Front. Surg. Frontiers in Surgery Front. Surg. 2296-875X Frontiers Media S.A. 10.3389/fsurg.2021.825183 Surgery Review Anatomical Fundamentals and Current Surgical Knowledge of Prostate Anatomy Related to Functional and Oncological Outcomes for Robotic-Assisted Radical Prostatectomy Hoeh Benedikt 1 2 * Wenzel Mike 1 Hohenhorst Lukas 2 3 Köllermann Jens 4 Graefen Markus 3 Haese Alexander 3 Tilki Derya 3 5 6 Walz Jochen 7 Kosiba Marina 1 Becker Andreas 1 Banek Severine 1 Kluth Luis A. 1 Mandel Philipp 1 Karakiewicz Pierre I. 2 Chun Felix K. H. 1 Preisser Felix 1 1Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany 2Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC, Canada 3Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany 4Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany 5Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany 6Department of Urology, Koc University Hospital, Istanbul, Turkey 7Department of Urology, Institut Paoli-Calmettes Cancer Centre, Marseille, France

Edited by: Christian P. Meyer, Ruhr University Bochum, Germany

Reviewed by: Richard Naspro, San Matteo Hospital Foundation (IRCCS), Italy; Nikolaos Liakos, St. Antonius Hospital Gronau, Germany

*Correspondence: Benedikt Hoeh benedikt.hoeh@kgu.de

This article was submitted to Genitourinary Surgery, a section of the journal Frontiers in Surgery

22 02 2022 2021 8 825183 30 11 2021 27 12 2021 Copyright © 2022 Hoeh, Wenzel, Hohenhorst, Köllermann, Graefen, Haese, Tilki, Walz, Kosiba, Becker, Banek, Kluth, Mandel, Karakiewicz, Chun and Preisser. 2022 Hoeh, Wenzel, Hohenhorst, Köllermann, Graefen, Haese, Tilki, Walz, Kosiba, Becker, Banek, Kluth, Mandel, Karakiewicz, Chun and Preisser

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Context

Meticulous knowledge about the anatomy of the prostate and surrounding tissue represents a crucial and mandatory requirement during radical prostatectomy for reliable oncological and excellent replicable, functional outcomes. Since its introduction two decades ago, robotic-assisted laparoscopic radical prostatectomy (RALP) has evolved to become the predominant surgical approach in many industrialized countries.

Objective

To provide and highlight currently available literature regarding prostate anatomy and to help in improving oncological and functional outcomes in RALP.

Methods/Evidence Acquiring

PubMed database was searched using the following keywords: “robotic-assisted radical prostatectomy,” “anatomy,” “neurovascular bundle,” “nerve,” “periprostatic fascia,” “pelvis,” “sphincter,” “urethra,” “urinary incontinence,” and “erectile dysfunction.” Relevant articles and book chapters were critically reviewed and if eligible, they were included in this review.

Results

New evidence in regards to prostatic anatomy and surgical approaches in RALP has been reported in recent years. Besides detailed anatomical studies investigating the meticulous structure of the fascial structures surrounding the prostate and neurovascular bundle preservation, debate about the optimal RALP approach is still ongoing, inspired by recent publications presenting promising functional outcomes following modifications in surgical approaches.

Conclusions

This review provides a detailed overview of the current knowledge of prostate anatomy, its surrounding tissue, and its influence on key surgical step development for RALP.

prostate cancer anatomy robotic-assisted RALP functional outcome

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Several decades ago, landmark anatomical studies have set the foundations for the current knowledge of the periprostatic anatomy. Since then, several minor and major modifications have been proposed and established, aiming to improve the oncological and functional outcomes of patients who underwent radical prostatectomy. With the advent of robotic-assisted surgery, a more detailed understanding of the prostate anatomy and its surrounding tissue has been achieved owing to the technical magnification and precise robotic instruments (1).

      This study is aimed to provide a detailed overview of the current prostate anatomy and its surrounding tissue with its impact on key surgical steps for robotic-assisted laparoscopic radical prostatectomy (RALP).

      Materials and Methods

      A search of the PubMed database was conducted to identify literature that addresses the anatomy of the prostate and its adjacent tissues in the context of robotic-assisted radical prostatectomy. No limit was set regarding publication date, however, search emphasis was put on the time period between January 2016 and April 2021, following reviews about general surgical anatomy in prostate cancer patients in 2010 and 2016 published by Walz et al. (1, 2). Potential eligible publications were reviewed, analyzed, and included in the current manuscript after consensus was obtained by all authors.

      Results Surgical Approaches for Robotic-Assisted Radical Prostatectomy

      To date, several techniques for performing RALP have been proposed in an effort to achieve maximal oncological and functional outcomes. Among those, extraperitoneal and transperitoneal RALPs remain the two most common surgical approaches (3). All approaches aim at minimal damage to the pelvic structures and restoring anatomical and functional relationships in the pelvic floor as closely as possible following radical prostatectomy.

      Different approaches to completely preserve anterior retropubic-located structures involved in continence and potency (located in the Retzius space) have been introduced. A transperitoneal Retzius-sparing (RS) RALP approach with posterior access via the vesico-rectal pouch was initially proposed by Galfano et al. (4). Small-scaled single-center studies comparing RS and non-RS RALP demonstrated favorable early continence recovery for patients with RS RALP (5). However, ongoing major concerns persist regarding the potential higher rates of positive surgical margins compared to the standard approach, especially in the case of anteriorly located tumors (3, 6). Despite two randomized trials, comparing RS and non-RS RALP, the question of whether RS RALP is associated with a higher rate of positive surgical margins can still not be answered sufficiently (3). Recently, Wagaskar et al. introduced the “hood technique” representing an anterior RALP approach combined with complete preservation of the Retzius-space (7). With this approach, after bladder neck incision, a plane behind the posterior wall of the bladder neck is developed, leaving the Retzius-space untouched. Even though demonstrating outstanding continence rates (83% at 4 weeks after RALP), careful patient selection in regards to tumor location should be performed (7). Of note, further RALP approaches, such as transperitoneal-lateral or transvesical approaches, have been introduced recently and have been precisely analyzed by Martini et al. (3). Additionally, robotic-assisted perineal prostatectomy has been of interest in the recent years demonstrating acceptable functional and oncological outcomes. However, data are derived mainly from single institution small-sized cohorts and should be interpreted with caution (8).

