Front. Psychiatry Frontiers in Psychiatry Front. Psychiatry 1664-0640 Frontiers Media S.A. 10.3389/fpsyt.2020.00583 Psychiatry Original Research Bed-Sharing in Couples Is Associated With Increased and Stabilized REM Sleep and Sleep-Stage Synchronization DrewsHenning Johannes 1 * WallotSebastian 2 BryschPhilip 3 Berger-JohannsenHannah 3 WeinholdSara Lena 1 MitkidisPanagiotis 4 5 BaierPaul Christian 1 LechingerJulia 1 RoepstorffAndreas 6 GöderRobert 1 1Department of Psychiatry and Psychotherapy, Christian-Albrechts University Kiel, Kiel, Germany 2Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany 3Department of Psychology, Christian-Albrechts University Kiel, Kiel, Germany 4Department of Management, Aarhus University, Aarhus, Denmark 5Center for Advanced Hindsight, Social Science Research Institute, Duke University, Durham, NC, United States 6Interacting Minds Centre, Aarhus University, Aarhus, Denmark

Edited by: Jihui Zhang, The Chinese University of Hong Kong, China

Reviewed by: Ki-Young Jung, Seoul National University, South Korea; Michael Czisch, Max Planck Institute of Psychiatry (MPI), Germany

*Correspondence: Henning Johannes Drews, henning.drews@uksh.de

This article was submitted to Sleep Disorders, a section of the journal Frontiers in Psychiatry

25 06 2020 2020 11 583 06 01 2020 05 06 2020 Copyright © 2020 Drews, Wallot, Brysch, Berger-Johannsen, Weinhold, Mitkidis, Baier, Lechinger, Roepstorff and Göder 2020 Drews, Wallot, Brysch, Berger-Johannsen, Weinhold, Mitkidis, Baier, Lechinger, Roepstorff and Göder

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Background/Objectives

Sharing the bed with a partner is common among adults and impacts sleep quality with potential implications for mental health. However, hitherto findings are contradictory and particularly polysomnographic data on co-sleeping couples are extremely rare. The present study aimed to investigate the effects of a bed partner's presence on individual and dyadic sleep neurophysiology.

Methods

Young healthy heterosexual couples underwent sleep-lab-based polysomnography of two sleeping arrangements: individual sleep and co-sleep. Individual and dyadic sleep parameters (i.e., synchronization of sleep stages) were collected. The latter were assessed using cross-recurrence quantification analysis. Additionally, subjective sleep quality, relationship characteristics, and chronotype were monitored. Data were analyzed comparing co-sleep vs. individual sleep. Interaction effects of the sleeping arrangement with gender, chronotype, or relationship characteristics were moreover tested.

Results

As compared to sleeping individually, co-sleeping was associated with about 10% more REM sleep, less fragmented REM sleep (p = 0.008), longer undisturbed REM fragments (p = 0.0006), and more limb movements (p = 0.007). None of the other sleep stages was significantly altered. Social support interacted with sleeping arrangement in a way that individuals with suboptimal social support showed the biggest impact of the sleeping arrangement on REM sleep. Sleep architectures were more synchronized between partners during co-sleep (p = 0.005) even if wake phases were excluded (p = 0.022). Moreover, sleep architectures are significantly coupled across a lag of ± 5min. Depth of relationship represented an additional significant main effect regarding synchronization, reflecting a positive association between the two. Neither REM sleep nor synchronization was influenced by gender, chronotype, or other relationship characteristics.

Conclusion

Depending on the sleeping arrangement, couple's sleep architecture and synchronization show alterations that are modified by relationship characteristics. We discuss that these alterations could be part of a self-enhancing feedback loop of REM sleep and sociality and a mechanism through which sociality prevents mental illness.

co-sleep REM sleep synchronization bed-sharing physiological coupling sociality chronotype relationship quality

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Romantic relationships influence mental health (1). Sleep has been argued to mediate this relationship (2). In this context, sharing a bed with a partner is of special interest since it expands the relational interaction into the night. However, the actual effects of bed sharing on objective sleep measures are an open question, since hitherto findings are diverse:

      Actigraphic studies of human couples comparing co-sleep to individual sleep report co-sleep to be either linked to more disrupted sleep patterns in both sexes (3) or in women only (4) or to be linked to increased sleep time in men (5). Actigraphic between subjects comparisons show longer total sleep time (TST), and less time awake after sleep onset for married couples compared to unmarried single controls (6). Furthermore, synchronization of movements (3) and increased sleep wake concordance during co-sleep (7) have been reported. Both, individual and dyadic parameters, seem to be influenced by relationship characteristics such as partner conflict or marital quality (7, 8).

      However, actigraphy calculates sleep from body movements and does not allow for neurophysiological assessment (i.e., monitoring of sleep stages). This is an important restriction since many beneficial effects of sleep, e.g., memory formation, social functioning, or mental health effects, have been directly linked to certain sleep stages and specifically to slow-wave sleep (SWS) and REM sleep (916). So far, only two polysomnographic studies exist that compare co-sleeping and individual sleep of healthy couples (17, 18) and one of these studies is a small pilot study of the present work (17). Interestingly, while both report an increase of REM sleep during co-sleep other findings (regarding SWS, sleep latencies, TST, sleep efficiency, awakenings, and subjective sleep parameters) differ between the studies. This heterogeneity renders the current picture of the neurophysiology of social sleep inconclusive, and it is a standing question whether co-sleeping couples sleep better, worse, or just different.

      Moreover, additional (potentially) relevant phenomena have only been insufficiently addressed in the above-mentioned polysomnographic studies: Neither study has included relationship characteristics or chronotype as covariates, and only our pilot study has looked at direct synchronization of sleep stages (17), missing out more complex forms of coupling (e.g., lead and lag phenomena) as well as the relevance of relationship characteristics and chronotype for sleep stage synchronization. However, addressing sleep-stage synchrony during sleep might be particularly interesting since interpersonal synchronization during wakefulness has been related to prosocial behavior, perceived social bonding, social cognition, and positive affect [for review see (19)] - all of which are important in the context of mental illness.

      Therefore, we investigated the effect of the presence of the partner on young healthy couples' sleep by use of sleep-lab-based dual simultaneous polysomnography, and cross-recurrence quantification analysis (20).

      Conceptually, the study comprises two aspects. First, a confirmatory part that re-assesses the results of the pilot study in a bigger sample and assesses the effects of a bed partner on objective sleep parameters and direct sleep-stage synchrony. Second, an exploratory part that investigates i) the relevance of relational and individual factors (e.g., relationship quality, gender, chronotype) for the changes in sleep outcomes and synchrony and ii) more complex forms of interpersonal coupling such as lead-and-lag phenomena (i.e., intra-couple synchronization that occurs with a certain time delay). The first aspect seeks to answer the question whether couples sleep better, worse, or just different, the second aspect further explores the understudied field of bed sharing in adult couples.

