Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2018.02322 Psychology Original Research Using Card Sorting to Explore the Mental Representation of Energy Transition Pathways Among Laypeople Doran Rouven 1 * Böhm Gisela 1 2 Hanss Daniel 3 1Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway 2Department of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway 3Department of Social Sciences, Hochschule Darmstadt – University of Applied Sciences, Darmstadt, Germany

Edited by: Tobias Krettenauer, Wilfrid Laurier University, Canada

Reviewed by: Nicole Huijts, Eindhoven University of Technology, Netherlands; Sgouris Sgouridis, Masdar Institute of Science and Technology, United Arab Emirates

*Correspondence: Rouven Doran, rouven.doran@uib.no

This article was submitted to Environmental Psychology, a section of the journal Frontiers in Psychology

04 12 2018 2018 9 2322 31 05 2018 06 11 2018 Copyright © 2018 Doran, Böhm and Hanss. 2018 Doran, Böhm and Hanss

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Meeting international emission targets will require major changes in the energy system. This paper addresses the public perception of different pathways to energy transition, and their mental representation in particular. A study is reported that employed card sorting to explore how laypeople categorize possible pathway components with respect to their perceived similarity (Norwegian sample, n = 61; German sample, n = 71). Data sets that were obtained by this method were subjected to multidimensional scaling and cluster analysis. Results for both samples consistently indicate that people differentiate components located at the individual level (e.g., vegetarian food, avoid long flights, walking and cycling), components located at the societal level (e.g., taxes, regulations, urban planning), and components concerned with technological solutions (e.g., hydropower, wind farms, solar panels). These results give reason to assume that laypeople from Norway and Germany share a multifaceted understanding of energy transition, yet some differences between samples were present with regard to the substructure of the individual level category. Future research can build on the present results to explore the subjective meanings of these structures, possibly identifying barriers to public engagement with energy transition.

mental representation climate change energy transition card sorting perceived similarity cross-national Norway Germany

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      There is a large scientific consensus that human activities contribute to global climate change, most notably through carbon dioxide emissions (IPCC, 2014). It follows from this scientific insight that the decarbonization of society is paramount in order to meet international targets for limiting global temperature increases (UNFCCC, 2015). One prerequisite for meeting these targets are fundamental changes in energy systems, for instance through increasing the market share of renewables (European Commission, 2011). This paper focuses on exploring the public perception of pathways connected to this energy transition, and on people’s mental representation of such pathways particularly1. It has been argued in the psychological literature that studying mental representations can help ensure that interventions designed to implement changes in energy use are communicated and presented in ways that are meaningful for the target audience (Gabe-Thomas et al., 2016).

      Böhm et al. (in press) reported findings to suggest that pathways to energy transition are distinguishable according to the level at which they are located: individual actions, societal actions, and technologies. Individual actions are energy-related behaviors performed by individuals, for example at home or at the workplace. Examples are turning down the heat or traveling by public transport rather than by car. Societal actions operate at a larger scale such as through legislation introduced by local or national governments. Typical examples are regulatory policies implemented with the intention to foster low-carbon products and business practices. Technologies refer to the availability and usage of energy sources such as renewables (e.g., hydro, solar, wind). The distinction of these levels has proven useful in several respects. For example, they have emerged as different categories of risks that differ in their public perception and acceptability as well as in the degree of controversy they elicit in public discourse (Fox-Glassman and Weber, 2016; Bassarak et al., 2017). Individual versus collective have also been used to describe levels of action that might differ in their perceived efficacy in tackling problems such as climate change (Lubell, 2002; Koletsou and Mancy, 2011). And preferences for climate action seem to be related to different worldviews such as individualism, egalitarianism or hierarchy (Jones, 2014).

      One distinction that has proven fruitful in the psychological literature concerns the type of action that is undertaken, namely curtailment versus efficiency (Gardner and Stern, 2008; Dietz et al., 2009). Curtailment actions reduce energy consumption by cutting back on desired or habitual levels of activity, such as by turning down the heating, usually implying some degree of restriction and limitation of consumption or convenience. Efficiency actions improve the efficiency of energy behaviors without reducing the level of activity and without imposing substantial restrictions. An example are investments in improved housing insulation. Böhm et al. (in press) suggested that this distinction could furthermore prove useful in classifying energy-related actions beyond individuals and households. Examples are transport policies aimed at reducing carbon intensive commuting (e.g., restrictions on inner-city car use, i.e., curtailment action at the societal level), as well as legislation implemented for raising the attractiveness of possible alternatives (e.g., subsidies for electric cars; i.e., efficiency action at the societal level). On a related note, technologies can contribute to making the energy sector less reliant on fossil fuels (e.g., through renewables; i.e., curtailment action at the technological level), whilst other technologies can provide means to cope with carbon emissions that stem from the burning of fossil fuels (e.g., carbon capture and storage; i.e., efficiency action at the technological level).