      Anatomy of the Prostate and Adjacent Tissue

      The prostate gland (prostate) is located in the male pelvis and its shape can be considered to be an inverted cone (Figure 1). Its base is in close relation to the bladder neck, whereas the apex is situated in close relationship to the external urethral sphincter (9).

      Overview of the topographic location of the prostate and its correlation to the urinary bladder, neurovascular bundle and urinary sphincter complex.

      Dorsal Vascular Complex

      The DVC is located ventrally of the prostate and urethral sphincter containing the dorsal vein complex/Santorini's plexus (draining the blood of penile veins) and small arteries, which originate from the inferior vesical artery (10, 11). Ventrally covered by the visceral endopelvic fascia and detrusor apron, DVC may be split at the prostate apex by puboprostatic ligaments (PPL) into a medial and lateral component (12). Ganzer et al. demonstrated in a small case series of human cadaveric studies (n = 7) that 37% of the dorsal urethral sphincter at the apex of the prostate and 30% 5 mm distal to the apex are overlapped by the ventral boundaries of the DVC (13). This anatomical knowledge is of utmost importance during DVC ligation, because injury to the urethral sphincter can occur easily, translating into potential postoperative urinary incontinence (1). Data regarding the optimal type of ligation and sequence (delayed vs. en bloc) ligation of the DVC are inconsistent and need further investigation. Furthermore, Carvalho et al. reported outstanding functional outcomes (98.4% continence, 86% potency 1-year postsurgery) in a small case series of 128 patients who underwent RALP, relying on a retrograde release of the neurovascular bundle with complete preservation of the DVC and visceral endopelvic fascia (14). Whether these results are based on the surgical technique or due to a study/patient selection bias have controversially been discussed recently, and further, larger-scaled studies are needed to evaluate the optimal surgical DVC approach (1416).

      Prostate (Pseudo)-Capsule

      The outer “limits” of the prostate are indeed a topic of ongoing controversy (1). The external stromal edge of the parenchyma, formed by fibromuscular layers of condensed transversely arranged smooth muscle, is often labeled as “capsule” (17). From a histological point of view, the correct term for this layer would be “condensed smooth muscle/outer edge.” However, from a surgical point of view, the defined, outer edge of the prostate is visible and grossly apparent in RALP, analogous to a capsule, and can be used as a surgical landmark for precise dissection (1, 18). Walz et al. proposed the term pseudocapsule as an acceptable compromise that accounts for both histological and surgical features (1). Contrary to previous findings indicating that the anterior surface of the prostate was absent of a “capsule,” Li et al. could demonstrate that the bilateral ends of the capsule were attached to the anterior fibrous muscular stroma/detrusor apron, forming a pocket-like structure for both prostate and the urethra (19).

      Fascial Structures Surrounding the Prostate Parietal and Visceral Endopelvic Fascia

      The pelvic organs are covered by a fascia, which can be divided into a parietal and a visceral endopelvic fascia (20). The visceral components of the endopelvic fascia cover the pelvic organs (prostate, bladder, and rectum) and are fused with the anterior fibromuscular stroma of the prostate at the upper ventral aspect of the gland (2, 21). Along the pelvic sidewall at the lateral aspect of the prostate and bladder, the parietal and the visceral components of the endopelvic fascia are fused and are often recognizable as a white-shimmering line called the fascial tendinous arch of the pelvis.

      Periprostatic Fascia

      The (visceral endopelvic-derived) fascia on the outer surface of the prostate has been named in different ways throughout previous reports (lateral pelvic fascia, fascia next to the prostate, parapelvic fascia, and prostatic fascia). In line with the most recent reports by Walz et al. the expression “periprostatic” fascia will be used throughout this manuscript. It is noteworthy that the periprostatic fascia cannot be identified as a single-layer stretching over the lateral surface of the prostate. It contains much more in the majority of cases, both collagenous and adipose tissue elements, and depicts as a multi-layered structure (2, 19). The periprostatic fascia may be subdivided into three sections according to the anatomical locations.

      Anterior Periprostatic Fascia

      The anterior element of the periprostatic fascia is located on the anterior surface of the prostate, where it covers the detrusor apron, DVC, and is fused in the midline with the anterior fibromuscular stroma of the prostate (22).

      Lateral Periprostatic Fascia

      The lateral periprostatic fascia usually consists of two separate layers, the laterally located levator ani fascia and an inner fascia covering the pseudocapsule, namely prostatic fascia. These layers of fascia, on the anterolateral prostate, extend from the anterior surface of the prostate posteriorly/dorsally to embrace or meet the neurovascular bundle, eventually becoming the pararectal fascia (2, 20, 23). The inner prostatic fascia stretches medial to the neurovascular bundle (NVB) to cover the underlying pseudocapsule (21).

      The relationship between the abovementioned fascia layers may differ between individuals. Kiyoshima et al. observed that in 52% of cases, no tight adherence between the lateral periprostatic fascia and the pseudocapsule is present (21). The observed space consisted of loose connective and adipose tissue referred to as areolar tissue (24). Li et al. reported in a small case series of human cadaveric studies that on the most convex region of the lateral prostate, both the lateral periprostatic fascia and the pseudocapsule are highly like to fuse into one structure temporarily (19). The authors furthermore highlighted the necessity of performing a careful fascia-pseudocapsule separation in order to the minimize damage to surrounding structures (19).

      Posterior Prostatic Fascia/Seminal Vesicles Fascia

      Both the PPF and SVF cover with a continuous layer the posterior surface of the prostate and the seminal vesicles. These fasciae are also known as “fascia rectoprostatica,” “septum rectovesicale,” “prostatoseminal vescular fascia,” and ubiquitously, Denonvillier's fascia (13, 25, 26). Its cephalad origin is found at the caudal end-point of the rectovesical pouch and distends distally to the apex of the prostate at the prostato-urethral junction (2, 27). In line with findings by Muraoka et al. observations by Kim et al. suggest that the tissue quality of PPF/SVF varies among patients as its origin might be induced by tissue tension, created by organ development in the pelvis and not by tissue fusion as suggested previously (1, 28, 29). As this development can vary substantially from patient to patient, the fascia can have a multilayer configuration, fragmentation into short pieces, or be composed of a thick leaf (28). Reconstruction of the posterior musculofascial plate (initially described by Rocco et al. “Rocco stitch”) has been demonstrated to have a beneficial impact predominantly on short-term continence rates (3033). Whether some specific modifications in the reconstruction approach, such as a 3-layer/2-step approach (including peritoneum) instead of the initially 2-layer/2-step approach by Rocco et al. will result in remarkable continence improvements has to be proven in the future (30, 34).

