Front. Sustain. Cities Frontiers in Sustainable Cities Front. Sustain. Cities 2624-9634 Frontiers Media S.A. 10.3389/frsc.2021.696381 Sustainable Cities Original Research Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide Wei Ting 1 Wu Junliang 1 Chen Shaoqing 1 2 * 1School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China 2Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China

Edited by: Edgar Liu, University of New South Wales, Australia

Reviewed by: Neil Simcock, Liverpool John Moores University, United Kingdom; Xochitl Cruz-Núñez, National Autonomous University of Mexico, Mexico

*Correspondence: Shaoqing Chen chenshaoqing@mail.sysu.edu.cn

This article was submitted to Urban Energy End-Use, a section of the journal Frontiers in Sustainable Cities

†These authors have contributed equally to this work

12 07 2021 2021 3 696381 16 04 2021 15 06 2021 Copyright © 2021 Wei, Wu and Chen. 2021 Wei, Wu and Chen

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Actions in cities shape the outcome of greenhouse gas (GHG) emission mitigation and our climate change response. Accurate and consistent carbon inventories are essential for identifying the main sources of emissions and global comparison of carbon reduction progress and would help inform targeted policies for low-carbon transition. To identify the effectiveness of historical carbon reduction policies, our study conducted energy-related GHG emission inventories for 167 globally distributed cities with information from different sectors, and assessed the city-scale near-term, mid-term, and long-term goals carbon mitigation targets from 2020 to 2050. On this basis, we propose mitigation strategies to achieve local and global climate targets. We found that, although Asian cities are the biggest carbon emitters in totals, the per capita GHG emissions of cities in developed countries are still generally higher than that in developing countries. In terms of sectors, the GHG emissions from the stationary energy uses (such as residential, commercial, and industrial buildings) and transportation sector contributed the most. However, cities in more developed nations have been inclined to set absolute carbon reduction targets before 2050, while intensity reduction target has been largely set for cities at the stage of rapid economic growth and accelerated industrialization. More ambitious and easily-tracked climate targets should be proposed by cities and more effective measures of reducing GHG emissions are required to stay consistent with the global ambition of climate change mitigation.

climate change GHG emission reduction energy consumption climate targets low-carbon cities

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The Paris Agreement was adopted by more than 170 countries in 2015. The aim of this agreement is to constrain global warming to levels well below 2°C or even 1.5°C compared with pre-industrial levels (UNFCCC, 2015; Rogelj et al., 2019). Under this agreement, many global regions have proposed specific targets for greenhouse gas (GHG) mitigation and stricter environmental polices (Liobikiene and Butkus, 2017; Sobrinho et al., 2020; Zhou et al., 2021). However, there is still a significant gap in achieving these climate targets. According to Emission Gap Report 2020, the world is still heading for a temperature rise in excess of 3°C by the end of the twenty-first century. Although there is an ~66% possibility of achieving the goal of limiting global temperature increase to below 2°C when green recovery is prioritized by international communities, the relevant efforts are insufficient to achieve the 1.5°C targets (UNEP, 2020). Greater and sustainable efforts are still needed worldwide to address climate change.

      The climate effects of urbanization and urbanized economy have received increasing concerns in recent decades (Georgeson et al., 2016; Sun et al., 2016). Cities are reported to be responsible for more than 70% of GHG emissions (IEA, 2012; IIASA, 2012), and they share a big responsibility of decarbonization of the global economy. Numerous previous studies have investigated the GHG emission inventories for global cities that were developed based on various reporting methods (Dodman, 2009; Kennedy et al., 2009, 2010; Sovacool and Brown, 2010; Chen and Chen, 2012; Ibrahim et al., 2012). Although a recommended international standard for the accounting of community-scale GHG emissions has been published (GPC, 2014), current inventory methods used by cities significantly vary, making it hard to assess and compare the progress of emission mitigation over time and space. For example, CO2 emissions have been estimated using the methods of the Intergovernmental Panel on Climate Change (Shan et al., 2018) or the multi-regional input–output model (Kanemoto et al., 2020) for cities.

      City-level GHG emission inventories have been widely developed in many countries. For instance, the characteristics of CO2 emissions in 12 East Asian megacities (in China, South Korea, and Japan) were identified by incorporating emission inventories into spatial mapping models and a driving forces analysis was conducted based on their carbon reduction targets (Sun et al., 2021). The inventories of GHG emission of 18 cities in China from 2000 to 2014 were established to analyze the effects of socioeconomic development and industrial structure (Shan et al., 2017; Xu et al., 2018). In addition, carbon inventories of 294 Chinese cities were built by applying China high-resolution emission database, which suggests that reducing emission intensity through improving the efficiency of production and energy use is one of most important strategies for decarbonization (Shan et al., 2021).

      In addition, studies have been looking into the variations of carbon reduction targets among cities. Many cities in the European Union (EU), have committed to climate targets that lead to a sharp carbon reduction or even carbon neutrality (Reckien et al., 2018; Salvia et al., 2021). Hsu et al. (2020) suggested that the European cities are achieving their carbon redution targets guadually and 60% of EU Covenant of Mayors' cities are able to meet their 2020 carbon reduction targets. Salvia et al. (2021) assessed local-level plans of 327 EU cities and indicated some should double their ambitions to meet the aims set by Paris Agreement. Some Asian cities also obtained achievements in reducing GHG emission. However, the potentials of carbon reduction in these areas are still large. Sun et al. (2021) suggested if to achieve the 1.5° climate goal, the CO2 emission per capita in Seoul, Tokyo Metropolis, and Beijing would have to decrease by 36, 26, and 35% in 2030 compared to 2015 levels, repectively. Overall, current urban decarbonization targets are still not sufficient to achieve the global climate targets by the end of this centrury. Although researches have evaluated the effectiveness of GHG emission reduction progress or climate targets in some individual cities, a global inventory for cities at different development stages at sectoral scale is lacking and comparisons between different years is often in consistent. Also, it is also essential to compare carbon reduction targets among cities, which is important for assessing the gaps between current mitigation progress and future mitigation expectation.

