Front. Plant Sci. Frontiers in Plant Science Front. Plant Sci. 1664-462X Frontiers Media S.A. 10.3389/fpls.2021.629962 Plant Science Original Research Historical Analysis Exposes Catastrophic Seagrass Loss for the United Kingdom Green Alix E. 1 * Unsworth Richard K. F. 2 3 Chadwick Michael A. 4 Jones Peter J. S. 1 1Department of Geography, University College London (UCL), London, United Kingdom 2Seagrass Ecosystem Research Group, Swansea University, Swansea, United Kingdom 3Project Seagrass, Sustainable Places Research Institute, Cardiff, United Kingdom 4Department of Geography, King’s College London, London, United Kingdom

Edited by: Gidon Winters, Dead Sea and Arava Science Center, Israel

Reviewed by: Pedro Beca-carretero, Leibniz Centre for Tropical Marine Research (LG), Germany; Shinya Yoshikawa, Fukui Prefectural University, Japan

*Correspondence: Alix E. Green, alix.green@outlook.com

This article was submitted to Marine and Freshwater Plants, a section of the journal Frontiers in Plant Science

04 03 2021 2021 12 629962 16 11 2020 02 02 2021 Copyright © 2021 Green, Unsworth, Chadwick and Jones. 2021 Green, Unsworth, Chadwick and Jones

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The spatial extent of seagrass is poorly mapped, and knowledge of historical loss is limited. Here, we collated empirical and qualitative data using systematic review methods to provide unique analysis on seagrass occurrence and loss in the United Kingdom. We document 8,493 ha of recently mapped seagrass in the United Kingdom since 1998. This equates to an estimated 0.9 Mt of carbon, which, in the current carbon market represents about £22 million. Using simple models to estimate seagrass declines triangulated against habitat suitability models, we provide evidence of catastrophic seagrass loss; at least 44% of United Kingdom’s seagrasses have been lost since 1936, 39% since the 1980’s. However, losses over longer time spans may be as high as 92%. Based on these estimates, historical seagrass meadows could have stored 11.5 Mt of carbon and supported approximately 400 million fish. Our results demonstrate the vast scale of losses and highlight the opportunities to restore seagrass to support a range of ecosystems services.

blue carbon ecosystem change habitat loss intertidal historic change marine shifting baseline syndrome Zostera spp. NE/L002485/1 Natural Environmental Research Council

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Increased interest in the Blue Carbon capacity of seagrass means knowledge of the location, extent, and condition of seagrasses has become increasingly important (Fourqurean et al., 2012; Greiner et al., 2013; Röhr et al., 2018; Green et al., 2018). Seagrasses are highly productive, and represent one of the largest global carbon sinks despite occupying only 0.1% of the ocean floor (Hemminga and Duarte, 2000; Orth et al., 2006; Fourqurean et al., 2012; Duarte et al., 2013). An estimated 19.9 Pt carbon is stored in the top 1 m of seagrass worldwide, the equivalent to the CO2 emissions from fossil fuel and cement production in 2014 (Kerr, 2017). Seagrasses also support biodiversity, as well as contributing to the productivity of 20% of the world’s biggest fisheries (Unsworth et al., 2019), supporting coastal livelihoods, increasing shoreline stability, cycling nutrients, and making our coastlines make more affable places to live (Cullen-Unsworth et al., 2014; Nordlund et al., 2016).

      Under the Paris agreement countries pledged to outline National Determined Contributions (NDC’s) to reduce their emissions (Martin et al., 2016), and nature-based solutions are increasingly being adopted within these strategies. To date, six countries name seagrass directly in their NDCs (Martin et al., 2016). Although these inclusions are encouraging, to the best of our knowledge, there has been no attempt by any country to document the total areal extent and historic loss of seagrass in their coastal waters. One of the main global challenges of seagrass conservation is that the status of many seagrass meadows is unknown (Unsworth et al., 2019). Knowing how much seagrass a country has is clearly an important step to knowing how to protect it; but knowing where seagrass was, or where seagrass could thrive, gives countries an opportunity to re-plant and restore seagrass in favourable areas (Cunha et al., 2012; Greiner et al., 2013; Paulo et al., 2019).

      It is increasingly accepted that restoration of natural habitats must play a crucial role in global efforts to mitigate climate change (European Commission, 2009). That seagrasses can absorb more carbon up to 40 faster than terrestrial forests (Mcleod et al., 2011) should make them a significant component of these attempts. Global loss of seagrasses since the 1980’s is thought to be at least 29% (Waycott et al., 2009; Short et al., 2010), and seagrasses continues to be lost at a rate of 1.4% a year (Short et al., 2010). These losses must be stemmed if seagrasses are to play a role in climate mitigation and understanding where losses have occurred is an important first step towards appropriate conservation planning (Cullen-Unsworth and Unsworth, 2016).

      Seagrasses are highly sensitive to degrade water quality and conditions which impose light limitations to photosynthesis (Orth et al., 2006). Coastal development and nutrient enrichment have historically been responsible for worldwide declines, which threaten the substantial ecological services seagrass meadows provide (Fraser and Kendrick, 2017). Global seagrass declines only account for mapped populations, and in many countries, data on extent are limited. Even in developed countries, such as those of the United Kingdom, spatial data on seagrass extent are largely incomplete. Given the paucity of seagrass mapping to date, the baseline from which global seagrass declines are calculated are almost certainly significant underestimations. The most up-to-date estimate of seagrass coverage indicate that a minimum of 325,178 km2, occurs globally, but these values include data from the United Kingdom that is largely out of date (Short, 2018; McKenzie et al., 2020). Recent efforts have been made to demonstrate the substantial services afforded by United Kingdom seagrass habitats through sediment stabilisation (Wilkie, 2011), fisheries support (Bertelli and Unsworth, 2014), and carbon sequestration (Green et al., 2018). Understanding the significance of these services is challenging without robust estimates of the current and historic areal extent of United Kingdom seagrass meadows.

      As with global seagrass observations, monitoring and mapping of United Kingdom seagrasses occurs with limited consistency (McKenzie et al., 2020). Where studies have occurred, the resulting data are largely in the grey literature or held disparately by local councils, national and devolved governments, and non-government organisations (NGO’s). This has resulted in a lack of current and robust estimates on spatial coverage of seagrasses. The needs for these estimates are multiple but recent studies highlight the poor status of seagrasses in the United Kingdom (Jones and Unsworth, 2016).

      Once considered a significant component of the natural heritage of United Kingdom waters (Davidson and Hughes, 1998), seagrass is now accepted to be nationally scarce and sparsely distributed (Hiscock et al., 2005; Jones and Unsworth, 2016). Conceptions of environmental degradation tend to shift depending on our temporal reference point. In the United Kingdom, this “shifting baseline syndrome” (SBS; Pauly, 1995) occurs when the earliest known data of areal extent are assumed as an unaffected baseline condition. This is further exacerbated by data being supported by qualitative accounts that refer to healthier conditions within a scientist’s lifetime (Butcher, 1941; Pauly, 1995). With each generation, the concept of a healthy ecosystem shifts, depending on their perceived baseline.

