Front. Robot. AI Frontiers in Robotics and AI Front. Robot. AI 2296-9144 Frontiers Media S.A. 744590 10.3389/frobt.2021.744590 Robotics and AI Review Robot Evolution: Ethical Concerns Eiben et al. Robot Evolution: Ethical Concerns Eiben Ágoston E. 1 2 * Ellers Jacintha 3 Meynen Gerben 4 5 Nyholm Sven 6 Department of Computer Science and Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands Department of Electronic Engineering, University of York, York, United Kingdom Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands Department of Philosophy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands Department of Law, Utrecht University, Utrecht, Netherlands Department of Philosophy and Religious Studies, Utrecht University, Utrecht, Netherlands

Edited by: Claudio Rossi, Polytechnic University of Madrid, Spain

Reviewed by: Robert H. Wortham, University of Bath, United Kingdom

Matthew Studley, University of the West of England, United Kingdom

*Correspondence: Ágoston E. Eiben, a.e.eiben@vu.nl

This article was submitted to Robot Learning and Evolution, a section of the journal Frontiers in Robotics and AI

03 11 2021 2021 8 744590 20 07 2021 11 10 2021 Copyright © 2021 Eiben, Ellers, Meynen and Nyholm. 2021 Eiben, Ellers, Meynen and Nyholm

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Rapid developments in evolutionary computation, robotics, 3D-printing, and material science are enabling advanced systems of robots that can autonomously reproduce and evolve. The emerging technology of robot evolution challenges existing AI ethics because the inherent adaptivity, stochasticity, and complexity of evolutionary systems severely weaken human control and induce new types of hazards. In this paper we address the question how robot evolution can be responsibly controlled to avoid safety risks. We discuss risks related to robot multiplication, maladaptation, and domination and suggest solutions for meaningful human control. Such concerns may seem far-fetched now, however, we posit that awareness must be created before the technology becomes mature.

evolutionary robotics evolutionary design ethics meaningful human control responsibility gaps real-world robot evolution morphological robot evolution

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Surprisingly, the idea of robot evolution is one hundred years old. The famous play by Karel Čapek that coined the word “robot” was published in 1920 (Čapek 1920). Towards the end of the play the robots are at the verge of extinction and one of the humans, Alquist, advises them: “If you desire to live, you must breed like animals.” In 1920 this was a fantastic idea–as in: impossible. In today’s world with rapidly proliferating artificial intelligence and robotics it is still a fantastic idea, but not impossible anymore.

      Towards the end of the twentieth century the principles of biological evolution were transported to the realm of technology and implemented in computer simulations. This brought on the field of Evolutionary Computing, and evolutionary algorithms proved capable of delivering high quality solutions to hard problems in a variety of scientific and technical domains, offering several advantages over traditional optimization and design methods (Ashlock 2006; de Jong, 2006; Eiben and Smith 2003). Evolutionary algorithms have also been applied to developing the morphology (the hardware “body”) and controller (the software “brain”) of autonomous robots, which resulted in a new field called Evolutionary Robotics (Nolfi and Floreano 2000; Bongard 2011; Vargas et al., 2014; Doncieux et al., 2015).

      Up till now, work on evolutionary robotics has mostly been performed in computer simulations, safely confined to a virtual world inside a computer [e.g (Bongard 2011)]. Occasionally, the best robots in the final generation have been constructed and materialized in the real world (Lipson and Pollack 2000; Kriegman et al., 2020), but even in these cases the evolutionary process itself took place in simulation. Some studies have demonstrated self-reproducing physical machines, but the resulting system was not evolutionary because there was no inheritance and reproduction created identical clones without variation (Zykov et al., 2005). Research about robots that reproduce and evolve in the real world has been rare because of technical limitations in the (re)production of arbitrary robot shapes (Long 2012). In Figure 1 we exhibit some of the landmarks of the history of robot evolution.

      Some of the landmarks of the history of robot evolution. We show examples of systems that demonstrated robot reproduction or evolution incarnated in the real world. (A) 2000: The GOLEM project (10) co-evolved robot bodies and controllers in simulation and fabricated the evolved robot afterwards. (B) 2005: A physical system based on Molecubes, demonstrated non-adaptive robots able to construct a replica of themselves (12). (C) 2012: Tadro robots (13) were used to verify a hypothesis about the evolution of Cambrian vertebrates. Consecutive generations were constructed and evaluated in real hardware. (D) 2015: Semi-automated construction of genetically encoded modular robots (15). Consecutive generations were constructed and evaluated in real hardware. (E) 2016: The Robot Baby Project (17) demonstrated the reproduction of genetically encoded robots. Robots co-existed in the same environment; the offspring was added there after “birth.” (F) 2019: The Autonomous Robot Evolution Project (18) features hands-free construction of genetically encoded robots. The robots have sensors and can co-exist in the same environment. The robots shown in (1A,C–E) had no sensors. The robots shown in (1C,D) were constructed and evaluated one by one; the physical population consisted of one single robot at any time. The robots in (1B) are actually not evolvable, as there was no genetic encoding and the replica was an identical copy.