      To address these issues, our study assessed the progress of historical GHG emission reduction and the climate targets of global cities in a comparable manner. First, we conducted the sector-level GHG emission inventories for 167 major cities across the globe at different developmental stages and compare their differences in main emission contributors. Then, the carbon reduction progresses of cities were analyzed and compared based on the inventories of emissions recorded in different years. Finally, the city-scale near-term, mid-term, and long-term goals carbon mitigation targets from 2020 to 2050 were assessed and discussed for their climate relevance.

      Methods and Data

      Our urban sample consists of 167 global urban regions (cities or metropolitan areas) from 53 countries worldwide, which was selected based on the global coverage and representativeness in urban sizes and regional distribution. These representative urban samples are usually core cities, larger urban zones, and metropolitan areas in their countries. For the major carbon emitters in the world (such as China, the US, India and the EU), more cities would be selected to increase the relevance to the climate discourse. Finally, the carbon data at city level has a lower availability than that in country level. The selection of samples is also constrained by the GHG emission and mitigation target data that are most available in the study period, with the goal of ensuring consistency and continuity of inter-city emissions comparison. We also distinguished between the degree of development of these cities, which were based on whether they belong to developed and developing countries in the UN classification criteria.

      We conducted detailed sector-level inventories for the GHG emissions in cities, which are represented by CO2 equivalent (CO2-eq). Two major data sources used in our study are: the public databases of C40 Cities (https://www.c40.org/) and CDP (Carbon Disclosure Project) platform (https://data.cdp.net/). C40 Cities is a network that connected 97 of world's greatest cities to address climate change, including information about carbon emission and reduction plans. Carbon Disclosure Project is a global disclosure system that have the most comprehensive collection of self-reported environmental data in the world, which contains data on GHG emissions, climate mitigation, adaption plans, and climate targets. These databases have high coverage of global cities and relatively good data quality, and are available to the public, which have been widely used by previous urban carbon studies (Nangini et al., 2019; Wiedmann et al., 2020; Salvia et al., 2021). Population data was also collected from the two major databases above, together with local city statistics, which were used for further analysis (i.e., the calculation of per capita GHG emissions and indicate the urban sizes). For the analysis of carbon reduction targets contributed by cities, the primary data source was the CDP platform. Climate action plans of cities or city-authored mitigation policy documents were also collected and used as complements when necessary. Three major steps of study are:

      GHG Emission Inventories

      Our inventories cataloged GHG emissions by eight urban sectors: residential and institutional buildings; commercial buildings; industrial buildings (energy use); industrial process and fugitive emissions; on-road transportation (e.g., cars, buses); railways, aviation, and waterway; waste disposal (wastewater treatment, landfills); and other (agriculture, mining). Both territorial emissions within urban geographical boundaries and those related to imported electricity were included in these inventories. When emission data of some cities are available at different data sources, the inventory data from C40 Cities were selected to maximize data consistency and avoid mismatches of statistical calibers. Because of the scarcity of emission data at sector scale, some cities may have missing data for certain sectors (for example, waste-related emission data was not available for Amsterdam and other emission (agriculture, mining) data was not available for Los Angeles).

      Tracking of Historical Emission Change

      We selected the 42 out of the 167 cities that had GHG emission inventories for at least 2 years to analyze the progresses of GHG emission reduction in cities. The basic information and study periods of these cities are shown in Table A1. If cities had inventories for more than 2 years, we prioritized the use of data within the same source. Additionally, we tend to maximize the timespan by using the first year and last year data that were available to facilitate a more meaningful comparison. If an urban region only had 2 years of inventories with different data sources, we first determine whether their emission boundaries are consistent by comparing their urban land areas in respective data sources. If they are consistent, we confirm the GHG emission data of the city is comparable and could be selected.

      Carbon Reduction Target Analysis

      Our survey showed that 113 out of the 167 cities have set clear and traceable carbon reduction targets. The target information was extracted on the basis of the following aspects: general city information (name, location, and boundaries), target details (reduction target types and magnitude, baseline year, and the latest update date), and supporting data (i.e., population). The near-term (2020s), mid-term (2030s), and long-term (2040s−2050) climate targets were identified for each city. They are further classified by absolute emission reduction targets, intensity targets, and baseline scenario targets to discuss their climate relevance and appropriateness from a global perspective.

      Results GHG Emissions From Cities and Their Sectors

      The total and per capita GHG emissions of the 167 cities are mapped in Figure 1. As shown in Figure 1a, the total GHG emissions ranged between 3.5 kt CO2-eq and 199.7 Mt CO2-eq. The top 25 (15%) of the 167 cities accounted for 52% of the total GHG emissions, which are mainly from Asian and European countries [such as China (Handan, Shanghai, and Suzhou) and Japan (Tokyo), Russia (Moscow) and Turkey (Istanbul)]. As suggested by Moran et al. (2018), concerted actions implemented by a small number of local governments could have remarkable impacts on global emissions reduction. In general, both developed and developing countries have cities with high total GHG emissions, and some cities in developed countries still generated a great deal of emissions (such as cities in Japan, the USA, Korea, Germany, and Singapore) in the study period. This could raise equity concerns, since major cities have generated the biggest share of GHG emissions, but the consequences of climate change (such as extreme weathers, wide fires, and biodiversity loss) are borne by the whole world, and the poorer regions are possibly more vulnerable to these consequences (Morgan and Waskow, 2014).

      The (a) total GHG emissions and (b) per capita GHG emissions of 167 cities. Most recent data of cities are shown, which could be in different years (2005–2016), depending on the data availability.

      The divide of per capita GHG emissions among cities were also huge (ranging from 0.15–34.95 t CO2-eq/capita) (Figure 1b). Cities in the USA, Europe, and Australia had a notably higher per capita GHG emissions than those in most developing areas. For the former cities, efforts for decreasing per capita GHG emissions should be further enhanced. Though China is still a developing country, several Chinese cities (such as Yinchuan, Urumqi, and Dalian) had the per capita GHG emissions (34.95, 30.99, and 24.30 t CO2-eq/capita, respectively) approaching those of developed countries, which is partially attributed to their rapid urbanization, industrialization, and relatively high reliance on coal energy. Another major reason is that many high-carbon production chains were outsourced from developed nations to Chinese cities, thus increasing the export-related emission of the latter.