      Detrusor Apron and Pubovesical/PPL

      Bilateral anterior fibers of the outer longitudinal bladder detrusor reach out over the anterior prostate to the pubis and are referred to as (anterior) “detrusor apron” due to their sheath-type of alignment (1, 25, 26). Recent human cadaveric studies have demonstrated that the detrusor apron splits into three layers of which some contribute to the PPL (35). Together with posterior fibers, the detrusor apron complex helps to attach the urinary bladder in the pelvis but does not actively contribute to the urinary continence mechanism (1, 19, 36). The PV/PPLs are paired fibrous bands inserted on the distal third of the posterior surface of the pubic bone and the anterior bladder and stretch to the urethral sphincter (25). Contrary to the detrusor apron, PV/PPLs, often referred to as PPLs, are considered to play an important part of the suspensory system of continence mechanism (1, 37, 38). Recent findings, derived from human cadaveric studies, indicate that PV/PPL originates both from the visceral endopelvic fascia and the detrusor apron (35). Choi et al. observed in a human cadaveric study (n = 31) that PPLs were bilaterally single (61.3%), bilaterally double (19.4%), or mixed (19.4%) prevalent (39). The authors postulate that bilateral double PPLs are likely to result in urogenital competence (39). Due to the close relationship to the DVC and anterior bladder, identification of the PPL is easily appreciated in small/normal-sized prostates. However, it is more challenging to identify it in the presence of concomitant, ventrally expanding benign prostatic hyperplasia (40). Initially introduced by Walsh for open radical prostatectomy (RP) (41), Patel et al. demonstrated that a (anterior) periurethral suspension stitch before DVC dissection was associated with better 3 months continence outcomes compared to no suspension stitch in RALP (n = 331) (42). The suspension stitch, secured in the pubic periosteum, was introduced with the aim to maximally preserve the PPF/VSF and stabilize the urethra in its original anatomical position in the pelvic floor. However, it is of note that the statistically significant difference diminished in a longer follow-up time period (42).

      Neurovascular Bundle Inferior Hypogastric Plexus

      Nerval structures responsible for the mechanism of erection, ejaculation, and urinary continence originate from the inferior hypogastric plexus (pelvic plexus), which is normally located within a fibro-fatty, sagittal oriented plate between the bladder and the rectum (23, 4345). Depending on the extend of lymph node dissection (standard vs. extended), surgical intervention is much likely to extend to this area and collateral damage of nerval structures might occur. Differences between standard and extended lymph node dissections relate to the proximal border of dissection. In standard dissection, the common iliac artery or the bifurcation with the ureter proximally is usually considered the proximal border, whereas, in extended approaches, lymph node dissection extends up to the common iliac arteries and to the presacral areas (46, 47). During standard lymph node dissection, inferior hypogastric plexus and erectile nerves are at high risk during dissection in the area of the internal iliac artery toward the bladder region. During extended lymph node dissection, additional risk arises during dissection in the presacral area and medial to the common iliac vessels (4850).

      Anterolateral and Posterolateral Nerves of the Neurovascular Bundle

      Nerval fibers originating from the inferior hypogastric plexus surround the lateral aspect of the bladder neck, the proximal prostate, and the seminal vesicles (1, 44). Several studies have demonstrated a spray-like nerve distribution during their course on the lateral and anterolateral surface of the prostate (51, 52). Ganzer et al. demonstrated that the largest percentage of periprostatic nerve surface was located in the posterolateral position, and results were later confirmed by Alsaid et al. (53, 54). Clarebrough et al. illustrated that an increased percentage of nerval structures is anterolaterally located at the apex of the prostate compared to the base (11.2 vs. 6.0%) (55). Fibers originating from the posterior parts of the inferior hypogastricus plexus are sometimes referred to as cavernous nerves and can often be found posterolateral to the seminal vesicles (51). These fibers often remain microscopic and are accompanied by vascular structures, resulting in the nomenclature of the neurovascular bundle (2). All authors recorded substantial interindividual differences throughout their studies and surgeons should bare potential anatomical aberrance in mind. Even though extended research on the quantity (numbers of nerval fibers) and quality (distribution of parasympathetic nerve fibers) using different methodologies has been conducted previously, the extent of contribution to erectile function is still not sufficiently answered and is part of current research (53, 56).

      Nerve-Sparing and Grading Systems for Nerve Sparing

      Nerve sparing in general aims to preserve a maximum of functional neurovascular tissue that closely surrounds the prostate surface (57). With upcoming knowledge of surgical anatomy and the anatomical relationship between the (peri-) prostatic tissue adjacent, different nerve sparing-grading systems have been established and introduced over the last decade (Figure 2). Walz et al. divided nerve sparing into an intrafascial, interfascial, and extrafascial dissection (Figure 3A), relying on the periprostatic fascia as a guidance and landmark structure while performing nerve sparing (2). An alternative, yet comparable dissection classification was introduced by Montorsi et al. following the Pasadena Consensus Panel (58). Herein, three dissections planes (full, partial, and minimal) were suggested (Figure 3B), whereas the minimal dissection plane can be seen as a “sub” extrafascial dissection (1, 58). More recent studies introduced even further differentiation in regards to the dissection planes when nerve sparing is performed. Tewari et al. proposed a grading system based on four grades of dissection (Figure 3C). Relying on both the prostate pseudocapsule and lateral veins on the prostate as surgical landmarks, dissection between periprostatic veins and the pseudocapsule was considered to be grade 1 (highest nerve-sparing quality). By contrast, grade 4 dissection was comparable with an extrafascial dissection (poorest nerve-sparing quality) (59). Besides this four-grade classification system by Tewari et al. and Schatloff et al. proposed an inverse five-grade system for nerve-sparing dissection, in which grade 5 represents optimal nerve sparing and grade 1 represents no nerve sparing (Figure 3D). Contrary to Tewari et al. Schatloff et al. relied on landmark arteries running at the lateral border of the prostate as either prostate or capsular artery. Grade 5 nerve sparing is classified as dissection between this artery and the pseudocapsule without the need of sharp dissection, whereas in grade 4 dissection, sharp dissection in plane between artery and pseudocapsule is necessary (60, 61). Relying on the grading system by Schatloff et al. grade 1 dissection was comparable with an extrafascial dissection (Figure 3D). As an internal validation, Schatloff et al. recorded an inverse correlation between the degree of nerve sparing and the amount of nerve tissue adjacent to the prostate specimen following radical prostatectomy (60).