      Baird and Brier (1981) highlighted the role of similarity judgments when laypeople think about energy consumption. Participants were placed in front of paper cards showing a large variety of small-scale (e.g., toaster) and large-scale (e.g., airplane) items. Instructions were to first group the items in whatever manner they wished, and then to rank the items according to their energy requirements. It turned out that the outcome from these two tasks differed in that participants only categorized items alongside their respective energy requirements after explicit instruction. When participants could group the items without explicit instruction, they rather chose to build categories around similarities in function and size. Physical volume was further the dominating feature when participants ranked household appliances based on their anticipated energy consumption per hour. Gabe-Thomas et al. (2016) used a similar method for exploring views about energy consumption among households in another context. Participants received a selection of household appliances with instructions to categorize these appliances according to their similarity and/or dissimilarity. Three separate categories emerged from the participants’ sorting of the appliances. Two of these categories could be interpreted as reflecting a shared meaning, one comprised activities and the other one comprised locations. The appliances in the remaining category shared no dominant theme other than that they were seemingly unrelated to the appliances assigned to the other categories. Other studies have shown that laypeople emphasize curtailment before efficiency when ranking energy devices (or activities) according to their saving potential (Kempton et al., 1985; Attari et al., 2010).

      The research presented in this paper utilizes a methodological approach that is reminiscent of the studies conducted by Baird and Brier (1981) and Gabe-Thomas et al. (2016). Rather than directing the participants toward concepts considered relevant by experts, this approach applies card sorting to gain knowledge about how laypeople themselves think about energy issues. Having people judge the similarity between objects is a non-directive way of eliciting mental representations about some issue of interest (Rosenberg and Kim, 1975). This approach leaves it up to the participants how they define similarity and which features of the objects they consider relevant (Barnett, 2008). The general strategy is to derive a structure of the objects from the sorting and then to interpret this structure by trying to identify the underlying criteria that people relied upon throughout the process. The derived structure can be dimensional (yielded by, for example, multidimensional scaling techniques) or categorical (yielded, for example, by cluster analysis). The interpretation of the structure can be enriched by comparing it with data material from relevant reference groups (Canter et al., 1985) and/or by taking into account additional information such as respondents’ knowledge about the concepts under investigation (Barnett, 2008).

      In the following, we will report on an empirical study that explored how laypeople think about pathways to change current energy systems into more sustainable ones, for instance by reducing carbon emissions resulting from energy harvesting and use. A card sorting task was used to gain insights into the mental representation of actions, policies, and/or technologies that may contribute to this energy transition. Any single measure to promote change in energy systems will hereafter be referred to as an energy transition pathway component2. The aim was (i) to investigate how laypeople structure different components in terms of their perceived similarity, and, if possible, (ii) to identify shared patterns underlying these structures. Participants were recruited in Norway and Germany, which are countries shown to differ alongside their current energy profiles (Arnold et al., 2016) and public energy preferences (Steentjes et al., 2017). This allowed us to explore similarities and/or differences in the mental representation of energy transition pathways in a cross-national context.

      Materials and Methods Participants

      Data were collected between November 2016 and August 2017 at university campuses in Norway and Germany. Participants were invited to take part in the study through e-mail lists, flyers distributed in cafeterias, announcements in classes, and word-of-mouth advertizing. Everybody who took part in the study was offered either a gift voucher worth NOK50 (Norway) or a monetary incentive of €10 (Germany). Each participant was informed about the general aim of the study, that their responses would be anonymous, and that they could withdraw from their participation at any time. Informed consent was assumed through completion of the card sorting task.

      In Norway, n = 61 students participated in the study, most of which (n = 49) were enrolled in the “professional studies in psychology” programme. The remaining participants (n = 12) studied work and organizational psychology, comparative politics, constructional and environmental engineering, data technology, design, energy engineering, history, law, product development and production, sociology, or web design. Participants were between 19 and 34 years of age (M = 22.97, SD = 2.66), and n = 48 were female. Only a minor portion of the participants indicated that they had heard the term “energy transition” before (n = 16).

      In Germany, the sample consisted of n = 71 students, thereof n = 61 were enrolled in the “business psychology” programme. The remaining participants (n = 10) studied information law, social work, or sociology. The age range was from 19 to 53 years (M = 24.27, SD = 6.82), and n = 44 reported to be female. All participants indicated to have heard the term “energy transition” before (n = 71).

      Materials

      A selection of 25 different energy transition pathway components was presented on paperboard cards, each card featuring one component; an overview is provided in Table 1. The components resemble those used in a study by Böhm et al. (2018) who based their selection upon desk research, interviews with laypeople (i.e., university students), as well as interviews with experts (i.e., climate and political scientists). Each component belonged to one of three implementation levels (i.e., individual actions, societal actions or technologies) and one of two types of energy-related activities (i.e., efficiency or curtailment) described earlier in the introduction.

      List of energy transition pathway components included in the materials.