      Materials and Methods Sample

      For the present study, we recruited 24 childless healthy young adults (target age group: 18 to 29 years), belonging to 12 heterosexual couples with a history of co-sleeping with the same partner on the majority of nights per week for at least 3 months prior to study initiation. Inclusion criteria were absence of shift work, pregnancy, and medications or disorders known to affect sleep (including depression, addictions, and sleep disorders). Compliance with inclusion criteria was assessed by a clinical interview. Additionally, inconspicuous results in the Beck's Depression Inventory (21), the Alcohol Use Disorders Identification Test (AUDIT) (22), the revised Cannabis Use Disorders Identification Test (CUDIT-R) (23), the Pittsburgh Sleep Quality Index (PSQI) (24), and the Epworth Sleepiness Scale (ESS) (25) were required for study inclusion (see Table 1 for sample characteristics including results of the above inventories).

      Sample and relationship characteristics.

      (n = 24) Mean SD(±)
      Age [years] 23.5 3.0
      Scholarly education [years] 12.9 2.0
      Relationship duration [months] 34.0 28.0
      Quality of Relationship Inventory support 3.7 0.3
      Quality of Relationship Inventory depth 3.5 0.3
      Quality of Relationship Inventory conflict 1.5 0.3
      Hatfield Passionate Love Scale 85.2 8.9
      Bed-sharing [months] 19.1 11.7
      Bed-sharing [days per week] 6.4 1.1
      Pittsburgh Sleep Quality Index 2.9 1.3
      Epworth Sleepiness Scale 4.7 3.1
      Morningness–Eveningness Questionnaire 54.8 7.8
      Beck's Depression Inventory 1.9 2.3
      Alcohol Use Disorders Identification Test 3.7 3.0
      Cannabis Use Disorders Identification Test 0.3 1.3
      Procedure

      Prior to study initiation, ethical clearance by the ethical board of Kiel University's Medical Faculty and written informed consent was obtained. To control for the large interindividual differences in sleep architecture (26) and to obtain a significant statistical power with a moderate sample size, a within subjects design was chosen. Couples spent four nights on two consecutive weekends in the sleep laboratory undergoing individual and dual, simultaneous polysomnography. Sleeping arrangement (sleep with a partner or individual sleep) within one weekend was kept constant but was altered between weekends so that every couple slept individually on one weekend and with a partner on the other weekend. The order of sleeping arrangements was counterbalanced across all couples, with half of the couples starting with individual sleep and the other half with co-sleep. Individual sleep took place in single beds in separate rooms, co-sleep in single beds that were adjacent to each other. Two sheets and duvets were used; the cleft between the beds was bolstered so that a homogenous reclining area was guaranteed. The first night of each set was an adaptational night to the setting and the sleeping arrangement and was not included in the analysis. Also, the first night served to detect and possibly exclude people with sleep apnea or periodic limb movement disorder (none excluded).

      Before and after every night, participants completed an evening and morning protocol. Questionnaires assessing the inclusion criteria and chronotype were completed before the first night. Measures of relationship quality were assessed before Night 2 and 4 (the mean of both was used for further analysis) and the Hatfield passionate love scale after night 4. To ensure a maximum of overlap in pre-sleep waking activity, couples assigned for individual sleep were separated just before going to bed.

      Measures Objective Sleep Data – Polysomnography

      Participants underwent full cardiorespiratory polysomnography monitoring EOG, EEG (F3, F4, C3, C4, O1, O2), chin-EMG, ECG, pulseoxymetry, EMG of both anterior tibial muscles, and respiratory parameters as flow and movements of chest and abdomen. Sleep stages were manually coded by one experienced, blinded rater according to the AASM criteria (27). Leg movements were calculated automatically, by the polysomnographs' standard software (Somnomedics Domino). A REM sleep period was defined as REM sleep belonging to one sleep cycle. REM sleep fragmentation was defined as any interruption (i.e., one or more epochs not scored as REM sleep) between two epochs of REM sleep of one sleep cycle. Average duration of interruption-free REM sleep fragments was calculated by dividing REM sleep duration by number of fragments.

      Coupling of sleep stages between partners was determined using cross-recurrence quantification analysis as described by Marwan and colleagues (20). Cross-recurrence quantification analysis is a powerful statistical tool that is able to assess different layers of coupling (e.g., complete synchronization, phase synchronization, lag synchronization, or generalized synchronization) and is therefore highly useful for studying coupling of complex dynamic systems (20). It has been used in such diverse fields as neuroscience, economics, geophysics, and engineering (20). Furthermore, it has been introduced to the study of physiological coupling of co-sleeping couples in the pilot to the present work (17). Technically, cross-recurrence quantification analysis is a nonlinear correlation analysis for bi-variate time-series data. Its core tool is the cross-recurrence plot, which is a two-dimensional binary matrix where cross-recurrence between two time-series are charted. Here, a cross-recurrence is an instance where the two time-series take the same – or similar – values at a certain lag. Based on the cross-recurrence plot, several recurrence measures can be computed that quantify (nonlinear) correlation patterns between two time-series. Moreover, leader-follower relationships between two time-series can be computed based on cross-recurrence plot. That means that not only direct synchronization can be assessed (i.e., whether both time series are in the same state at the same time point) but also other forms of synchronization such as lag synchronization. Here the two time series are synchronized only if a certain time delay is considered (20). See Wallot and Leonardi (28) for an introduction to cross-recurrence plots and the quantification of leader-follower relationships.

      Subjective Sleep Data

      Subjective sleep onset latency, subjective sleep time, and subjective number of awakenings were assessed each morning immediately after waking up. Moreover, to cover subjective morning condition, we derived three sexpartite Likert subscales of morning condition (from feeling depressed (1) to lighthearted (6), run down (1) to refreshed (6), or tense (1) to relaxed (6)) from the morning and evening protocol of the German Sleep Medicine Society (DGSM) (29). The results of the scales were merged into a single morning-condition sum score. The chronotype was determined by use of the German version of the morningness–eveningness questionnaire (D-MEQ) (30). Here, higher ratings indicate an earlier chronotype. On the basis of the D-MEQ scores, subjects can be categorized into the following categories: definitely morning type (score, 70–86), moderately morning type (score, 59–69), neither type (score, 42–58), moderately evening type (score, 31–41), and definitely evening type (score, 16–30) (31).