      The earliest attempts to document seagrass extent already pointed to declines and the need for more data (Butcher, 1934, 1941). It is likely that Butcher’s 1930’s reports were already subject to SBS. Two periods of decline are emphasised throughout the literature: one immediately after WWI, and another during the northern Atlantic outbreak of wasting disease in the early 1930’s (Butcher, 1934; Cottam, 1934). The wasting disease “epidemic” has been perpetually attributed as the main cause of declines (Den Hartog, 1983; Garrard and Beaumont, 2014) without consideration for the pervasive environmental degradation that occurred in the centuries before. Regardless of the cause of these declines, more efforts are needed to evaluate the status and trends of these valuable marine habitats. To fully appreciate the extent of declines, we must find a way to look beyond these earliest evaluations, which are almost certainly underplayed due to SBS. The objectives of this study were accordingly to estimate for the United Kingdom: (1) the current areal extent of seagrass; and (2) the recent (since 1998) and historic (since before 1998) percentage loss of seagrass. The paper places our results in the context of conservation and provision of ecosystem services.

      Materials and Methods

      The United Kingdom contains two species of seagrass; Zostera marina and Zostera noltii. The former is predominately sublittoral, and the latter occurs intertidally (Wilkinson and Wood, 2003). Both species are protected under the EU Habitats Directive (92/43/EEC) as features included in annex 1 (habitats), are indicators of Good Ecological Status under the EU Water Framework Directive (WFD; Foden and Brazier, 2007), and gain protection from a number of other EU Directives due to their need for good water quality [i.e., EU Nitrates Directive (91/676/EEC), Urban Wastewater Treatment Directive (91/271/EEC)], and their importance as habitat for wildfowl [Birds Directive (79/409/EEC); Jackson et al., 2016]. In addition, seagrass habitats across a range of United Kingdom waters are offered protection associated with amend and devolved legislation stemming from the Wildlife and Countryside Act 1981.

      For the purpose of this work, we have categorised any data collected since 1998 as “contemporary” (similar to current conditions), and any data older as “historical” (not reflecting current conditions), since we cannot reliably confirm the presence of something that has not been mapped for over 20 years. To fulfill the first objective, multiple datasets were collated with other isolated data, to determine the current mapped areal extent of seagrasses in the United Kingdom. Due to the paucity of available data, we have used three methods to assess seagrass loss with high, medium, and low certainty. High certainty loss estimates were generated collating data older than 1998 and cross-checking them against contemporary data to confirm loss of areal extent. Medium certainty loss includes data on sites where no contemporary data are available, i.e., sites that have not been revisited since 1998. All these methods were supplemented by a systematic review to provide qualitative and quantitative data on seagrass loss. Low certainty loss estimates, not subject to SBS and data limitations, were derived using best available data on historic seagrass extent and additional data regarding sub- and intertidal, mud- and sandflat area of England, Scotland, and Wales (mainland Britain) to estimate maximum seagrass extent and percentage loss in mainland Britain. These estimates excluded Ireland and Northern Ireland because accurate data on mud- and sandflat area were not available.

      Contemporary and Historical Areal Estimates of Seagrass Habitats

      Two datasets were identified as containing records of Zostera from multiple sites. The OSPAR Commission (2017) dataset represents the current known areal extent of seagrasses in the United Kingdom and includes records on Zostera between 1986 and 2015. Under the WFD, a range of government agencies (e.g., English & Northern Ireland Environment Agency, Scottish Environment Protection Agency, and Natural Resources Wales) are required to assess the condition of seagrass to help determine the biological condition of United Kingdom water bodies (Foden and Brazier, 2007). The outcome of this is another dataset that includes areal extent of Zostera meadows monitored under the WFD between 2007 and 2017. These data were analysed by region and date on QGIS (version 3.2.1) and were shown to contain substantial gaps. To supplement these, we contacted stakeholders from a multitude of organisations targeting local councils, national and devolved governments, government advisory organisations, fisheries authorities, private environmental consultants, and scientists who work on seagrasses in the United Kingdom. From these searches, 14 additional contributors supplemented the OSPAR and WFD datasets, the collective of which makes up all the known available data, based on the searches we undertook (see Supporting information). Since species identification was not provided across all data sets, they have not been included here. However, as an intertidal species, there are far less technological constraints associated with surveying Z. noltii. Because of this we expect it to be in the majority, and further expect many Z. marina meadows to have gone unreported. Because of these inconsistencies, we have decided not to discriminate between species, since greater abundance of one species is likely due to mapping inconsistencies rather than variances in the conditions that allow one species to proliferate over another. It should also be noted that Zostera angustifolia was once considered its own species, although is now recognised as a phenotype of Z. marina (Becheler et al., 2010). As we do not distinguish between species, Z. angustifolia is treated in the same way as Z. marina and Z. noltii.

      Data were provided in the form of individual observations (point data) and area estimates (polygon data). Polygon data were used to provide the area estimates contained herein. Spatial assessments were made using QGIS (version 3.2.1) and all data were analyzed for duplicates or overlaps. Where they occurred the most recent data was used, unless differences between years occurred that represented data collection restraints rather than area changes. For example, when data were present in the same location from 2016 to 2018 but the 2018 data held substantially reduced area, it was assumed that this was not representative of habitat degradation but restrictions to accessing the full extent of the meadow. This was supported by several data fluctuating between 3 years – e.g., 2014 and 2016 showed the same area cover, but 2015 showed far reduced cover. The area of each polygon was calculated in m2 using a cylindrical WGS-84 projection and converted to hectares (ha) for reporting purposes.

      The contemporary data represent the minimum area of seagrasses in the United Kingdom since some meadows have certainly gone unreported. OSPAR data were used to provide high and medium certainty estimates of historic mapped areal extent. The maximum seagrass extent for each record within the dataset was checked against contemporary records and where contemporary records were found the difference between largest (oldest) and current meadow size was used to provide high certainty loss estimates. Where no contemporary record of the meadow was found, these were considered as spatial loss and included in medium certainty loss estimates. We acknowledge our approach, and the subsequent estimates of changes in coverage through time, is constrained by sampling efforts and data reporting of past research efforts, but this represents the best use of the best available data.

      Systematic Review of Qualitative and Quantitative Data on Seagrass Declines

      Systematic reviews are used to encapsulate a broad range of literature on a discrete subject by aggregating large data and rigorously extracting relevant information (Minx et al., 2017). We followed the distinct protocols required to achieve a systematic review by: (1) defining the discrete subject parameters and the timeframe of interest; (2) creating a search term to encapsulate all data that might be relevant to the subject; (3) inputting this into Web of Science (Thompson Reuters) to extract a literature database; (4) justifying and making a transparent selection of the literature; and (5) providing a synthesis of the relevant literature. Full details of these methods are provided in the supporting information (SI).

      Web of Science includes published, peer-reviewed articles as far back as 1990. Because of the distinct lack of published data on seagrass area cover in the United Kingdom, and a need to capture data as far back in time as possible, it was necessary to broaden the search to include published, unpublished, and grey literature. These data were collected by extensive internet searches, through contacting stakeholders from government, private organisations, and NGO’s, and from scientists and the public who work in seagrass science, conservation, and management throughout the United Kingdom. Papers were qualified and data extracted based on the same criteria as the systematic search (SI). Both search unearthed 179 papers that were considered relevant to this work.

      Modelling the of Seagrass Throughout England, Scotland, and Wales

      Because of the scarcity of historic empirical data, and the observation that many of the early qualitative reports are almost certainly subject to SBS, we used available data to model the maximum historic extent and low certainty loss estimates of seagrasses in mainland Britain.