      However, this situation is changing rapidly and after the first major transition from “wetware” to software in the 20th century, evolution is at the verge of a second one, this time from software to hardware (Eiben and Smith 2015). Recent advances in and integration of evolutionary computation, robotics, 3D-printing, and automated assembly are enabling systems of physical robots that can autonomously reproduce and evolve (Brodbeck et al., 2015; Jelisavcic et al., 2017; Vujovic et al., 2017; Hale et al., 2019; Howard et al., 2019; Ellery 2020). The key concepts behind robots evolving in the real world are explained in Box 1, while Box 2 illustrates how the most challenging step of the process, robot reproduction, can be implemented. Two examples of existing robot reproduction facilities are shown in Figure 2. Such autonomous evolutionary systems incarnated in hardware offer advantages for applications as well as for fundamental research. 1

      Robots evolving in the real world

      To make robots evolvable selection and reproduction need to be implemented. Selection of “robot parents” can be done by evaluating the robot’s behavior and allocating higher reproduction probabilities to robots that work well. For reproduction two facets of a robot should be distinguished, the phenotype that is the physical robot itself and the genotype that is the specification sheet, the robotic equivalent of DNA that describes and encodes the phenotype. Reproduction can then be defined through two principal steps. The first step is to create a new genotype that encodes the offspring. This step generates genetic variation either by a recombination operator that stochastically mixes the genotypes of two parents (sexual reproduction) or by a mutation operator that causes random changes in the genotype of one single parent (asexual reproduction). This step is a fully digital operation that can use existing methods from traditional Evolutionary Computation. The second step is the execution of the genotype-phenotype mapping, that is, the construction of the physical robot offspring as specified by the newly produced genotype. A crucial technical challenge in robot evolution lies in the second step, the production of offspring.

      Robot (re)production

      A robotic genotype obtained by mutating the genotype of one robot or recombining the genotypes of two parent robots encodes a new robot, the offspring. This offspring could be constructed by feeding the genotype to a 3D printer that makes a robot as specified by this genotype. However, currently there are no 3D printers that can produce a fully functional robot including a CPU, battery, sensors, and actuators. Arguably, this problem is temporary, and rapid prototyping of such components will be possible in the (near) future. A practicable alternative for now is to combine 3D printing, prefabricated functional components stored in a repository (e.g., CPUs, batteries, sensors, and actuators), and automated assembly. In such a system, the genotype specifies a number of 3D printable body parts with various shapes and sizes, the types, numbers and geometrical positions of the prefabricated body parts and the properties of an adequate software “brain” to control the given body. The production of a new robot can be done by industrial robot arms that retrieve the 3D printed body parts from the printers, collect the necessary prefabricated components from the storage, and assemble them into a working robot. After that, the software can be downloaded and installed on the CPU and the new robot can be activated.

      Examples of robot reproduction facilities. Photos of two (semi) automated robot reproduction facilities. (A): the system used in Cambridge (15). (B): the one used in Bristol (18).

      For practitioners, evolution serves as an approach to adjust optimal robot designs on-the-fly in dangerous or inaccessible places [19], such as mines, nuclear power plants, or even extraterrestrial locations (see Figure 3). Additionally, evolving robots can be seen as hardware models of evolutionary systems [13]. Thus, they can be used as a new type of research instrument for testing hypotheses about biological processes (Nolfi and Floreano 2000) and deliver deeper understanding of universal evolutionary principles (Floreano and Keller 2010; Waibel et al., 2011). Autonomous robot evolution can thus be a game changer compared to evolutionary systems implemented in the digital realm (Eiben et al., 2012).

      Artist impression of evolving robots in space.

      A key insight of this paper is that the science and technology of robot evolution are elevating the known concerns regarding AI and robotics to a new level by the phenomenon we call second order engineering or second order design. First order system engineering is the current practice where AI and robots are developed and engineered directly by humans. Evolutionary robot technology radically changes this picture because it introduces a new layer: instead of directly constructing a robotic system for a certain application, humans are constructing an evolutionary system that will construct a robotic system. Ethical, moral and safety concerns should therefore be converted into design principles and methodological guidelines for humans. The fundamental challenge here is the inherent stochasticity and complexity of an evolutionary system and the weakened influence of humans on the end product. This implies that all issues of the current discourse on AI and robot ethics remain valid [see, e.g. (Torresen 2018)], but that we also get new ones.