      Relationship Characteristics

      Regarding relationship characteristics, we collected relationship duration, degree of passionate love, conflict, social support, and relationship depth. The latter three dimensions are part of the quality of relationship inventory (QRI) of which we use the German version (32). The QRI is a 25-item inventory in which a tetrapartite Likert scale (1= not true - 4 = almost always true) is used to answer questions like “How angry does this person make you feel?” (conflict), “To what extent could you count on this person for help with a problem?” (support), or “How significant is this relationship in your life?” (depth). In their validation study for the German version of the QRI, Reiner et al. report the following mean (± SD) values for the youngest age group (18–44 years; n = 508): 3.23 ± 0.57 (support dimension), 1.87 ± 0.52 (conflict dimension), and 3.25 ± 0.55 (relationship-depth dimension). It is of note that the QRI is not limited to romantic relationships and has been used to assess a variety of social relationships (e.g., mentoring-relationships (33), same-sex friends (34), or parents and children (35)). In order to additionally include a relationship dimension specific to romantic relationships, we assessed passionate love via the Hatfield passionate love scale, a 15-item scale with a septpartite Likert scale (1= not true at all – 7= absolutely true) (36). Exemplary statements are: “I want [name] physically, emotionally, mentally.” or “Sometimes I feel I can't control my thoughts; they are obsessively on [name].”

      Statistical Analysis Analytical Procedure

      To ensure comparability with the previous two studies that polysomnographically investigated co-sleeping vs. individually sleeping in healthy couples (17, 18), we aligned our statistical approach with these works.

      First, we tested the relevance of sleeping arrangement (co-sleep vs. individual) for subjective and polysomnographic sleep outcomes (confirmatory part of the study). Dependent variables were subjective morning condition, subjective sleep onset latency, subjective total sleep time, subjective number of awakenings, polysomnographic total sleep time, polysomnographic sleep efficiency, polysomnographic sleep onset latency, polysomnographic REM sleep latency, polysomnographic amount of sleep stages N1, N2, N3, and REM sleep relative to total sleep time (% of total sleep time), polysomnographic number of awakenings, and isolated leg movements. Tests employed were paired, two-tailed Student's t-tests or – where applicable – the nonparametric alternative Wilcoxon signed-rang tests (WSR). Normal distribution was tested by the Shapiro-Wilk test. Alpha-inflation was countered by using the method of Benjamini & Hochberg, which is based on controlling the false discovery rate (37). Synchronization coefficients for lag 0 were compared using paired two-tailed Student's t-tests (co-sleep vs. individual sleep).

      For the exploratory part of the study, we investigated lead and lag phenomena in coupling and the influence of additional factors (relationship characteristics, gender, chronotype, snoring, movements) on the significant parameters of part 1.

      Yet, before exploring the effects of additional parameters, we first assessed the degree of dependence of individuals of each couple. Therefore, we correlated the couples' individuals with each other (males–females, Pearson correlations) as suggested by Kashy and Snyder (38). This was done to see whether an analysis on the couples' level (a dyadic approach) was necessary or an analysis on the individual level was justifiable. The results supported the analysis on the individuals' level and moreover—since this was the approach chosen by Monroe (18) to assess gender effects - ensured better comparability with this highly relevant study.

      Thus, we conducted two-way mixed analyses of variance (ANOVAs) for the within factor SLEEPING ARRANGEMENT (co-sleep vs. individual sleep) and the between factor GENDER (male vs. female), as were analyses of covariance (ANCOVAs) for the independent within-variable SLEEPING ARRANGEMENT and the covariates CONFLICT, DEPTH of RELATIONSHIP, SOCIAL SUPPORT, PASSIONATE LOVE, and RELATIONSHIP DURATION, respectively. The ANCOVAs were also calculated with amount of sleep stage synchronization as dependent variable. Here CHRONOTYPE, SNORING, and LEG MOVEMENTS were inserted as additional covariates.

      Significance across lags was defined by non-overlapping confidence intervals in the synchronization plots across lags.

      Statistical Power and Sample Size Calculation

      For the confirmatory aspect of the study, the sample size was calculated using a two-sided paired t-test (significance level 0.05) with a power of 0.8 based on a medium expected effect size of d = 0.6. The results of the pilot to the present work (17) have shown similar or larger effect sizes for subjective morning condition, subjective TST, sleep efficiency, total REM sleep, and REM-sleep percentage. This result leads to a required sample size of 24 subjects.

      All analyses were calculated using R (Version 3.6.1) (39) and MATLAB [Toolbox CRP (40)]. Cross-recurrence quantification analyses were computed on the high-performance-computing center of Kiel University. The results are presented in mean ± standard deviation (SD). Significance levels were p < 0.05*, p < 0.01**, and p < 0.001***.

      Results Sample and Relationship Characteristics

      At study initiation, mean age and mean relationship duration were 23.5 ± 3 years and 34 ± 28 months, respectively. Regular bed sharing had happened for a mean of 19.1 ± 11.7 months on 6.4 ± 1.1 nights per week prior to the study. Passionate love ratings reached 85 ± 8.9 of possible 105 points. Relationship quality, was rated at 3.7 ± 0.3 and 3.5 ± 0.3 for the support and depth dimension, respectively. The conflict dimension was rated 1.5 ± 0.3, indicating an overall low conflict level. The present sample scored significantly better on all QRI dimensions than the sample of the validation study of the German QRI (32) (all ps < 0.001; one sample, two-tailed t-tests against the means of the respective dimension ratings in the validation study).

      Chronotype ratings (D-MEQ scores) ranged from 37 to 68 with a mean of 56 ± 7.8. There was no significant difference between males and females (p = 0.704). Within-couple differences in D-MEQ scores ranged from 0 to 31 (mean 7.9 ± 7.9; median 6.0). Seven couples had matching chronotypes, four differed by one category (either moderately morning type or moderately evening type vs. neither type), and one couple differed by two categories (moderate evening type vs. moderate morning type).

      Detailed descriptive statistics of the sample are given in Table 1.

      Impact of a Partner's Presence on Classical Sleep Parameters and REM Sleep Fragmentation Individual Sleep vs Co-Sleep

      Detailed results comparing co-sleep vs. individual sleep are given in Table 2.

      Subjective and objective sleep parameters individual sleep vs. co-sleep.

      Mean SD p value
      Subjective parameters I C I C
      Morning condition 13.4 13.2 2.1 2.7 0.524
      Sleep onset latency [min] 20.2 18.1 14.4 13.3 0.511
      Sleep time [min] 481.9 479.4 32.9 32.4 0.485
      Number of awakenings [1/night] 2.9 2.6 1.7 1.1 0.224
      Polysomnography
      Total sleep time [min] 467.6 467.1 27.0 20.6 0.423
      Sleep efficiency [%] 92.0 92.3 5.1 3.2 0.784
      Sleep onset latency [min] 10.6 11.8 7.6 11.3 0.657
      REM sleep latency [min] 95.4 98.2 40.1 36.5 0.852
      N1 sleep [% of sleep time] 8.4 7.7 3.6 2.2 0.325
      N2 sleep [% of sleep time] 46.0 44.7 5.3 6.7 0.255
      SWS [% of sleep time] 24.4 23.6 7.6 9.3 0.508
      REM [% of sleep time] 21.0 23.0 4.2 4.2 0.005
      Number of awakenings [1/night] 23.5 25.8 7.4 7.1 0.148
      Isolated movements 50.9 61.5 32.9 36.7 0.007
      Apnea Hypopnea Index (AHI) 1.3 1.3 1.8 1.9 0.782
      Snoring events [1/night] 4.5 14.4 12.8 49.6 0.085

      Individual sleep (I) and co-sleep (C) differed significantly with respect to %REM sleep and movements (bold p values). Given are mean and standard deviation (SD), tests employed were Wilcoxon signed-rank testes (p values in italics) or paired two-tailed Student's t-tests. Normal distribution was tested by the Shapiro-Wilk test (results not given).