      In 1991, the Nature Conservancy Council (NCC) undertook a report on the 155 estuaries that exist in mainland Britain (Davidson et al., 1991). In 1932, Butcher reported on the distribution of Zostera in the United Kingdom, including a spatial distribution map of mainland Britain that corresponds very closely with the estuaries map presented in the NCC report (Figure 1; Butcher, 1934). Further, qualitative data suggest that before WWI seagrass would once have been found across a large proportion of subtidal mud- and sandflats and on the lower ranges of most intertidal flats throughout the United Kingdom, especially prevalent in estuaries (Cotton, 1933; Butcher, 1934, 1941; Cottam, 1934). Sub and intertidal mud- and sand-flats, in particular, estuarine ones are, therefore, a good proxy for modelling historic seagrass distribution.

      Butcher’s 1930s estimate of seagrass area cover (shaded; Butcher, 1934) and numbers referring to estuaries identified by Nature Conservancy Council (Davidson et al., 1991; image created by UCL drawing office).

      We identified locations with best available data on seagrass area cover from either historic or contemporary estimates, where contemporary estimates represent meadows that are in reasonably good condition, and where total mud- /sandflat area for each site was available. This restricted the inclusion of sites to those designated as Special Protected Areas (SPA’s) and Special Areas of Conservation (SAC’s; JNCC, 2005, 2015, 2018) since such sites have been accurately mapped by the Joint Nature Conservation Committee (JNCC; Table 1).

      Seagrass meadow area data used to calculate historic seagrass loss in the United Kingdom.

      Site name Site location Current extent ha Historic extent ha m/s-flat area ha Seagrass area/ha m/s-flat Reference for m/s-flat area
      Spurn bight Humber estuary 0.59 550 4,842 0.11 JNCC, 2018
      Lindisfarne NE England 679 1,046 1,571 0.67 JNCC, 2015
      Foulness/maplin sands Thames estuary 40. 320 8,746 0.04 JNCC, 2005
      Fal and helford Cornwall 104 208 645 0.32 JNCC, 2018
      River stour and orwell Thames estuary 1 380 2,620 0.15 JNCC, 2018
      Exe estuary Cornwall 146 N.D. 900 0.16 JNCC, 2018
      Dornoch firth East Scotland 117 2,546 6,787 0.38 JNCC, 2018
      Cromarty firth East Scotland 1,200 3,241 3,766 0.86 JNCC, 2018
      Moray firth East Scotland N.D. 1,098 2,339 0.47 JNCC, 2018
      Plymouth sound Devon 92 N.D. 2,555 0.04 JNCC, 2018

      Current and historic extent (where available) and mud-/sandflat (m/s-flat) area were used to determine average seagrass area per hectare (ha) of mud-/sandflat. N.D. = no available data

      The chosen sites represent typical environmental variation for United Kingdom seagrasses including intertidal and subtidal habitats within estuaries, rivers, lochs, and spits. Seagrass area coverage per hectare of mud- / sandflat was calculated for each site by dividing total seagrass area by total mud- /sandflat area (Table 1; Figure 2i). Seagrass coverage was estimated using bootstrapping techniques (Manly, 2006). Our 10 sites were randomly selected with replacement 1,000 times and multiplied by total mud-/sandflat area estimates from (a) the OSPAR dataset (2017), which includes data in and outside of estuaries, and (b) the NCC report (Davidson et al., 1991), which includes data from estuaries only (Figures 2a,b). The average of these 1,000 estimates were used to estimate maximum extent of seagrasses around mainland Britain (Figures 2ai,bi). We used this simple bootstrapping procedure (Manly, 2006), rather than more typical parametric statistical methods, due to the paucity of available data. The data provide low certainty maximum seagrass extent around mainland Britain. In addition to the simple modelling approach, datasets were also obtained from previous studies using habitat suitability modelling to estimate potential seagrass distribution (Brown, 2015; Defra, 2020).

      Calculations used to estimate maximum areal extent of seagrass in mainland Britain:a×i=ai;b×i=bi. i is the average seagrass area from 11 sites with good historic or contemporary estimates divided by known mud- and sand flat area.

      Results Contemporary and Pre-1998 Areal Estimates of Seagrass Habitats

      The total mapped areal extent of contemporary seagrass records (post-1997) from the OSPAR dataset, the WFD dataset, and all other contributors includes 47 surveys spanning 20 years, 79% of which are from the last 10 years (see Supporting Information). In total, the data confirm the presence of 8,493 ha of seagrasses in the United Kingdom (Table 2). Occurrence of seagrasses is not uniform. Half of all mapped seagrass occurs in the Scottish Highlands (20%), Devon (16.2%), and Northern Ireland (14.3%; Table 2). Seagrass occurrence ranges from patches less than 1m2 to meadows up to 1,200 ha (i.e., Cromarty Firth, East Scotland). The average size of seagrass record is 2.64 ± 32.22 ha.

      Distribution of contemporary mapped seagrass area from the OSPAR and Water Framework Directive datasets, and other collected data sources since 1998.

      Location Area ha % of total
      Scottish highlands 2,056 24.21
      Devon 1,392 16.39
      Northern Ireland 1,810 14.44
      Hampshire and Isle of wight 714 8.41
      Northumbria 680 8.01
      South Wales 460 5.42
      Dorset 372 4.38
      Scilly Isles 196 2.31
      North Wales 172 2.03
      Suffolk, Essex, and Kent 170 2.00
      Cornwall 166 1.95
      East Scotland 108 1.27
      West Wales 90 1.06
      Cumbria 65 0.77
      Norfolk 42 0.49
      Total 8,493

      Data present total known areal extent of seagrass in the United Kingdom by region, including relative contribution to the total mapped area.

      The OSPAR dataset, which represents the currently used known areal extent of seagrasses in the United Kingdom, includes 13,753 ha of seagrass. Of this, 8,835 ha (64.2%) was recorded pre-1998 and 4,919 ha (35.76%) was contemporary (post-1997). Within the OSPAR dataset, there is an inverse relationship between average meadow size relative to age of record, i.e., the average area of historic seagrass meadows is 71 ± 218 ha whilst the average area of contemporary seagrass meadows is 2 ± 238 ha. The average for all the meadows included in the OSPAR dataset between 1986 and 2015 is 4 ± 50 ha. GIS point data exist beyond the extent of these mapped areas but the extent of any seagrasses associated to such an observation is unknown and therefore not included within this analysis.

      The total mapped historic extent of seagrasses in the United Kingdom is 16,524 ha. The total documented loss of seagrasses since 1936 is 6,697 ha. A further 1,364 ha of seagrass habitat has not been revisited since 1998 (Table 3), a disproportionate amount of which is from Scotland (Table 4). With high certainty the UK has, therefore, lost 44% of its seagrass since 1936, 34% since the 1980s. With medium certainty, including historic data with no recent observations, 50% has been lost since 1936, and 42% since the 1980s.

      High certainty seagrass loss (by area and percent reduction) in regions where good historic data are available based on the systematic review.