      The new ethical challenges related to robot evolution are rooted in the inherent inefficiency and unpredictability of the evolutionary process. Evolution proceeds through the generation of heritable variation (recombination and mutation) in combination with selection that favors more successful forms at the cost of large numbers of failures (Futuyma 2013). Evolving robots in hardware through automated (re)production may therefore bring about a high number of arbitrary robot forms, which increases the chance of unintentionally creating robots with harmful behaviors. Moreover, key evolutionary changes often take place in the form of large unpredictable innovations that arise from rearrangements of existing characteristics for new functions (True and Carroll 2002). Such emergent evolution is highly unpredictable in both direction and magnitude, increasing the likelihood that evolving robots will have unexpected capacities.

      Whenever there is a technology that is not directly under human control–technologies without a “steering wheel”–and whenever the process is unpredictable, questions about risks and responsibilities arise (Sparrow 2007; Hansson 2017; Nihlen Fahlquist 2017; Santoni de Sio and van den Hoven 2018; Nyholm 2020). Do the benefits of the new technology outweigh its possible adverse effects? If there are adverse effects, how can we minimize and control these? And, importantly, if things spin out of control, who is responsible? Answering these questions not only requires solutions from the field of robot evolution itself, but also raises ethical issues about the measures we should take to prevent harm. One could argue that such concerns are far-fetched. However, we posit that these issues must be addressed long before the technology emerges. Simply put: if we start thinking about mitigating these problems when they arise, then, most probably, we are too late (van de Poel 2016; Brey 2017).

      Protecting Humans From Evolving Robots

      It is hard to overstate the possible implications of the two key enabling features in evolving robots: self-replication and random change in robot form and behavior. First, self-replication allows robots to multiply without human intervention and thus would raise the need for control over their reproduction. Second, mutation or random evolutionary changes in the design of the robots could create undesired robotic behaviors that may harm human interests. Before developing any new technology with such potentially large ramifications, we should determine the acceptability of its consequences and identify ways to anticipate unwanted effects (van de Poel 2016).

      Several other fields of science have faced similar safety dilemmas during developments of new technology and subsequent experimentation. In health sciences, biomedical ethical dilemmas are typically evaluated using a principle-based approach, based on the four principles of Beauchamp and Childress (Beauchamp and Childress 2019): autonomy, non-maleficence (avoiding harm), beneficence, and justice. Within the context of technological experimentation, the concept of responsibility has been added (van de Poel 2016), and specifically in the field of Artificial Intelligence (AI), a call has been made for adding the property of “explicability” (Floridi et al., 2018). This property entails that when AI-powered algorithms are used to make morally-sensitive decisions, humans should be able to obtain “a factual, direct, and clear explanation of the decision-making process” (Floridi et al., 2018), or of the decision resulting from the algorithm (Robbins 2019).

      In evolutionary robotics all of these principles have clear relevance, but, most pressingly, the risk of harm and the question of responsibility need to be considered in more detail. These, in turn, are intimately related to the crucial issue of control and the potential loss of it. In order for a particular human being or group of human beings to be responsible for some process or outcome, it is usually thought that they need to have some degree of control of the process or outcome. Moreover, loss of control can be viewed as a form of harm, because it is typically seen as undermining human autonomy, and it may compromise other values, such as well-being, which depend to some extent on our ability to control what happens around us.

      Risk of Harm

      The issue of risk in the field of AI has previously been considered in relation to control concerns associated with the development of superintelligence (Bostrom 2014; Russell 2019; Russell and Norvig 2020). A notable difference between superintelligence-related concerns and ER-related worries, however, is the perceived probability of the risk. Many people find the idea of superintelligence either inherently implausible or at least something we need not worry about in the short run (Gordon and Nyholm 2021; Müller, 2020). More precisely, people may feel that although an excellent AI chess or Go player is manifestly possible, artificial general superintelligence is much less likely to emerge.

      In contrast, evolving physical robots need not possess human level intelligence; animal level intelligence in such robots could be sufficient to do significant harm because of their physical features. Even without much individual intelligence and power, the evolved robots could potentially collaborate efficiently and perform much more complex tasks together than they could on their own. In other words, similar to highly social animals such as ants and wasps in the natural world, the number and cooperation among robots could be decisive factors. Therefore, the plausibility of a harmful scenario with evolving robots is all but trivial, and issues of control and the potential loss of it should be considered.

      The most difficult aspect in anticipating possible risks of evolving robots is that we would be dealing with an evolving system that is inherently and continuously changing. The risk of harm therefore needs to be evaluated for potential future trajectories of the evolutionary process, not only for the current robots. We distinguish three key types of risks associated with the evolutionary process, connected to reproduction, selection, and emergent evolution, respectively:

      Multiplication risk: The robots can evolve at high reproduction rates, resulting in uncontrolled population growth. If the robot population becomes too large, resources such as space, energy, and raw materials like air or water may be (locally) depleted. This effect can be compared to a locust plague: a swarm’s voracious feeding can completely devour agricultural crops over a vast area, leading to famine and starvation in the human population. While individual robots may not pose any significant risk, their high number and collective behavior can be dangerous.