      Label Energy transition pathway component (translation) Norwegian sample (original) German sample (original)
      appliances Energy efficient home appliances (e.g., light bulbs) Energieffektive husholdningsartikler (f.eks. sparepærer) Energieeffiziente Haushaltsartikel (z.B. Glühbirnen)
      offsets Climate compensation (e.g., when booking flights) Klimakvoter Klimakompensationen (z.B. beim Flüge buchen)
      share Sharing economy (e.g., carpooling) Delingsøkonomi (f.eks. samkjøring) Sharing economy (z.B. Fahrgemeinschaften)
      vegetarian Vegetarian food Vegetarmat Vegetarisches Essen
      no-fly Avoid long flights Unngå lange flyreiser Vermeidung langer Flugreisen
      cycle Walking and cycling Gå og sykle Gehen und Rad fahren
      political Political engagement Politisk engasjement Politisches Engagement
      saving Energy saving (e.g., turn down heating) Energisparing (f.eks. skru ned varmen) Energiesparen (z.B. Heizung herunterdrehen)
      science Science Vitenskap Wissenschaft
      subsidies Subsidies (e.g., for renewable energy) Subsidier (f.eks. for fornybar energi) Subventionen (z.B. für erneuerbare Energien)
      int-agree International agreements (e.g., on carbon emissions) Internasjonale avtaler (f.eks. på karbonutslipp) Internationale Abmachungen (z.B. für Kohlenstoffemissionen)
      public-trans Public transportation Offentlig transport Öffentlicher Transport
      int-marked International trade with carbon offsets Internasjonalt karbonmarked Internationaler Handel mit Kohlenstoffemissionen
      educ Environmental education (e.g., in school, at work) Miljøundervisning Umweltbildung (z.B. in der Schule, bei der Arbeit)
      tax Taxes (e.g., on carbon intensive goods and services) Skatter (f.eks. på karbonintensive varer og tjenester) Steuern (z.B. auf kohlenstoffintensive Waren und Dienstleistungen)
      regulate Regulations (e.g., laws to reduce sales of fossil fuel cars) Reguleringer (f.eks. lover for å redusere salg av fossile biler) Regulierungen (z.B. Gesetze, um den Verkauf benzin- und dieselbetriebener Autos zu reduzieren)
      urban-dev Urban planning (e.g., car free zones) Byutvikling (f.eks. bilfri soner) Stadtplanung (z.B. autofreie Zonen)
      nuclear Nuclear power Atomkraft Atomkraft
      wind Wind farms Vindmølleparker Windparks
      solar Solar panels Solcellepaneler Solarmodule
      e-car Electric cars Elektriske biler Elektroautos
      water Hydropower Vannkraft Wasserkraft
      IT Information technologies (e.g., monitor home energy use) Informasjonsteknologier (f.eks. monitorering av energibruk i hjemmet) Informationstechnologien (z.B. Überwachung des Energieverbrauchs im Haus)
      buildings Energy efficient houses (e.g., geothermal heating) Energieffektive hus (f.eks. jordvarme) Energieeffiziente Häuser (z.B. geothermale Wärme)
      CCS Carbon capture and storage Karbonfangst og -lagring Kohlenstoffabscheidung und -lagerung
      Paperboard cards concerned with climate compensation [offsets] and environmental education [educ] included an example in parentheses in the German sample but not in the Norwegian sample.
      Procedure

      Participants were invited individually to facilities at the local psychology department. Upon arrival, they were welcomed and seated by a research assistant who introduced the general topic of the study (i.e., the study is about different actions related to energy transition). A definition of the term “energy transition” was provided as well (i.e., long-term changes in energy systems that aim at contributing to a more sustainable society).

      The paperboard cards featuring the pathway components were randomly distributed on a table in front of the participants, who were instructed to sort the cards into piles on the basis of perceived similarity. Cards featuring pathway components that were perceived to be similar were to be piled together. Participants were told they should form at least two and a maximum of 25 piles of cards, according to what they considered appropriate. They could leave out cards that they did not want to sort.

      After the sorting task, participants were asked what criteria they had used for piling the cards (open response format). The sorting of each participant was documented on a paper form along with the sorting criteria that were mentioned by the participants. Cards that were piled together were assigned the same number. A unique number was used for each pile of cards; the number “0” was assigned to those cards that were not sorted by the participants. The form also provided space for filling in socio-demographic information (i.e., age, gender, and study program), whether participants had heard the term “energy transition” before (yes or no), and possible concluding remarks. Each participant was thanked by the research assistant for taking part in the study and received the voucher or monetary incentive. On average, individual participation took 15 min.

      Analyses

      From the sorting that was done by the participants, we derived a measure of similarity of the energy transition pathway components by counting for each pair of components how many participants had placed the pair in one mutual pile and by that had expressed that they considered the two components of the pair similar. Thus, we obtained two similarity matrices of the pathway components, one for the Norwegian and the other for the German sample. The rows as well as the columns of each similarity matrix correspond to the pathway components. Each cell represents a pair of components and contains the number of participants who had placed the pair in a mutual pile. This pairwise similarity measure can range from zero (none of the participants regarded the two components in a pair as similar) to the sample size (all participants regarded the two components in a pair as similar). For technical reasons, the similarities were converted to dissimilarities simply by subtracting the count from the sample size, so that higher numbers now represented greater dissimilarity. This resulted in one dissimilarity matrix for the Norwegian sample and one for the German sample.

      The analyses will be reported in the following order: First, we explore the dimensional structure of the dissimilarities by means of a multidimensional scaling analysis (MDS), which represents the empirical dissimilarities as Euclidean distances in a low-dimensional space. This is done separately for the Norwegian and the German data, followed by a discussion of their correspondence. Second, we explore the categorical structure of the dissimilarities by means of a cluster analysis, again analysing the Norwegian and German data separately. Third, we describe an analysis of the open response data provided by participants to report on their subjective criteria employed when completing the sorting task.