      Max extent (pre-1998) Contemporary area High certainty loss since 1936
      ha ha ha %
      UK 16,524 8,335 6,826 41
      Cornwall 271 166 167 62
      Essex 450 170 280 62
      Northumbria 1,595 679 916 57
      NW England 224 65 159 71
      Scilly Isles 325 196 129 40
      Scotland 8,312 2,164 4,790 58
      Suffolk 380 1 379 100

      Estimated seagrass loss from high (known) and medium (unmapped) estimates across all regions and Scotland, calculated by analysing data older than 1998 from the OSPAR dataset.

      High certainty, known seagrass loss Total unmapped seagrass Medium certainty seagrass loss
      All regions 6,697 1,364 8,061
      Scotland 4,790 1,358 6,148

      Known loss is from sites which have been revisited and data captured since 1998, unmapped is from sites that have not been revisited.

      Systematic Review of Qualitative and Quantitative Data on Seagrass Declines

      The first published account of seagrass in the United Kingdom that we are currently aware of was in 1831 (Winch, 1831), where it was included in a publication on the “Flora of Northumberland and Durham.” This observation is from a location on the Tyne River long since reclaimed and now an industrial estate.1 A peak in publications occurred around the time of the 1930’s wasting disease when naturalists became concerned with the substantial degradation of sites throughout the United Kingdom (Figure 3). Publications were sporadic until 1990 (n = 20) and since then have occurred more frequently as a series of peaks and troughs (n = 66).

      Number of publications (grey and peer reviewed) relating to United Kingdom seagrass habitats by date where seagrass is primary focus (orange square) and seagrass is significant secondary focus (blue diamond).

      Attempts to describe seagrasses across the United Kingdom were made by Butcher in 1932, but without any defined methodology (Butcher, 1934). He considered the occurrence of seagrasses regionally but did not provide area estimates. Seagrasses seemingly occurred ubiquitously, “apart from wave-swept, shingly and rocky shores to the west of the country” (Butcher, 1934). The abundance of seagrasses in sheltered and protected areas on the east coast was noted, as were plentiful populations in the lochs of Ireland and the west of Scotland (Butcher, 1934). Aside from this early attempt, efforts were made to document the status of seagrasses in Scotland in 1933 (Cleator, 1993), in Wales (Kay, 1998), and in Cornwall and the Isles of Scilly in 2002 (Hocking and Tompsett, 2002a,b). These reports provide presence and absence data and indicate widespread declines, but do not provide usable spatial estimates of area.

      A full analysis and synthesis of the systematic search is provided in Supplementary Information. The literature analysed through the systematic review show ubiquitous declines across almost every region of the United Kingdom. Areas where good historic data are available show declines of between 40% (Cornwall) and 100% (Suffolk; Table 3). Although historic quantitative data are rare, the ubiquitous declines in seagrass areal extent are evident. Further, these historic declines are matched by pervasive recent declines, which suggest we are yet to stem this trend.

      Modelling the Loss of Seagrass Throughout England, Scotland, and Wales

      The proportion of seagrass area per hectare of sub- and intertidal mud- /sandflat ranged from 4 to 86% with an average of 32 ± 27%. The 1991 NCC report (Davidson et al., 1991) established that estuaries comprised a total of 530,000 ha of coastal waters in mainland Britain. Of these, half are in England and almost one third are found within Scottish waters (Davidson et al., 1991). Within these, mud- /sandflats make up about 43%, totaling 254,400 ha (Davidson et al., 1991). The OSPAR dataset does not include any data from Ireland and is lacking in Scottish datapoints. It reports 143,571 ha of sub- and intertidal mud- /sandflats in mainland Britain, including those outside of estuaries. Considering one third of estuaries is found in Scotland it is unsurprising that these figures do not align. The total current mapped areal extent of seagrasses in mainland Britain (from this papers data) is 6,760 ha.

      Using the NCC data on total mud- /sandflats area, the estimated maximum seagrass extent for mainland Britain is 81,953 ha, with an upper 95% CI ranging from 126,430 to 40,964 ha (Table 5; Figure 4). Using the OSPAR data on total mud- /sandflats area, the maximum seagrass extent for mainland Britain is 43,559 ha, with 95% CI ranging between 72,647 and 24,267 ha (Table 5; Figure 4). Statistical comparisons between the two seagrass coverage values were made by comparing 95% CIs. Overlapping CIs indicated no significant difference between area estimates. The modelled data suggests that, with low certainty, between 36,799 and 75,193 ha of seagrasses has been lost from mainland Britain, this would represent an 84 and 92% decline, respectively (Table 3).

      Modelled maximum seagrass area extent, area and percentage loss in mainland Britain from the Nature Conservancy Council (NCC) report (Davidson et al., 1991) and the OSPAR dataset.

      NCC total mud- /sandflat area ha OSPAR total mudflat area ha
      254,400 143,571
      Maximum seagrass extent ha Seagrass loss ha % decline Maximum seagrass extent ha Seagrass loss ha % decline
      Average 81,953 75,193 92 43,559 36,799 84
      Upper 95% 126,430 119,670 95 72,647 65,887 91
      Lower 5% 40,965 34,205 83 24,267 17,507 72

      Average and 95% confidence interval displayed.

      Modelled maximum seagrass area extent in mainland Britain from the NCC report (69) and the OSPAR dataset. Error bars indicate 95% CI.

      Discussion

      This study, to the best of our knowledge, is one of the first to systematically estimate the current and historic extent of seagrasses in any country and place it in the context of associated ecosystem services (see also, Ruiz et al., 2015; Harcourt et al., 2018). With high certainty, at least 44% of United Kingdom’s seagrasses has been lost since 1936. Of this, 39% has been lost since the 1980’s, which is substantially more than the suspected global decline of 29% in the same period (Waycott et al., 2009; Short et al., 2010). It also provides a different narrative to that emerging from the recent European review of seagrass status and trends that focused exclusively around monitoring data mostly from the previous 10 to 15 years (de los Santos et al., 2019). With medium certainty, 48% of seagrasses have been lost since 1936, 44% since the 1980s. The modelled potential distribution of seagrasses suggests with low certainty that up to 92% of seagrass has been lost from mainland United Kingdom waters.

      We provide estimated loss ranges because the paucity of survey data means it is impossible to know exactly how much seagrass has been lost from these waters. Our high certainty estimates are almost certainly under-representative of the true scale of occurred losses. They only represent those meadows that have been documented, and almost all of these would have undergone some level of degradation prior to their documentation. Our model has limitations, but without data, it is an important step to understanding the wide-scale losses that have occurred. In consultation with ABPmer (Defra, 2020) the EA undertook a suitability model to assess where seagrasses could occur in United Kingdom waters. They documented 43,346 ha of suitable habitat in England alone. Based on the current areal extent of seagrasses in England (3,873 ha), this would represent a 91% loss. A similar suitability model was conducted for Wales, which indicated 4,541 ha of suitable habitat (Brown, 2015). Based on the current areal extent of seagrasses in Wales (551 ha), this would represent an 88% loss. Together, these models suggest a total of 47,888 ha of suitable seagrass habitat in England and Wales. This total is comparable to our lower estimate for the whole of mainland Britain (43,559 ha). Considering the suitability models and our lower estimate do not include any or many data points from Scotland, it would be reasonable to assume that the actual number is much closer to our higher estimate (81,953 ha). The EA also undertook a modelling project to map the historic areal extent and loss of saltmarsh habitats in England. Digitally overlaying ordinance survey maps from 1860, they combined these with historic maps of saltmarsh extent, and estimated coastline flooding capacity using LIDAR data to calculate an historic areal extent estimate of 215,624 ha (Mike Best EA, 2019, personal communication). This represents an 85% reduction on current saltmarsh extent in England. Although our modelled estimates may seem high, they are seemingly not out of character with other estimates of coastal degradation in the United Kingdom. Oyster reefs too are thought to have suffered similar extensive declines (Thurstan et al., 2013). If 85% of saltmarsh habitat has been lost in the United Kingdom, then the likelihood is that the environment which fringes it has also experienced widespread declines. The reef function of Oysters and their capacity to filter vast quantities of water rapidly means their loss would have had a significant negative impact upon the environmental conditions (light and shelter) of many areas that would have historically contained seagrass.