      Maladaptation risk: Evolving the robots for a specific task can lead to unwanted features or behaviors that benefit the robot’s assigned task, but that may be harmful to human society. For instance, robots may attempt to dismantle houses to use the stones or cut car tires for the rubber. In the most extreme cases, robots could harm humans if they hinder robots in performing their tasks. This type of risk can evolve because selection is “blind,” meaning the most effective solutions for the task will prevail, without taking other consequences of the evolved trait into account.

      Domination risk: The robots could evolve to become the dominating “species,” not as a direct effect of selection, but rather as an emergent feature of the robot’s functionality (Badyaev 2011). This can happen if they become superior to humans intellectually, physically, or “emotionally” (being stable and consistent). As a result, they might become benevolent influencers or decision makers, implicitly or explicitly arranging life for us. This effect can be compared to a parent-child relationship where the parent is better in understanding and anticipating situations and therefore confines the spatial range and activities of the child. Even though humans may not be physically harmed by the robot’s dominating behavior, human autonomy would be, at least partly, diminished.

      Meaningful Human Control

      The risks of harm associated with robot evolution as identified above all arise from the underlying control problem of (semi)autonomous robotic systems. In the Artificial Intelligence literature, solutions to this control problem are often phrased in terms of meaningful human control (Santoni de Sio and van den Hoven, 2018). This term acknowledges that whereas there may be no direct control–e.g., a steering wheel in a car–it may still be possible to have indirect control allowing for allocation of responsibilities (Di Nucci 2020; Nyholm 2020). For evolving robots this would mean that precautionary design measures are required to control the evolutionary process itself. Such measures could include:

      1) Centralized, externalized reproduction. A rigorous way of maintaining control over the system would be to set it up such that robot reproduction cannot take place “in the wild” but only in a centralized infrastructure–a reproduction center–where robot offspring can be made, for instance by 3D-printers and automated assembly facilities (Eiben et al., 2013; Hale et al., 2019). Limiting the reproduction to a single or a few centers not only allows keeping track of robot numbers, but also provides the option to restrict the number of robots produced per day. In addition, such a center could provide a possibility to test new robots for safety before releasing them into the outside world. Furthermore, a reproduction center can contain a “kill switch” that can be used to halt evolution by shutting down the reproduction process.

      2) Advanced prediction systems. Complex simulations and prediction models could provide the necessary previews of the evolutionary process and the emerging features of the resulting robots. Such a “crystal ball,” as Bostrom puts it, would allow humans to anticipate the developments and intervene if necessary (Bostrom 2014). To this end it is important to note that, contrary to natural organisms, robots can be monitored in detail. At the cost of some overhead for inspecting and logging the communications, actions, sensory inputs, and even the internal processes of the robots, a lot of data can be collected and utilized. To be realistic, modeling and predicting the complex evolutionary process of robots in the real world is currently beyond reach. In addition to practical constraints (data collection, data volumes, processing power) there can be fundamental limitations regarding the prediction of emergent behaviors in a population of evolving and interacting robots in environments that are dynamically changing and not fully known. However, meteorological and epidemiological simulations demonstrate that predictions need not be accurate to the finest details to be useful.

      3) Value loading. Another option for control suggested by Bostrom (Bostrom 2014) is to instill certain properties inside the robot that make sure the robot does not set goals that are risky for humans. For instance, the system might be set up so that robots do not want to reproduce independently, so they will not “revolt” against the centralized reproduction center.

      These control measures, meaningful as they are, can leave humans vulnerable because of the very nature of evolving systems, in which change is inherent. Evolving robots represent a whole new breed of machines that can and will change their form and behavior. This implies that robots could adapt their behavior to escape the implemented control measures. Therefore, controlling evolving robots is different from controlling the production of fixed entities, such as cars. One would therefore need to continuously adjust the control measures to stay ahead of evolutionary escape routes, not unlike a co-evolutionary arms race (Thompson 1994). In what follows, we highlight three possible evolutionary escape routes: two technology-related possibilities and one that exploits human emotional vulnerabilities and normative judgments.

      First, the robots could develop solutions to circumvent the technological safeguards that have been put into place. A very unlikely, but conceivable escape route is the “Jurassic Park scenario,” where the robots find an alternative way of reproducing outside the central reproduction facility. To mitigate this risk, additional reproductive constraints may be necessary, e.g., using an ingredient that is necessary for being viable and controlling its supply (Ellery and Eiben 2019). A more realistic way of escaping control is that robots stop sharing their operational data and thereby evade monitoring. This could partly be resolved by a mandatory data recorder built into all robots, similar to the flight recorders (a.k.a. black box) in airplanes (Winfield and Jirotka 2017; Winkle 2020).