      Axial section of the prostate and its adjactent tissue at midprostate.

      Enlarged axial section of the prostate and its adjactent tissue at midprostate illustrating dissection planes according to (A) Walz et al. (1, 2), (B) Montorsi et al. (15, 58), (C) Tewari et al. (59), and (D) Schatthof et al. (60).

      All grading systems share the concept that the extent of nerve sparing and thus, the functional outcomes have to be weighted to the risk of positive surgical margins, which much likely translates into worse oncological outcomes. Furthermore, incremental nerve sparing with “anatomical landmarks,” such as vascular structures always harbor the risk of intra- and interindividual variability, and thus, applying these nerves sparing grading approaches might not be feasible in all patients to the same extent.

      Currently, intraoperative frozen section analyses of the neurovascular tissue-adjacent circumference allow nerve-sparing procedures while simultaneously not comprising oncological outcomes in the vast majority of patients (62, 63). It is of note that besides methodologies relying on intraoperative frozen section, other modalities to predict surgical margin status have emerged recently, such as the usage of confocal laser endomicroscopy to detect positive surgical margins during RALP. Whether these methodologies will represent comparable alternatives to the current methodology needs to be proven in the future (64).

      Prostate Arterial Supply

      The internal iliac artery and its branches supply the pelvis and bifurcate into an anterior and posterior trunk (65, 66). Generally, the anterior trunk gives rise to the superior and inferior vesical arteries, superior and inferior gluteal arteries, and changes into the internal pudendal arteries. Most frequently, prostate arteries rise from the internal pudendal artery (35–56%), followed by the common gluteal-pudendal trunk (15–25%) and branches of the obturator artery or inferior gluteal artery (8–12%) (1, 66, 67). After branching off, the artery supplies several inferior vesical arteries in its course toward the posterior and inferior parts of the bladder, before terminating with numerous prostate branches after a bifurcation, resulting in two main pedicles (1). Different studies have proposed that the anterior pedicle—surrounding the lateral border of the prostate and running to the prostate apex as an anterior capsular prostate branch—may relate to postoperative erectile function and penile integrity (61). It is of note that there is considerable inter- and intraindividual variability in the vascular anatomy of male patients, such as the occurrence of an accessory or aberrant pudendal arteries (4–75%) (68, 69). In a case series with 880 patients who underwent RALP, conducted by Williams et al. transection of accessory pudendal arteries did not turn out to be an independent prognostic factor for postoperative erectile dysfunction (70). Nevertheless, current literature is in agreement that penile blood supply can at least partly originate from accessory pudendal arteries, and thus, attempts to the preservation of these vessels should be performed during radical prostatectomy (70, 71).

      Urinary Sphincter Systems

      Two well-recognized urinary sphincter systems play crucial parts in the male voiding mechanism: (a) proximal internal, vesical sphincter, namely, vesical sphincter (M. sphincter vesicae) and (b) distal external, urethral sphincter, namely, urethral sphincter (M. sphincter urethrae) (1, 2).

      Bladder Neck and Vesical Sphincter

      The anatomical area of the (urinary) bladder outlet into the entrance of the prostatic urethra is referred to as bladder neck and is formed by several structures—such as detrusor muscle, vesical sphincter, and adjacent proximal prostatic tissue (1). It is noteworthy that the three-layered detrusor muscles do not participate in forming the vesical sphincter (25). Here, anterior longitudinal muscle fibers reach out over the prostate to the pubis and create the anterior part of the detrusor apron (Anterior detrusor apron). Conversely, posterior longitudinal muscles fibers reach out over the bladder neck and insert in the posterior aspect of the prostate (Posterior detrusor apron) (1). Both anterior- and posterior detrusor aprons attach the bladder in the pelvis rather than contributing to the sphincteric mechanism (36).

      The vesical sphincter, which can be seen as an elliptic structure formed by circular smooth muscle fibers, surrounds the urethral opening circumferentially. However, in general, the opening of the urethra is located eccentrically in the anterior third of the ellipsis, whereas the more posterior located muscles fibers can reach the ureteral orifices (20). While the majority of urinary continence is maintained by the urethral sphincter, a minor component is maintained by the vesical sphincter (72). Nyarangi-Dix et al. demonstrated in a randomized controlled trial that the preservation of the bladder neck resulted in improvements in short- and long-term urinary continence rates (73). These findings were confirmed in a systematic review. However, concerns remain regarding the margin status for prostate cancers located at the prostate base (74).

      Urethral Sphincter

      The urethral sphincter is predominantly located distal to the prostate apex. Irrespectively to the close local relationship to the levator ani muscle, it represents an independent muscle structure and hence, does not relate to the pelvic floor musculature (75). The urethral sphincter consists of two muscle types. Striated muscle fibers at the outer layer, being omega-shaped, extend to the apex, and the anterior of the prostate surface (7678). Some authors postulated that some parts of this striate musculature stretch not only on the surface of the prostate but also inside the apex of the prostate (78). Additionally, the urethra is completely surrounded by smooth muscle fibers and elastic fibers (75). The proximal extension of these fibers can be located at the colliculus seminalis or verumontanum (78). Following these anatomical observations, a surgical technique, namely, full-length preservation of the urethral sphincter (FFLU technique), was initially reported by Schlomm et al. (78). By identifying and dissecting the striated and smooth muscle part of the urethral sphincter inside the prostate apex until the colliculus, complete preservation of the entire length of the functional urethral sphincter is possible. Relying on this surgical approach, significantly higher rates of continence 1 week following catheter removal (50 vs. 31%) were reported. Interestingly, in the study cohort of Schlomm et al. no differences in long-term follow-up were recorded compared to patients who did not undergo full-length preservation of the urethral sphincter (78).