      There were no significant differences between co-sleep and individual sleep regarding total sleep time, sleep efficiency, and sleep onset latency (Table 2). Therefore, only fractions of each sleep stage of total sleep time (% of total sleep time) were further analyzed.

      Under the co-sleep condition, couples showed significantly higher percentages of REM sleep as compared to sleeping alone (23.0 ± 4.2% vs. 21.0 ± 4.2%; p= 0.005, Table 2, Figure 1A). Moreover, REM sleep in presence of a partner was significantly less fragmented as compared to sleeping without a partner in the same room (5.4 ± 2.7 disruptions vs. 8.5 ± 5.2 disruptions; p = 0.008, Figure 1B). This translated into significantly longer undisturbed, continuous REM sleep fragments (22.0 ± 19.7 min vs. 13.4 ± 7.1 min; p= 0.0006, Figure 1C) during co-sleep. Also, co-sleeping was associated with a higher total number of leg movements (mean 61.5 ± 36.7) as compared to individual sleep (mean 50.9 ± 32.9; p = 0.007; Table 2). Controlling for multiple testing reduced p values of REM sleep percentage, number of REM sleep disruptions, continuous REM sleep fragments, and leg movements but did not lead to non-significant results of previous significant findings (p values after correction: 0.03, 0.03, 0.01, and 0.03, respectively).

      REM sleep alterations associated with the sleeping arrangement. (A) Co-sleep (red bars) is associated with an approximately 10% higher amount of relative REM duration (23 ± 0.9% vs. 21 ± 0.8%) as compared to sleeping alone (blue bars). No other sleep stage shows significant alterations associated with the sleeping arrangement. Given are means ± SEM. REM sleep is less fragmented under the co-sleep condition [red bar, panel (B)] which results in markedly longer undisturbed continuous REM sleep sequences (C). Boxes represent first and third quartile (upper and lower margins) and median (bold horizontal line). N = 24, significance: ** < 0.01; *** < 0.001.

      In contrast, no significant difference was observed in any other sleep stage or any other monitored parameter besides REM sleep and movements (all ps > 0.148, for details see Table 2).

      Relevance of Gender and Relationship Characteristics

      Correlating REM-sleep percentage of the couples' individuals with each other (males ~ females) did not render significant results. This was true for both, individual sleep (r = −0.26; p = 0.419) and co-sleep (r = −0.36; p = 0.257). Both p values were higher than the “very liberal” (38) alpha of 0.25 which has been suggested as a reference in this type of calculation (38). Therefore, we concluded that the assumption of independence of AN(C)OVA can be justified. The consequently conducted AN(C)OVAs showed a significant interaction effect of sleeping arrangement and the “social support” subscale of the QRI regarding the percentage amount of REM sleep (F(1,22) = 4.8, p = 0.039, Figure 2)). No other relationship parameter (conflict, relationship depth, passionate love, relationship duration) interacted significantly with sleeping arrangement to explain the co-sleep-associated increase in REM sleep percentage of total sleep time (all Fs(1,22) ≤ 0.9, all ps ≥ 0.342). While the sleeping-arrangement variable represented a significant main effect throughout all calculations (all Fs(1,22) ≥ 9.0, all ps ≤ 0.007), none of the relationship characteristics did (all Fs(1,22) ≤ 0.3, all ps ≥ 0.567).

      Social support interacts with sleeping arrangement regarding %REM sleep. (A) Individuals with not optimal social support levels show a greater difference in % REM sleep between co-sleep (red dots) and individual sleep (blue dots) than individuals with optimal social support. Pearson's correlations are non-significant for either of the both sleeping arrangements (individual sleep (blue line): r = 0.12; p = 0.567; co-sleep (red line): r = −0.21; p = 0.329). Note, that the individual with the lowest social support score (3.0) is still on the very supportive side. This translates into significant differences in the sub-optimal social support group in a median-split analysis of co-sleep (B). N = 24, significance * < 0.05, given are mean ± SEM (B).

      Similarly, the gender variable did not yield significant interaction or main effects (all Fs(1,22) ≤ 0.1, all ps ≥ 0.762).

      Synchronization Synchrony at the Same Point in Time

      Coupling between partners was assessed using cross-recurrence quantification analysis (40). First, we analyzed sleep stage synchrony at the same point in time without considering lag and lead phenomena (Figure 3). Sleeping apart from each other was associated with 36.6 ± 6.0% of the night being synchronized. That increased significantly (p = 0.005) to 46.9 ± 8.4% when a partner was present. Excluding wake resulted in 40.1 ± 7.1% of epochs being synchronized during individual sleep and 47.5 ± 8.9% in co-sleep (p = 0.022).

      Synchronization of sleep stages at lag 0 (complete synchronization). Complete, direct synchronization of sleep stages is significantly increased in co-sleep (red bars) as compared to sleeping alone (blue bars) resulting in nearly half of the night's sleep being synchronized. The synchronization during co-sleep is independent of inclusion or exclusion of wake. N = 12, significance: * < 0.05; ** < 0.01, given are means ± SEM.

      Lead and Lag Phenomena

      Figure 4 shows the average degree of sleep stage coupling across lags for each sleeping arrangement. Regardless of whether or not wake was included in the analysis, co-sleeping was associated with an increase in sleep stage synchronization across lags, peaking at lag 0 (Figures 4A, B, black lines). During individual sleep, only a minimal peak at lag 0 could be observed if wake was included (Figure 4A, gray line). If wake was excluded any dynamics in coupling across lags was missing (Figure 4B, gray line). It seems likely that the minimal peak during individual sleep including wake was due to wake before sleep onset.

      Coupling of sleep architecture (lag synchronization). Panels (A, B) show the synchronization (% cross recurrence, y-axis) during co-sleep (upper black line) and individual sleep (lower grey line) across lags (minutes, x-axis). Co-sleeping is associated with a symmetrical incline of synchronization across ± lags peaking at lag 0 at 46.9 ± 8.4% (A; including wake) and 47.5 ± 8.9% (B; excluding wake), respectively. Individual sleep excluding wake (B) shows no peak at all. Including wake, (A) a minimal peak at lag 0 can be observed - possibly due to wake before sleep onset. Panels (C, D) show the difference in synchronization (co-sleep – individual sleep, black line). Dashed lines represent 95% confidence intervals. Coupling during co-sleep is significantly increased as compared to sleeping alone starting approximately at lag ± 10 min when wake is included (C) and app. ± 5 min without considering wake (D) as indicated by crossing of the lower dashed line with the red zero line.