      Second, while Bostrom [36] suggests “value loading” for robotic and AI systems, in the case of evolving robot populations it is important to realize that it would be risky to rely on the (current) features of individual robots. In an evolutionary process the robot’s features undergo change. This does not mean that creating certain features (such as values or goals) in the robots is without merit, but it should be combined with some form of verification that the goals/values continue to be present in the newly produced robots. This requires new technologies that effectively combine immutable values with adaptable robot features and protocols for a thorough screening of “newborn” robots before they are allowed to leave the reproduction facility.

      A third possibility for evolving robots to escape human control is non-technological, exploiting deep-seated emotional response patterns. Specifically, humans may grow fond of robots, developing feelings of “affection” towards them (Carpenter 2016; Darling 2017). This emotional vulnerability is probably the result of the long evolutionary history of humans, which has equipped our brains with various motivational and affective pathways tuned to human psychology (Damiano and Dumouchel 2018; Nyholm 2020). Consequently, we are responding to robots with brains and emotional sensitivities that are well-adapted to interacting with fellow human beings and familiar animals, but not necessarily adequate to responding sensibly to machines. Robots and other artificially intelligent technologies, therefore, may “push our Darwinian buttons” in ways that we may not upon reflection find suitable (Turkle 2004).

      These sensibilities can be exploited if robots evolve features humans tend to like such as, possibly, big eyes, certain locomotion patterns or “lovely” sounds and gestures. Such features can increase attachment, undermine human controller’s ability to remain objective and provide an evolutionary advantage on the long run. For instance, a robot could entice a human into supplying it with extra energy or allowing it to reproduce. Similarly, a “lovable” robot could prevent a human from switching off the robot or using the “kill switch” to shut down the evolution of the whole robotic species. These scenarios illustrate how emotions could get in the way of strict human control and induce an evolutionary bias [cf. (Bryson 2018)].

      Filling the Responsibility Gap

      The above-mentioned considerations concern ways of controlling the process of robot evolution. But there are more conceptual–ethical–concerns as well. Being able to ascribe responsibility is always important when risks are involved, both from an ethical and a legal point of view. The relevant form of responsibility here does not only have a backward-looking component (who can be blamed when things have gone wrong?), but is also forward-looking and clarifies who should do what in order to maintain control, e.g., mitigating risks and taking precautions (Nihlen Fahlquist 2017; Di Nucci 2020). Thus, a prominent issue is a potential responsibility gap. A responsibility gap occurs when there are significant risks of harm for which someone should take responsibility, but there is no obvious candidate to ascribe the responsibility to (Matthias 2004; Sparrow 2007; Nyholm 2020). In the solutions above, the control envisioned will, at least in part, be exercised by humans. The crucial question is then how potential responsibility gaps might be filled.

      At this point it may be instructive to refer to recent work by Santoni de Sio and Van den Hoven (Santoni de Sio and van den Hoven, 2018). They have developed a “track-and-trace” account of meaningful human control. The tracking part requires that the system behaves according to rules or paths that track human interests. In other words, the system should behave in a way that aligns with human values and interests. The tracing part requires that the robotic behavior can be traced back to at least one person who understands how the process works, as well as its moral and social significance. It might be added here that, ideally, this should work like when one is tracking and tracing a parcel: it should be possible to monitor how things are developing, just like one can monitor the journey of a parcel [(Nyholm 2020), p. 78].

      The track-and-trace theory, understood as including the monitoring condition, looks promising from an ethical perspective for robot evolution. If the robot evolution is tracking human interests, if there are people who understand the process and its moral significance, and are able to monitor the robot evolution, then we can tentatively say that meaningful human control over this process has been achieved. If those conditions are fulfilled, that could help to fill any potential responsibility gaps.

      The control solutions suggested above cover the “tracking” requirements from the track-and trace theory to a significant extent. The centralized, externalized reproduction centers would allow humans to monitor the numbers and types of robots produced each day, while the crystal ball would give insight into the future directions of the evolutionary path of the robots. Being able to monitor robot development in these ways, the humans involved would be able to observe whether human interests are being tracked. If not, they could use the “kill switch.” The tracing part however, would need to be developed further as, at the moment, we do not have an appropriate level of understanding nor control of how the evolutionary process unfolds. At the same time, if studying these evolutionary processes in robots would deepen our scientific understanding of evolution, this could in effect help to also fulfil the tracing condition.

      That being said, the big challenge here is, again, the inherent variability of an evolutionary system where new features emerge through random mutations and recombination of parental properties. Even though the whole system, specifically the genetic code (the robotic DNA), the mutation operators, and recombination operators are designed by humans, it is not clear to what extent these humans can be held responsible for the effects over several generations. On the positive side, let us reiterate that robots are observable, thus the genetic material and genealogy tree of an evolving population can be logged and inspected. In principle, it is possible to examine a newly created genotype (the robotic zygote) before the corresponding phenotype (the robot offspring) is constructed and destroy the genotype if it fails a safety test.