      Image-Guided Robotic Assisted Laparoscopic Prostatectomy Multi-Wavelength Fluorescence Imaging

      Within the last years, novel modalities for imaging guidance during RALP have been studied. The most common application is the use of near-infrared fluorescence (NIRF) imaging during RALP and assists surgeons by identifying vascular anatomy with better accuracy than the naked eye. Relying predominantly on indocyanine green (ICG) as a water-soluble dye, main applications aim to aid neurovascular bundle identification and lymph node dissection (7981). Future studies will need to clarify the role of fluorescence imaging in the detection of important anatomical structures, especially in the context of sentinel lymph node removal (79).

      Augmented-Reality in Robotic-Assisted Radical Prostatectomy

      Major technological innovations have pathed the way for “precision medicine” in robotic surgery (82). In the context of prostatic surgery, the implementation of AR could increase the understanding of surgical anatomy and facilitate intraoperative navigation during RALP (83). Implementation of results derived from multiparametric resonance imaging of the prostate has already been successfully implemented as real-time AR tools during RALP (83, 84). It is of note that the evolution and improvement of real-time imaging-guided technology are much likely to drastically continue to obtain better oncological and functional outcomes.

      Conclusions

      Several notable changes and improvements have been recorded in the last two decades during the advent and establishment of RALP. Among those, a better understanding of the interplay of the periprostatic anatomy and its influence on continence and erectile function have been achieved in the last two decades. Specifically, new insights regarding the relation between periprostatic fascia, urinary sphincteric system, and NVB have been surfaced. This deeper understanding, together with the technical magnification and precise robotic instruments, has led to several surgical modifications and nuances, which were successfully introduced to improve functional and oncological outcomes in RALP. It is speculative but much likely that implementation and broader adoption of enhanced technology, such as intraoperative fluorescence- or AR-guided surgery, will further promote improvements in oncology and functional outcomes in RALP.

      Irrespectively of the progress, which has already been achieved in recent years, a statement by Prof. Raychaudhuri and Cahill (85), the pioneer in the development of the anatomic approach to radical prostatectomy, might still nowadays hold true for certain aspects of surgical anatomy for RALP:

      It is humbling to realize that even today [basic] anatomy may not be known or all understood.”

      Author Contributions

      BH: conceptualization, data acquisition, original draft preparation, and writing–reviewing and editing. LH, MW, and SB: data acquisition. JK and DT: conceptualization. MG: reviewing and editing. AH: supervision and reviewing and editing. JW: conceptualization and data acquisition. MK: writing–reviewing and editing and data acquisition. AB and PM: writing–reviewing and editing. LK: original draft preparation and writing–reviewing and editing. PK: conceptualization and supervision. FC: conceptualization, supervision, and original draft preparation. FP: conceptualization, supervision, and writing–reviewing and editing. All authors substantially contributed to the article and approved the submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher's Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      BH was awarded a scholarship by the STIFTUNG GIERSCH.