      Regarding statistical significance of coupling across lags, Figures 4C, D show that the increase in coupling of sleep stages during co-sleep vs. individual sleep reached significance at approximately lag ±10 min (including wake) and lag ±5 min (excluding wake), respectively.

      Relationship Characteristics, Chronotype Similarity, Leg Movements, and Snoring

      Finally, we investigated whether relationship characteristics, similar chronotypes, acoustic (snoring) or movement stimuli influence synchronization. With synchrony at lag 0 (excluding wake) as dependent variable, there was a significant main effect of the mean relationship depth between the partners (F(1,10) = 6.0, p = 0.035). The relationship between synchronization, depth of relationship, and sleeping arrangement is given in Figure 5. None of the other analyzed parameters (social support, conflict, passionate love, relationship duration, chronotype similarity, snoring, or leg movements) yielded significant main effects or interactions (all Fs (1,10) ≤ 2.8, all ps ≥ 0.127). In all investigated cases, sleeping arrangement represented a significant main effect (all Fs (1,10) ≥ 6.6, all ps ≤ 0.028).

      Sleep stage synchronization as a function of relationship depth. Distribution of synchronization (excluding wake) in relation to depth of relationship (couples' mean) and sleeping arrangement (co-sleep= red dots, individual sleep= blue dots) resulting in significant main effects of sleeping arrangement (F(1:10)= 6.585; p = 0.028), and relationship depth (F(1:10) = 5.976; p = 0.035) with no significant interaction (F(1:10) = 0.224; p = 0.646). Pearson's correlations of the respective sleeping arrangements are r = 0.45; p = 0.138 for individual sleep (blue line) and r = 0.52; p = 0.083 for co-sleep (red line) N = 12.

      Discussion

      The present work expands and complements the two previous studies that have polysomnographically investigated co-sleep vs. individual sleep of couples (17, 18). It includes relationship characteristics, chronotype, and gender in the analysis. Also, it clarifies contradictory findings of the previous works:

      In a small pilot study, our group reported co-sleeping to be associated with a greater amount of REM sleep, SWS, total sleep time, a higher sleep efficiency, shorter N2 and N3 latencies as well as subjectively improved sleep quality (17). In contrast, Monroe's early sleep-laboratory-based study in 14 married good-sleeping young couples reported more moderate alterations (18). Except for a greater amount of REM sleep and awakenings and lower levels of S4 sleep during co-sleep no other subjective or objective sleep parameter was subject to partner-associated alterations. Also, there was no significant interaction of sleeping arrangement and gender regarding any sleep parameter (18). The present study supports Monroe's work to a large extent. This concerns parameters that are insusceptible to a changing sleeping arrangement, parameters that undergo partner-associated alterations, as well as a lacking interaction of sleeping arrangement and gender. (It is of note that S4 sleep was not assessed in the present study due to differing sleep stage classifications, and the negative findings of the interaction analyses need to be treated cautiously due to a small sample size).

      Besides these differences between the previous works, there is one sleeping-arrangement-dependent alteration in objective sleep parameters that is present across both previous studies and the present work: a greater amount of REM sleep during co-sleep. Interestingly, this partner-effect on REM sleep doesn't seem to be limited to humans. It has recently been reported for the hyrax, a socially living mammal (41). The authors of that study propose a biophysical mechanism, namely a partner-driven stabilization of ambient temperature as being causative for the promotion of REM sleep (41). Our analyses suggest psychosocial factors, i.e., social support, to be relevant, too. Another potential mechanism to be considered in future studies is how a partner alters stress levels before and during sleep. Presence of a partner might facilitate perceiving a sleeping environment as “safe”, whereas sleep in isolation might represent a stressor. Psychosocial stress has been reported to fragment REM sleep and might promote insomnia (42). Moreover, it has been shown in rats that sociality improves stress resilience by stabilizing REM sleep. After receiving electric shocks for purpose of fear conditioning, socially isolated rats reacted to that stressor with fragmented REM sleep. In contrast, rats that were having contact to a partner showed increased and undisturbed REM sleep (43).

      Beyond the significant overlaps between Monroe's and the present work there are few but noteworthy differences. First, unlike Monroe, we do not find a significant difference in awakenings between individual sleep and co-sleep. It is however of note, that co-sleepers do wake up more often in the present study and albeit not statistically significant (p = 0.15) a Cohen's d of 0.5 indicates a medium effect size. (The effect size was calculated in R using the lsr and pwr packages). Second, Monroe does not report limb movements which in the present study are significantly more frequent during co-sleep as compared to individual sleep. This finding is in line with actigraphic studies of co-sleeping couples (3) and illustrates the pitfalls of interpreting actigraphic data. The increase in actigraphic movements has led to the conclusion that bed-sharing disturbs sleep objectively [e.g., (44)]. The present study – together with Monroe's work—challenges that view: despite the increase of movements (and awakenings), sleep architecture, and sleep-stage physiology remain intact during co-sleep, and REM sleep is stabilized and promoted. Thus, the present work supports Monroe's conclusion that the presence or absence of a partner might induce alterations that are distinct from the usual correlates of good and bad sleep (18).

      Regarding the implications of these findings, two seem particularly relevant. First, REM sleep is known to benefit memory formation particularly of emotionally salient (45, 46) and episodic memories (47) [for review see (9)]. The latter (48) or both (49) have been linked to sociality. Moreover, imaging studies show that REM sleep is associated with an activation of—among others—the amygdala and the medial prefrontal cortex, the latter of which is part of the theory-of-mind network and therefore highly important for social cognition (50). Therefore, REM sleep might increase our preparedness and fitness to navigate the social world. Connecting this hypothesis to the findings of our study leads us to propose the existence of a positive feedback loop of REM-sleep-sociality interactions: social sleep enhances and stabilizes REM sleep which in turn enhances our ability to interact socially.

      The second implication concerns potential mental health effects of the here reported findings. Partnerships have been shown to protect from mental illness (1) and it has been argued that sleep might be a mediator of health effects of relationships (2). On a sleep stage level, REM sleep might be of particular interest in this context. REM sleep is related to dissolving emotional stress (51) and balancing fear-related amygdala reactiveness (52, 53). Moreover, REM sleep fragmentation is related to insomnia (42), which in turn is a risk factor for developing a mental illness [e.g., insomnia doubles the risk for depression (54)]. Therefore, REM-sleep stabilization due to co-sleep might mediate (or moderate) the established effect of partnerships on mental health.