      Protecting Evolving Robots From Humans

      In the sections above, our main concern was to protect the human race from evolving robots. However, the matter can be inverted if we conceive of robots that can evolve and learn as a form of artificial life. Considering them as a form of life implies different kinds of ethical considerations (Coeckelbergh 2012; Bryson 2018; Gunkel 2018; Danaher 2020), which go beyond the issues of affection and attachment to individual robots as discussed above, and refer to the whole robotic population. The key is to see the robot population as a species that requires some moral consideration. Such an ethical view could be motivated by two arguments.

      First, these robots have the possibility of reproduction, and in biology the crucial difference between life and non-life is reproduction. In addition, these robots share other characteristics with other life forms, such as movement and energy consumption. Second, the robots are not only able to reproduce; they themselves have also evolved. In other words, these robots are not (just) the result of human design, but of an evolutionary process. If humans, generally, start to feel that these robots are forms of life–albeit artificial–this could entail some perceived moral obligations, like we may feel we have obligations towards whales, dolphins, dogs, and cats. In other words, we may feel that these robots–and along with them, their evolutionary process–deserve some level of protection. This could raise the issue of robot rights, similarly to how we think about animal rights (Gellers 2020).

      Second, it could be questioned whether certain control-interventions, such as the use of the “kill switch”, are ethical regarding such forms of artificial life. An essential question here is if terminating evolutionary robots should be seen as switching off a machine or as killing a living being (Darling 2021). In any case, such moral considerations could potentially limit the possibilities of meaningful human control of robot evolution we have discussed.

      Conclusion

      Robot evolution is not science fiction anymore. The theory and the algorithms are available and robots are already evolving in computer simulations, safely limited to virtual worlds. In the meanwhile, the technology for real-world implementations is developing rapidly and the first (semi-)autonomously reproducing and evolving robots are likely to arrive within a decade (Hale et al., 2019; Buchanan et al., 2020). Current research in this area is typically curiosity-driven, but will increasingly become more application-oriented as evolving robot systems can be employed in hostile or inaccessible environments, like seafloors, rain-forests, ultra-deep mines or other planets, where they develop themselves “on the job” without the need for direct human oversight.

      A key insight of this paper is that the practice of second order engineering, as induced by robot evolution, raises new issues outside the current discourse on AI and robot ethics. Our main message is that awareness must be created before the technology becomes mature and researchers and potential users should discuss how robot evolution can be responsibly controlled. Specifically, robot evolution needs careful ethical and methodological guidelines in order to minimize potential harms and maximize the benefits. Even though the evolutionary process is functionally autonomous without a “steering wheel” it still entails a necessity to assign responsibilities. This is crucial not only with respect to holding someone responsible if things go wrong, but also to make sure that people take responsibility for certain aspects of the process–without people taking responsibility, the process cannot be effectively controlled. Given the potential benefits and harms and the complicated control issues, there is an urgent need to follow up our ideas and further think about responsible robot evolution.

      Author Contributions

      AE initiated the study and delivered the evolutionary robotics perspective. JE validated the biological soundness and brought the evolutionary biology literature GM and SN bridged the area of (AI) ethics and the evolutionary robotics context.

      Funding

      SN’s work on this paper is part of the research program Ethics of Socially Disruptive Technologies, which is funded through the Gravitation program of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (NWO grant number 024.004.031).

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The handling Editor declared a past co-authorship with one of the authors (AE).

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      We do not consider evolutionary soft robotics here, because that field mainly focuses on actuators and sensors, not on fully autonomous, untethered (soft) robots.