      All analyses were computed in the R statistical environment (R Core Team, 2018), using the packages smacof, vegan, and Base R for the MDS and cluster analyses, and using the package tm for the analysis of sorting criteria.

      Results Dimensional Structure

      We conducted non-metric MDS analyses and used the Stress-1 value (Borg and Groenen, 2005) as an indicator of goodness-of-fit. For both the Norwegian and the German sample, we retained the two-dimensional solution, as is indicated by an elbow-like pattern of the stress values across increasing dimensionality of the configuration (similar to a scree test in exploratory factor analysis; cf. Mair et al., 2016). The stress values for the one- to six-dimensional solutions are for the Norwegian sample 0.317, 0.126, 0.075, 0.047, 0.030, and 0.020, respectively, and for the German sample 0.316, 0.120, 0.063, 0.038, 0.028, and 0.019, respectively.

      In order to evaluate the goodness-of-fit of the two-dimensional solutions, we conducted a permutation test (500 permutations) as suggested by Mair et al. (2016), which tests the empirical stress value against random permutations of the original data matrix. For the Norwegian sample, the permutation test yielded a mean stress value of 0.31 (σ = 0.01); and a one-sided test with α = 0.5% yielded a critical value of 0.303. For the German sample, mean stress was also 0.31 (σ = 0.01), with a critical value for a one-sided test of 0.301.

      Hence, for both the Norwegian and the German sample the observed stress value for the two-dimensional solution was significantly smaller than what would be expected under the null hypothesis of random permutations, indicating a good fit of the configurations to the data. Furthermore, the two-dimensional solutions for both the Norwegian and the German sample proved stable across different starting configurations for the MDS algorithm (Mair et al., 2016). In sum, the two-dimensional configurations can be considered robust and providing good fit to the data.

      The two configurations for the Norwegian and German data turned out to be very similar, which is apparent in their visual appearance (Figure 1) but is also indicated numerically by the correlation of the pairwise distances of the pathway components in the two configurations, r = 0.83, p = 0.001.

      Common plot of the MDS analysis configurations for the Norwegian and the German sorting data after Procrustes rotation of the German configuration. The Norwegian configuration is denoted by red circles, the German configuration by the smaller black circles; arrows indicate the distance between the two locations of an energy transition pathway component in the Norwegian and the German configurations. See Table 1 for the labels of the energy transition pathway components.

      Figure 1 shows the Norwegian and the German configuration in a common plot. We used the Norwegian configuration as the target configuration (denoted by red circles in Figure 1) and the German configuration as the rotated configuration (smaller black circles in Figure 1) in a Procrustes transformation. A Procrustes transformation removes irrelevant differences between two configurations by applying admissible transformations (rotation, dilation, translation) to move one configuration (the rotated configuration) as close to the other (the target configuration) as possible. The two configurations are then directly comparable. The arrows in Figure 1 show how far a pathway component in the German configuration is away from the same component in the Norwegian configuration (labels of the pathway components are placed at the Norwegian configuration).

      In both samples, the pathway components form three groups that can be interpreted as corresponding to the presumed three levels (in the following, component labels shown in Figure 1 are given in brackets; see the label column of Table 1 for an explanation of the labels). The distances between the locations of a component in the Norwegian and the German configuration are generally not large in the sense that all components are in the same group in both samples; possibly with the exception of the component climate compensation (offsets) that was placed somewhat closer toward individual actions in the German sample but among the societal actions in the Norwegian sample.

      The horizontal axis may reflect a dimension with individual actions to the right (appliances, saving, vegetarian, no-fly, cycle, e-car, share, IT, buildings, public-trans), and societal actions and technologies to the left (CCS, nuclear, science, water, wind, solar, int-marked, int-agree, educ, subsidies, regulate, tax, urban-dev, political)3.

      The vertical axis may reflect a distinction between ways of implementing behavior change among individuals or groups at the bottom (urban-dev, political, public-trans, int-agree, regulate, tax, share, offsets, no-fly, cycle, int-marked, subsidies, vegetarian, educ, e-car, saving) and technological and engineering solutions at the top (nuclear, water, solar, wind, CCS, science, IT, buildings, appliances).

      Categorical Structure

      The same dissimilarity matrices that served as input to the MDS analyses were subjected to a hierarchical cluster analysis (Ward method), again separately for the Norwegian and the German data. The dendrograms of the resulting solutions are shown in Figure 2 for the Norwegian sample and in Figure 3 for the German sample. The hierarchical nature of the clustering allows considering classifications with different numbers of clusters, which may reflect varying levels of super- and subordinate mental categorizations.

      Dendrogram of the hierarchical cluster analysis (Ward) of the Norwegian sorting data. The ordinate axis indicates the distance between merged clusters. Dashed lines indicate the partitioning with three clusters. See Table 1 for the labels of the energy transition pathway components.

      Dendrogram of the hierarchical cluster analysis (Ward) of the German sorting data. The ordinate axis indicates the distance between merged clusters. Dashed lines indicate the partitioning with three and four clusters. See Table 1 for the labels of the energy transition pathway components.