      Besides displaying neurophysiological changes (increased and stabilized REM sleep), sleeping in company is subject to interactive dyadic effects. Recently, the combination of dual simultaneous polysomnography and cross-recurrence quantification analysis has been established by our group in order to study sleep-stage synchronization of co-sleeping couples (17). The present study reports increased sleep-stage synchronization independent of wake between co-sleeping partners as compared to sleeping alone. That basic finding reproduces prior findings (17) and adds important insights to the understanding of co-sleep. First, unlike the previous study, the subjective and objective sleep data in the present work do not indicate a general improvement in sleep quality by co-sleeping. Therefore, it can be ruled out that the increase in synchrony is a mere byproduct of better (i.e., less disturbed) sleep. Second, we show that coupling of sleep stages is not only a matter of direct synchrony, but spans a ± 5 min interval around lag 0. Third and fourth, synchronization is positively related to perceived relationship depth and independent of chronotype similarity. While the present study is the first to report this for sleep-stage synchrony, and thus for neuronal synchronization during sleep the latter both findings have been reported for actigraphically measured sleep-wake patterning in couples (7). Moreover, the relevance of relationship characteristics links sleep-stage synchrony to neuronal synchronization during wakefulness which has been reported to be modulated by affection and attachment style (55). That seems to be of great interest as neural synchronization during wake is relevant to core processes of human sociality such as interactive teaching and learning (56), joint action (57, 58), prosociality (59), or emergence of leadership in groups (60). Moreover, interpersonal synchronization has been linked to increased prosocial behavior, perceived social bonding, social cognition, and positive affect [for review see (19)]. The latter both are frequently impaired in mental illnesses such as schizophrenia and depressive disorder. Therefore, our results call for further investigating the role of sleep-related synchronization in mental illness. Given that there is in fact an observable relation of synchronization during sleep and mental-illness parameters (e.g., symptom severity, social functioning), synchronization might—depending on the causal direction—either represent another mechanism through which co-sleeping with a partner prevents mental illness and its social consequences, or it might be a symptom of mental illness that could represent a link between individual sleep disturbances and social deficits. Additionally, our findings might stimulate new research into mechanisms that underlie synchronization during wake since eye-to-eye contact (55, 61) or shared intentionality (58) – that are major mechanism how individuals synchronize – are not present or largely reduced during sleep.

      While the findings of the present work are important, and the present study has some strengths (e.g., the methodological setup including a well-controlled lab-setting, the sufficient statistical power for direct comparison of sleep parameters, and advanced statistical analyses allowing for the analysis of lead and lag phenomena, or the inclusion of relationship characteristics, chronotype, and gender) it is also limited to some respects that are mostly related to the explorative nature of some of the analyses.

      The first limitation concerns the methodology. Laboratory-based polysomnography allows for high-quality and in-depth assessment of sleep. Yet, we can only speculate how our results relate to actigraphy which has been used by other works investigating couples' sleep in a more natural setting and over a longer period (3, 4, 62). A combination of in-lab polysomnography and 2 weeks of actigraphy would have allowed for integrating the actigraphic and polysomnographic literature on couples' sleep. A second limitation, that is related to the methodological setup, is the comparably small sample size for conducting two-way mixed ANOVAs and ANCOVAs. Thus, negative findings in the exploratory part of the present work need to be treated cautiously. Also, we did not adjust for multiple testing in the exploratory part in order to not reject possible effects prematurely. Therefore, future studies with an increased sample size should retest some of our findings regarding the effect of sound (snoring), movements, and chronotype similarity on interpersonal synchronization. This holds also true for relationship quality. Moreover, a wider range of relationship characteristics could be included in future works. Third, we did not analyze the data on a dyadic level. This was done to ensure comparability with the previous polysomnographic studies. Also, we tested and confirmed that this approach is adequate since independence of the data was not to be rejected after correlating the partners with each other. Nevertheless, a dyadic statistical approach [as e.g., presented by Kenny (63)] might render interesting insights into couple dynamics during sleep, and future studies with an increased sample size should consider this approach. Fourth, while there is good reason to believe that a more stable REM sleep would impact REM-sleep-dependent outcomes such as memory consolidation, dissolving of emotional stress or fear-related amygdala reactiveness – we did not test for such effects. The fifth limitation concerns the question of generalizability. We investigated young healthy heterosexual human couples in a lab-setting. Even though a social-sleep-related increase in REM sleep has been reported for other mammals (41), it is unclear whether a similar pattern of stabilized REM sleep, no other sleep stage alterations, increased movements or awakenings, and sleep-stage synchronization similarly occurs in other species, age groups, couples including one suffering from a disease, or in other social sleep constellations such as homosexual couples. Also, it is unclear whether the findings would also be present in a non-lab-setting i.e., at home. It is, however, of note that there are also good reasons to believe that the effect would be more pronounced in the usual home environment, e.g., the use of two-duvets in the present study or a presumably less intimate behavior in the lab.

      In conclusion, despite some limitations the presented study reports novel findings regarding co-sleep-associated changes in sleep architecture and synchronization. Social support and relationship depth might be important co-factors. Thereby, the present study raises important questions to be elucidated in the future, namely, whether the co-sleeping-induced REM sleep stabilization is i) part of an evolutionary important positive feedback loop of sleep and sociality, and (ii) alongside with interpersonal synchronization—a mechanism through which relationships prevent mental illness.

      Data Availability Statement

      The datasets generated for this study are available on request to the corresponding author.

      Ethics Statement

      The studies involving human participants were reviewed and approved by Ethik-Kommission der Medizinischen Fakultät der Christian-Albrechts-Universität zu Kiel. The participants (on patients were included) provided their written informed consent to participate in this study.

      Author Contributions

      Conceptualization: HD, PM, SW, AR, RG. Design and methodology: HD, PM, AR, RG, SW, SLW, PCB, HB-J, PB. Conduction of the study: PB, HB-J, HD. Statistical analysis and interpretation: HD, SW. Writing—original draft preparation: HD. Writing—review and editing: SW, PB, HB-J, SLW, PM, PCB, JL, RG. Resources: RG. Supervision: RG, AR. All authors contributed to the article and approved the submitted version.

      Funding

      The study was funded by own resources of the Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Schleswig-Holstein, Germany. Open access publishing was supported by the German Research Foundation (DFG) within the funding programme "Open Access Publizieren".

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Acknowledgments

      We thank Dr. Iris Reiner for kindly providing the German version of the Quality of Relationship Inventory, Dr. Simone Knief for assisting with the high-performance computing system, and Elfriede Fritzer for the valuable statistical feedback.

