Front. Sustain. Frontiers in Sustainability Front. Sustain. 2673-4524 Frontiers Media S.A. 10.3389/frsus.2020.611593 Sustainability Original Research Non-linearity in the Life Cycle Assessment of Scalable and Emerging Technologies Pizzol Massimo 1 * Sacchi Romain 2 Köhler Susanne 1 Anderson Erjavec Annika 1 1Department of Planning, Aalborg University, Aalborg, Denmark 2Technology Assessment Group, Paul Scherrer Institut, Villigen, Switzerland

Edited by: Dingsheng Li, University of Nevada, United States

Reviewed by: Reinout Heijungs, Vrije Universiteit Amsterdam, Netherlands; Stefano Cucurachi, Leiden University, Netherlands

*Correspondence: Massimo Pizzol massimo@plan.aau.dk

This article was submitted to Quantitative Sustainability Assessment, a section of the journal Frontiers in Sustainability

06 01 2021 2020 1 611593 29 09 2020 08 12 2020 Copyright © 2021 Pizzol, Sacchi, Köhler and Anderson Erjavec. 2021 Pizzol, Sacchi, Köhler and Anderson Erjavec

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Given a fixed product system model, with the current computational framework of Life Cycle Assessment (LCA) the potential environmental impacts associated to demanding one thousand units of a product will be one thousand times larger than what results from demanding 1 unit only – a linear relationship. However, due to economies of scale, industrial synergies, efficiency gains, and system design, activities at different scales will perform differently in terms of life cycle impact – in a non-linear way. This study addresses the issue of using the linear framework of LCA to study scalable and emerging technologies, by looking at different examples where technology scale up reflects non-linearly on the impact of a product. First, a computer simulation applied to an entire database is used to quantitatively estimate the effect of assuming activities in a product system are subject to improvements in efficiency. This provides a theoretical but indicative idea of how much uncertainty can be introduced by non-linear relationships between input values and results at the database level. Then the non-linear relations between the environmental burden per tkm of transport on one end, and the cargo mass and range autonomy on the other end is highlighted using a parametrized LCA model for heavy goods vehicles combined with learning scenarios that reflect different load factors and improvement in battery technology. Finally, a last example explores the case of activities related to the mining of the cryptocurrency Bitcoin, an emerging technology, and how the impact of scaling the Bitcoin mining production is affected non-linearly by factors such as increase in mining efficiency and geographical distribution of miners. The paper concludes by discussing the relation between non-linearity and uncertainty and by providing recommendations for accounting for non-linearity in prospective LCA studies.

uncertainty analysis technological learning efficiency bitcoin transportation Det Frie Forskningsråd10.13039/501100004836 Innosuisse - Schweizerische Agentur für Innovationsförderung10.13039/501100013348

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The matrix-based computational structure of Life Cycle Assessment (LCA) is well-described in literature (Heijungs and Suh, 2002) and this framework is often presented as linear, even though the term linear can be interpreted in several ways (Heijungs, 2020). One interpretation is that, mathematically, product systems scale up linearly. This interpretation is based on the fact that, given a fixed product system model, the potential environmental impacts associated to demanding one thousand units of a product are one thousand times larger than results from demanding 1 unit only. The key assumption in such a linear LCA framework is that each activity in the product system will maintain a constant ratio between inputs and outputs, no matter how much product is demanded.

      Yet real-world systems are more complex than this and do not follow such a linear trend. Due to economies of scale, industrial synergies, efficiency gains, and system design, activities at different scales and technological maturity will perform differently and display different output to input ratios (Caduff et al., 2011). Their life cycle impact will also be different (Caduff et al., 2012, 2014).

      In these cases, the impact per unit of product output will be different between a small-scale system, technology, or facility S and a larger one S′ that is upscaled and can potentially produce a quantity of product that is – for example – thousands of times higher. While the functional unit of the LCA remains the same, as it is always the impact per 1 unit of product that is calculated, the system used to determine the impact associated with this functional unit is different. Mathematically, the LCA matrix algebra remains unchanged, and even in the new upscaled system, S′, calculating the impact of 1,000 units will return a result that is 1,000 times higher than the impact of producing 1 unit. However, the impact of 1 unit produced with this upscaled system S' is not necessarily the same as the impact of producing 1 unit with the original small scale system S. Thus, while non-linearity with respect to the production output is an intrinsic property of the system under analysis, linearity with respect to the functional unit is an intrinsic property of the LCA model used to study this system. This is precisely the mismatch that the present study intends to address.

      This mismatch between model and reality becomes critical and potentially problematic in the study of technology upscaling, and particularly in the case of emerging technologies. For example, upscaling effects for green technologies are substantial and well-documented (Grubb, 2004; Piccinno et al., 2016; Nemet et al., 2018) and can lead to increases in efficiency and reduction in the impact per output ratio for a specific activity. It is notably the case with renewable energy systems, where the initial environmental burden of manufacture spreads as the load factor of the plant increases (Padey et al., 2013; Miotti et al., 2017).

      This effect is then particularly evident for emerging technologies in which data are available only on a pilot scale, and it is realistic to expect substantial improvements when reaching industrial scale. With emerging technologies, a massive increase in production volumes lead to reduction in the environmental burden thanks to economies of scale and technological learning (Piccinno et al., 2016; Sacchi et al., 2019). Miotti et al. (2017) illustrated such a case, where the environmental impact of hydrogen fuel cell stacks is reduced by two thirds as the production volume increases from 200 units/year in 2014 to 500,000 units in 2030.

      It is worth noting that the upscaling challenge and potential gain is highly technology-specific. For example, the upscaling of emerging technologies for the treatment of biomass are challenged by the need to work continually and keep controlled physical-chemical conditions but can benefit from synergies such as for example heat recovery aspects that are not appreciable at pilot scale. Another example is the mass-production of complex new technologies such as fuel cells that depend heavily on automatization and robotics and are substantially different from the manual work of manufacturing these technologies in small quantities.

      Thus, modeling the upscaling of emerging technologies goes beyond the sole use of upscaling relationships. In their recent review Tsoy et al. (2020) list several data estimation methods relevant in this context such as process simulation, manual calculations, molecular structure models (only for chemical technologies), and use of proxies. According to these authors, a framework to create LCAs of new technologies at scale includes collaborating with technology experts to define hypothetical upscaled scenarios. This mirrors previous findings of Arvidsson et al. (2017) who also recommend modeling various scenarios using literature, expert interviews, simulation software, and a combination of these methods.

      While current research on the LCA of emerging technologies (Valsasina et al., 2017; Bergerson et al., 2019; Blanco et al., 2020) deals indirectly with non-linear effects, the non-linear relations between technological upscaling and life cycle assessment has not been explicitly covered in the literature.

      As already pointed out by Heijungs (2020) the impact of a product system on a small interval looks like a straight line, but on a larger interval it becomes non-linear. What remains unaddressed is on a practical level why, where, and how much this is a problem.

      In this context, the main objective of this article is to present and discuss different cases of LCAs of product systems that do not scale up linearly. The study intends to show the diversity of potentially non-linear cases to derive more general considerations on how extensively non-linearity can become a problem in the LCA of scalable and emerging technologies as well as to propose possible ways to address this problem.

      Methods

      This work is based on the analysis of different case studies. The cases are illustrative and were selected because they allow the problem of non-linearity in scalable and emerging technologies to be addressed specifically. The cases were also chosen in order to cover different levels of complexity and various types of uncertainty. Finally, the cases were chosen pragmatically based on data directly available from previous and current research work of the authors on scalable and emerging technologies. All cases were analyzed using the ecoinvent database (Wernet et al., 2016) with different versions and system models depending on the case, cf. Supplementary Table 3. The impact of the different systems under analysis was characterized using the midpoint impact indicator Global Warming measured in kg of Carbon Dioxide equivalents (kg CO2-eq) using the IPCC 2013 method with a time horizon of 100 years (IPCC, 2013). The analysis was performed using the open source software Brightway2 (Mutel, 2017) unless specifically indicated. Code and data used for the analysis can be openly accessed at an online repository (Pizzol et al., 2020).