      References Walz J Epstein JI Ganzer R Graefen M Guazzoni G Kaouk J . A critical analysis of the current knowledge of surgical anatomy of the prostate related to optimisation of cancer control and preservation of continence and erection in candidates for radical prostatectomy: an update. Euro Urol. (2016) 70:30111. 10.1016/j.eururo.2016.01.02626850969 Walz J Burnett AL Costello AJ Eastham JA Graefen M Guillonneau B . A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. Euro Urol. (2010) 57:17992. 10.1016/j.eururo.2009.11.00919931974 Martini A Falagario UG Villers A Dell'Oglio P Mazzone E Autorino R . Contemporary techniques of prostate dissection for robot-assisted prostatectomy. Euro Urol. (2020) 78:58391. 10.1016/j.eururo.2020.07.01732747200 Galfano A Ascione A Grimaldi S Petralia G Strada E Bocciardi AM. A new anatomic approach for robot-assisted laparoscopic prostatectomy: a feasibility study for completely intrafascial surgery. Eur Urol. (2010) 58:45761. 10.1016/j.eururo.2010.06.00820566236 Jiang Y-L Zheng G-F Jiang Z-P Zhen-Li Zhou X-L Zhou J . Comparison of Retzius-sparing robot-assisted laparoscopic radical prostatectomy vs standard robot-assisted radical prostatectomy: a meta-analysis. BMC Urol. (2020) 20:114. 10.1186/s12894-020-00685-432746829 Checcucci E Veccia A Fiori C Amparore D Manfredi M Di Dio M . Retzius-sparing robot-assisted radical prostatectomy vs the standard approach: a systematic review and analysis of comparative outcomes. BJU Int. (2020) 125:816. 10.1111/bju.1488732240025 Wagaskar VG Mittal A Sobotka S Ratnani P Lantz A Falagario UG . Hood technique for robotic radical prostatectomy—preserving periurethral anatomical structures in the space of retzius and sparing the pouch of douglas, enabling early return of continence without compromising surgical margin rates. Euro Urol.. (2021) 80:21321. 10.1016/j.eururo.2020.09.04433648790 Garisto J Bertolo R Wilson CA Kaouk J. The evolution and resurgence of perineal prostatectomy in the robotic surgical era. World J Urol. (2020) 38:8218. 10.1007/s00345-019-03004-131811370 McNeal JE. Anatomy of the prostate and morphogenesis of BPH. Prog Clin Biol Res. (1984) 145:2753.6201879 Santorini GD. De virorum naturalibus [Concerning the male geni- talia], In Baptista Recurti G. editor, Observationes Anatomicae. Venice, Italy. (1724). Chapter XX. p. 202. Benoit G Droupy S Quillard J Paradis V Giuliano F. Supra and infralevator neurovascular pathways to the penile corpora cavernosa. J Anat. (1999) 195:60515. 10.1046/j.1469-7580.1999.19540605.x10634698 Dasgupta P. Anatomic considerations during radical prostatectomy. Eur Urol. (2010) 57:1935. 10.1016/j.eururo.2009.11.03719959277 Ganzer R Stolzenburg J-U Neuhaus J Weber F Burger M Bründl J. Is the striated urethral sphincter at risk by standard suture ligation of the dorsal vascular complex in radical prostatectomy? an anatomic study. Urology. (2014) 84:14538. 10.1016/j.urology.2014.06.09225432837 de Carvalho PA Barbosa JABA Guglielmetti GB Cordeiro MD Rocco B Nahas WC . Retrograde release of the neurovascular bundle with preservation of dorsal venous complex during robot-assisted radical prostatectomy: optimizing functional outcomes. Eur Urol. (2020) 77:62835. 10.1016/j.eururo.2018.07.00330041833 Montorsi F Gandaglia G Würnschimmel C Graefen M Briganti A Huland H. Retrograde release of the neurovascular bundle with preservation of dorsal venous complex during robot-assisted radical prostatectomy: optimizing functional outcomes. Eur Urol. (2020) 77:62835. 10.1016/j.eururo.2020.08.03930041833 Ferreira Coelho R Afonso de Carvalho P Betoni Guglielmetti G Dener Cordeiro M Carlos Nahas W. Reply to Francesco montorsi, giorgio gandaglia, christoph würnschimmel, markus graefen, alberto briganti, and hartwig huland's letter to the Editor re: Paolo Afonso de Carvalho, João A.B.A. Barbosa, Giuliano B. Guglielmetti, et al. Retrograde Release of the Neurovascular Bundle with Preservation of Dorsal Venous Complex During Robot-assisted Radical Prostatectomy: Optimizing Functional Outcomes. Eur Urol. (2020) 77:62835. 10.1016/j.eururo.2020.08.03833334623 Ayala AG Ro JY Babaian R Troncoso P Grignon DJ. The prostatic capsule: does it exist? its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol. (1989) 13:217. 10.1097/00000478-198901000-000032909195 Budäus L Isbarn H Schlomm T Heinzer H Haese A Steuber T . Current technique of open intrafascial nerve-sparing retropubic prostatectomy. Eur Urol. (2009) 56:31724. 10.1016/j.eururo.2009.05.04419501454 Li X Wu J Cai Q Pan J Meng Q Zhang P . The distribution pattern of periprostatic neurovascular bundles examined with successive celloidin slices. BMC Urol. (2021) 21:6. 10.1186/s12894-020-00778-033407368 Walsh PC. Re: Anatomical radical retropubic prostatectomy: detailed description of the surgical technique. J Urol. (2005) 173:324. 10.1097/01.ju.0000148246.73337.ad15592108 Kiyoshima K Yokomizo A Yoshida T Tomita K Yonemasu H Nakamura M . Anatomical features of periprostatic tissue and its surroundings: a histological analysis of 79 radical retropubic prostatectomy specimens. Jpn J Clin Oncol. (2004) 34:4638. 10.1093/jjco/hyh07815371464 Menon M Shrivastava A Kaul S Badani KK Fumo M Bhandari M . Vattikuti Institute prostatectomy: contemporary technique and analysis of results. Eur Urol. (2007) 51:64857. 10.1016/j.eururo.2006.10.05517097214 Costello AJ Brooks M Cole OJ. Anatomical studies of the neurovascular bundle and cavernosal nerves. BJU Int. (2004) 94:10716. 10.1111/j.1464-410X.2004.05106.x16006893 Hong H Koch MO Foster RS Bihrle R Gardner TA Fyffe J . Anatomic distribution of periprostatic adipose tissue: a mapping study of 100 radical prostatectomy specimens. Cancer. (2003) 97:163943. 10.1002/cncr.1123112655520 Myers RP. Detrusor apron, associated vascular plexus, and avascular plane: relevance to radical retropubic prostatectomy–anatomic and surgical commentary. Urology. (2002) 59:4729. 10.1016/S0090-4295(02)01500-511927293 Wimpissinger TF Tschabitscher M Feichtinger H Stackl W. Surgical anatomy of the puboprostatic complex with special reference to radical perineal prostatectomy: SURGICAL ANATOMY OF THE PUBOPROSTATIC COMPLEX. BJU Int. (2003) 92:6814. 10.1046/j.1464-410X.2003.04489.x14616445 Villers A McNeal JE Freiha FS Boccon-Gibod L Stamey TA. Invasion of Denonvilliers' fascia in radical prostatectomy specimens. J Urol. (1993) 149:7938. 10.1016/S0022-5347(17)36209-28455242 Kim JH Kinugasa Y Hwang SE Murakami G Rodríguez-Vázquez JF Cho BH. Denonvilliers' fascia revisited. Surg Radiol Anat. (2015) 37:18797. 