      References Braithwaite S Holt-Lunstad J . Romantic relationships and mental health. Curr Opin Psychol (2017) 13:120–5. doi: 10.1016/j.copsyc.2016.04.001 Troxel WM . It's More than Sex: Exploring the Dyadic Nature of Sleep and Implications for Health. Psychosom Med (2010) 72(6):578–86. doi: 10.1097/PSY.0b013e3181de7ff8 Pankhurst FP Horne JA . The influence of bed partners on movement during sleep. Sleep (1994) 17(4):308–15. doi: 10.1093/sleep/17.4.308 Dittami J Keckeis M Machatschke I Katina S Zeitlhofer J Kloesch G . Sex differences in the reactions to sleeping in pairs versus sleeping alone in humans. Sleep Biol Rhythms (2007) 5(4):271–6. doi: 10.1111/j.1479-8425.2007.00320.x Spiegelhalder K Regen W Siemon F Kyle SD Baglioni C Feige B . Your Place or Mine? Does the Sleep Location Matter in Young Couples? Behav Sleep Med (2015) 15(2):8796. doi: 10.1080/15402002.2015.1083024 Chen J-H Waite LJ Lauderdale DS . Marriage, Relationship Quality, and Sleep among U.S. Older Adults. J Health Soc Behav (2015) 56(3):356–77. doi: 10.1177/0022146515594631 Gunn HE Buysse DJ Hasler BP Begley A Troxel WM . Sleep Concordance in Couples is Associated with Relationship Characteristics. Sleep (2015) 38(6):933–9. doi: 10.5665/sleep.4744 El-Sheikh M Kelly R Rauer A . Quick to berate, slow to sleep: interpartner psychological conflict, mental health, and sleep. Health Psychol (2013) 32(10):1057–66. doi: 10.1037/a0031786 Boyce R Williams S Adamantidis A . REM sleep and memory. Curr Opin Neurobiol (2017) 44:167–77. doi: 10.1016/j.conb.2017.05.001 Della Monica C Johnsen S Atzori G Groeger JA Dijk D-J . Rapid Eye Movement Sleep, Sleep Continuity and Slow Wave Sleep as Predictors of Cognition, Mood, and Subjective Sleep Quality in Healthy Men and Women, Aged 20-84 Years. Front Psychiatry (2018) 9:255. doi: 10.3389/fpsyt.2018.00255 Diekelmann S Born J . The memory function of sleep. Nat Rev Neurosci (2010) 11(2):114–26. doi: 10.1038/nrn2762 Feld GB Born J . Sculpting memory during sleep: concurrent consolidation and forgetting. Curr Opin Neurobiol (2017) 44:20–7. doi: 10.1016/j.conb.2017.02.012 van Dongen EV Takashima A Barth M Zapp J Schad LR Paller KA . Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Natl Acad Sci USA (2012) 109(26):10575–80. doi: 10.1073/pnas.1201072109 Léger D Debellemaniere E Rabat A Bayon V Benchenane K Chennaoui M . Slow-wave sleep: From the cell to the clinic. Sleep Med Rev (2018) 41:113–32. doi: 10.1016/j.smrv.2018.01.008 Drews HJ Wiesner CD Bethke-Jaenicke C Weinhold SL Baier PC Göder R . Slow-wave sleep predicts long-term social functioning in severe mental illness. PloS One (2018) 13(8):e0202198. doi: 10.1371/journal.pone.0202198 Baglioni C Nanovska S Regen W Spiegelhalder K Feige B Nissen C . Sleep and mental disorders: A meta-analysis of polysomnographic research. Psychol Bull (2016) 142(9):969–90. doi: 10.1037/bul0000053 Drews HJ Wallot S Weinhold SL Mitkidis P Baier PC Roepstorff A . “Are We in Sync with Each Other?” Exploring the Effects of Cosleeping on Heterosexual Couples' Sleep Using Simultaneous Polysomnography: A Pilot Study. Sleep Disord (2017) 2017:e8140672. doi: 10.1155/2017/8140672 Monroe LJ . Transient Changes in Eeg Sleep Patterns of Married Good Sleepers: The Effects of Altering Sleeping Arrangement. Psychophysiology (1969) 6(3):330–7. doi: 10.1111/j.1469-8986.1969.tb02910.x Mogan R Fischer R Bulbulia JA . To be in synchrony or not? A meta-analysis of synchrony's effects on behavior, perception, cognition and affect. J Exp Soc Psychol (2017) 72:1320. doi: 10.1016/j.jesp.2017.03.009 Marwan N Carmen Romano M Thiel M Kurths J . Recurrence plots for the analysis of complex systems. Phys Rep (2007) 438(5):237329. doi: 10.1016/j.physrep.2006.11.001 Beck AT Ward CH Mendelson M Mock J Erbaugh J . An Inventory for Measuring Depression. Arch Gen Psychiatry (1961) 4(6):561–71. doi: 10.1001/archpsyc.1961.01710120031004 Saunders JB Aasland OG Babor TF de la Fuente JR Grant M . Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption–II. Addiction (1993) 88(6):791804. doi: 10.1111/j.1360-0443.1993.tb02093.x Annaheim B Scotto TJ Gmel G . Revising the Cannabis Use Disorders Identification Test (CUDIT) by means of Item Response Theory. Int J Methods Psychiatr Res (2010) 19(3):142–55. doi: 10.1002/mpr.308 Buysse DJ Reynolds CF Monk TH Berman SR Kupfer DJ . The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res (1989) 28(2):193213. doi: 10.1016/0165-1781(89)90047-4 Johns MW . A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep (1991) 14(6):540–5. doi: 10.1093/sleep/14.6.540 Hertenstein E Gabryelska A Spiegelhalder K Nissen C Johann AF Umarova R . Reference Data for Polysomnography-Measured and Subjective Sleep in Healthy Adults. J Clin Sleep Med (2018) 14(4):523–32. doi: 10.5664/jcsm.7036 Berry R Brooks R Gamaldo C Harding S Marcus C Vaughn B . The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.0. Darien, Illinois: American Academy of Sleep Medicine (2012). Wallot S Leonardi G . Analyzing Multivariate Dynamics Using Cross-Recurrence Quantification Analysis (CRQA), Diagonal-Cross-Recurrence Profiles (DCRP), and Multidimensional Recurrence Quantification Analysis (MdRQA) – A Tutorial in R. Front Psychol (2018) 9. doi: 10.3389/fpsyg.2018.02232 Hoffmann R Müller T Hajak G Cassel W . DGSM Abend-/ Morgenprotokolle. Schwalmstadt-Treysa: German Sleep Society; (1997). Griefahn B Künemund C Bröde P Mehnert P . Zur Validität der deutschen Übersetzung des Morningness-Eveningness-Questionnaires von Horne und Östberg. Somnologie (2001) 5(2):7180. doi: 10.1046/j.1439-054X.2001.01149.x Horne JA Ostberg O . A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol (1976) 4(2):97110. Reiner I Beutel M Skaletz C Brähler E Stöbel-Richter Y . Validating the German Version of the Quality of Relationship Inventory: Confirming the Three-Factor Structure and Report of Psychometric Properties. PloS One (2012) 7(5):e37380. doi: 10.1371/journal.pone.0037380 Madia BP Lutz CJ . Perceived Similarity, Expectation-Reality Discrepancies, and Mentors' Expressed Intention to Remain in Big Brothers/Big Sisters Programs. J Appl Soc Psychol (2004) 34(3):598623. doi: 10.1111/j.1559-1816.2004.tb02562.x Grissett NI Norvell NK . Perceived social support, social skills, and quality of relationships in bulimic women. J Consult Clin Psychol (1992) 60(2):293–9. doi: 10.1037/0022-006X.60.2.293 Jung S Jopp DS . Adult Children's Relationship to Parent Influences Their Views on Aging and Attitude Toward Own Aging. Int J Aging Hum Dev (2019). 