      Estimating the Effect of Improvements in Technology Efficiency at Database Scale

      The first case explores how efficiency gains that are theoretically achievable via technology upscaling result in changes in impacts, by taking a whole life cycle inventory database as unit of analysis. The hypothesis is that data used to build a database bottom-up via industry surveys — like in the case of ecoinvent (Wernet et al., 2016)— may not always reflect technologies at their highest readiness level or technological maturity. In other words, the datasets representing some activities might have been collected from a plant or facility that does not operate at large industrial scale and is therefore far from achieving its potential maximum efficiency. The data supplier might thus have measured an exchange in a process that is far from maximum efficiency.

      The challenge in studying the effect of this inaccuracy at database scale is then two-fold. On one hand, it is virtually impossible to know in detail which flows can be improved and where the upscaling uncertainty lies. It then becomes necessary to assume an upscaling uncertainty for each exchange in each activity, intended as a probability of being wrong about the efficiency of this activity regarding the input exchange. On the other hand, it is reasonable to expect that the effect of improving the efficiency of one or more activities in the database would be rather different depending on the activity that is considered for the analysis, meaning the functional unit for which the life cycle impacts are calculated.

      To tackle these challenges, a computer simulation was performed where the change in the environmental burden of a sample of activities from the ecoinvent database was measured after increasing the efficiency of a number of other activities, thus simulating an improvement that is potentially achievable via technology upscaling or learning effects. Mathematically, the efficiency improvement in an activity is here achieved via a reduction c in the amount of technosphere or biosphere input x required to obtain the production output y.

      y=f(x)=cx    with 0<c<1

      The idea was then to simulate this efficiency improvement as realistically as possible at whole database scale to provide a theoretical but indicative idea of how much uncertainty may be introduced by non-linearities associated with technology upscaling.

      The ratio r was calculated by defining h as the impact vector, Q as the characterization matrix, B as the intervention matrix, A as the technology matrix, and f as the demand vector (Heijungs and Suh, 2002).

      r=hh

      Where h was taken as the “base” value of the impact of an activity before changing its efficiency.

      h=QB(y)(A(y))-1f

      And h′ was obtained by improving the efficiency of specific activities in the database. This is further explained in the following, by using different examples of increasing complexity.

      The first simple example measured the effects of progressively increasing the efficiency of coal power plants in the production of electricity. This example allowed working under rather controlled conditions before dealing with the intrinsically high variability of the entire database, due to the fact that the database includes several types of activities.

      Initially, the improvement was only modeled in terms of a reduction in energy and material inputs. This means that only the values in the technosphere matrix were changed to obtain a new technosphere matrix A′ and calculate h′:

      h=QBA1f

      Where the ai,j element of A′ was obtained as:

      ai,j= cai,j       where ij

      Where aj is any matrix column representing coal-based electricity production, and all coal-based electricity production activities in the database were simultaneously modified. c is the fixed coefficient of efficiency improvement. Note that A is assumed square with diagonal values equal to 1. A more visual example is provided below considering the technology matrix A where each unit process j has production output qjand technosphere inputs xi,j and where both columns aj=1 and aj=2 represent coal power plants:

      A= (q1q1=1x1,2q2=a1,2x2,1q1=a2,1q2q2=1)=(1a1,2a2,11)

      A′ is obtained by multiplying the off-diagonal values of column aj=1 and aj=2 by the same coefficient of efficiency improvement. In this upscaled system the production output is denoted qj and technosphere inputs are denoted xi,j. The assumption is then that xi,j is not just proportional but more efficient than proportional:

      xi,j= cai,jqj

      This allows to obtain:

      A=(q1q1=1x1,2q2=ca1,2x2,1q1=ca2,1q2q2=1)=(1ca1,2ca2,11)

      This simple example was then extended to additionally consider the improvement in terms of emission reduction together with the reduction in material and energy requirements. This means that h′ values were this time obtained by changing both the values in the technosphere matrix and the values in the intervention matrix.

      h=QBA1f

      Where the ai,j element of A′ is obtained as in Equation (4.1) and the bi,j element of B is obtained as:

      bi,j= cbi,j

      Where aj and bj are the columns representing coal-based power plants in each matrix. More visually, considering the intervention matrix B where each unit process j has production output qj and environmental exchanges zi,j and where both columns bj=1 and bj=2 represent coal power plants, then:

      B=(z1,1q1=b1,1z1,2q2=b1,2z2,1q1=b2,1z2,2q2=b2,2)=(b1,1b1,2b2,1b2,2)

      The improvement is again described as an increase in efficiency:

      zi,j= cbi,jqj

      To obtain the upscaled intervention matrix B:

      B=(z1,1q1=cb1,1z1,2q2=cb1,2z2,1q1=cb2,1z2,2q2=cb2,2)=(cb1,1cb1,2cb2,1cb2,2)

      The simulation consisted in calculating r values (Equation 2) using Global Warming impact values obtained via Equations (3–5) for 10 randomly selected activities (10 different f) in the database and nine progressively increasing values of c ranging from 0.2 to 1.0 in 0.1 increments to cover a theoretical efficiency increase up to 400%.

      This simple example allowed a clear understanding of the relationship between efficiency increase and impact. It did not, however, allow conclusions to be drawn that were generalizable at a whole database level. Thus, a more complex example was introduced by measuring the effects of more random and widespread improvements in the efficiency of different activities in the database.

      The approach presented in Equations (3–4.4) was upscaled to database level by simultaneously modifying all transformation activities in the ecoinvent database. In principle, efficiency gains can only be observed in transformation activities, as opposed to market activities which only represent the combined supply of similar products based on trade statistics. Again, at first only the technosphere exchanges were modified and h′ calculated as in Equation (4), but this time ai,j was obtained as:

      ai,j= Ckai,j      where ij

      Where aj is any matrix column representing a transformation activity, and all transformation activities in the database were simultaneously modified. Ck is again a coefficient with value between zero and one (0 < Ck < 1) representing efficiency improvements, but as opposed to c that was fixed, Ck was instead randomly sampled from a specific probability distribution.

      The following presents a visual example of how the A′ matrix was obtained in this more complex simulation, assuming that columns aj=2 and aj=4 of A are both transformation activities and c1, c2, c3, … are randomly sampled instances of Ck (i.e., randomly sampled coefficients).

      A= (1c1a1,2c4a1,41c5a2,4c2a3,21c6a3,4c3a4,21)

      Once again, this example was further extended to consider both improvements in terms of reduced material and energy requirements and in terms of emission reductions. Thus, ai,j was obtained as in Equation (4.6) and bi,j as:

      bi,j= Ckbi,j

      This operation was performed on all bj columns representing transformation activities and using randomly generated coefficients as from Equation (5.5). Thus, the way B′ was obtained in was similar to Equation (4.6) with the only difference that all values in the columns bj=2 and bj=4 are multiplied by a coefficient and not only the off-diagonal ones.

      B=(c1b1,2c5b1,4c2b2,2c6b2,4c3b3,2c7b3,4c4b4,2c8b4,4)

      The simulation at entire database level consisted in performing the operations described in Equations (4.5, 5.5) repeatedly 1,000 times, randomly sampling different coefficients at each iteration, and then calculating r values via Equation (2) using Global Warming impact values obtained via Equations (3–5) for 50 randomly selected market activities (fifty different f) in the database. In order to provide clearer results, treatment and waste management activities were excluded from the selection as these can return negative results and complicate the interpretation. The result was a matrix of 1,000 × 50 r values where rows represented iterations and columns represented the market activities under analysis. Moreover, this simulation was performed in four different scenarios obtained by using two versions of the same database and two probability distributions of Ck to appreciate the differences due to modeling choices and assumptions. In particular, both the consequential and cutoff version of the ecoinvent v.3.6 database were used and both the beta distribution Ck ~ Beta (α, β) with α = 5 and β = 1, and an uniform distribution Ck ~ U (0, 1).