      This study brings records together from disparate sources and provides the most up to date and accurate estimates of seagrass cover possible. The large-scale loss of seagrasses described here redefines the severity and spatial extent of what is known about biodiversity loss in our coastal seas, setting a new baseline upon which future management and restoration (Valdez et al., 2020) can aspire to build. Given the need to restore and improve management of these ecosystems, in light of work highlighting their importance to United Kingdom fisheries (Bertelli and Unsworth, 2014) and carbon sequestration (Green et al., 2018), and work highlighting the declining state of United Kingdom seagrass meadows (Jones and Unsworth, 2016), this work is much needed and timely in its arrival. Not all United Kingdom seagrass meadows has been lost and degraded, our research finds seagrasses persisting at many sites across the United Kingdom, to varying degrees of extent, with occurrences of seagrass recovery at some sites.

      The rare accounts of documented areal extent of seagrasses in the early 1900’s provide an example of the changes that have likely occurred throughout the United Kingdom. Although these data are in isolation, the consistent declines noted in the literature, along with the documented 96% decline in average meadow size, confirms the trend of degradation pointed to by earlier studies (Butcher, 1934, 1941). Historic declines since the 1900’s are mirrored by more recent declines noted in the last decade (Jackson et al., 2016) and numerous incidences of small-scale disturbances in recent years (Unsworth et al., 2017).

      There is strong evidence to suggest that seagrass loss can lead to a state of negative feedback preventing ecosystem recovery (Maxwell et al., 2017). However, this has not been the case for all United Kingdom sites. Intertidal (but not subtidal) recoveries observed in Milford Haven, Wales, where historic pollution encroachment and oil spills had previously reduced seagrasses (Bertelli et al., 2018), indicate removing or reducing stressors can, in some locations, lead to habitat recovery. The recovery of other intertidal seagrasses in the Leigh Marshes in the Greater Thames Estuary further supports this observation. History suggests meadows are capable of fluctuating and can recover from dramatic losses. The ability of seagrass meadows to regain abundance is encouraging and should help spur conservation initiatives globally, especially current attempts to promote seagrass restoration (Valdez et al., 2020).

      Understanding the Trends of Seagrass Decline in the United Kingdom

      Rationalising the probable causes of such vast losses of seagrass in Britain is at best difficult, mostly because robust estimates regarding historic spatial extent of Zostera are limited. Typically, the seagrass wasting disease Labyrinthula has been described as the primary cause of virtually all seagrass loss in the United Kingdom (Butcher, 1934; Cottam, 1934; Den Hartog, 1983; Garrard and Beaumont, 2014). We argue that this assumption is itself a result of SBS. This assumption stems from the discussion within Butcher’s report, where undoubtedly seagrasses were lost due to disease (Butcher, 1934). Butcher reported changes to habitat based on his own intertidal experiences of seagrass abundance, supported by those of individuals whose baselines only go as far back as their own inherited knowledge (Butcher, 1934; Pauly, 1995). This case of SBS means the basis on which Butcher referred to healthy populations of seagrasses is likely a gross underrepresentation of what once occurred in these waters and is an excellent example of how SBS impacts contemporary environmental knowledge (Butcher, 1934). There has been no enquiry as to whether the seagrass habitats Butcher was assessing were already heavily degraded, with almost all the literature pointing to this period for the cause of seagrass degradation (Butcher, 1934). Considering the early industrialisation of the United Kingdom and a long history of mining activity, it is almost certain that the systems Butcher assessed in 1930’s would have already undergone dramatic declines. His assumptions were also largely based on visits to sites on the eastern shores of England. It is likely that persistent gradual declines had been occurring for centuries before Butchers report and these have continued to the present day (Jackson et al., 2016; Jones and Unsworth, 2016; Unsworth et al., 2017; Jones et al., 2018).

      As the first country to industrialise in the 17 and 18th centuries, Britain had been undergoing dramatic land-use transformation long before Butcher assessed the status of seagrasses (Butcher, 1934). Industrialisation is intrinsically linked to environmental degradation. By the time, Butcher had been writing, dramatic physical alterations to the United Kingdom landscape had been occurring for at least 300 years (Butcher, 1934, 1941). A reference to seagrasses in the Tyne estuary in the early 1800’s (Winch, 1831) referred to a site that has since been reclaimed, now containing an industrial estate. Coastal reclamation, dredging and building of sea walls were prevalent in the 17th century, 200 years prior to this account (Batty, 1997), and are highly likely to have been as in conflict with seagrass as they still are today (Erftemeijer and Lewis, 2006). Importantly, the UK was at the forefront of the global metal industry, with metal mining prevalent throughout many parts of the United Kingdom during the 1700s and 1800s, with many of these mines (e.g., Wales) still producing extensive metal contaminated discharge into coastal and estuarine waters today. The negative impacts of a suite of heavy metals, causing toxic conditions for seagrasses, are well documented (Prange and Dennison, 2000; Macinnis-Ng and Ralph, 2002). Many areas thought to be viable seagrass sites within Welsh habitat suitability models are areas of historic heavy metal mining contamination, such as NE Anglesey (Whiteley and Pearce, 2003).

      In addition to industrial development, the scale of overfishing of oysters around the United Kingdom cannot be ignored as a fundamental change and major disturbance to the environmental conditions. There is growing evidence of the close positive interactions that occur between seagrasses and many bivalves (Perkins, 1988; Gagnon et al., 2020). Locations such as the Firth of Forth have entirely lost up to 5,000 ha of oyster beds (Thurstan et al., 2013). These oyster beds would have fundamentally influenced the volume of suspended particles in the water column and hence the water clarity, creating conditions suitable for photosynthetic production by seagrasses. Similar estimates are available for areas, such as the Solent, the Thames, The Clyde, the Humber, and the Severn (Thurstan et al., 2013). The extraction activities of these Oyster fisheries were also likely to have disturbed and remobilised sediments at a high frequency over major areas for prolonged periods, potentially negatively impacting seagrasses. It is not only Oyster fisheries that would have likely had a historic negative impact upon seagrass. As early as the 1700s, bottom trawling was already widespread around the coastal waters of the Great Britain (Jones, 2018) and such activity is well known to directly damage seagrasses (Blaber et al., 2000). Seagrasses remain threatened in the United Kingdom today by activities which reduce water quality, and direct physical disturbance (Jones and Unsworth, 2016; Green et al., 2018).