      The sector-level emissions of cities around 2012 (108 cities in total) were shown in Figure 2. Stationary energy is one of the largest contributors to GHG emissions of cities, which includes emissions from the fuel combustion and electricity use in residential and institutional buildings, commercial buildings, and industrial buildings in the study. Nearly half of the 108 cities had stationary energy emissions that represented more than 70% of their total GHG emissions, and more than 80% of the cities had stationary energy emissions that represented over 50% of total emissions; therefore, most of these cities can achieve significant GHG reduction progress only if this portion of energy emissions can be well-controlled. Stationary energy emissions are typically prominent in Chinese cities (especially from industrial buildings). Among them, Shanghai, Suzhou, Dalian, Handan, and Tianjin had the largest stationary energy emissions, largely because of their big manufacturing or service sectors. In comparison, some South American and Asian cities had a relatively small proportion of stationary energy emissions. For example, Belo Horizonte in Brazil had 25% of GHG emissions from stationary energy, while the proportions for Amman and Manila of Asia were 24 and 22%, respectively, which was due to the relatively more developed agricultural and farming industries in these regions. Emission of stationary energy in European and North American cities contributes 60–80% (e.g., 74% in New York City, Chicago, Torino, and 60% in Stockholm). Consumers in richer cities tend to buy more and carbon-intensive products manufactured in Chinese cities or other upstream regions, which would greatly increase the energy demand and GHG emissions within those areas. Therefore, plateauing or reducing the consumption for consumers worldwide should be considered as an important supplementary strategy for mitigating GHG emissions that related to international trade.

      Sector contribution to GHG emissions of global cities.

      Transportation also plays an important role in the total GHG emissions in most cities. In about one-third of the cities, more than 30% of total GHG emissions were from on-road transportation. In comparison, the emissions from railways, aviation, and waterways (<15% of total GHG emissions) were much lower. The variation of emissions in the transportation sector may due to a range of factors such as economic development, urban forms, traffic structures, and types of vehicle fuel (Chester and Cano, 2016; Li et al., 2019a). The average GHG emissions of on-road transportation in developed regions was about two times of that in the developing regions. In cities of developed nations, the higher level of urbanization arouses more traffic activities and vehicle fleets that result in larger transport emissions; and transportation sector has a higher proportion in total economy-wide emission. As for the cities in developing areas, although the emission from transportation could also be considerable given the reliance on fossil fuels, it generally has a lower proportion in total emission.

      Waste disposal and industrial process and fugitive emissions were smaller sources of GHG emissions by comparison. Although many studies recognized that waste is a minor contributor to the emissions in most of cities (Kennedy et al., 2009, 2014), it should be noted that technology advance in waste treatment and emission capture and reuse need further development toward carbon-neutral waste disposal and recycling systems (Dong et al., 2018).

      Historical Emission Variations

      Figure 3 reveals the annual change of total GHG emissions, and Figure 4 shows the annual change of per capita GHG emissions over the study period in 42 cities that had reliable emission data for at least 2 years (detailed information is shown in Table A1). Figure 3 shows that 30 cities reduced their annual GHG emissions, many of which are in America and Europe. Seattle (North America), Oslo (Europe), Bogotá (South America), and Houston (North America) are the top four cities with the largest per capita emission reduction (Bogotá is also the second largest city in terms of total reduction). European cities were heading for achieving their climate mitigation targets from a territorial perspective. From 2008 to 2016, the EU Emissions Trading System regulated ~50% of EU GHG emissions and reduced more than one billion tons of CO2 from 2008 to 2016 (Bayer and Aklin, 2020). Furthermore, the total GHG emissions and emissions from the power sector have been largely reduced in the USA in recent decades due to the changes from the use of coal to natural gas (Feng et al., 2015) and the transformation toward a cleaner and renewable energy system (Aslani and Wong, 2014; Ahn et al., 2021), where the climate actions have already significantly promoted GHG emission reduction. It should be noted that cities in the developed countries (e.g., American and European cities) had moved a certain amount of high-carbon industries to developing areas (mostly in Asian and Latin American cities) in the past few decades. The transfer of industrial activities across cities would possibly lead to an ineffective GHG emission reduction. The decrease of the local emissions in the developed cities may end up transferring the GHG emission to cities in the developing regions. Therefore, it has been acknowledged appropriate city boundaries and accounting methods for carbon inventory should be developed and applied to identify the climate responsibility for cities (Chen et al., 2020a,b).

      Annual change of GHG emission in cities over 2005–2016. 1, Yokohama; 2, Vancouver; 3, Stockholm; 4, Paris; 5, Sydney; 6, San Francisco; 7, Milan; 8, Barcelona; 9, Boston; 10, New Orleans; 11, Austin; 12, Washington, DC; 13, Copenhagen; 14, Athens; 15, Los Angeles; 16, Durban; 17, Toronto; 18, Chicago; 19, Chennai; 20, Philadelphia; 21, Oslo; 22, New York City; 23, Seoul; 24, Seattle; 25, Houston; 26, Amman; 27, London; 28, Istanbul; 29, Bogotá; 30, Bangkok; 31, Auckland; 32, Melbourne; 33, Cape Town; 34, Buenos Aires; 35, Montréal; 36, Ciudad de México; 37, Venice; 38, Madrid; 39, Lima; 40, Curitiba; 41, Johannesburg; 42, Rio de Janeiro.

      Annual change of per capita GHG emission in cities over 2005–2016. 1, Yokohama; 2, Paris; 3, Chennai; 4, Barcelona; 5, Milan; 6, Stockholm; 7, Los Angeles; 8, Seoul; 9, New York City; 10, Vancouver; 11, San Francisco; 12, Durban; 13, Toronto; 14, Chicago; 15, Austin; 16, Boston; 17, Washington, DC; 18, Istanbul; 19, London; 20, Copenhagen; 21, Philadelphia; 22, Sydney; 23, New Orleans; 24, Athens; 25, Bangkok; 26, Amman; 27, Houston; 28, Bogotá; 29, Oslo; 30, Seattle; 31, Auckland; 32, Cape Town; 33, Ciudad de México; 34, Buenos Aires; 35, Lima; 36, Madrid; 37, Montréal; 38, Melbourne; 39, Johannesburg; 40, Curitiba; 41, Rio de Janeiro; 42, Venice.