      The reason for choosing a beta distribution, which resembles an exponential distribution between zero and one, is that it can be considered a suitable model for the random behavior of percentages and proportions. As the specific exchanges that can potentially be improved are unknown to the authors, it was assumed that most exchanges are already close to maximum efficiency. The Beta distribution with the selected values allows modeling this assumption, i.e., the probability to sampling a value close to 1 is higher than the probability of sampling a value close to 0. Using a beta distribution was a middle ground between using the same efficiency gain for all input exchanges of an activity and completely randomly selecting efficiency from a uniform distribution between zero and one — which was also performed for the sake of comparison.

      The reason for performing the simulation on two versions of the ecoinvent database was that the consequential system model adopts system expansion as a method to solve multifunctionality, resulting in a number of activities being associated with a (mathematically speaking) negative impact. This produces r values >1 and can skew the distribution of results to the right. The comparison with the cutoff version allowed appreciating this additional factor of variability.

      Non-linearity in Upscaling Services, the Case of Freight Transportation

      The first case was theoretical, and only considered potentially achievable changes in the value of specific flows while not explaining how in detail these changes might manifest.

      To show more concretely how a specific technology might display a different behavior at different scales a second case was chosen that considers the transportation of goods. Transportation systems are a case where a non-linear behavior in upscaling can be observed. This can be exemplified with freight transportation where fluctuations of the load factor or fluctuations in the vehicle size and carrying capacity can affect the environmental burden per ton transported in a non-linear manner (Rizet et al., 2012; Pizzol, 2019).

      This case provides two examples on how technology upscaling and technology improvement affect the environmental performance of transportation via heavy duty trucks in a non-linear manner. The first example of a 40-ton diesel truck was considered to highlight the non-linear relation between the load factor of the system and its environmental performance per tkm of transportation. The second example of a battery electric truck was used to highlight the non-linear relation between the driving range autonomy and its environmental performance per tkm. These models allow accounting for the variability in the operating conditions of two different transportation technologies at different scales.

      The parametrized LCA model for heavy goods vehicles carculator_truck (Sacchi et al., submitted) was used for this case. The tool models trucks of various powertrain types (i.e., internal combustion engine, battery electric, fuel cell electric) and sizes (i.e., from 3.5 to 60 t of gross weight), across time (i.e., from 2000 to 2050), and for different duty cycles (i.e., urban and regional delivery, long haul). Further information is available from the online documentation of the library1 including a detailed description of data sources and modeling assumptions. The library uses the cutoff system model of the ecoinvent v.3.7 database to model the supply of material, services, and energy.

      The first example, highlighting the effect of technology upscaling, focused on assessing the non-linear relation between the load factor of a truck and its global warming impact per tkm. To do that, a 40-ton articulated curtainside truck with a diesel engine and a lifetime of 1 million km was modeled with a load factor ranging from 0 to 100% with a 1% increment step. For each increment in the load factor, the vehicle components and drivetrain were sized, after which the tank-to-wheel energy consumption of the vehicle was calculated given a specific driving cycle.

      In this case, the driving cycle chosen reflects long haul operations. The tank-to-wheel energy consumption entails the energy needed to overcome different types of resistance, such as the inertia of the vehicle itself, the rolling resistance, the aerodynamic drag, the road gradient, as well as resistance in the transmission shaft and the engine. The curb mass mc [t] of the vehicle was obtained as being the sum of the components' mass, including the energy storage mass me, but excluding passengers and cargo (Equation 6). The available payload mP is the difference between the gross mass mg of the vehicle and its curb mass (Equation 6.1). When the vehicle is “built,” its material and energy inventory is solved. Such inventory contains all the relevant life cycle phases of the vehicle, including its manufacture, maintenance, use and end-of-life. The life cycle Global Warming impact per tkm ht [kg CO2-eq/tkm] is obtained by dividing the total life cycle carbon emissions of the vehicle hl [kg CO2-eq] with the number of kilometers driven l [km] and the payload transported, which is itself the product of the available payload mp and the load factor r [without unit] (Equation 6.2).

      mc=me+ mp=mg-mc ht=hll-1(mpr)-1

      A second example, highlighting the effect of technology improvement, focused on assessing the non-linear relation between range autonomy (the distance a truck is required to drive without refueling) and the truck's global warming impact per tkm in 2020 and 2050. The analysis followed a similar approach as in the first simulation but considered a 40-ton articulated truck powered by an electric powertrain instead of a diesel engine. In this case, the energy storage mass me was sized based on the required range autonomy a [km], tank-to-wheel energy consumption of the vehicle Ew [kWh/km], the depth of battery discharge b [without unit] and the energy density of the battery cells d [kWh/kg] (Equation 6.3). As the range autonomy increases, the mass of the energy storage increases as well, reducing the maximum payload available by an equivalent amount. This can however be compensated by an increase in the battery cell energy density. It is worth noting that unlike diesel powertrains, a part of the energy used for braking during downhill or decelerating sections of the driving cycle is recovered here using the electric motor. Also, as a new curb mass is defined, the tank-to-wheel energy consumption of the vehicle needs to be re-calculated, which itself redefines a new energy storage mass and curb mass. Such process stops when the curb mass of the vehicle converges.

      me=aEwb-1d-1

      The energy storage mass was modeled using lithium-ion batteries based on a nickel manganese cobalt chemistry. It assumed a battery cell energy density of approximately 0.2 kWh per kg of cell today, increasing to 0.5 kWh per kg in 2050 (Ding et al., 2019) and a depth of discharge of 20%. Material and energy inventories were solved for a required range autonomy of 100 to 1,200 km, by increment step of 100 km. As with the diesel truck, the resulting carbon emissions were normalized to a tkm by dividing the overall burden successively by the number of kilometers driven along the use phase of the vehicle and the cargo mass transported — see Equation (6.2).

      Non-linearity in Upscaling Networks, the Case of Bitcoin Mining

      A key feature of the previous cases is that while the performance of the product system is different at different scales due to improvements, the fundamental structure of the system does not change. More concretely, the structure of the inventory model remains the same and only the values of its exchanges change. However, there are situations where the upscaling of a technology might result in a structural change of the product system itself.

      To account for this type of change, the third case considers the mining of Bitcoin as emerging technology and explores the non-linear effects of expanding its mining network. This builds on previous research (Köhler and Pizzol, 2019) that considers a model of the network of Bitcoin miners as a snapshot of the year 2018. In rather simplified mathematical terms, in this model the life cycle impact hm [kg CO2-eq/TH] associated with mining is given by the product of the horizontal vector sl [without unit] representing the share of mining performed in each location with the vertical vector hl [kg CO2-eq/kWh] representing the life cycle impact of electricity production in each location, and the energy consumption Em [kWh/TH] of the machines (special computers) used for mining.

      hm=slhlEm

      In turn, the energy consumption is a function of the hash rate p [TH/s], and the power P [W] of the machine.

      Em=Pp-1

      This product system does not scale linearly, which is mainly due to two factors: the new mining equipment employed is more energy efficient than the average equipment for 2018, and new mining capacity is not installed proportionally in current locations and is even installed in new locations.

      To address this upscaling issue, previous research (Köhler and Pizzol, 2019) adopted a consequential approach and attempted to provide an outlook of the Bitcoin mining network upscaling for early 2019. Since then, however, the hashrate of the Bitcoin mining network has increased and both mining efficiency and miner locations have continued to change. This study considers new upscaling scenarios for early 2020 that allow a comparison with the upscaling scenarios of early 2019 taken from the previous study. The upscaling scenarios consider changes in location of miners and energy efficiency of the mining equipment.

