic and climate settings. Food Secur. 6, 201215. 10.1007/s12571-014-0331-y Suweis S. Carr J. A. Maritan A. Rinaldo A. D'Odorico P. (2015). Resilience and Reactivity of global food security. Procee. Natl. Acad. Sci U.S.A. 112, 69026907. 10.1073/pnas.150736611225964361 Tadesse G. Algieri B. Kalkuhl M. Braun J. (2014). Drivers and triggers of international food price spikes and volatility. Food Policy 4, 11728. 10.1016/j.foodpol.2013.08.014 Tamea S. Laio F. Ridolfi L. (2016). Global effects of local food-production crises: a virtual water perspective. Sci. Rep. 6:18803. 10.1038/srep1880326804492 Tigchelaar M. Battisti D. S. Naylor R. L. Ray D. K. (2018). Future warming increases probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci. U.S.A. 115, 66446649. 10.1073/pnas.171803111529891651 Tu C. Suweis S. D'Odorico P. (2019). Impact of globalization on the resilience and sustainability of natural resources. Nat. Sust. 2, 283289. 10.1038/s41893-019-0260-z UNFCCC (2015). The Paris Agreement. Paris: UNFCCC. USDA (2016). United States - Crop Production Maps 2012-2016 5-Year Average. United States Department of Agriculture - Foreign Agricultural Serve. Available online at: https://ipad.fas.usda.gov/rssiws/al/us_cropprod.aspx (accessed October 15, 2019). USDA (2019a). Production, Supply and Distribution. Foreign Agricultural Service, United States Department of Agriculture. Available online at: https://www.fas.usda.gov/data (accessed October 15, 2019). USDA (2019b). Wheat - Production Measured in BU. National Agricultural Statistics Service, United States Department of Agriculture. Available online at: https://quickstats.nass.usda.gov/results/7CE5ACD3-EFAB-382D-BC88-4BE7F38F2C82?pivot=short_desc (accessed October 15, 2019). Wegren S. K. (2011). Food security and Russia's 2010. Drought. Eur. Geogr. Econ. 52, 140156. 10.2747/1539-7216.52.1.140 Wheeler T. von Braun J. (2013). Climate change impacts on global food security. Science 341, 508513. 10.1126/science.123940223908229 Winders B. (2009). The Politics of Food Supply: U.S. Agricultural Policy in the World Economy. New Haven, CT: Yale University Press. Worster D. (2004). Dust Bowl: The Southern Plains in the 1930s. New York, NY: Oxford University Press. Wright B. Cafiero C. (2011). Grain Reserves and Food Security in the Middle East and North Africa. Food Sec. 3, 6176. 10.1007/s12571-010-0094-z

      Funding. The work reported here was funded by the Army Research Office under the Multidisciplinary University Research Initiative (Grant #W911NF1810267). The views and interpretations expressed in this document are those of the authors and should not be attributed to the US Army. Additional funding was received from European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 819202). DS receives support from the Knut and Alice Wallenberg Foundation.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.maimaimai.net.cn
      www.edssss.com.cn
      www.emxytea.org.cn
      hqchain.com.cn
      mka518.com.cn
      savebox.net.cn
      www.sbgdss.org.cn
      sjb2021.com.cn
      tklvyou.com.cn
      www.odchsl.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p