      The GHG emissions continued to increase in several cities over the research period. Venice, Rio de Janeiro, Curitiba, and Johannesburg were the top four cities with the largest annual increases in per capita GHG emission, while Rio de Janeiro and Curitiba were also among cities with the largest annual total GHG emissions. Most of them are the cities in developing countries. Compared with the cities in developed areas, their industrial development mainly relies on industries with low technology and high energy consumption. For example, as the second largest industrial base of Brazil, Rio de Janeiro is under a fast development of chemical industry and mining industry. Some of these high-carbon industries are transferred from cities in developed countries (Cai et al., 2018). These cities have a great potential of emission reduction by making more aggressive climate mitigation plans that are anchored upon local sustainable development goals (Octaviano et al., 2016; Busch et al., 2019; Roe et al., 2019).

      Varying Reduction Targets

      Of the 167 analyzed cities, 113 already set traceable targets for GHG emission reduction, which included absolute emission reduction targets for 68 cities, intensity targets for 40 cities, and baseline scenario targets for 8 cities. For some cities, more than one kind of target exists. Most of these cities set targets on GHG emissions (CO2-eq) and some of them only referred to CO2 emissions. The cities showed great variance from 1990 to 2015, the emission targets ranged from 15 to 100% reduction. Here, we classified these targets into near-term (2020s), mid-term (2030s), and long-term (2040s−2050) goals of emission reduction (Figure 5).

      The (A) absolute emission reduction target, (B) intensity target, and (C) baseline scenario target proposed for GHGs emission mitigation in cities.

      Absolute emission reduction targets (Figure 5A) were most widely reported in cities of developed nations. In general, these absolute targets are easier to trace over time and one can readily compare the near-term, mid-term, and long-term goals of the same city or between different cities. The commitments were concentrated in developed areas like Europe and North America. For instance, Toronto had announced to cut its GHG emissions by 80% of 1990 levels by 2050, with the near-term target of 30% reduction by 2020 and mid-term target of 65% target by 2030. European cities like Milan, Bologna, Warsaw had committed to achieve 20% of GHG emission reduction compared to 2005 levels by 2020, in alignment with the overall targets of the EU. There are cities that strive for even more ambitious goals (e.g., Porto adopted the goal of 45% reduction in community-wide GHG emissions compared to 2004 level by 2020 and Manchester has committed to be net-zero carbon by 2038). In comparison, cities tend to propose their climate targets through reduction of intensity (Figure 5B) or a simulated business-as-usual scenario (Figure 5C) if they are at the stage of rapid economic growth and accelerated industrialization (C40 Cities ARUP, 2014). For example, many Chinese cities have proposed clear intensity targets, following the national targets. The city-level goals were to reduce per unit GDP CO2 emissions by 12–25% by 2020 compared with 2015 according to the “13th Five-Year-Plan,” although the latest 14th Five-Year-Plan for 2020–2025 set a national target of 18% reduction in carbon intensity. The targets for the cities with more developed economy and higher urbanization rate are more ambitious (e.g., 25% of carbon intensity declined for Hangzhou and 23% for Guangzhou and Shenzhen), while the goals are generally more conservative for cities that are still at a fast-developing stage (e.g., the intensity targets for Urumqi and Haikou were 12 and 14%, respectively). Absolute targets are developed for Chinese cities in the “14th Five-Year-Plan,” and some cities (e.g., Guangzhou, Shenzhen, Suzhou, Jinan, and Qingdao) have pledged to achieve carbon peak before 2025. These targets are consistent with China's commitments to mid-term goals (60–65% reduction in CO2 emissions per unit of GDP by 2030 compared with 2005). The Chinese government had promised that the carbon intensity would be reduced by 40–45% during the periods of 2005–2020. In fact, by the end of 2019, China had reduced its carbon intensity by ~48.1% compared with 2005, which already exceeded their commitment.

      More than 30 countries have announced their commitments of carbon neutrality and almost 100 countries that have net-zero-emission targets under discussion (Net Zero Tracker, 2021), which may inspire other regions to strengthen their own climate goals. An increasing number of cities have also proposed carbon neutrality targets. In total, 40 (24%) of the 167 cities in this study have set carbon neutrality (or net-zero-carbon, climate neutrality) goal, which may account for over 80% of their current GHG reduction. Most European cities strive to achieve carbon neutrality by 2050 (36 cities; i.e., 90%) to synchronize with the EU's goal as a whole; and four European cities even set these goals by 2020s−2030s. Similarly, most American cities have set targets to reduce GHG emissions by 80% by 2050. Copenhagen (Denmark) aims to be the first carbon-neutral capital in 2025. However, there is still a gap between the current climate policies in cities and the global climate goal. Studies have shown that 60% of EU Covenant of Mayors' cities are able to meet their 2020 carbon reduction targets (Hsu et al., 2020), which is 20% of CO2 reduction between 1990 and 2020 (Kona et al., 2018); however, overall, they must double their efforts to comply with the Paris Agreement of net-zero emissions around 2050 (Salvia et al., 2021). To address this gap, megacities in China have proposed carbon peak and carbon neutrality targets ahead of the nation. As the most populated urban agglomerations and the frontier of low-carbon economic transition in mainland China, Guangdong-Hong Kong-Macao Greater Bay Area (consists of nine cities in Guangdong Province, Hong Kong. and Macao) is expected to peak their emissions by 2025 and become carbon neutrality by 2050, which is 5 years and a decade ahead of the national goals, respectively.

      Discussion

      To limit the global warming to 1.5°C in this century, cities need to transform from a resource-dependent industrialization path to an innovation-driven sustainable development path. Moreover, policies should be formulated to facilitate this transformation and upgrade of traditional industries, the development of cleaner supply chains, and the formulation of low-carbon lifestyles. On the basis of these results, we proposed several policy recommendations to further advance future climate actions in cities.