      A baseline business-as-usual (BAU) scenario was first obtained (Equation 7). This BAU scenario illustrated linear growth and was taken as reference against which all other scenarios were compared. The same prospective model for early 2019 as in the previous study (Köhler and Pizzol, 2019) was used in the calculation. The result is the Global Warming impact for increasing computing demand by one tera hash (TH).

      Scenario 1 represented instead a location-sensitive scenario where new mining facilities are only installed in more competitive conditions (e.g., lower energy prices). In this scenario, the impact of the upscaled system hm was calculated as:

      hm=slhlEm

      Scenario 2 represented then an equipment-sensitive scenario, where only more efficient mining equipment was used, intended as equipment that uses less energy in mining (E′ < E).

      hm=slhlEm

      Finally, Scenario 3 assumed both more efficient mining equipment and more competitive mining locations.

      hm=slhlEm

      For the BAU scenario and Scenario 2, which were not location-sensitive, the share of mining in each location sl was modeled using the distribution reported in Table 1. The data was taken from the Cambridge Bitcoin Electricity Consumption Index for September to December 2019 (Cambridge Centre for Alternative Finance, 2020). Only locations that contributed at least 2% (rounded) were included. The percentages were then scaled to 100%. For the location-sensitive Scenarios 1 and 3, the share of mining in each location sl reported in Table 1 was used. The data shows the difference from miner distribution between Sept-Dec 2019 and January–March 2020s (Cambridge Centre for Alternative Finance, 2020). Those locations where an increase in shares compared to September–December 2019 has occurred were included. Their shares were then scaled to 100% representing the marginal mining locations.

      Distribution of mining locations sl and sl in different scenarios.

      sl sl
      Location BAU and Scenario 2 % Scenario 1 and 3(Location-sensitive)
      Xinjiang 31.1 67.0%
      Sichuan 26.4
      Yunnan 8.9
      Nei Mongol 8.7 6.1%
      Russia 7.1
      US 6.2
      Malaysia 4.2 3.0%
      Gansu 3.1
      Iran 2.3 8.1%
      Kazakhstan 2.0 15.8%

      Details on the parameters used to model the material and energy requirements of the mining equipment in the different scenarios are provided in Table 2. For the BAU scenario and Scenario 1, data regarding the amount of equipment still in use was taken from “The Bitcoin Mining Network–December 2019 Update” (Gibbons and Bendiksen, 2019). The specifications for each machine were taken from the homepage ASIC Miner Value (ASIC-MinerValue, 2020) and a mining equipment mix for 2019 was modeled from these data sources. For the equipment-sensitive scenarios, the mining equipment that was still profitable and already produced by the beginning of 2020 was identified. A mining equipment mix for Scenario 2 and Scenario 3 was then determined based on the share of equipment in terms of profitability. Additional details on the methodology used to derive the mining equipment mixes are provided in Supplementary Tables 1, 2.

      Parameters used to model the energy consumption Em and Em of the mining equipment in the different scenarios.

      Em Em
      Parameter BAU and Scenario 1 Scenario 2 and 3(Equipment-sensitive)
      Hash rate (p) 21.6 TH/s 63.67 TH/s
      Power (P) 1660 Watt 2541 Watt
      Results Non-linearities in Efficiency Improvements at Large Scale

      Results reported in Figure 1 show clearly how a progressive increase in efficiency of electricity production in coal-based power plants results in a non-linear decrease in impact for several activities. The effect of such improvement, that one could theoretically ascribe to generic technological learning, is not equally pronounced for all activities under analysis, as this depends on the direct and indirect upstream inputs of electricity produced from coal to these activities. Supplementary Figure 1 shows the similar effect obtained by performing the analysis on a different database system model.

      Effect of improving from 0–400% the efficiency of electricity production in all coal-based power plants datasets of the ecoinvent database (consequential) on the Global Warming impact calculated for 10 randomly selected activities from same database. The effect is expressed as the ratio between the impact of the improved dataset and the impact of the unmodified dataset: values closer to 1 indicate a weaker effect. (A) shows the effect of improving only technosphere exchanges, while (B) the effect of improving both technosphere and biosphere exchanges.

      Results reported in Figures 2, 3 show how a random change of efficiencies for several transformation activities is reflected on the impact of several randomly selected database activities. This effect is highly dependent on the activity under analysis, and no clear relationship can be identified between the change in efficiency and its effect. While the effect can be explained for single activities it is not generalizable in a straightforward way at database level, as each activity will behave differently and might be affected substantially even if the change occurs several steps upstream in its life cycle. Boxplots for each of the 50 functional units considered are provided in Supplementary information, Supplementary Figures 25.

      Effect of efficiency improvements at database scale. The effect is obtained by randomly modifying the efficiency of all transformation activity datasets in the ecoinvent database and calculating the global warming impact for 50 randomly selected market activities. The effect is expressed as the ratio between the impact calculated using the improved datasets and the impact calculated using the unmodified dataset: values closer to 1 indicate a weaker effect. The efficiency improvement is performed on the technosphere matrix only and the values of the efficiency improvement are randomly selected using a uniform and beta distribution, respectively, and in both the cut-off and consequential system models of the ecoinvent database.

      Effect of efficiency improvements at database scale. The effect is obtained by randomly modifying the efficiency of all transformation activity datasets in the ecoinvent database and calculating the global warming impact for 50 randomly selected market activities. The effect is expressed as the ratio between the impact calculated using the improved datasets and the impact calculated using the unmodified dataset: values closer to 1 indicate a weaker effect. The efficiency improvement is performed on both the technosphere and biosphere matrices and the values of the efficiency improvement are randomly selected using a uniform and beta distribution, respectively, and in both the cut-off and consequential system models of the ecoinvent database.

      It is important to focus on the comparison between the random uniform sampling and the random beta sampling of efficiency improvements. The interesting aspect is that none of the distributions in fact resembles the distribution of the efficiency improvements. In other words, the distribution of the output does not reflect the distribution of the input, as it would be expected if the effect was linear. This confirms once again that the effect of technology upscaling on the impact of a system is non-linear.

      A further note should be added on the comparison between databases and how the high variability in the type and nature of activities considered affects the results. In Figure 2, in all distributions and database versions, a small number of invariant activities can be observed (the ratio between base and simulation result close to one). These are activities that are not affected substantially by a change in efficiency for transformation activities; for example, “market for land tenure, arable land, measured as carbon net primary productivity, perennial crop” and “market for electricity, high voltage.” This might be due to several reasons, for example because they link to transformation activities that do not include any technosphere exchange or that only include biosphere exchanges that do not contribute to the Global Warming impact category. The comparison between Figures 2, 3 allows appreciation of this additional variability in the database.

      Furthermore, when using the consequential system model of the ecoinvent database, ratios higher than one can be observed. This is explained by the fact that the substitution (system expansion) method is used to solve multifunctionality and therefore a number of activities return a negative impact. For these, an increase in efficiency as modeled in this simulation results in an increase in net impact.

      Non-linearities in The Impact of Freight Transportation

      As expected, total carbon emissions increase as the utilization rate of the available payload increases. As shown in the left panel of Figure 4, this corresponds to the minimum emission over the entire lifetime of the 40-ton diesel vehicle of 1 million kg of CO2-eq. with a load factor of 0%, to 1.6 million kg of CO2-eq. for a load factor of 100% (i.e., the transport of 25 t of cargo). On a per tkm basis, the first ton transported has a Global Warming impact of 0.6 kg CO2-eq., against 0.06 for the 25th ton, as shown in the center panel of the same figure. Hence, the assumed initial load factor is important in determining the environmental burden of a ton transported over 1 km.