      References Ashlock Daniel. (2006). Evolutionary Computation for Modeling and Optimization. New York: Springer) xix, 571. Bongard J. C. (2013). Evolutionary Robotics, Commun . ACM 56, 7485. Badyaev A. V. (2011). Origin of the Fittest: Link between Emergent Variation and Evolutionary Change as a Critical Question in Evolutionary Biology. Proc. R. Soc. B. 278 (1714), 19211929. 10.1098/rspb.2011.0548 Beauchamp T. L. Childress J. F. (2019). Principles of Biomedical Ethics. Eighth edition. New York: Oxford University Press. Bongard J. (2011). Morphological Change in Machines Accelerates the Evolution of Robust Behavior. Proc. Natl. Acad. Sci. 108 (4), 12341239. 10.1073/pnas.1015390108 Bostrom Nick. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford: Oxford University Press. Brey P. (2017). in Ethics of Emerging Technology. Ethics of Technology. Editor Hansson S.-O. (London: Rowman & Littlefield International), 175192. Brodbeck L. Hauser S. Iida F. (2015). Morphological Evolution of Physical Robots through Model-free Phenotype Development. PLoS One 10 (6), e0128444. 10.1371/journal.pone.0128444 Bryson J. J. (2018). Patiency Is Not a Virtue: the Design of Intelligent Systems and Systems of Ethics. Ethics Inf. Technol. 20 (1), 1526. 10.1007/s10676-018-9448-6 Buchanan E. Le Goff L. K. Li W. Hart E. Eiben A. E. De Carlo M. (2020). Bootstrapping Artificial Evolution to Design Robots for Autonomous Fabrication. Robotics 9 (4), 106. 10.3390/robotics9040106 Čapek K. (1920). R.U.R.: Rossums Universal Robots (English Translation). Available at: http://www.gutenberg.org/ebooks/59112 . Carpenter Julie. (2016). Culture and Human-Robot Interaction in Militarized Spaces: A War story (Emerging Technologies, Ethics and International Affairs. Burlington, VTcm: Ashgate Publishing Company. Coeckelbergh Mark. (2012). Growing Moral Relations: Critique of Moral Status Ascription (Houndmills, Basingstoke, Hampshire. New York: Palgrave Macmillan) xvi, 239. Damiano L. Dumouchel P. (2018). Anthropomorphism in Human-Robot Co-evolution. Front. Psychol. 9, 468. 10.3389/fpsyg.2018.00468 Danaher J. (2020). Welcoming Robots into the Moral Circle: A Defence of Ethical Behaviourism. Sci. Eng. Ethics 26 (4), 20232049. 10.1007/s11948-019-00119-x Darling Kate. (2021). The New Breed: What Our History with Animals Reveals about Our Future with Robots (First edition. edn.; New York, NY: Henry Holt and Company) pages cm. Darling K. (2017). “‘Who’s Johnny?’ Anthropological Framing in Human-Robot Interaction, Integration, and Policy,” in Robot Ethics 2.0: From Autonomous Cars to Artificial Intelligence. Editors Lin P. Abney K. Jenkins R. (Oxford: Oxford University Press), 173192. de Jong K. A. (2006). Evolutionary Computation: A Unified Approach. Cambridge, Mass: MIT Press) ix, 256. Di Nucci E. (2020). The Control Paradox: From AI to Populism. London: Rowman & Littlefield International. Doncieux S. Bredeche N. Mouret J-B. Eiben A. E. (2015). Evolutionary Robotics: what, Why, and where to. Front. Robotics AI 2 (4). 10.3389/frobt.2015.00004 Eiben A. E. Bredeche N. Hoogendoorn M. Stradner J. Timmis J. Tyrrell A. M. (2013). “The Triangle of Life: Evolving Robots in Real-Time and Real-Space,” in Proc. Of ECAL 2013. Editor Lio P. (MIT Press), 10561063. 10.7551/978-0-262-31709-2-ch157 Eiben A. E. Kernbach S. Haasdijk E. (2012). Embodied Artificial Evolution. Evol. Intel. 5 (4), 261272. 10.1007/s12065-012-0071-x Eiben A. E. Smith J. E. (2003). Introduction to Evolutionary Computing. Springer. Eiben A. E. Smith J. (2015). From Evolutionary Computation to the Evolution of Things. Nature 521 (7553), 476482. 10.1038/nature14544 Ellery A. Eiben A. E. (2019). “To Evolve or Not to Evolve? that Is the Question,” in ALIFE 2019: Proceedings of the Artificial Life Conference 2019. Fellermann H. Bacardit J. Goñi-Moreno Á. Füchslin R. M. . Editors, 357364. Ellery A. (2020). How to Build a Biological Machine Using Engineering Materials and Methods. Biomimetics (Basel) 5 (3), 35. 10.3390/biomimetics5030035 Floreano D. Keller L. (2010). Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection. Plos Biol. 8 (1), e1000292. 10.1371/journal.pbio.1000292 Floridi L. Cowls J. Beltrametti M. Chatila R. Chazerand P. Dignum V. (2018). AI4People-An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds & Machines 28 (4), 689707. 