      The Need for Improved Seagrass Assessment

      The present analysis highlights a lack of coherent and systematic monitoring and mapping programmes of seagrass meadows in the United Kingdom. That 64% of records in the OSPAR dataset are older than 20 years highlights the prolific lack of constant effort in seagrass mapping. Despite this fact, the OSPAR dataset is the baseline for estimates of United Kingdom seagrass extent included by the UNEP World Conservation Monitoring Centre (WCMC). Since this is the first attempt to provide an accurate map and up-to-date map of seagrass occurrence and declines for an entire country it is likely that these are not the only data included by WCMC that are inaccurate (McKenzie et al., 2020). The paucity of current data means that estimates, even coarse ones, are a necessary step to evaluating the pressures imposed on seagrasses, in keeping with the accepted approach of “use available data” (Hiscock, 1997). However, data inconsistencies can make it challenging to talk meaningfully about global seagrass trends and arguably managers should only be working with temporal and spatial data that we are reasonably confident is accurate. Regional and local mapping of sites around the world is important in ensuring that current attempts to increase seagrass abundance through restoration, rehabilitation, and conservation have any hope to succeed.

      Data inconsistencies found within this work are most obvious in Scotland, where most data were collected over 20 years ago. Although the isolation from human population likely means there is potential for these meadows to remain intact, many have likely been impacted by the extensive and continually expanding salmon aquaculture industry, with fish farming a known cause of seagrass loss in other parts of the world (Berry and Davison, 2001). The meadows where historic and contemporary data are available show mass declines. The once huge meadows in the Cromarty and Dornoch Firths have been reduced from 3,241 to 1,200 ha and 2,546 to 117 ha, respectively. Regardless, huge swathes of Scottish waters have not been surveyed for over 2 decades and could represent a vital stronghold of this once ubiquitous United Kingdom habitat. Their condition and extent should be assessed with urgency. Scotland is not the only region where survey efforts since 1998 have been insubstantial. Pre- and post-1998 maps show a reduced survey effort across all regions (Figure 5).

      Seagrass point data from the OSPAR and UNEP-World Conservation Monitoring Centre datasets showing pre-1998 surveys (left) and post-1998 surveys (right).

      Impact of Declines on the Ecosystem Services Afforded by United Kingdom’s Seagrass

      Recent efforts have been made to estimate the amount of carbon stored within the United Kingdom seagrass meadows (Röhr et al., 2018; Green et al., 2018; Lima et al., 2020). These papers analysed sediment from 13 meadows along the southwest coast of the United Kingdom for organic carbon content. For areas around the Solent and adjacent harbours, Lima et al. (2020) found 33.8 ± 18.5 Mg C ha−1 in the top 30 cm of sediment. Whilst Green et al. (2018) found meadows contained a total of 141 ± 73 Mg C ha−1, within the top 1 m of seagrass sediment. We have used mean values across both United Kingdom seagrass species as current carbon values are limited and explicit assessment of the impact of species and environmental variation upon this are largely absent. Based on these average figures, the estimated total carbon stored in the top 100 cm of recently mapped seagrasses of the United Kingdom is ~1.2 Mt carbon. In mainland Britain, this figure is 0.9 Mt of carbon (Table 5). Based on the upper (81,952 ha) and lower (40,965 ha) estimates of historic seagrass distribution, mainland United Kingdom seagrass meadows could once have contained between 5.7 and 11.5 Mt of carbon (Table 5). The upper value of this is equivalent to 3% of the United Kingdoms CO2 emissions in 2017 (Eaton, 2019).

      There exists only one value currently of United Kingdom seagrass carbon sequestration, but this value itself is an estimate (Garrard and Beaumont, 2014), hence there are no reliable estimates of seagrass sequestration rates in the United Kingdom. Reasonable and frequently used rates in the literature give low (0.044 cm yr.−1), medium (0.202 cm yr.−1), and high (0.42 cm yr.−1) bounds to frame carbon sequestration estimates (Duarte et al., 2013; Lavery et al., 2013; Macreadie et al., 2013; Miyajima et al., 2015; Röhr et al., 2018). Here, sequestration rates were estimated by dividing the total carbon estimates by the amount of time it takes to accumulate this stock using the sedimentation rates above, to provide estimates on average annual carbon accumulation of United Kingdom seagrass meadows (Lavery et al., 2013; Röhr et al., 2018; Table 6.). Assuming a medium sedimentation rate, the seagrass meadows of the United Kingdom are accumulating roughly 0.024 Mt C yr−1 (Table 6). Assuming this medium sedimentation rate, historic undisturbed seagrass meadows of the United Kingdom could have been absorbing 0.232 Mt C yr−1 (Table 6).

      Estimates of total carbon (Mt C) of modeled historic and contemporary seagrass distribution of mainland Britain, and of contemporary seagrass distribution of the United Kingdom, with low (0.044 cm yr−1), medium (0.202 cm yr−1), and high (0.42 cm yr−1) estimates for carbon sedimentation per year (Mg C yr.−1).

      Carbon stock Sedimentation rates
      Area ha Total carbon Mt Low Mt. C yr−1 Medium Mg C yr−1 High Mg C yr−1
      Upper historic estimate 81,953 11.5 0.050 0.232 0.483
      Lower historic estimate 40,965 5.7 0.025 0.115 0.239
      Contemporary area United Kingdom 8,493 1.2 0.005 0.024 0.050
      Contemporary area mainland Britain 6,760 0.9 0.004 0.018 0.038

      Considering the need to include natural ecosystems in climate mitigation strategies, there is increasing interest in placing monetary valuations on carbon stock and sequestration estimates. The United Kingdom government has recently implemented a legal commitment to achieve Net-Zero greenhouse gas emissions by the year 2050. To reach this target will require major economic reforms and substantial increases in natural carbon sequestration capacity. The current United Kingdom carbon value is £24/t C (DECC, 2011; Green et al., 2018). However, according to the Grantham Institute, a price that is consistent with the Net-Zero targets needs to begin at £50/t C, rise to £75/t C in 2030, and to £160/t C in 2050 (Burke et al., 2019). Based on today’s market price, the value of the carbon stored in the top 100 cm of recently mapped seagrass stands at a value of £29 million with yearly (medium) sequestration value (Table 6) of £0.58 million, rising to £3.9 million over the next 30 years, if the projections hold true (Table 7). Taking the upper (Table 6) range of the historic estimates of seagrasses in mainland Britain, at today’s market value, these would once have contained £276 million worth of carbon in their sediments. In this undisturbed state, these seagrass meadows could have been responsible for sequestering £5.6 million worth of carbon every year, rising, if the projections hold true, to £37.2 million over the next 30 years (Table 7). These figures, although crude, offer a powerful indicative snapshot of what has been lost through long-term environmental degradation, and support the need to offer protection to those seagrass meadows that remain. Seagrasses use to be ubiquitous along the shores of the United Kingdom, and if restored to even part its former extent; this ecosystem will provide valuable support to reaching a carbon neutral future.

      Estimates of total carbon (Mt C) and current and projected increases in carbon economic value (£million) of modelled historic and contemporary seagrass distribution of mainland Britain, and of contemporary seagrass distribution of the United Kingdom, medium (0.202 cm yr−1) estimates for carbon sedimentation per year (Mg C yr.−1), and associated current and projected increases in carbon economic value (£million).