      Upscaling scenarios for transportation with a 40-ton diesel truck. Left: Total Global Warming impact in kg CO2 -eq as a function of the capacity utilization. Center: Global Warming impact in kg CO2 -eq/tkm as a function of capacity utilization. Right: Change Global Warming impact in kg CO2 -eq/tkm as a function of cargo mass.

      Similarly, it appears clear that transporting 1 ton of cargo (which corresponds to a load factor of about 40%) yields a different result than transporting 10 times 1 ton of cargo.

      The right panel in Figure 4 shows the change in carbon emissions on a tkm basis associated with adding an extra ton of cargo, given an initial amount of cargo already loaded. For example, adding 1 ton of cargo with an initial load of 5 tons reduces the impact per tkm by about 0.05 kg CO2-eq. On the other end, past an initial load of 15 t, the benefits of adding an additional ton on the per tkm impacts become comparatively negligible.

      In the second case, where the range autonomy of a 40-ton battery electric truck is incremented by steps of 100 km, another trend is observed. As the range autonomy increases, the available payload decreases because of the mass increase of the energy storage components. This effect is different for the cases of 2020 and 2050, due to improvements in the energy density of battery cells. On the left panel of Figure 5, a required range autonomy of 100 km with a truck in 2020 allows to transport 25 t of cargo for 0.95 million kg of CO2-eq., while a range autonomy of 1,000 km only allows transporting 10 t of cargo for a total emission of 2.2 million kg of CO2-eq. The dark blue area, which represents kg of CO2-eq. emissions associated to electricity supply, and indirectly, energy consumption, does not vary much as the range autonomy increases. This is because the driving mass of the vehicle does not increase despite the energy storage becoming voluminous, as the cargo mass diminishes. It also explains why the emissions associated to the road manufacture and maintenance remain constant, as they are scaled on the vehicle mass. This indicates a certain limitation of battery electric trucks for long distance trips.

      Upscaling scenarios for a 40-ton battery electric truck Left: Total Global Warming impact in kg CO2 -eq as a function of vehicle range autonomy in 2020. Center: Global Warming impact in kg CO2 -eq/tkm as a function of vehicle range autonomy in 2020 and 2050. Right: marginal Global Warming impact in kg CO2 -eq/tkm as a function of vehicle range autonomy in 2020 and 2050.

      This pattern is equally illustrated in the central panel of Figure 5, where the performance per tkm of both trucks (2020 and 2050) is illustrated. Transporting 1 ton of cargo with a truck designed with a range autonomy of 1,200 km yields a different result per tkm than transporting the same ton of cargo with two trucks consecutively designed to have an autonomy of 600 km each. However, improving the energy density of battery cells by a factor of 2.5 between 2020 and 2050 yields to improvements far superior to a factor of 2.5 as the range autonomy increases. This is explained by the fact that the truck in 2050 would only reduce its payload capacity by 4 t to increase the autonomy range from 100 to 1,200 km, against 19 t for the truck in 2020.

      The right panel in Figure 5 shows the change in carbon emissions per tkm from adding 100 km of range autonomy, function of an initial range autonomy, for both trucks. For example, for a 40-ton battery electric truck in 2020 with an initial range autonomy of 200 km, adding another 100 km of autonomy will only add 0.05 kg CO2-eq., to a tkm. This is to be contrasted with adding 100 km of range autonomy to the same truck with an initial autonomy of 1,000 km, where such change would add 0.2 kg CO2-eq. to the impacts per tkm. In parallel, a loss in utility is also observed as adding 100 km of range autonomy would lead to losing 2 t of payload capacity for the truck in 2020 (from 10 to 8 t), against <0.1 t for the truck in 2050. Thanks to expected improvements by 2050, increasing the range autonomy of the vehicle does not lead to marginally increasing emissions, as illustrated by the almost flat curve. This is because the battery has become by then a minor component in terms of mass, and a slight increase of its mass will not affect the driving mass or the electricity consumption of the truck in a significant manner.

      Non-linearities in The Upscaling of The Bitcoin Mining Network

      The results from the BAU scenario represent a linear growth of the Bitcoin mining network. However, in reality an expansion of such a network will result in changes in the geographical distribution of miners and in improvements in mining efficiency. In particular, Figure 6 shows the impact of the network under the various scenarios considered in this study. It is clear from the figure how the Global Warming impact of Bitcoin mining heavily depends on where the miners are located — thus on which electricity mix they rely on.

      Global Warming impact in kg CO2 -eq/TH (Terahash) for different Bitcoin mining scenarios. BAU: Business as usual scenario (linear growth): Scenario 1: location-sensitive scenario. Scenario 2: equipment-sensitive scenario. Scenario 3: location- and equipment-sensitive scenario.

      An enlargement in the Bitcoin mining network leading to miners choosing new locations results in a potential increase in Global Warming impact by 31%. The upscaling also substantially depends on the mining equipment efficiency and shows a potential decrease in impact by 48% using current projections for more efficient mining equipment.

      The combined upscaling effect of both changing the geographical distribution and of using more efficient mining machines results in a net decrease in impact by 32%. Based on the historical record of increasing efficiency and varying geography of the Bitcoin mining network, it is very reasonable to assume that over time there will be an improvement in mining efficiency (TH/sec increase) and that new facilities will not be installed at every existing location. Consequently, a linear growth model that does not take into account these factors would likely return inaccurate results.

      Discussion Limitations of The Methods Used to Identify Non-linear Effects

      It is important to address the validity of results both in light of the choice of methods and cases, and also how well they allow answering the research question of whether a non-linear effect can be observed for scalable and emerging technologies.

      The first case is defined as theoretical because substantial simplifications were made in the simulation due to lack of information on the values of the efficiency improvement c. For example, in reality not all coal-based power plants will be improved in the same way (fixed c). Similarly, some improvements like fuel use and emission generation would be correlated and therefore using a different coefficient for each exchange of a transformation activity (randomly sampled instances of Ck) was also a simplification. These simplifications were however necessary to performing the simulation at the scale of the entire database, which was the primary purpose of the analysis.

      When looking at the improvement of a specific activity such as coal-based electricity production the non-linear relation between changes in efficiency and changes in impacts is clear for single activities. The magnitude of this non-linear effect is activity-specific and therefore hardly generalizable at database level. Technological maturity is relative to time, thus the database is bound to have dated information, including when it comes to efficiency. It is, however, largely unknown to what extent the database fails to represent technologies at their highest technological maturity, and which specific flows can be improved in terms of efficiency.

      When conducting the analysis at database scale, it is unfeasible to hand-pick activities or flows to selectively improve, and the stochastic approach remains the most pragmatic solution. An alternative approach could have been to selectively extract specific types of activities, for example all activities related to energy production or raw material extraction, or to specific sectors known to be highly impacting (e.g., energy, transportation, agriculture), and evaluate the effect of upscaling-related efficiency improvements in these groups. This could potentially result in more easily explainable relationships between the change in efficiency and the change in impact, but the validity of this conclusion would remain constrained by subjective selection of the groups of activities and would still remain difficult to generalize.

      The choice of using a specific beta distribution for efficiency improvements is also subjective and was here presented in comparison with the choice of a uniform distribution. While assuming that all flows could be improved in any amount was considered an excessively unrealistic assumption, assuming that all flows could be potentially improved marginally seemed a more conservative and realistic one. It should be stressed that while to the best of the Authors' knowledge no information is available in literature on the observed distribution of efficiency improvements, previous studies in specific domains show that, in fact, efficiency improvements are usually of relatively contained size, e.g., 14–16% for CO2-eq/kWh from wind power (Caduff et al., 2012).

      Therefore, selecting random activities within the database and changing their efficiency is beneficial to provide an indication of the potential upscaling-related uncertainty. Even if a single relationship cannot be clearly generalized for all activities, the simulation provides evidence suggesting that globally, at database scale, technological upscaling on the impact of a system is in fact non-linear.