      The cluster solution of the Norwegian data clearly indicates that Norwegian participants categorized the energy transition pathway components into three superordinate categories (in the following, component labels shown in Figures 2, 3 are given in brackets; cf. the label column of Table 1). Cluster 1 makes up pathway components concerned with information technologies (IT), energy efficient houses (buildings), public transportation (public-trans), electric cars (e-car), vegetarian food (vegetarian), flying (no-fly), walking and cycling (cycle), car sharing (share), energy efficient home appliances (appliances) and energy savings (saving). Cluster 2 reflects technologies relating to solar (solar), wind (wind), water (water), nuclear power (nuclear), as well as carbon capture and storage (CCS). Cluster 3 includes policy measures such as science (science), education (educ), international trade (int-marked), climate compensation (offsets), international agreements (int-agree), political engagement (political), urban development (urban-dev), subsidies (subsidies), taxes (tax) and regulations (regulate).

      The solution for the German data also indicates three superordinate categories, and the identified structure largely resembles that of the Norwegian data. There are few components whose grouping differed in the two samples. Again, German participants placed offsets together with individual rather than societal actions. Another view at Figure 3 suggests that – at a more subordinate level – individual actions can be divided in two subcategories, namely, pathway components concerned with energy use in the household (saving, IT, appliances, buildings; Cluster 1.1 in Figure 3) and other lifestyle aspects potentially relevant to promote energy transition (e-car, public-trans, no-fly, share, cycle, offsets, vegetarian; Cluster 1.2 in Figure 3).

      Sorting Criteria

      The analysis of the sorting criteria focused on term frequencies based on the open response data provided by the participants in both samples. The trimming of the text corpus involved transforming all letters to lower case, removing all numbers and removing punctuation. Further trimming included the removal of stop words (i.e., words that usually do not carry meaning in the respective language) in addition to the stripping of white space (i.e., removal of excessive blanks etc.). This procedure resulted in a total number of n = 288 terms in the Norwegian sample, and n = 403 terms in the German sample, each of which represented a unique word.

      Table 2 lists the thirty most frequently mentioned terms for both samples in order of descending frequency. Many responses involved repetitions of the wording presented on the paperboard cards, yet references about the level at which these pathway components are located were common in both samples. This is evident, for instance, from looking at the words used most often (top ten) when participants elaborated on their sorting criteria. As Table 2 shows, a sizable proportion of these words referred to the level of the component (listed in italics in the following): measure, science, transportation, vegetarian food, nuclear power, individual level, climate compensation, level, public, and political (Norwegian sample); politics, science, engagement, political, private, energy, attributed, do, umbrella term, and possibilities (German sample).

      List of term frequencies for the sorting criteria in each sample.

      Norwegian sample
      German sample
      n Terms (original) Terms (translation) n Terms (original) Terms (translation)
      42 Tiltak Measure 25 Politik Politics
      41 Vitenskap Science 25 Wissenschaft Science
      28 Transport Transportation 17 Engagement Engagement
      27 Vegetarmat Vegetarian food 15 Politisches Political
      25 Atomkraft Nuclear power 15 Privat Private
      21 Individnivå Individual level 13 Energie Energy
      20 Klimakvoter Climate compensation 13 Zugeordnet Attributed
      19 Nivå Level 12 Tun Do
      19 Offentlig Public 12 Überbegriff Umbrella term
      19 Politisk Political 11 Möglichkeiten Possibilities
      18 Energi Energy 10 Staat State
      16 Skatter Taxes 10 Transport Transportation
      15 Energisparing Energy saving 8 Energiewende Energy transition
      15 Internasjonalt International 7 Private Private
      15 Subsidier Subsidies 6 Ebene Level
      14 Vannkraft Hydropower 6 Erneuerbare Renewable
      13 Elbiler E-cars 6 Haushalte Household
      13 Gjøre Do 6 Internationale International
      13 Kast Throw 6 Maßnahmen Measures
      12 Byutvikling Urban planning 6 Überbegriffe Umbrella terms
      12 Hus House 5 Atomkraft Nuclear power
      12 Internasjonale International 5 Eigenes Own
      11 Energikilder Energy sources 5 Energien Energies
      11 Teknologi Technology 5 Essen Eating
      10 Fornybar Renewable 5 Haushalt Household
      10 Sykle Cycling 5 Karten Cards
      9 Biler Cars 5 Öffentlicher Public
      9 Elektriske Electric 5 Politische Political
      9 Energieffektive Energy efficient 5 Subventionen Subsidies
      9 Rest Rest 5 Vegetarisches Vegetarian
      Shown are the top-thirty most frequently used terms in descending order. n indicates the term frequency, that is, the number of times that the term was detected in the open response data.
      Discussion

      The present study employed card sorting for tapping into intuitive mental representations about energy transition pathways. The following discussion focuses on two parallel data collections, both asking participants to sort 25 possible pathway components according to their perceived similarity. Results show a close correspondence between the Norwegian and German samples insofar that at least three superordinate categorizations could be distinguished using Ward’s criterion for hierarchical clustering (Figures 2, 3). One cluster can be interpreted as referencing actions concerning individuals and/or households, another cluster seems concerned with technological solutions and the third cluster appears to represent actions located at the societal and/or political level. The overall pattern that emerged from the card sorting fits literature suggesting that laypeople construe energy transition as a multifaceted issue (Böhm et al., in press), but that corresponding mental representations are rather broad (Böhm et al., 2018). This interpretation was supported by the analysis of the open response data in which general terms such as “individual level” or “politics” were frequently used when participants stated criteria based on which they conducted the sorting (Table 2).