      Total market value £million Total market value £million
      Area Total carbon Today NZR Today 30 years Sequest-ration Today NZR Today NZR 30 years.
      ha Mt £24/t C £50/t C £160/t C Mg C yr−1 £24/t C £50/t C £160/t C
      Upper historic estimate 81,953 11.5 276 575 1840 0.23 5.6 11.6 37.2
      Lower historic estimate 40,965 5.7 136.8 285 912 0.12 2.8 5.8 18.4
      Contemporary area United Kingdom 8,493 1.2 28.8 60 192 0.02 0.6 1.2 3.9
      Contemporary area mainland Britain 6,760 0.9 21.6 45 144 0.02 0.4 0.9 2.9

      NZR, net zero requirement.

      The value that seagrasses provide for other ecosystem services cannot be readily quantified financially with current data; however, the functions they play are extensive in the United Kingdom, particularly with respect to fisheries support, biodiversity, nutrient cycling, and sediment stabilisation (Nordlund et al., 2016). United Kingdom studies have revealed that seagrass harbours 4.6 times the abundance of fish of unvegetated habitat at a density of 6,000 fish per hectare (Bertelli and Unsworth, 2014), resulting in United Kingdom seagrasses currently supporting approximately 50 million fish, many of commercial importance (e.g., juvenile whiting, cod, plaice, and pollack). Based on the upper (81,952 ha) and lower (40,965 ha) estimates of historic seagrass distribution, mainland United Kingdom seagrass meadows could once have contained between 200 and 400 million fish, a potential loss of 274 million fish based on the comparison to unvegetated seabed.

      Given the eutrophication issues faced by many coastal waters around the United Kingdom, the loss of seagrasses will have had a detrimental impact upon water quality. For example, Z. marina meadows may cycle approximately 49 kg of nitrogen per hectare year (Watson et al., 2020). This equates to the current annual cycling of 416 tonnes per year that could have historically been as high as 4,015 tonnes per year. Seagrasses also help reduce coastal erosion through improved stability of sediments. The extent of this role is often context dependent (Ondiviela et al., 2014) but available evidence indicates that at high density Z. marina may increase by up to 10 fold the sheer strength of the sediment (Widdows et al., 2008). Given the vast loss of seagrasses in eastern parts of the United Kingdom in areas know to be subject to coastal erosion and predicted to suffer from increasing impacts of rising sea levels, we hypothesise that at its historic extent seagrasses would have played a pivotal role in reducing coastal erosion.

      Conclusion

      Although the United Kingdom has arguably been altering its natural habitats for longer than almost any other country, the trends and impacts of declines exposed in this paper are likely occurring in many other developing and developed counties. This analysis shows the devastating ecosystem services losses that this decline has caused. It is hoped that this paper will not only generate a better understanding of seagrass losses in the United Kingdom, but also spur efforts to protect remaining seagrasses and restore historical losses and drive other countries to take stock of this vital coastal habitat to the same goal.

      Data Availability Statement

      The seagrass distribution data used in this study have been deposited in the Dryad Digital Repository (Green et al., 2021).

      Author Contributions

      All authors conceived the ideas and designed the methodology. AG collected the data and led the writing of the manuscript. AG and MC analysed the data. All authors contributed critically to the drafts and gave final approval for publication. All authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors contributed to the article and approved the submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to thank the following organisations for openly sharing data with us: the Community of Arran Seabed Trust, the Community Seagrass Initiative, Dorset Environmental Records Centre, the Environment Agency, EcoSpan, the regional Wildlife Trusts, the Regional Inshore Fisheries Conservation Authorities, Natural England, Natural Resources Wales, Poole Harbour Commissioners, and Scottish Natural Heritage. We would also like to thank Dr. Susanne Armstrong of ABPmer who conducted much of the EA’s suitability study and shared data.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fpls.2021.629962/full#supplementary-material