      Regarding the transportation case, several assumptions were made. In the first example, a truck with a load factor ranging from 0 to 100% was considered. In reality, the load factor for trucks in Europe is rather constant and comprised between 20 and 40% for the size considered in this study (Eurostat, 2020). Trucks with a load factor below 20% or above 50% are not highly representative of the transport market. If the average load factor is in fact constant and always within the same range of values, one may not encounter the non-linear variations that have been shown here. In the second example, the most critical assumption is probably relating to the future development of battery technology and whether the energy density of battery cells will reach the value used for the year 2050. However, even if this assumption is inaccurate, it would not invalidate the non-linear relations observed.

      The model of the Bitcoin mining network includes only parameters that directly influence the environmental impacts of Bitcoin mining. Such a model is not able to reflect the emerging technology's vulnerability to outside shocks such as changes of miner revenues like Bitcoin halving (Meynkhard, 2019), or legislative changes like restricting miner locations (Alvarez, 2018) that likely would also lead to non-linear changes in environmental impacts. Changes to miner revenues directly impact which locations are profitable. Both an increase and a decrease in miner revenues caused by large Bitcoin market price fluctuations or the Bitcoin halving can influence where new mining locations are opened. Legislative changes can also be important for modeling upscaling of Bitcoin mining. China's crackdown on China-based miners in 2018 is one example of legislative changes that influenced the mining locations of Bitcoin miners (Alvarez, 2018). These factors are not included in this model but can be relevant when modeling the impacts of the Bitcoin mining network and lead to further non-linear effects.

      It is important to discuss the general validity of these findings beyond the cases presented here. While it is beyond the ambition of this work to provide a comprehensive overview of all possible cases of non-linearity in the LCA of scalable and emerging technologies, these cases are exemplary as they allow appreciation of several different facets of the non-linearity problem and thus address it in its complexity. In particular, the selection covered the non-linearity due to both foreground and background modeling assumption, both theoretical and concrete examples of non-linearity (considering several activities at once with low detail vs. one activity with high detail), and the non-linearity introduced by changes in the values of a model vs. the change in the structure of a model.

      On the Relationship With Uncertainty and Sensitivity Analysis

      Essentially, the present work can be interpreted as a study of uncertainty and sensitivity in the LCA models referring to a specific domain: technology upscaling and emerging technologies. It is thus relevant to draw a parallel between existing research on uncertainty in LCA and the current study.

      The LCA literature on uncertainty is already mature, as testified by recent remarkable contributions where advanced probabilistic techniques are used to study the uncertainty of LCA models for current technologies (AzariJafari et al., 2018) or emerging ones (Mendoza Beltran et al., 2018a; Blanco et al., 2020), as well as more theoretical contributions (Bisinella et al., 2016; Cucurachi et al., 2016; Mendoza Beltran et al., 2018b). There are different ways of defining uncertainty, and for the LCA domain Igos et al. (2019) suggest classifying uncertainty either according to its intrinsic nature - epistemic or aleatory — or according to its location in a LCA model. In the latter case, one can distinguish between uncertainty regarding the structure of the model, the quantities used in the model, or the context in which the model is used. While some techniques like stochastic simulation allow quantification of the uncertainty associated with the output of a LCA model, techniques like global sensitivity analysis allow linking it to the uncertainty of the model inputs.

      The uncertainties related to location are considered more closely here as they fit well to the analysis of the cases presented in this study and are also easily linked with other literature addressing uncertainty in models more generally (Saltelli, 2008). Briefly, while quantity-uncertainties reflect the unknowns associated with the specific value associated to a model parameter or input, model-uncertainties refer to the unknowns associated with how the model operates on these quantities, intended as how the different model parameter and inputs are combined together in a structure that provides a simplified representation of reality. Context-uncertainties refer to how the context of the decision affects the LCA modeling, and while they can be significant, they are not particularly relevant in the analysis of the specific cases presented in this study.

      The simulation performed at database level by increasing efficiency for specific activities could be defined as a semi-Monte Carlo approach (Heijungs and Lenzen, 2014). This analysis targeted quantity-uncertainties specifically and disregarded model-uncertainties. The approach indeed has limitations as it is reasonable to assume that when upscaling a specific activity, some inputs would be replaced by others, for example when changing the material composition of specific components of the technology or shifting from one source of energy to another. This has been observed in previous studies, for example by Blanco et al. (2020) and van der Hulst et al. (2020). The simulation performed here was not able to take this sort of model-uncertainty into account and the conclusions provided here should be interpreted considering such limitation. Changes in the number and type of inputs of an activity might lead to possibly even more non-linear effects.

      The case of the transportation model focuses again on quantity-uncertainty, investigating the effect of changes in the value of two specific model parameters: load factor and range autonomy. This is not a stochastic approach but could be intended as a simple local (one at the time) sensitivity analysis (Bisinella et al., 2016) showing how variations in their value leads to non-linear effects on the model output. In this case the interesting part is that a parametrized model is used to build a foreground inventory and therefore it is possible to study the non-linear effects of changing the quantity of one parameter at the time. Many LCA studies in fact operate similarly, as especially nowadays the domain of LCA has been enriched by the use of models taken from other disciplines (De Rosa et al., 2017; Pizzol, 2019). Thus, the case of transportation here presented is representative of those situations where a complex phenomenon - characterized by a dynamic and possibly non-linear element that nevertheless can be described in good detail with a parametrized model — is then simplified to generate a static life cycle inventory that is thus a snapshot of such complexity.

      The LCA model of Bitcoin mining is dependent on data for mining locations and mining equipment use. This data is scarce and, in some cases, diverging. It is therefore important to highlight that this analysis and its results have an intrinsic uncertainty. These have been addressed in a previous study (Köhler and Pizzol, 2019) by conducting both a stochastic simulation and a sensitivity analysis for all parameters and providing an insight of the range of results and of which parameters most strongly influence the results. However, for the purpose of this study — addressing non-linearity of upscaling — this quantity-uncertainty is subordinate as it only influences the magnitude of results, but not the conclusion that upscaling the Bitcoin mining network does not lead to linear increases of impact.

      Additionally, the scenarios are a projection of the future, and should therefore be considered an exploration of potential future impacts. In particular the location-sensitive scenarios provide insights on how changing the model structure influence the results and thus address directly the model-uncertainty. Here, not only the quantities (percentage of total mining performed in each location) but also the model structure (number and types of locations) are different from the BAU scenario. The equipment-sensitive scenarios focus on one parameter only, the efficiency of mining equipment, and thus address quantity-uncertainty directly. Due to its simplicity, considering the combined effect in changes of both location and efficiency via scenarios cannot be formally considered as a global sensitivity analysis (Saltelli et al., 2008) but is indeed a step toward this direction.

      How Much Is Non-linearity a Problem?

      What the present work suggests is that the uncertainties introduced by non-linear effects can be substantial and should be explicitly considered in the life cycle assessment of technologies that are emerging and not yet operating at scale. These findings confirm previous research on the uncertainties in the LCA of emerging technologies (Lacirignola et al., 2017; van der Hulst et al., 2020).

      The non-linear effect of improving the efficiency of a technology can have unexpected consequences at database level, when considering all the upstream and downstream processes that are interconnected with the activities employing such technology. The non-linearity becomes critical when investigating the impact of new technologies that are energy and material intensive in their early stages, but also when forecasting the impact of existing mature technologies under different future technology scenario mixes, for example for energy production. The effect of upscaling specific activities, under the assumption that this upscaling returns higher efficiency — which is justified by examples in literature — might have an unpredictable and non-linear effect on the impact of a product system and of related product systems.