89(3):23156. doi: 10.1177/0091415018784703 Hatfield E Sprecher S . Measuring passionate love in intimate relationships. J Adolesc (1986) 9(4):383410. doi: 10.1016/S0140-1971(86)80043-4 Benjamini Y Hochberg Y . Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B (Methodological) (1995) 57(1):289300. doi: 10.1111/j.2517-6161.1995.tb02031.x Kashy DA Snyder DK . Measurement and data analytic issues in couples research. Psychol Assessment (1995) 7(3):338–48. doi: 10.1037/1040-3590.7.3.338 R Core Team . R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (2019). Available from: https://www.R-project.org/. Marwan N Thiel M Nowaczyk NR . Cross recurrence plot based synchronization of time series. Nonlin Processes Geophys (2002) 9(3/4):325–31. doi: 10.5194/npg-9-325-2002 Gravett N Bhagwandin A Lyamin OI Siegel JM Manger PR . Sociality Affects REM Sleep Episode Duration Under Controlled Laboratory Conditions in the Rock Hyrax, Procavia capensis. Front Neuroanat (2017) 11. doi: 10.3389/fnana.2017.00105 Riemann D Spiegelhalder K Nissen C Hirscher V Baglioni C Feige B . REM sleep instability–a new pathway for insomnia? Pharmacopsychiatry (2012) 45(5):167–76. doi: 10.1055/s-0031-1299721 DaSilva JK Husain E Lei Y Mann GL Tejani-Butt S Morrison AR . Social partnering significantly reduced rapid eye movement sleep fragmentation in fear-conditioned, stress-sensitive Wistar-Kyoto rats. Neuroscience (2011) 199:193204. doi: 10.1016/j.neuroscience.2011.09.066 Richter K Adam S Geiss L Peter L Niklewski G . Two in a bed: The influence of couple sleeping and chronotypes on relationship and sleep. An overview. Chronobiol Int (2016) 33(10):1464–72. doi: 10.1080/07420528.2016.1220388 Groch S Wilhelm I Diekelmann S Born J . The role of REM sleep in the processing of emotional memories: Evidence from behavior and event-related potentials. Neurobiol Learn Memory (2013) 99:19. doi: 10.1016/j.nlm.2012.10.006 Wiesner CD Pulst J Krause F Elsner M Baving L Pedersen A . The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories. Neurobiol Learn Memory (2015) 122(Supplement C):131–41. doi: 10.1016/j.nlm.2015.02.008 Rauchs G Bertran F Guillery-Girard B Desgranges B Kerrouche N Denise P . Consolidation of strictly episodic memories mainly requires rapid eye movement sleep. Sleep (2004) 27(3):395401. doi: 10.1093/sleep/27.3.395 Mahr J Csibra G . Why do we remember? The communicative function of episodic memory. Behav Brain Sci (2017) 41:193. doi: 10.1017/S0140525X17000012 Dolcos F Katsumi Y Weymar M Moore M Tsukiura T Dolcos S . Emerging Directions in Emotional Episodic Memory. Front Psychol (2017) 8. doi: 10.3389/fpsyg.2017.01867 Desseilles M Dang-Vu TT Sterpenich V Schwartz S . Cognitive and emotional processes during dreaming: A neuroimaging view. Consciousness Cognition (2011) 20(4):9981008. doi: 10.1016/j.concog.2010.10.005 Wassing R Benjamins JS Dekker K Moens S Spiegelhalder K Feige B . Slow dissolving of emotional distress contributes to hyperarousal. Proc Natl Acad Sci USA (2016) 113(9):2538–43. doi: 10.1073/pnas.1522520113 van der Helm E Yao J Dutt S Rao V Saletin JM Walker MP . REM sleep de-potentiates amygdala activity to previous emotional experiences. Curr Biol (2011) 21(23):2029–32. doi: 10.1016/j.cub.2011.10.052 Lerner I Lupkin SM Sinha N Tsai A Gluck MA . Baseline Levels of Rapid Eye Movement Sleep May Protect Against Excessive Activity in Fear-Related Neural Circuitry. J Neurosci (2017) 37(46):11233–44. doi: 10.1523/JNEUROSCI.0578-17.2017 Bao Y-P Han Y Ma J Wang R-J Shi L Wang T-Y . Cooccurrence and bidirectional prediction of sleep disturbances and depression in older adults: Meta-analysis and systematic review. Neurosci Biobehav Rev (2017) 75:257–73. doi: 10.1016/j.neubiorev.2017.01.032 Kinreich S Djalovski A Kraus L Louzoun Y Feldman R . Brain-to-Brain Synchrony during Naturalistic Social Interactions. Sci Rep (2017) 7. doi: 10.1038/s41598-017-17339-5 Pan Y Novembre G Song B Li X Hu Y . Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. Neuroimage (2018) 183:280–90. doi: 10.1016/j.neuroimage.2018.08.005 Szymanski C Pesquita A Brennan AA Perdikis D Enns JT Brick TR . Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation. Neuroimage (2017) 15 152:425–36. doi: 10.1016/j.neuroimage.2017.03.013 Fishburn FA Murty VP Hlutkowsky CO MacGillivray CE Bemis LM Murphy ME . Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc Cognit Affect Neurosci (2018) 13(8):841–9. doi: 10.1093/scan/nsy060 Hu Y Hu Y Li X Pan Y Cheng X . Brain-to-brain synchronization across two persons predicts mutual prosociality. Soc Cognit Affect Neurosci (2017) 12(12):1835–44. doi: 10.1093/scan/nsx118 Jiang J Chen C Dai B Shi G Ding G Liu L . Leader emergence through interpersonal neural synchronization. Proc Natl Acad Sci USA (2015) 112(14):4274–9. doi: 10.1073/pnas.1422930112 Hirsch J Zhang X Noah JA Ono Y . Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. Neuroimage (2017) 157:314–30. doi: 10.1016/j.neuroimage.2017.06.018 Meadows R Arber S Venn S Hislop J Stanley N . Exploring the interdependence of couples' rest-wake cycles: an actigraphic study. Chronobiol Int (2009) 26(1):8092. doi: 10.1080/07420520802678452 Kenny DA . Models of non-independence in dyadic research. J Soc Pers Relat (1996) 13(2):279–94. doi: 10.1177/0265407596132007
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.gamebf.com.cn
      www.hzdklc.com.cn
      www.jp8news.com.cn
      guasheng.net.cn
      kmomjjy.com.cn
      www.kfkybr.com.cn
      www.l55dj.net.cn
      huiteng88.com.cn
      steelbaas.com.cn
      ouluofen.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p