      More Effective Mitigation Strategies Target Key Sectors

      Stationary energy and on-road transportation are the most significant contributors to GHG emissions of global cities. Among all the stationary energy users, residential, and institutional buildings play important roles in emission of global cities. Measures such as promoting energy audits on building energy use (Kontokosta et al., 2020), adjusting building structures (Li et al., 2019b), and controlling and decreasing unnecessary construction activities (Zhang et al., 2019) should be considered when striving for the net-zero emission of buildings.

      Cities with large size of populations, fast-developing transportation infrastructures, and a high level of travel demand tend to have larger shares of transportation-related emissions. For example, on-road transportation accounted for 44 and 42% of total GHG emissions in Bangkok and Seoul, respectively. These results are consistent with previous studies, which suggested that the GHG emission of transportation is closely relevant to the size of population and economy (Lakshmanan and Han, 1997; Timilsina and Shrestha, 2009; Ehrlich, 2017; Liang et al., 2017). Population growth during urbanization increases travel activities and vehicle fleets, although the growing population density could end up with lower transport emission per capita. To effectively control the transportation emissions, policy makers can use various policy tools. For example, in South Korea's cities, the governors proposed that the public sectors should buy green cars and there should be rewards and subsidies for using public buses and taxis (CSTNET, 2021). Moreover, fossil fuels for transport should be replaced by cleaner energy (e.g., hydrogen, and biofuels) (Axsen et al., 2020), and a higher leverl of electrification in both public and private transportation should promoted (Safarzyńska and van den Bergh, 2018; Xylia et al., 2019). In addition, the on-road emission is significantly higher than those from other types of traffic (e.g., railway, aviation, and shipping) from a global perspective. The on-road emission standards should be improved and updated to minimize the impact of existing gasoline-based and diesel-based vehicles (Jacobsen and Benthem, 2013; Thiel et al., 2016). Besides, a green traffic mode should be also formed in communities. People travel with bicycle and public transportation should be encouraged through incentive economic measures (e.g., a carbon currency system that rewards low-carbon transport choices). The rail transit should be also invested to appropriately relieve the travel pressure of ground transportation in cities of high population density.

      Additionally, waste management and recycling for disposal should not be ignored. As shown in our results, for some developed cities such as Lima and Geneva, the contribution of waste disposal to total emission were relatively high. Their total GHG emissions were lower than most cities but their waste disposal proportions reached 44.5 and 18.5%, respectively. Strengthening the reuse of waste as new products in a low-carbon way is highly important (such as the reuse of biomass for energy generation) (Tripathi et al., 2019). Properly managing the solid waste can help realize the maximization of resource utilization and the “zero emission” of waste, which are significant for building a circular economy.

      Timely and Consistent Evaluation of Mitigation Progress

      To trace the effectiveness of carbon reduction policies in urban areas, it is necessary to compile accurate and time-series emission inventories through a consistent methodology. Currently, despite many efforts exist in establishing carbon accounts of individual cities, high-quality dynamic GHG emission database of cities is still lacking at a global scale. Most cities do not have comparable time-series GHG emission inventories at a detailed sector level. Some American and EU cities developed relatively comprehensive GHG inventories, while other cities only had emission data for a few discrete years or did not report emission from some sectors. Several GHG emission databases have been developed in developing nations such as China. Carbon Emission Accounts and Datasets (CEAD) (https://www.ceads.net.cn/) reports GHG emission accounts and dataset for Chinese provincial regions and cities in different years. Moreover, the China High Resolution Emission Gridded Database (CHRED) (http://www.cityghg.com/) has established a GHG database for China, including a high-resolution CO2 emissions dataset for Chinese cities (Cai et al., 2017). The global society and world organizations should help the cities in developing cities set up traceable GHG emission data and foster better collaboration of database development among major cities. It is necessary to build transparent and available carbon data disclosure systems so that the carbon mitigation processes can be consistently tracked. Also, the consumption-based and infrastructure-based carbon accounts have been increasingly adopted in determining climate impact and mitigation responsibilities of cities (Chen and Chen, 2017; Ramaswami et al., 2021). Development of global databases that support the consumption-based and infrastructure-based accounting should be also in the agenda. Improving the reporting scheme and data quality of GHG emission would be better for the evaluation of carbon mitigation processes. This places higher demands on basic data collection, both in terms of data volume and the level of accuracy.

      More Ambitious and Easily-Traceable Mitigation Goals

      Although many countries have announced ambitious climate commitments, climate targets seem less clear and available for many cities. In our study, only around 60% of cities have traceable climate targets (e.g., absolute emission reduction targets), which is insufficient. Cities in most developed countries have set clear long-term climate goals such as carbon neutrality by 2050. In comparison, a large number of cities in developing regions prefer intensity targets and baseline scenario targets that are usually short-term or mid-term based, which is not entirely compatible with the global climate goals. At certain stage, carbon intensity is a useful indicator showing the decarbonization of economy and provides better flexibilities for cities of fast economic growth and increase in emission. But in the long run, switching from intensity targets to absolute targets in cities is essential to achieve the global carbon neutrality by 2050. In fact, some Chinese cities have already presented their timetables for carbon peak and carbon neutrality in their 14th Five-Year Plans. For example, Guangzhou and Shenzhen aim to peak their GHG emission first in 2020, while other cities (such as Zhuhai and Huizhou) aim for around 2025, and finally achieve overall carbon neutrality by 2050. Beijing, Shanghai, cities in Jiangsu Province have also committed to achieve carbon peak no later than the national goal.

      In addition, specific targets that are decomposed into various sectors (e.g., specific targets for energy consumption, transportation, and waste) are needed to mitigate the emission gaps. For example, Copenhagen plans to achieve 20% reduction in heat consumption in 2025 compared with 2010 and net-zero carbon emissions in public transport by 2025 (CPH, 2012). A wide cooperation among governments, business communities, research institutions, and social organizations are required to provide synergistic technological solutions toward achieving emission mitigation targets for sectors. The climate targets for different sectors and industries should be designed with a timely and easily-traceable way, and facilitate a transparent sector-level comparison among cities (Levin and Fransen, 2019).