      Using datasets that are built using data from pilot scale activities and are not representative of the potential of such activities at large industrial scale might thus skew results in unexpected ways. Broad and updated data coverage of the database used for the foreground modeling is thus of critical importance in LCA studies of emerging technologies. While database providers should naturally strive for data collection on unit processes that are as close as possible to a high maturity stage, the practitioner should model background systems that are relevant to the time when the system is modeled, to avoid temporal mismatch — as Arvidsson et al. (2017) point out. This study confirms this finding showing the non-linear effect that using an efficiency-improved version of the database might introduce and highlights the importance of considering background system changes in the assessment of emerging technologies. The feasibility and relevance of this approach has already been demonstrated in practice (Hertwich et al., 2015; Mendoza Beltran et al., 2018a).

      In the case of the transport model, non-linear relationships between inputs and outputs of the truck model are less of an issue, as those linearities are in fact considered in both real life and current models. Hence, improving the engine efficiency of a vehicle by a factor of two will certainly not affect the fuel consumption to a similar extent in real life, and nor will it in the LCA model used, as fuel consumption is the result of complex interactions between components placed between the tank and the wheels of a vehicle (e.g., the engine, but also the gearbox, transmission shaft, wheels, etc.). In this case, the issue of non-linearity and the uncertainty associated to it lies outside the truck model and becomes more relevant when addressing future technological scenarios such as how the fuel cell suppliers and the energy efficiency of fuel cell stacks will develop as demand increases, and whether the lithium-ion based batteries will be replaced by a disruptive technology.

      This study shows how using a linear assumption in the modeling of the Bitcoin mining network is a strong and excessive simplification of reality. In the location-sensitive scenario (Scenario 1), the impact per additional TH computed increases by over 30% compared to the BAU scenario, while in the equipment-sensitive scenario (Scenario 2), the impact decreases by almost half. In contrast, Köhler and Pizzol (2019) model upscaling scenarios for the Bitcoin mining network for early 2019 and show a decrease in the impacts for both their technology and equipment-sensitive scenarios. The location and equipment-sensitive scenario (Scenario 3) has 32% lower impacts than the linear BAU scenario. In Köhler and Pizzol (2019), the results from the location and equipment-sensitive scenario are 76% lower. It seems therefore to be especially important in the Bitcoin mining case to retrieve accurate data on where new mining facilities are installed and what kind of electricity they consume as the impacts can both decrease or increase per additional TH computed, depending on the assumptions on the geographical distribution of miners. This highlights the importance of building relevant scenarios when upscaling an LCA model for a product system where the structure is expected to change at different scales and levels of maturity.

      Conclusion

      By challenging the idea that product systems scale linearly, this work shows that non-linear effects should be explicitly considered in the life cycle assessment of technologies that are scalable or emerging. In these cases, a production activity will perform differently and with different efficiencies at different scales and levels of maturity, and its impact per unit of production output is therefore not fixed. Thus, the product system model should reflect the scale and technological maturity of the activities under analysis.

      One innovation that this paper introduced is highlighting that — especially for the case for scalable and emerging technologies – the production output (y) of an activity is a separately varying entity than the functional unit of a product system f. In mainstream LCA,

      h=h(f)

      is a linear function (Heijungs, 2020). What is proposed here is instead that:

      h=h(f,y)=h1(y)·f

      where the dependence on f is linear but the dependence on y is not, as h1(y) is a non-linear function.

      While the LCA is only linear in terms of functional unit dependence, the coefficients that define each activity (values used in A and B) are based on the technologies as the practitioner defines them. In this sense, the use of parametrized LCA is one useful way of modeling systems that exhibit non-linear properties. In this respect, Heijungs (2020) already observes that “the whole idea of parametrized LCA obviously deserves a more rigorous treatment” and the results of this study strengthen this hypothesis and make steps forward in this direction. However, cases such as the Bitcoin network one here presented show that not all non-linearity problems can be addressed by only changing parameters in one single model structure, as it is expectable that system upscaling will influence the type of inputs needed to generate the production output, and this will require changing the structure of the LCA model (number and type of activities and exchanges in A and B).

      The study has also shown that addressing non-linearity is essentially a matter of addressing uncertainty in LCA models, and therefore classic uncertainty and sensitivity analysis techniques can be used effectively to investigate and highlight non-linearity. These include, for example, stochastic simulation, developing and assessing scenarios, and studying the effect of a change in output due to a change in specific inputs.

      There is currently great attention and expectations to the role of new innovative and emerging technologies for the sustainability transition. The study of the environmental benefits of these technologies is challenged by the availability of pilot-scale data only, and inevitably requires the use of assumptions and the generation of scenarios, and therefore is characterized by intrinsic uncertainties. This study has shown that non-linearity is definitely an uncertainty issue in the study of new technological developments and their impact. Thus, future studies operating in this line of research are strongly encouraged to manifest an explicit awareness of where technological upscaling could occur and to address potential non-linearity issues as part of the uncertainties, and the examples provided in the present work can ideally provide a good inspiration for both identifying and addressing non-linearity.

      Data Availability Statement

      The datasets presented in this study can be found at the online repository: https://github.com/massimopizzol/non-linearity-LCA. The repository is archived on Zenodo (Pizzol et al., 2020).

      Author Contributions

      MP contributed with the initial original idea and coordinated, supervised and quality-checked the entire research effort, and contributed to perform the ecoinvent simulation. RS contributed to the ecoinvent simulation and performed the entire transport simulation. SK performed the entire bitcoin simulation. AA contributed to the ecoinvent simulation and wrote the initial paper draft. All authors contributed to the writing and revising of the manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The Authors thank the two reviewers for their constructive comments that have contributed to substantially improving the quality of the manuscript.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/frsus.2020.611593/full#supplementary-material