      Böhm et al. (in press) suggested that possible pathways to energy transition can be distinguished taxonomically based upon their level (i.e., individual, societal, technological) and type (i.e., curtailment, efficiency). The present findings draw parallels to this taxonomy in that participants sorted various components according to the component’s level of implementation. However, the findings do not support the notion that pathway components that concern efficiency (e.g., energy efficient home appliances) are distinguished from those that concern curtailment (e.g., avoid long flights). Apart from showing that different analytical approaches may elicit different mental representations, the proposed distinction in type does not seem to be a readily available concept when laypeople think about energy systems at large. This was unexpected since the proposed distinction emerged in an earlier study exploring impact judgments for some of the pathway components (Böhm et al., in press) addressed in the present study. The finding is also in contrast with studies that have reported empirical evidence to support the distinction between curtailment and efficiency within the context of energy saving behaviors (e.g., Barr et al., 2005; Gardner and Stern, 2008; Karlin et al., 2014; Boudet et al., 2016).

      Looking more closely at the results of the hierarchical clustering, there were some differences with respect to the grouping of pathway components focusing on individual actions. In the German sample, participants tended to separate these actions into components related to energy use at home (e.g., energy saving, energy efficient home appliances) and components related to other possible lifestyle choices (e.g., vegetarianism, electric cars, public transportation). This separation corresponds with other studies in which location was identified as a shared theme based on which laypeople categorize behaviors and/or objects related to household water saving (Kneebone et al., 2018) and energy appliances (Gabe-Thomas et al., 2016), amongst others. In the Norwegian sample, in contrast, there was no clear pattern in the data to suggest that Norwegian participants form, similarly, consistent subcategories of individual actions, or of the other two superordinate categories. This difference between the German and the Norwegian sample hints at the direction that German participants’ cognitive structure of energy transition is somewhat more differentiated than that of their Norwegian counterparts. Possibly, this reflects a difference in amount of knowledge about energy transition, as it is known from cognitive psychology that higher expertise in a content domain goes together with finer distinctions; experts use more specific categories than novices (Rosch et al., 1976). Support for assuming that the German sample had more experience with energy transition than the Norwegians did comes from the fact that all German participants but only a small fraction of the Norwegians indicated that they had heard the term energy transition before participating in our study.

      The cluster structure emerging from the data closely resembled the spatial patterns obtained in the MDS configurations; both samples yielded three separable regions (Figure 1). An inspection of these configurations suggests at least two dimensions that could possibly underlie the mental representation of energy transition pathways. One dimension seems to indicate varying levels of social aggregation, ranging from pathway components that individuals can implement on their own to pathway components that reflect more of a concerted societal response (cf. horizontal axis in Figure 1). For example, “International agreements (e.g., on carbon emissions)” and “Walking and cycling” were located at opposing ends from another in the spatial structure. Another dimension appears to show different degrees of public involvement, ranging from pathway components that emphasize initiatives to change how individuals and households interact with the energy system to those that comprise technological and engineering solutions to reduce carbon emissions without having to impose substantial restrictions on the everyday activities from individuals and households (cf. vertical axis in Figure 1). For instance, “Nuclear power” and “Urban planning (e.g., car free zones)” were located at opposite locations in the spatial structure.

      Research shows that studying meanings ascribed to carbon and energy in everyday contexts can yield insights in public engagement with decarbonization (Whitmarsh et al., 2011). While the present study indicates that certain pathway components are perceived as less similar than others, more data collections are needed to clarify the meanings attached to each one of the identified clusters. One useful addition would be to include materials referencing themes that are prevalent in the public discourse on climate change. Rather than focusing only on single pathway components like renewable energy sources, the sorting may cover more generally phrased paperboard cards such as “climate change mitigation” and “climate change adaption.” This would be informative with respect to the roles laypeople may (or may not) ascribe to themselves in response to climate change, and possible associations with energy use and storage in particular. Another possible extension could be to explore which pathway components are considered most effective with regard to promoting energy transitions. This could be done, for instance, by asking laypeople if they believe that individual actions are less, equally, or more effective in bringing about change in the present energy system than politics and technology. Answering this question would provide insights for researchers and policymakers alike, given that perceived effectiveness in climate mitigation tends to be associated with support for low-carbon policies (Bostrom et al., 2012; Rosentrater et al., 2012).

      This study holds several limitations. First, the sorting task was limited to 25 paperboard cards labeled with one energy transition pathway component each. This was done to comply with recommendations in the literature that consider a number between 15 and 25 cards as appropriate in such tasks (Canter et al., 1985). As this selection cannot cover the full range of possible energy transition pathways, interpretations concerning pathways or components not covered in this study must be undertaken with caution. Second, data were collected using single sorting (i.e., without any repetition) rather than multiple sorting (i.e., with one or several repetitions). It is possible that this methodological choice has come at the cost of leaving one or more subordinate categories unidentified, given that multiple sorting tends to be more suitable if the interest is to explore all possible categorization dimensions (Rosenberg and Kim, 1975). Third, the component descriptions on the cards were not entirely consistent across samples. The two cards labeled “Climate compensation (e.g., when booking flights)” and “Environmental education (e.g., in school, at work)” included parenthesized examples in the German sample that were missing in the Norwegian sample. Maybe supplementing pathway component descriptions with an example triggered other interpretations than when no such additional information was provided. For example, this difference might account for the fact that climate compensations were seen closer to the individual actions in the German than in the Norwegian sample. Future studies that employ a similar methodology should try to avoid such inconsistencies to allow for a more unambiguous interpretation of possible sample differences.