      Limitations

      Some limitations and uncertainties should be noted. First, the definitions of “unban unit” are diverse and sometimes inconsistent from cities to cities, which makes it difficult to assess cities within the same geographical scale (inclusion of urban areas) and organization status (forms of local administration), given the current data. This may introduce uncertainties to the carbon accounts and budgets. For example, some of the climate mitigation measures are expected to take place in suburban areas or higher level of metropolis (such as the carbon reduction of intercity transportation and the waste disposal outside the city center). Second, the population data are collected to match with the carbon data, and could be subject to some extents of inconsistency. However, by cross-checking the scales of carbon data and population data of cities, the main findings on per capita carbon results are generally reliable and comparable within a broad view. Future steps are suggested to improve the consistency of GHG emission inventories of cities at a global scale and track the dynamics of urban emission changes over a longer term based on a unified accounting standard.

      Data Availability Statement

      The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

      Author Contributions

      TW and JW: visualization, methodology, writing-original draft, and editing. SC: conceptualization, review, and editing. All authors contributed to the article and approved the submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Ahn K. Chu Z. Lee D. (2021). Effects of renewable energy use in the energy mix on social welfare. Energy Econ. 96, 105174. 10.1016/j.eneco.2021.105174 Aslani A. Wong K. V. (2014). Analysis of renewable energy development to power generation in the United States. Renew. Energy 63, 153161. 10.1016/j.renene.2013.08.047 Axsen J. Plötz P. Wolinetz M. (2020). Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nat. Clim. Chang. 10, 809818. 10.1038/s41558-020-0877-y Bayer P. Aklin M. (2020). The European Union Emissions Trading System reduced CO2 emissions despite low prices. Proc. Natl. Acad. Sci. U.S.A. 117, 88048812. 10.1073/pnas.191812811732253304 Busch J. Engelmann J. Cook-Patton S. C. Griscom B. W. Kroeger T. Possingham H. . (2019). Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Chang. 9, 463466. 10.1038/s41558-019-0485-x C40 Cities ARUP (2014). Global Aggregation of City Climate Commitments: Methodological Review (Version 2.0 Final White Paper). Available online at: https://www.c40.org/researches/global-aggregation-of-city-climate-commitments-methodology (accessed April 20, 2021). Cai B. Liang S. Zhou J. Wang J. Cao L. Qu S. . (2017). China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resour. Conserv. Recycl.. 129, 232239. 10.1016/j.resconrec.2017.10.036 Cai X. Che X. Zhu B. Zhao J. Xie R. (2018). Will developing countries become pollution havens for developed countries? An empirical investigation in the Belt and Road. J. Clean. Prod. 198, 624632. 10.1016/j.jclepro.2018.06.291 Chen S. Q. Chen B. (2012). Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria. Environ. Sci. Technol. 46, 44984506. 10.1021/es204662k22424579 Chen S. Q. Chen B. (2017). Changing urban carbon metabolism over time: historical trajectory and future pathway. Environ. Sci. Technol. 51, 75607571. 10.1021/acs.est.7b0169428574689 Chen S. Q. Chen B. Feng K. Liu Z. Former N. Tan X. . (2020a). Physical and virtual carbon metabolism of global cities. Nat. Commun. 11:182. 10.1038/s41467-019-13757-331924775 Chen S. Q. Long H. Chen B. Feng K. Hubacek K. (2020b). Urban carbon footprints across scale: important considerations for choosing system boundaries. Appl. Energy 259:114201. 10.1016/j.apenergy.2019.114201 Chester M. V. Cano A. (2016). Time-based life-cycle assessment for environmental policymaking: greenhouse gas reduction goals and public transit. Transp. Res. D Transp. Environ. 43, 4958. 10.1016/j.trd.2015.12.003 CPH (2012). CPH 2025 Climate Plan: A Green, Smart and Carbon Neutral City. Copenhagen Carbon Neutral by 2025. Available online at: https://kk.sites.itera.dk/apps/kk_pub2/pdf/983_jkP0ekKMyD.pdf (accessed June 26, 2021). CSTNET (2021). South Korea Plans to Promote 7.85 Million Environmentally Friendly Vehicles by 2030. China Science and Technology Network. Available online at: http://www.stdaily.com/kjrb/kjrbbm/2021-03/03/content_1085172.shtml (accessed June 12, 2021). Dodman D. (2009). Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urban. 21, 185201. 10.1177/0956247809103016 Dong H. Geng Y. Yu X. Li J. (2018). Uncovering energy saving and carbon reduction potential from recycling wastes: a case of Shanghai in China. J. Clean. Prod. 205, 2735. 10.1016/j.jclepro.2018.08.343 Ehrlich J. (2017). Infrastructure requirements for the self-driving vehicle. Routes Roads 43–46. https://trid.trb.org/view/1487822 (accessed June 25, 2021). Feng K. Davis S. J. Sun L. Hubacek K. (2015). Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 6:7714. 10.1038/ncomms871426197104 Georgeson L. Maslin M. Poessinouw M. Howard S. (2016). Adaptation responses to climate change differ between global megacities. Nat. Clim. Chang. 6, 584588. 10.1038/nclimate2944 GPC (2014). Global Protocol for Community-Scale Greenhouse Gas Emission Inventories: An Accounting and Reporting Standard for Cities. Greenhouse Gas Protocol. Hsu A. Tan J. Ng Y. M. Toh W. Vanda R. Goyal N. (2020). Performance determinants show European cities are delivering on climate mitigation. Nat. Clim. Chang. 10, 10151022. 10.1038/s41558-020-0879-9 Ibrahim N. Sugar L. Hoornweg D. Kennedy C. (2012). Greenhouse gas emissions from cities: comparison of international inventory frameworks. Local Environ. 17, 223241. 10.1080/13549839.2012.660909 IEA (2012). World Energy Outlook 2012. Paris: International Energy Agency. Available online at: https://www.iea.org/reports/world-energy-outlook-2012 (accessed April 10, 2021). IIASA (2012). GEA 2012: Global Energy Assessment – Toward a Sustainable Future. Cambridge University Press. Available online at: http://assets.cambridge.org/97811070/05198/frontmatter/9781107005198_frontmatter.pdf (accessed June 25, 2021). Jacobsen M. Benthem A. (2013). Vehicle scrappage and gasoline policy. Am. Econ. Rev. 105, 13121338. 10.1257/aer.20130935 Kanemoto K. Shigetomi Y. Hoang N. T. Okuoka K. Moran D. (2020). Spatial variation in household consumption-based carbon emission inventories for 1,200 Japanese cities. Environ. Res. Lett. 15:114053. 10.1088/1748-9326/abc045 Kennedy C. Ibrahim N. Hoornweg D. (2014). Low-carbon infrastructure strategies for cities. Nat. Clim. Chang. 4, 343346. 