10.1007/s00276-014-1336-025008480 Muraoka K Hinata N Morizane S Honda M Sejima T Murakami G . Site-dependent and interindividual variations in Denonvilliers' fascia: a histological study using donated elderly male cadavers. BMC Urol. (2015) 15:42. 10.1186/s12894-015-0034-525962380 Heesakkers J Farag F Bauer RM Sandhu J De Ridder D Stenzl A. Pathophysiology and contributing factors in postprostatectomy incontinence: a review. Eur Urol. (2017) 71:93644. 10.1016/j.eururo.2016.09.03127720536 Schifano N Capogrosso P Tutolo M Dehò F Montorsi F Salonia A. How to prevent and manage post-prostatectomy incontinence: a review. World J Mens Health. (2020) 38:e50. 10.5534/wjmh.20011433151045 Rocco F Gadda F Acquati P Carmignani L Favini P Dell'Orto P . [Personal research: reconstruction of the urethral striated sphincter]. Arch Ital Urol Androl. (2001) 73:12737. 10.4103/0970-1591.14207025378824 Cui J Guo H Li Y Chen S Zhu Y Wang S . Pelvic floor reconstruction after radical prostatectomy: a systematic review and meta-analysis of different surgical techniques. Sci Rep. (2017) 7:2737. 10.1038/s41598-017-02991-828578433 Ogawa S Hoshi S Koguchi T Hata J Sato Y Akaihata H . Three-layer two-step posterior reconstruction using peritoneum during robot-assisted radical prostatectomy to improve recovery of urinary continence: a prospective comparative study. J Endourol. (2017) 31:12517. 10.1089/end.2017.041029160098 Xu Z Chapuis PH Bokey L Zhang M. Nature and architecture of the puboprostatic ligament: a macro- and microscopic cadaveric study using epoxy sheet plastination. Urology. (2017) 110:263. 10.1016/j.urology.2017.08.01828847689 Secin FP Karanikolas N Gopalan A Bianco FJ Shayegan B Touijer K . The anterior layer of denonvilliers' fascia: a common misconception in the laparoscopic prostatectomy literature. J Urol. (2007) 177:5215. 10.1016/j.juro.2006.09.02817222624 Steiner MS. The puboprostatic ligament and the maleurethral suspensory mechanism: an anatomic study. Urology. (1994) 44:5304. 10.1016/S0090-4295(94)80052-97941191 Deliveliotis C Protogerou V Alargof E Varkarakis J. Radical prostatectomy: bladder neck preservation and puboprostatic ligament sparing—effects on continence and positive margins. Urology. (2002) 60:8558. 10.1016/S0090-4295(02)01956-812429315 Choi H-M Jung S-Y Kim S-J Yang H-J Kim J-H Kim Y-T . Clinical anatomy of the puboprostatic ligament for the safe guidance for the prostate surgery. Urology. (2020) 136:1905. 10.1016/j.urology.2019.10.01531730940 Takenaka A Tewari AK Leung RA Bigelow K El-Tabey N Murakami G . Preservation of the puboprostatic collar and puboperineoplasty for early recovery of urinary continence after robotic prostatectomy: anatomic basis and preliminary outcomes. Euro Urol.. (2007) 51:43340. 10.1016/j.eururo.2006.07.00716904817 Walsh PC. Anatomic radical prostatectomy: evolution of the surgical technique. J Urol. (1998) 12:241824. 10.1097/00005392-199812020-000109817395 Patel VR Coelho RF Palmer KJ Rocco B. Periurethral suspension stitch during robot-assisted laparoscopic radical prostatectomy: description of the technique and continence outcomes. Eur Urol. (2009) 56:4728. 10.1016/j.eururo.2009.06.00719560260 Drizenko A Goullet E Mauroy B Demondion X Bonnal J-L Biserte J . The inferior hypogastric plexus (pelvic plexus): its importance in neural preservation techniques. Surgic Radiol Anatom. (2003) 25:615. 10.1007/s00276-002-0083-912690518 Baader B Herrmann M. Topography of the pelvic autonomic nervous system and its potential impact on surgical intervention in the pelvis. Clin Anat. (2003) 16:11930. 10.1002/ca.1010512589666 Walsh PC Lepor H Eggleston JC. Radical prostatectomy with preservation of sexual function: anatomical and pathological considerations. Prostate. (1983) 4:47385. 10.1002/pros.29900405066889192 Yuh B Artibani W Heidenreich A Kimm S Menon M Novara G . The role of robot-assisted radical prostatectomy and pelvic lymph node dissection in the management of high-risk prostate cancer: a systematic review. Euro Urol. (2014) 65:91827. 10.1016/j.eururo.2013.05.02623721959 Joniau S Van den Bergh L Lerut E Deroose CM Haustermans K Oyen R . Mapping of pelvic lymph node metastases in prostate cancer. Euro Urol. (2013) 63:4508. 10.1016/j.eururo.2012.06.05722795517 Choo MS Kim M Ku JH Kwak C Kim HH Jeong CW. Extended versus standard pelvic lymph node dissection in radical prostatectomy on oncological and functional outcomes: a systematic review and meta-analysis. Ann Surg Oncol. (2017) 24:204754. 10.1245/s10434-017-5822-628271172 Touijer KA Sjoberg DD Benfante N Laudone VP Ehdaie B Eastham JA . Limited versus extended pelvic lymph node dissection for prostate cancer: a randomized clinical trial. Eur Urol Oncol. (2021) 21:22.10.1016/j.euo.2021.03.00634535419 Lestingi JFP Guglielmetti GB Trinh Q-D Coelho RF Pontes J Bastos DA . Extended versus limited pelvic lymph node dissection during radical prostatectomy for intermediate- and high-risk prostate cancer: early oncological outcomes from a randomized phase 3 trial. Euro Urol. (2021) 79:595604. 10.1016/j.eururo.2020.11.04033685836 Lunacek A Schwentner C Fritsch H Bartsch G Strasser H. Anatomical radical retropubic prostatectomy: ‘curtain dissection' of the neurovascular bundle. BJU Int. (2005) 95:122631. 10.1111/j.1464-410X.2005.05510.x15892806 Sievert K-D Hennenlotter J Laible I Amend B Schilling D Anastasiadis A . The periprostatic autonomic nerves–bundle or layer? Eur Urol. (2008) 54:110916. 10.1016/j.eururo.2008.06.00718621470 Ganzer R Blana A Gaumann A Stolzenburg J-U Rabenalt R Bach T . Topographical anatomy of periprostatic and capsular nerves: quantification and computerised planimetry. Eur Urol. (2008) 54:35360. 10.1016/j.eururo.2008.04.01819209422 Alsaid B Bessede T Diallo D Moszkowicz D Karam I Benoit G . Division of autonomic nerves within the neurovascular bundles distally into corpora cavernosa and corpus spongiosum components: immunohistochemical confirmation with three-dimensional reconstruction. Eur Urol. (2011) 59:9029. 10.1016/j.eururo.2011.02.03121684065 Clarebrough EE Challacombe BJ Briggs C Namdarian B Weston R Murphy DG . Cadaveric analysis of periprostatic nerve distribution: an anatomical basis for high anterior release during radical prostatectomy? J Urol. (2011) 185:151925. 10.1016/j.juro.2010.11.04621334677 Alsaid B Karam I Bessede T Abdlsamad I Uhl J-F Delmas V . Tridimensional computer-assisted anatomic dissection of posterolateral prostatic neurovascular bundles. Eur Urol. (2010) 58:2817. 10.1016/j.eururo.2010.04.00220417025 Schlomm T Tennstedt P Huxhold C Steuber T Salomon G Michl U . Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol. (2012) 62:33340. 10.1016/j.eururo.2012.04.05722591631 Montorsi F Wilson TG Rosen RC Ahlering TE Artibani W Carroll PR . Best practices in robot-assisted radical prostatectomy: recommendations of the Pasadena Consensus Panel. Eur Urol. (2012) 62:36881. 10.1016/j.eururo.2012.05.05723253772 Tewari AK Srivastava A Huang MW Robinson BD Shevchuk MM Durand M . Anatomical grades of nerve sparing: a risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy (RARP). BJU Int. (2011) 108:98492. 10.1111/j.1464-410X.2011.10565.x21917101 Schatloff O Chauhan S Sivaraman A Kameh D Palmer KJ Patel VR. Anatomic grading of nerve sparing during robot-assisted radical prostatectomy. Eur Urol. (2012) 61:796802. 10.1016/j.eururo.2011.12.04822230713 Patel VR Schatloff O Chauhan S Sivaraman A Valero R Coelho RF . The role of the prostatic vasculature as a landmark for nerve sparing during robot-assisted radical prostatectomy. Eur Urol. (2012) 61:5716. 10.1016/j.eururo.2011.12.04722225830 Beyer B Schlomm T Tennstedt P Boehm K Adam M Schiffmann J . A feasible and time-efficient adaptation of NeuroSAFE for da Vinci robot-assisted radical prostatectomy. Eur Urol. (2014) 66:13844. 10.1016/j.eururo.2013.12.01424411279 Hoeh B Preisser F Wenzel M Humke C Wittler C Hohenhorst JL . Correlation of urine loss after catheter removal and early continence in men undergoing radical prostatectomy. Current Oncology. (2021) 28:473847. 10.3390/curroncol2806039934898569 Panarello D Compérat E Seyde O Colau A Terrone C Guillonneau B. Atlas of ex vivo prostate tissue and cancer images using confocal laser endomicroscopy: a project for intraoperative positive surgical margin detection during radical prostatectomy. Euro Urol Focus. (2020) 6:94158. 10.1016/j.euf.2019.01.00430683530 Carnevale FC Soares GR de Assis AM Moreira AM Harward SH Cerri GG. Anatomical variants in prostate artery embolization: a pictorial essay. Cardiovasc Intervent Radiol. (2017) 40:132137. 10.1007/s00270-017-1687-028508252 Tummala S Everstine A Acharya V Bhatia S. Prostate arterial anatomy: a primer for interventional radiologists. Tech Vasc Interv Radiol. (2020) 23:100689. 10.1016/j.tvir.2020.10068933308529 Bilhim T Pisco JM Rio Tinto H Fernandes L Pinheiro LC Furtado A . Prostatic arterial supply: anatomic and imaging findings relevant for selective arterial embolization. J Vasc Interv Radiol. (2012) 23:140315. 10.1016/j.jvir.2012.07.02823101913 Polascik TJ Walsh PC. Radical retropubic prostatectomy: the influence of accessory pudendal arteries on the recovery of sexual function. J Urol. (1995) 154:1502. 10.1016/S0022-5347(01)67252-57776410 Droupy S Hessel A Benoît G Blanchet P Jardin A Giuliano F. Assessment of the functional role of accessory pudendal arteries in erection by transrectal color Doppler ultrasound. J Urol. (1999) 162:198791. 10.1016/S0022-5347(05)68084-610569553 Williams SB Morales BE Huynh LM Osann K Skarecky DW Ahlering TE. Analysis of accessory pudendal artery transection on erections during robot-assisted radical prostatectomy. J Endourol. (2017) 31:11705. 10.1089/end.2017.054228859491 Henry BM Pekala PA Vikse J Sanna B Skinningsrud B Saganiak K . Variations in the arterial blood supply to the penis and the accessory pudendal artery: a meta-analysis and review of implications in radical prostatectomy. J Urol. (2017) 198:34553. 10.1016/j.juro.2017.01.08029802822 Bellangino M Verrill C Leslie T Bell RW Hamdy FC Lamb AD. Systematic review of studies reporting positive surgical margins after bladder neck sparing radical prostatectomy. Curr Urol Rep. (2017) 18:99. 10.1007/s11934-017-0745-029116405 Nyarangi-Dix J Huber J Haferkamp A Hohenfellner M. Operative therapie der männlichen belastungsinkontinenz—von der schlinge bis zum artifiziellen sphinkter. Aktuel Urol. (2011) 42:30610. 10.1055/s-0031-127154721769764 Ma X Tang K Yang C Wu G Xu N Wang M . Bladder neck preservation improves time to continence after radical prostatectomy: a systematic review and meta-analysis. Oncotarget. (2016) 7:6746375. 10.18632/oncotarget.1199727634899 Wallner C Dabhoiwala NF DeRuiter MC Lamers WH. The anatomical components of urinary continence. Eur Urol. (2009) 55:93243. 10.1016/j.eururo.2008.08.03218755535 Koyanagi T. Studies on the sphincteric system located distally in the urethra: the external urethral sphincter revisited. J Urol. (1980) 124:4006. 10.1016/S0022-5347(17)55468-36107390 Rocco F Carmignani L Acquati P Gadda F Dell'Orto P Rocco B . Early continence recovery after open radical prostatectomy with restoration of the posterior aspect of the rhabdosphincter. Eur Urol. (2007) 52:37683. 10.1016/j.eururo.2007.01.10917329014 Schlomm T Heinzer H Steuber T Salomon G Engel O Michl U . Full functional-length urethral sphincter preservation during radical prostatectomy. Euro Urol. (2011) 60:3209. 10.1016/j.eururo.2011.02.04021458913 de Korne CM Wit EM de Jong J Valdés Olmos RA Buckle T van Leeuwen FWB . Anatomical localization of radiocolloid tracer deposition affects outcome of sentinel node procedures in prostate cancer. Eur J Nucl Med Mol Imaging. (2019) 46:255868. 10.1007/s00259-019-04443-z31377820 Navaratnam A Abdul-Muhsin H Humphreys M. Updates in urologic robot assisted surgery. F1000Res. (2018) 7:1948. 10.12688/f1000research.15480.130613380 Bates AS Patel VR. Applications of indocyanine green in robotic urology. J Robotic Surg. (2016) 10:3579. 10.1007/s11701-016-0641-527664142 Checcucci E Amparore D Fiori C Manfredi M Ivano M Di Dio M . 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J Urol. (2020). 38:86981. 10.1007/s00345-019-02922-431456017 Schiavina R Bianchi L Lodi S Cercenelli L Chessa F Bortolani B . Real-time augmented reality three-dimensional guided robotic radical prostatectomy: preliminary experience and evaluation of the impact on surgical planning. Euro Urol Focus. (2020) 20:S2405456920302170. 10.1016/S2666-1683(20)35590-732883625 Porpiglia F Fiori C Checcucci E Amparore D Bertolo R. Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology. (2018) 115:184. 10.1016/j.urology.2018.01.02829548868 Raychaudhuri B Cahill D. Pelvic fasciae in urology. Ann R Coll Surg Engl. (2008) 90:6337. 10.1308/003588408X32161118828961
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016imersia.net.cn
      jjyygo.com.cn
      huahuizg.com.cn
      www.hb-365.com.cn
      www.luhuaji.org.cn
      www.o1bb.org.cn
      www.utogwb.com.cn
      www.qballet.com.cn
      shanpu.net.cn
      oyzlpx.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p