      References Alvarez M. (2018). A comparative analysis of cryptocurrency regulation in the United States, Nigeria, and China: the potential influence of illicit activities on regulatory evolution. ILSA J. Int. Comp. Law 25, 3356. Available online at: https://heinonline.org/HOL/LandingPage?handle=hein.journals/ilsaic25&div=7&id=&page= Arvidsson R. Tillman A.-M. Sandén B. A. Janssen M. Nordelöf A. Kushnir D. . (2017). Environmental assessment of emerging technologies: recommendations for prospective LCA. J. Ind. Ecol. 22, 12861294. 10.1111/jiec.12690 ASIC-MinerValue (2020). ASIC Miner Value. Available online at: https://www.asicminervalue.com/ (accessed September 15, 2020). AzariJafari H. Yahia A. Amor B. (2018). Assessing the individual and combined effects of uncertainty and variability sources in comparative LCA of pavements. Int. J. Life Cycle Assess. 23, 18881902. 10.1007/s11367-017-1400-1 Bergerson J. A. Brandt A. Cresko J. Carbajales-Dale M. MacLean H. L. Matthews H. S. . (2019). Life cycle assessment of emerging technologies: evaluation techniques at different stages of market and technical maturity. J. Indust. Ecol. 24, 1125. 10.1111/jiec.12954 Bisinella V. Conradsen K. Christensen T. H. Astrup T. F. (2016). A global approach for sparse representation of uncertainty in life cycle assessments of waste management systems. Int. J. Life Cycle Assess. 21, 378394. 10.1007/s11367-015-1014-4 Blanco C. F. Cucurachi S. Guinée J. B. Vijver M. G. Peijnenburg W. J. G. M. Trattnig R. . (2020). Assessing the sustainability of emerging technologies: a probabilistic LCA method applied to advanced photovoltaics. J. Clean. Prod. 259:120968. 10.1016/j.jclepro.2020.120968 Caduff M. Huijbregts M. A. J. Althaus H. J. Hendriks A. J. (2011). Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments. Environ. Sci. Technol. 45, 751754. 10.1021/es103095k21133374 Caduff M. Huijbregts M. A. J. Althaus H. J. Koehler A. Hellweg S. (2012). Wind power electricity: the bigger the turbine, the greener the electricity? Environ. Sci. Technol. 46, 47254733. 10.1021/es204108n22475003 Caduff M. Huijbregts M. A. J. Koehler A. Althaus H. J. Hellweg S. (2014). Scaling relationships in life cycle assessment: the case of heat production from biomass and heat pumps. J. Ind. Ecol. 18, 393406. 10.1111/jiec.12122 Cambridge Centre for Alternative Finance (2020). Bitcoin Mining Map. Cambridge Centre for Alternative Finance. Available online at: https://cbeci.org/mining_map Cucurachi S. Borgonovo E. Heijungs R. (2016). A protocol for the global sensitivity analysis of impact assessment models in life cycle assessment. Risk Anal. 36, 357377. 10.1111/risa.1244326595377 De Rosa M. Schmidt J. Brandão M. Pizzol M. (2017). A flexible parametric model for a balanced account of forest carbon fluxes in LCA. Int. J. Life Cycle Assess. 22, 172184. 10.1007/s11367-016-1148-z Ding Y. Cano Z. P. Yu A. Lu J. Chen Z. (2019). Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 128. 10.1007/s41918-018-0022-z Eurostat (2020). Annual Road Freight Transport, by Load Capacity of Vehicle. Eurostat. Availabe online at: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=road_go_ta_lcandlang=en (accessed September 28, 2020). Gibbons S. Bendiksen C. (2019). The Bitcoin Mining Network - December 2019 Update. New York, NY: CoinShares Research. Available online at: https://coinshares.com/assets/resources/Research/bitcoin-mining-network-december-2019.pdf Grubb M. (2004). Technology innovation and climate change policy: an overview of issues and options. Keio Econ. Stud. 41, 103132. Available online at: https://discovery.ucl.ac.uk/id/eprint/1471206/ Heijungs R. (2020). Is mainstream LCA linear? Int. J. Life Cycle Assess. 25, 18721882. 10.1007/s11367-020-01810-z Heijungs R. Lenzen M. (2014). Error propagation methods for LCA - a comparison. Int. J. Life Cycle Assess. 19, 14451461. 10.1007/s11367-014-0751-0 Heijungs R. Suh S. (2002). “The basic model for inventory analysis,” in The Computational Structure of Life Cycle Assessment, ed Tukker A (London: Kluver Academic Publisher), 1128. 26069397 Hertwich E. G. Gibon T. Bouman E. A. Arvesen A. Suh S. Heath G. A. . (2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. U.S.A. 112, 62776282. 10.1073/pnas.131275311125288741 Igos E. Benetto E. Meyer R. Baustert P. Othoniel B. (2019). How to treat uncertainties in life cycle assessment studies? Int. J. Life Cycle Assess. 24, 794807. 10.1007/s11367-018-1477-1 IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Bern: Intergovernmental Panel on Climate Change (IPCC). 23506851 Köhler S. Pizzol M. (2019). Life cycle assessment of bitcoin mining. Environ. Sci. Technol. 53, 1359813606. 10.1021/acs.est.9b05687 Lacirignola M. Blanc P. Girard R. Pérez-López P. Blanc I. (2017). LCA of emerging technologies: addressing high uncertainty on inputs' variability when performing global sensitivity analysis. Sci. Total Environ. 578, 268280. 10.1016/j.scitotenv.2016.10.066 Mendoza Beltran A. Cox B. Mutel C. van Vuuren D. P. Font Vivanco D. Deetman S. . (2018a). When the background matters: using scenarios from integrated assessment models in prospective life cycle assessment. J. Ind. Ecol. 24, 436439. 10.1111/jiec.12825 Mendoza Beltran A. Prado V. Font Vivanco D. Henriksson P. J. G. Guinée J. B. Heijungs R. (2018b). Quantified uncertainties in comparative life cycle assessment: what can be concluded? Environ. Sci. Technol. 52, 21522161. 10.1021/acs.est.7b06365 Meynkhard A. (2019). Fair market value of bitcoin: Halving effect. Invest. Manag. Financ. Innov. 16, 7285. 10.21511/imfi.16(4).2019.07 Miotti M. Hofer J. Bauer C. (2017). Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. 22, 94110. 10.1007/s11367-015-0986-4 Mutel C. (2017). Brightway: an open source framework for life cycle assessment. J. Open Source Softw. 2, 12. 10.21105/joss.00236 Nemet G. F. Zipperer V. Kraus M. (2018). The valley of death, the technology pork barrel, and public support for large demonstration projects. Energy Policy 119, 154167. 10.1016/j.enpol.2018.04.008 Padey P. Girard R. Le Boulch D. Blanc I. (2013). From LCAs to simplified models: a generic methodology applied to wind power electricity. Environ. Sci. Technol. 47, 12311238. 10.1021/es303435e23259663 Piccinno F. Hischier R. Seeger S. Som C. (2016). From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 10851097. 10.1016/j.jclepro.2016.06.164 Pizzol M. (2019). Deterministic and stochastic carbon footprint of intermodal ferry and truck freight transport across Scandinavian routes. J. Clean. Prod. 224, 626636. 10.1016/j.jclepro.2019.03.270 Pizzol M. romainsacchi Erjavec A. susannekoehler. (2020). massimopizzol/Non-linearity-LCA: First Release (Version v1.0.0). Zenodo. 10.5281/zenodo.4278067 Rizet C. Cruz C. Mbacké M. (2012). Reducing freight transport CO2 emissions by increasing the load factor. Procedia Soc. Behav. Sci. 48, 184195. 10.1016/j.sbspro.2012.06.999 Sacchi R. Besseau R. Pérez-López P. Blanc I. (2019). Exploring technologically, temporally and geographically-sensitive life cycle inventories for wind turbines: a parameterized model for Denmark. Renew. Energy 132, 12381250. 10.1016/j.renene.2018.09.020 Saltelli A. (2008). “Global sensitivity analysis: an introduction,” in Sensitivity Analysis of Model Output, eds Hanson K. M. Hemez F. M. (Washington, DC), 2743. Saltelli A. Ratto M. Andres T. Campolongo F. Cariboni J. Gatelli D. . (2008). global sensitivity analysis. The Primer, Global Sensitivity Analysis. The Primer. 10.1002/9780470725184 Tsoy N. Steubing B. van der Giesen C. Guinée J. (2020). Upscaling methods used in ex ante life cycle assessment of emerging technologies: a review. Int. J. Life Cycle Assess. 25, 16801692. 10.1007/s11367-020-01796-8 Valsasina L. Pizzol M. Smetana S. Georget E. Mathys A. Heinz V. (2017). Life cycle assessment of emerging technologies: the case of milk ultra-high pressure homogenisation. J. Clean. Prod. 142, 22092217. 10.1016/j.jclepro.2016.11.059 van der Hulst M. K. Huijbregts M. A. J. van Loon N. Theelen M. Kootstra L. Bergesen J. D. . (2020). A systematic approach to assess the environmental impact of emerging technologies: a case study for the GHG footprint of CIGS solar photovoltaic laminate. J. Ind. Ecol. 24, 12341249. 10.1111/jiec.13027 Wernet G. Bauer C. Steubing B. Reinhard J. Moreno-Ruiz E. Weidema B. (2016). The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 12181230. 10.1007/s11367-016-1087-8

      1https://carculator-truck.readthedocs.io/en/latest/index.html

      Funding.SK and MP contribution has been funded by the Grant No. 7015-00006A of the Independent Research Fund Denmark–Social Sciences. The research contribution of RS was primarily funded by the Swiss Competence Center for Energy Research (SCCER) Efficient Technologies and Systems for Mobility, financed by the Swiss Innovation Agency (Innosuisse).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016ejichy.com.cn
      www.iswyfj.com.cn
      www.gfltech.org.cn
      www.ehnfhz.com.cn
      iiittt.com.cn
      www.jdzhdwy.org.cn
      www.lzzzlf.com.cn
      www.rfunbw.com.cn
      wehs.net.cn
      wjflhs.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p