10.1038/nclimate2160 Kennedy C. Steinberger J. Gasson B. Hansen Y. Hillman T. Havránek M. . (2009). Greenhouse gas emissions from global cities. Environ. Sci. Technol. 43, 72977302. 10.1021/es900213p19848137 Kennedy C. Steinberger J. Gasson B. Hansen Y. Hillman T. Havránek M. . (2010). Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 37, 48284827. 10.1016/j.enpol.2009.08.050 Kona A. Bertoldi P. Monforti-Ferrario F. Rivas S. Dallemand J. F. (2018). Covenant of mayors signatories leading the way towards 1.5 degree global warming pathway. Sust. Cities Soc. 41, 568575. 10.1016/j.scs.2018.05.017 Kontokosta C. E. Spiegel-Feld D. Papadopoulos S. (2020). The impact of mandatory energy audits on building energy use. Nat. Energy 5, 309316. 10.1038/s41560-020-0589-6 Lakshmanan T. R. Han X. (1997). Factors underlying transportation CO2 emissions in the U.S.A.: A decomposition analysis. Transp. Res. Part D: Transp. Environ. 2, 115. 10.1016/S1361-9209(96)00011-9 Levin K. Fransen T. (2019). Commentary: Climate Action for Today and Tomorrow: The Relationship between NDCs and LTSs. World Resources Institute. Available online at: https://www.wri.org/news/climate-action-today-and-tomorrow-relationship-between-ndcs-and-ltss (accessed April 13, 2021). Li F. Cai B. Ye Z. Wang Z. Zhang W. Zhou P. . (2019a). Changing patterns and determinants of transportation carbon emissions in Chinese cities. Energy 174, 562575. 10.1016/j.energy.2019.02.179 Li X. Yao R. Yu W. Meng X. Liu M. Short A. . (2019b). Low carbon heating and cooling of residential buildings in cities in the hot summer and cold winter zone - a bottom-up engineering stock modeling approach. J. Clean. Prod. 220, 271288. 10.1016/j.jclepro.2019.02.023 Liang Y. Niu D. Wang H. Li Y. (2017). Factors affecting transportation sector CO2 emissions growth in China: An LMDI decomposition analysis. Sustainability 9, 1730. 10.3390/su9101730 Liobikiene G. Butkus M. (2017). The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renew. Energy 106, 298309. 10.1016/j.renene.2017.01.036 Moran D. Kanemoto K. Jiborn M. Wood R. Többen J. Seto K. C. (2018). Carbon footprints of 13000 cities. Environ. Res. Lett. 13:064041. 10.1088/1748-9326/aac72a Morgan J. Waskow D. (2014). A new look at climate equity in the UNFCCC. Clim. Pol. 14, 1722. 10.1080/14693062.2014.848096 Nangini C. Peregon A. Ciais P. Weddige U. Vogel F. Wang J. . (2019). A global dataset of CO2 emissions and ancillary data related to emissions for 343 cities. Sci. Data 6:180280. 10.1038/sdata.2018.28030644855 Net Zero Tracker. (2021). Available at: https://eciu.net/netzerotracker (accessed June 13, 2021). Octaviano C. Paltsev S. Gurgel A. C. (2016). Climate change policy in Brazil and Mexico: results from the MIT EPPA model. Energy Econ. 56, 600614. 10.1016/j.eneco.2015.04.007 Ramaswami A. Tong K. Canadell J. G. Jackson R. B. Stokes E. Dhakal S. . (2021). Carbon analytics for net-zero emissions sustainable cities. Nat. Sustain. 4, 460463. 10.1038/s41893-021-00715-5 Reckien D. Salvia M. Heidrich O. Church J. M. Pietrapertosa F. . (2018). How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod. 191, 207219. 10.1016/j.jclepro.2018.03.220 Roe S. Streck C. Obersteiner M. Frank S. Griscom B. Drouet L. . (2019). Contribution of the land sector to a 1.5 °C world. Nat. Clim. Chang. 9, 817828. 10.1038/s41558-019-0591-9 Rogelj J. Huppmann D. Krey V. Riahi K. Clarke L. Gidden M. . (2019). A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357363. 10.1038/s41586-019-1541-431534246 Safarzyńska K. van den Bergh J. (2018). A higher rebound effect under bounded rationality: interactions between car mobility and electricity generation. Energy Econ. 74, 179196. 10.1016/j.eneco.2018.06.006 Salvia M. Reckien D. Pietrapertosa F. Eckersley P. Spyridaki N. Krook-Riekkola A. . (2021). Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 135:110253. 10.1016/j.rser.2020.110253 Shan Y. Fang S. Cai B. Zhou Y. Li D. Feng K. . (2021). Chinese cities exhibit varying degrees of decoupling of economic growth and CO2 emissions between 2005 and 2015. One Earth 4, 124134. 10.1016/j.oneear.2020.12.004 Shan Y. Guan D. Hubacek K. Zheng B. Davis S. J. Jia L. . (2018). City-level climate change mitigation in China. Sci. Adv. 4:eaaq0390. 10.1126/sciadv.aaq039029963621 Shan Y. Guan D. Liu J. Mi Z. Liu Z. Liu J. . (2017). Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 161, 12151225. 10.1016/j.jclepro.2017.06.075 Sobrinho V. Lagutov V. Baran S. (2020). Green with savvy? Brazil's climate pledge to the Paris Agreement and its transition to the green economy. Energy Clim. Chang. 1:100015. 10.1016/j.egycc.2020.100015 Sovacool B. K. Brown M. A. (2010). Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energy Pol. 38, 48564869. 10.1016/j.enpol.2009.10.001 Sun L. Liu W. Li Z. Cai B. Fujii M. Luo X. . (2021). Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development. Appl. Energy 284:116400. 10.1016/j.apenergy.2020.116400 Sun Y. Zhang X. Ren G. Zwiers F. W. Hu T. (2016). Contribution of urbanization to warming in China. Nat. Clim. Chang. 6, 706709. 10.1038/nclimate2956 Thiel C. Nijs W. Simoes S. Schmidt J. van Zyl A. Schmid E. (2016). The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation. Energy Policy 96, 153166. 10.1016/j.enpol.2016.05.043 Timilsina G. R. Shrestha A. (2009). Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 37, 45234539. 10.1016/j.enpol.2009.06.009 Tripathi N. Hills C. D. Singh R. S. Atkinson C. J. (2019). Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim. Atmos. Sci 2:35. 10.1038/s41612-019-0093-5 UNEP (2020). Emissions Gap Report 2020. United Nations Environment Programme. UNFCCC (2015). Paris Agreement 2015. United Nations Conference on Climate Change. Available online at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed April 10, 2021). Wiedmann T. Chen G. Owen A. Lenzen M. Doust M. Barrett J. . (2020). Three-scope carbon emission inventories of global cities. J. Indus. Ecol. 25, 735750. 10.1111/jiec.13063 Xu X. Huo H. Liu J. Shan Y. Li Y. Zheng H. . (2018). Patterns of CO2 emissions in 18 central Chinese cities from 2000 to 2014. J. Clean. Prod. 172, 529540. 10.1016/j.jclepro.2017.10.136 Xylia M. Leduc S. Laurent A.-B. Patrizio P. van der Meer Y. Kraxner F. . (2019). Impact of bus electrification on carbon emissions: the case of Stockholm. J. Clean. Prod. 209, 7487. 10.1016/j.jclepro.2018.10.085 Zhang Y. Yan D. Hu S. Guo S. (2019). Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Pol. 134:110949. 10.1016/j.enpol.2019.110949 Zhou S. Tong Q. Pan X. Cao M. Wang H. Gao J. . (2021). Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: a global perspective. Energy Econ. 95:105137. 10.1016/j.eneco.2021.105137 Appendix A