      Conclusion

      There has been an increasing literature on factors that shape interactions from individuals and households with energy systems (e.g., Stern, 2014). The present paper adds to this literature by shedding light on an aspect that has received relatively little attention, namely on the structures emerging from intuitive categorizations when laypeople think about pathways relevant to energy transition. A study was conducted that employed card sorting to gain insights into the mental representation of possible energy transition pathways in two different countries. Results were consistent in the sense that laypeople structured different pathway components in terms of their respective level of implementation: individual/household, society/politics, or technology. While current initiatives to promote sustainable energy transitions seem to already address pathways at different levels, this study is among the first endeavors to investigate how laypeople mentally represent these pathways and their components. Our results provide new insights also because the allocation of a component to one of the aforementioned levels not always seems obvious. For example, electric cars were grouped together with individual and household actions rather than being allocated to technology. Granted that the findings of this study replicate within the population at large, ideally with representative samples from both countries, this knowledge has potential to improve communication strategies to promote sustainable energy transitions. Including additional measures (e.g., perceived effectiveness) in forthcoming studies could further help identify correlates associated with each super- or subordinate category. This would enable comparisons between different pathway components, and capturing these perceptions would allow systematic comparisons between countries. Policymakers could use this knowledge to identify where public perception matches expert opinion, and if needed, attempt to correct possible misperceptions.

      Data Availability Statement

      The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.

      Ethics Statement

      This empirical study complied with the Norwegian Social Science Data Services (NSD) privacy regulations and the ethical principles of research by the National Committee for Research Ethics in the Social Sciences and the Humanities (NESH). Formal approval from NSD was not sought as the collected data material was anonymous, see www.nsd.uib.no/personvernombud/en/notify/index.html.

      Author Contributions

      RD and GB contributed conception and design of the study. DH organized and conducted the lab session for the German data collection, and collected the German data. GB performed the statistical analysis. RD wrote the first draft of the manuscript. GB and DH wrote sections of the manuscript. All authors contributed to manuscript revision, read and approved the submitted version.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This research was supported by grants from the cooperation agreement between Statoil and the University of Bergen (Akademiaavtale; Project No. 803589) and from a research scholarship awarded to the first author (E.ON Stipendienfonds; Project No. T0087/29897/17).

      We are grateful to Thea Kaland Ingebretsen, Lilian Särnmo, Vebjørn Sundnes, Vanessa Lohmann, and Sonja Laudan who assisted in collecting the data material. We are also indebted to Hans-Rüdiger Pfister for numerous fruitful discussions, as well as advice and support concerning the text analysis of the sorting criteria. Preliminary results were presented at the Beyond Oil conference in Bergen, Norway, October 25-27, 2017.