10.1007/s11023-018-9482-5 Futuyma D. J. (2013). Evolution (Massachusetts. USA: Sinauer Associates. Gellers J. (2020). Rights for Robots: Artificial Intelligence, Animal and Environmental Law. London: Routledge. Gordon J. S. Nyholm S. (2021). Ethics of Artificial Intelligence. (Internet Encyclopedia of Philosophy https://iep.utm.edu/ethic-ai/. Gunkel David. J. (2018). Robot Rights. Cambridge, Massachusetts: MIT Press) xiv, 237. Hale M. F. Buchanan E. Winfield A. F. Timmis J. Hart E. Eiben A. E. (2019). MIT Press, 95102.The ARE robot fabricator: How to (re) produce robots that can evolve in the real world. 2019 Conference on Artificial Life Hansson S. O. (2017). in Ethical Risk Analysis. Ethics of Technology. Editor Hansson S.-O. (London: Rowman & Littlefield International), 157172. Howard D. Eiben A. E. Kennedy D. F. Mouret J.-B. Valencia P. Winkler D. (2019). Evolving Embodied Intelligence from Materials to Machines. Nat. Mach Intell. 1 (1), 1219. 10.1038/s42256-018-0009-9 Jelisavcic M. de Carlo M. Hupkes E. Eustratiadis P. Orlowski J. Haasdijk E. (2017). Real-world Evolution of Robot Morphologies: A Proof of Concept. Artif. Life 23 (2), 206235. 10.1162/artl_a_00231 Kriegman S. Blackiston D. Levin M. Bongard J. (2020). A Scalable Pipeline for Designing Reconfigurable Organisms. Proc. Natl. Acad. Sci. USA 117, 18531859. 10.1073/pnas.1910837117 Lipson H. Pollack J. B. (2000). Automatic Design and Manufacture of Robotic Lifeforms. Nature 406 (6799), 974978. 10.1038/35023115 Long J. (2012). Darwin’s Devices: What Evolving Robots Can Teach Us about the History of Life and the Future of Technology. New York: Basic Books. Matthias A. (2004). The Responsibility gap: Ascribing Responsibility for the Actions of Learning Automata. Ethics Inf. Technol. 6 (3), 175183. 10.1007/s10676-004-3422-1 Müller V. (2020). “Ethics of Robotics and AI,” in Stanford Encyclopedia of Philosophy. Editor Zalta E. N. . (online) Available at: https://plato.stanford.edu/archives/win2020/entries/ethics-ai/ . Nihlen Fahlquist J. (2017). in Responsibility Analysis. Ethics of Technology. Editor Hansson S.-O. (London: Rowman & Littlefield International), 129142. Nolfi S. Floreano D. (2000). Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. Cambridge, MA: MIT Press. Nyholm Sven. (2020). Humans And Robots: Ethics, agency, and Anthropomorphism London: Rowman & Littlefield international. Robbins S. (2019). A Misdirected Principle With a Catch: Explicability for AI. Minds and Machines 29, 495514. Russell S. Norvig P. (2020). Artificial Intelligence: A Modern Approach. 4th edition. Hoboken: Prentice-Hall. Russell S. (2019). Human Compatible: Artificial Intelligence and the Problem of Control. London: Penguin. Santoni de Sio F. van den Hoven J. (2018). Meaningful Human Control over Autonomous Systems: A Philosophical Account. Front. Robot. AI 5, 15. 10.3389/frobt.2018.00015 Sparrow R. (2007). Killer Robots. J. Appl. Philos. 24 (1), 6277. 10.1111/j.1468-5930.2007.00346.x Thompson J. N. (1994). The Coevolutionary Process. Chicago: University of Chicago Press. Torresen J. (2018). A Review of Future and Ethical Perspectives of Robotics and AI. Front. robotics AI 4 (75). 10.3389/frobt.2017.00075 True J. R. Carroll S. B. (2002). Gene Co-option in Physiological and Morphological Evolution. Annu. Rev. Cel Dev. Biol. 18, 5380. 10.1146/annurev.cellbio.18.020402.140619 Turkle S. (2004). Whither Psychoanalysis in Computer Culture? Psychoanalytic Psychol. 21 (1), 1630. 10.1037/0736-9735.21.1.16 van de Poel I. (2016). An Ethical Framework for Evaluating Experimental Technology. Sci. Eng. Ethics 22 (3), 667686. 10.1007/s11948-015-9724-3 Vargas Patricia. A. Di Paolo E. A. Harvey I. M. Husbands P. Moioli R. (2014). The Horizons of Evolutionary Robotics (Intelligent Robotics and Autonomous Agents. MIT Press) x, 302. Vujovic V. Rosendo A. Brodbeck L. Iida F. (2017). Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots, Artif. Life, 23, 169185. 10.1162/artl_a_00228 Waibel M. Floreano D. Keller L. (2011). A Quantitative Test of Hamilton's Rule for the Evolution of Altruism. Plos Biol. 9 (5), e1000615. 10.1371/journal.pbio.1000615 Winfield A. F. T. Jirotka M. (2017). “The Case for an Ethical Black Box,” in Annual Conference Towards Autonomous Robotic Systems (Springer), 262273. 10.1007/978-3-319-64107-2_21 Winkle K. (2020). “What Could Possibly Go wrong?"Logging HRI Data for Robot Accident Investigation',” in HRI '20: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 517519. Zykov V. Mytilinaios E. Adams B. Lipson H. (2005). Self-reproducing Machines. Nature 435 (7039), 163164. 10.1038/435163a
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.jzsbmall.com.cn
      www.hiyacar.com.cn
      guuwfy.com.cn
      www.obsmo.org.cn
      qutq.com.cn
      nu1.com.cn
      www.pinlaser.com.cn
      npkyyd.com.cn
      www.wowo1688.com.cn
      www.wltgsn.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p