      Basic characteristics and study periods of the 42 cities in the historical variations of emissions analysis (in section Historical Emission Variations).

      City Country Continent Boundary Areas (km2) Stage of development Study period
      Durban South Africa Africa Metropolitan 2,292 Developing 2005–2013
      Johannesburg South Africa Africa City 1,645 Developing 2011–2014
      Cape Town South Africa Africa City 2,455 Developing 2012–2016
      Chennai India Asia Metropolitan 426 Developing 2010–2015
      Seoul Korea Asia City 605 Developed 2011–2013
      Yokohama Japan Asia City 437 Developed 2013–2015
      Amman Jordan Asia City 1,680 Developing 2011–2014
      Bangkok Thailand Asia City 1,569 Developing 2009–2013
      Melbourne Australia Oceania Local government area 37 Developed 2013–2014
      Sydney Australia Oceania Local government area 25 Developed 2005–2016
      Auckland New Zealand Oceania Regions 4,894 Developed 2009–2015
      Venice Italy Europe City 415 Developed 2011–2016
      Copenhagen Denmark Europe Municipality 86 Developed 2014–2015
      Milan Italy Europe City 182 Developed 2013–2015
      Paris France Europe City 105 Developed 2005–2014
      Madrid Spain Europe City 606 Developed 2013–2015
      Barcelona Spain Europe City 102 Developed 2013–2015
      Stockholm Sweden Europe City 188 Developed 2012–2016
      London United Kingdom Europe City 1,572 Developed 2013–2015
      Athens Greece Europe City 39 Developed 2014–2016
      Oslo Norway Europe City 454 Developed 2009–2013
      Istanbul Turkey Europe Metropolitan 5,343 Developing 2009–2015
      New York City USA North America City 784 Developed 2010–2014
      Houston USA North America City 1,740 Developed 2012–2014
      New Orleans USA North America City 439 Developed 2008–2014
      Vancouver Canada North America City 115 Developed 2014–2015
      Ciudad de México Mexico North America City 1,485 Developing 2012–2014
      Philadelphia USA North America City 347 Developed 2012–2014
      Montréal Canada North America City 432 Developed 2013–2014
      Austin USA North America City 829 Developed 2013–2016
      San Francisco USA North America City and county 121 Developed 2012–2016
      Chicago USA North America City 589 Developed 2005–2015
      Los Angeles USA North America City 1,214 Developed 2013–2016
      Toronto Canada North America City 630 Developed 2013–2016
      Washington, DC USA North America City 158 Developed 2013–2016
      Buenos Aires Argentina North America City 203 Developing 2005–2015
      Boston USA North America City 125 Developed 2005–2016
      Seattle USA North America City 218 Developed 2008–2012
      Curitiba Brazil South America City 435 Developing 2011–2013
      Bogotá Colombia South America City 1,587 Developing 2011–2012
      Lima Peru South America City 2,672 Developing 2012–2015
      Rio de Janeiro Brazil South America Megacity 1,221 Developing 2011–2012

      Funding. This study was supported by Natural Science Funds for Distinguished Young Scholar of Guangdong Province, China (2018B030306032), National Natural Science Foundation of China (72074232, 71704015), and the Fundamental Research Funds for the Central Universities (19lgzd26).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016ifdi.com.cn
      hlxfwy.com.cn
      www.kwchain.com.cn
      e-ting.net.cn
      taozhuli.com.cn
      mka518.com.cn
      www.sdqdfc.com.cn
      www.shimoo.com.cn
      mqurhg.com.cn
      xfchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p