      References Arnold A. Böhm G. Corner A. Mays C. Pidgeon N. Poortinga W. (2016). European Perceptions of Climate Change. Socio-Political Profiles to Inform a Cross-National Survey in France, Germany, Norway and the UK. Oxford: Climate Outreach. Attari S. Z. DeKay M. L. Davidson C. I. Bruine de Bruin W. (2010). Public perceptions of energy consumption and savings. Proc. Natl. Acad. Sci. U.S.A. 107 1605416059. 10.1073/pnas.1001509107 20713724 Baird J. C. Brier J. M. (1981). Perceptual awareness of energy requirements of familiar objects. J. Appl. Psychol. 66 9096. 10.1037/0021-9010.66.1.90 Barnett J. (2008). “The multiple sorting procedure (MSP),” in Doing Social Psychology Research, ed. Breakwell G. M. (Oxford: The British Psychological Society and Blackwell Publishing Ltd), 289304. 10.1002/9780470776278.ch12 Barr S. Gilg A. W. Ford N. (2005). The household energy gap: examining the divide between habitual- and purchase-related conservation behaviours. Energy Policy 33 14251444. 10.1016/j.enpol.2003.12.016 Bassarak C. Pfister H.-R. Böhm G. (2017). Dispute and morality in the perception of societal risks: extending the psychometric model. J. Risk Res. 20 299325. 10.1080/13669877.2015.1043571 Böhm G. Doran R. Pfister H.-R. (2018). Laypeople’s affective images of energy transition pathways. Front. Psychol. 9:1904. 10.3389/fpsyg.2018.01904 30364126 Böhm G. Doran R. Rødeseike A. Pfister H.-R. (in press). Pathways to energy transition: a faceted taxonomy. Int. Stud. Manage. Organ. Borg I. Groenen P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications. New York, NY: Springer. Bostrom A. O’Connor R. E. Böhm G. Hanss D. Bodi O. Ekström F. (2012). Causal thinking and support for climate change policies: international survey findings. Glob. Environ. Change 22 210222. 10.1016/j.gloenvcha.2011.09.012 Boudet H. S. Flora J. A. Armel K. C. (2016). Clustering household energy-saving behaviours by behavioural attribute. Energy Policy 92 444454. 10.1016/j.enpol.2016.02.033 Canter D. Brown J. Groat L. (1985). “A multiple sorting procedure for studying conceptual systems,” in The Research Interview: Uses and Approaches, eds Brenner M. Brown J. Canter D. (London: Academic Press), 79114. R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Dietz T. Gardner G. T. Gilligan J. Stern P. C. Vandenbergh M. P. (2009). Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl. Acad. Sci. U.S.A. 106 1845218456. 10.1073/pnas.0908738106 19858494 European Commission (2011). Communication From the Commission: A Roadmap for Moving to a Competitive Low Carbon Economy in 2050. Available at: http://ec.europa.eu/clima/documentation/roadmap/docs/com_2011_112_en.pdf Fox-Glassman K. T. Weber E. U. (2016). What makes risk acceptable? Revisiting the 1978 psychological dimensions of perceptions of technological risks. J. Math. Psychol. 75 157169. 10.1016/j.jmp.2016.05.003 Gabe-Thomas E. Walker I. Verplanken B. Shaddick G. (2016). Householders’ mental models of domestic energy consumption: using a sort-and-cluster method to identify shared concepts of appliance similarity. PLoS One 11:e0158949. 10.1371/journal.pone.0158949 27467206 Gardner G. T. Stern P. C. (2008). The short list: the most effective actions U.S. households can take to curb climate change. Environment 50 1225. 10.3200/ENVT.50.5.12-25 Grubler A. Wilson C. Nemet G. (2016). Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 22 1825. 10.1016/j.erss.2016.08.015 IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva: IPCC. Jones M. D. (2014). Cultural characters and climate change: how heroes shape our perception of climate science. Soc. Sci. Q. 95 139. 10.1111/ssqu.12043 Karlin B. Davis N. Sanguinetti A. Gamble K. Kirkby D. Stokols D. (2014). Dimensions of conservation: exploring differences among energy behaviors. Environ. Behav. 46 423452. 10.1177/0013916512467532 Kempton W. Harris C. K. Keith J. G. Weihl J. S. (1985). Chapter 6: do consumers know “what works” in energy conservation? Marriage Fam. Rev. 9 115133. 10.1300/J002v09n01_07 Kneebone S. Fielding K. Smith L. (2018). It’s what you do and where you do it: perceived similarity in household water saving behaviours. J. Environ. Psychol. 55 110. 10.1016/j.jenvp.2017.10.007 Koletsou A. Mancy R. (2011). Which efficacy constructs for large-scale social dilemma problems? Individual and collective forms of efficacy and outcome expectancies in the context of climate change mitigation. Risk Manage. 13 184208. 10.1057/rm.2011.12 Lubell M. (2002). Environmental activism as collective action. Environ. Behav. 34 431454. 10.1177/00116502034004002 Mair P. Borg I. Rusch T. (2016). Goodness-of-fit assessment in multidimensional scaling and unfolding. Multivariate Behav. Res. 51 772789. 10.1080/00273171.2016.1235966 27802073 Rosch E. Mervis C. B. Gray W. D. Johnson D. M. Boyes-Braem P. (1976). Basic objects in natural categories. Cognit. Psychol. 8 382439. 10.1016/0010-0285(76)90013-X Rosenberg S. Kim M. P. (1975). The method of sorting as a data-gathering procedure in multivariate research. Multivariate Behav. Res. 10 489502. 10.1207/s15327906mbr1004_7 26750321 Rosentrater L. D. Saelensminde I. Ekström F. Böhm G. Bostrom A. Hanss D. (2012). Efficacy trade-offs in individuals’ support for climate change policies. Environ. Behav. 45 935970. 10.1177/0013916512450510 Steentjes K. Pidgeon N. Poortinga W. Corner A. Arnold A. Böhm G. (2017). European Perceptions of Climate Change: Topline Findings of a Survey Conducted in Four European Countries in 2016. Cardiff: Cardiff University. Stern P. C. (2014). Individual and household interactions with energy systems: toward integrated understanding. Energy Res. Soc. Sci. 1 4148. 10.1016/j.erss.2014.03.003 UNFCCC. (2015). Adoption of the Paris Agreement. UNFCCC/CP/2015/L.9/Rev.1. Available at: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf Whitmarsh L. Seyfang G. O’Neill S. (2011). Public engagement with carbon and climate change: to what extent is the public “carbon capable”? Glob. Environ. Change 21 5665. 10.1016/j.gloenvcha.2010.07.011 22869795

      The term energy transition describes “a change in the state of an energy system as opposed to a change in an individual energy technology or fuel source” (Grubler et al., 2016, p. 18).

      This is different to an energy transition pathway, which can be described as “a combination of steps that are taken with the aim of reducing carbon emissions and improving the sustainability of energy use and production”(Böhm et al., 2018, p. 2).

      The pathway component with the label offsets was left out of this listing because it was positioned somewhat differently in the two samples.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.gooodbar.com.cn
      www.lucoqn.com.cn
      www.hzanqz.com.cn
      www.hezzjx.com.cn
      www.viptot.com.cn
      www.qkxchs.com.cn
      www.rhlucz.com.cn
      www.ngdctl.com.cn
      www.pyszro.com.cn
      mqchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p