      References Batty L. (1997). “Predicting the effects of habitat loss and change on estuarine birds: are we asking the right questions?,” in Effect of habitat loss and change on waterbirds. ITE symposium: Proceedings of 10th International Waterfowl Ecology Symposium held at the University of Aveiro, Portugal. eds. Goss-Custard J. Rufino R. Luis Martínez M. A.. September 18–21, 1995 (London: Stationery Office), 1016. Becheler R. Diekmann O. Hily C. Moalic Y. Arnaud-Haond S. (2010). The concept of population in clonal organisms: mosaics of temporally colonized patches are forming highly diverse meadows of Zostera marina in Brittany. Mol. Ecol. 19, 23942407. doi: 10.1111/j.1365-294X.2010.04649.x, PMID: 20465589 Berry C. Davison A. (2001). Bitter harvest: A call for reform in Scottish aquaculture, WWF Scotland. Bertelli C. M. Robinson M. T. Mendzil A. F. Pratt L. R. Unsworth R. K. F. (2018). Finding some seagrass optimism in Wales, the case of Zostera noltii. Mar. Pollut. Bull. 134, 216222. doi: 10.1016/j.marpolbul.2017.08.018, PMID: 28847630 Bertelli C. M. Unsworth R. K. F. (2014). Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83, 425429. doi: 10.1016/j.marpolbul.2013.08.011, PMID: 23998854 Blaber S. J. M. Cyrus D. P. Albaret J. -J. Ching C. V. Day J. W. Elliott M. . (2000). Effects of fishing on the structure and functioning of estuarine and nearshore ecosystems. ICES J. Mar. Sci. 57, 590602. doi: 10.1006/jmsc.2000.0723 Brown D. B. (2015). Modelling the potential distribution of Zostera marina in Wales. MSc thesis. Wales: Swansea University. Burke J. Byrnes R. Fankhauser S. (2019). How to price carbon to reach net-zero emissions in the UK. London: Grantham Research Institute on Climate Change and the Environment and Centre for Climate Change Economics and Policy, London School of Economics and Political Science. Available at: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2019/05/GRI_POLICY-REPORT_How-to-price-carbon-to-reach-net-zero-emissions-in-the-UK.pdf (Accessed July 29, 2020). Butcher R. W. (1934). Zostera. Report on the present condition of eel grass on the coasts of England, based on a survey during august to October, 1933. ICES J. Mar. Sci. 9, 4965. doi: 10.1093/icesjms/9.1.49 Butcher R. W. (1941). The distribution of Zostera (eelgrass, wigeon grass) and other seashore plants in relation to the migrations of wildfowl. Int. Wildfowl Inq. 1, 2949. Cleator B. (1993). The status of the genus Zostera in Scottish coastal waters. Edinburgh: Scottish Natural Heritage. Cottam C. (1934). Past periods of eelgrass scarcity. Rhodora 36, 261264. Cotton A. D. (1933). Disappearance of Zostera marina. Nature 132, 277277. doi: 10.1038/132277a0 Cullen-Unsworth L. C. Nordlund L. M. Paddock J. Baker S. McKenzie L. J. Unsworth R. K. (2014). Seagrass meadows globally as a coupled social–ecological system: implications for human wellbeing. Mar. Pollut. Bull. 83, 387397. doi: 10.1016/j.marpolbul.2013.06.001 Cullen-Unsworth L. C. Unsworth R. K. F. (2016). Strategies to enhance the resilience of the world’s seagrass meadows. J. Appl. Ecol. 53, 967972. doi: 10.1111/1365-2664.12637 Cunha A. H. Marbá N. N. Katwijk M. M. van Pickerell C. Henriques M. Bernard G. . (2012). Changing paradigms in seagrass restoration. Restor. Ecol. 20, 427430. doi: 10.1111/j.1526-100X.2012.00878.x Davidson D. Hughes D. (1998). Zostera Biotopes (volume I). An overview of dynamics and sensitivity characteristics for conservation management of marine SACs. UK Marine SACs Project. 95. Davidson N. Laffoley D. Doody J. P. Way L. S. Gordon J. Key R. . (1991). Nature conservation and estuaries in Great Britain. Peterborough: Nature Conservancy Council. DECC (2011). A brief guide to the carbon valuation methodology for UK policy appraisal. London: Department of Energy & Climate Change. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/48184/3136-guide-carbon-valuation-methodology.pdf (Accessed July 31, 2019). Defra (2020). Seagrass potential areas derived from wave and current energy, elevation and salinity criteria. Environmental Dataset. Available at: https://environment.data.gov.uk/dataset/52d33c00-770e-4ed7-9a25-9015d3bcc44f (Accessed July 29, 2020). de los Santos C. B. Krause-Jensen D. Alcoverro T. Marbà N. Duarte C. M. van Katwijk M. M. . (2019). Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10:3356. doi: 10.1038/s41467-019-11340-4, PMID: 31350407 Den Hartog C. (1983). Stuctural uniformity and diversity in Zostera-dominated communities in Western Europe. Mar. Technol. Soc. J. 17, 614. Duarte C. M. Kennedy H. Marbà N. Hendriks I. (2013). Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies. Ocean Coast. Manag. 83, 3238. doi: 10.1016/j.ocecoaman.2011.09.001 Eaton G. (2019). Final UK greenhouse gas emissions national statistics: 1990–2017. GOV.UK. Available at: https://www.gov.uk/government/statistics/final-uk-greenhouse-gas-emissions-national-statistics-1990-2017 (Accessed June 7, 2019). Erftemeijer P. L. A. Lewis R. R. R. (2006). Environmental impacts of dredging on seagrasses: a review. Mar. Pollut. Bull. 52, 15531572. doi: 10.1016/j.marpolbul.2006.09.006, PMID: 17078974 European Commission (2009). Nature’s role in climate change. Available at: https://ec.europa.eu/environment/nature/info/pubs/docs/climate_change/en.pdf (Accessed June 20, 2019). Foden J. Brazier D. P. (2007). Angiosperms (seagrass) within the EU water framework directive: a UK perspective. Mar. Pollut. Bull. 55, 181195. doi: 10.1016/j.marpolbul.2006.08.021, PMID: 17027036 Fourqurean J. W. Duarte C. M. Kennedy H. Marbà N. Holmer M. Mateo M. A. . (2012). Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505509. doi: 10.1038/ngeo1477 Fraser M. W. Kendrick G. A. (2017). Belowground stressors and long-term seagrass declines in a historically degraded seagrass ecosystem after improved water quality. Sci. Rep. 7:14469. doi: 10.1038/s41598-017-14044-1, PMID: 29259256 Gagnon K. Rinde E. Bengil E. G. T. Carugati L. Christianen M. J. A. Danovaro R. . (2020). Facilitating foundation species: the potential for plant–bivalve interactions to improve habitat restoration success. J. Appl. Ecol. 57, 11611179. doi: 10.1111/1365-2664.13605 Garrard S. L. Beaumont N. J. (2014). The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Mar. Pollut. Bull. 86, 138146. doi: 10.1016/j.marpolbul.2014.07.032, PMID: 25103900 Green A. Chadwick M. A. Jones P. J. (2018). Variability of UK seagrass sediment carbon: implications for blue carbon estimates and marine conservation management. PLoS One 13:e0204431. doi: 10.1371/journal.pone.0204431, PMID: 30248130 Green A. E. Chadwick M. A. Unsworth R. K. F. Jones P. J. S. (2021). Historical analysis of seagrass loss in the United Kingdom. Dryad, Dataset. doi: 10.5061/dryad.0vt4b8gwh Greiner J. T. McGlathery K. J. Gunnell J. McKee B. A. (2013). Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS One 8:e72469. doi: 10.1371/journal.pone.0072469, PMID: 24204809 Harcourt W. Briers R. Huxham M. (2018). The thin(ning) green line? Investigating changes in Kenya's seagrass coverage. Biol. Lett. 14:20180227. doi: 10.1098/rsbl.2018.0227, PMID: 30487254 Hemminga M. A. Duarte C. M. (2000). Seagrass ecology. Cambridge, UK: Cambridge University Press. Hiscock K. (1997). Use available data. Mar. Pollut. Bull. 34, 7477. doi: 10.1016/S0025-326X(96)00140-3 Hiscock K. Sewell J. Oakley J. (2005). Marine health check 2005: A report to gauge the health of the UK’s sea-life. Goldalming: WWF-UK. Available at: https://www.marlin.ac.uk/assets/pdf/marine_healthcheck05.pdf (Accessed March 6, 2017). Hocking S. Tompsett P. (2002a). The location & conservation of eelgrass beds in Cornwall and the Isles of Scilly. Volume I – report. Environmental Records Centre for Cornwall and the Isles of Scilly. Hocking S. Tompsett P. (2002b). The location & conservation of eelgrass beds in Cornwall and the Isles of Scilly. Volume II -site summary sheets. Truro: Environmental Records Centre for Cornwall and the Isles of Scilly. Jackson E. L. Cousens S. L. Bridger D. R. Nancollas S. J. Sheehan E. V. (2016). Conservation inaction in action for Essex seagrass meadows? Reg. Stud. Mar. Sci. 8, 141150. doi: 10.1016/j.rsma.2016.10.003 JNCC (2005). Information Sheet on Ramsar Wetlands (RIS). Available at: https://jncc.gov.uk/jncc-assets/RIS/UK11076.pdf (Accessed March 16, 2019). JNCC (2015). SPA Review site accounts. Available at: http://jncc.defra.gov.uk/page-1417 (Accessed March 13, 2019). JNCC (2018). UK SAC site list. Available at: http://jncc.defra.gov.uk/page-1458 (Accessed March 16, 2019). Jones P. (2018). The spread of bottom trawling in the British Isles, c.1700–1860. Int. J. Marit. Hist. 30, 681700. doi: 10.1177/0843871418804486 Jones B. L. Cullen-Unsworth L. C. Unsworth R. K. F. (2018). Tracking nitrogen source using δ15N reveals human and agricultural drivers of seagrass degradation across the british isles. Front. Plant Sci. 9:133. doi: 10.3389/fpls.2018.00133, PMID: 29467789 Jones B. L. Unsworth R. K. F. (2016). The perilous state of seagrass in the British Isles. R. Soc. Open Sci. 3:150596. doi: 10.1098/rsos.150596, PMID: 26909188 Kay Q. (1998). A review of the existing state of knowledge of the ecology and distribution of seagrass beds around the coast of Wales. Bangor: Countryside Council for Wales. Kerr J. (2017). Introduction to energy and climate: Developing a sustainable environment. Boca Raton, Florida, USA: CRC Press. Lavery P. S. Mateo M. -Á. Serrano O. Rozaimi M. (2013). Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8:e73748. doi: 10.1371/journal.pone.0073748, PMID: 24040052 Lima M. D. A. C. Ward R. D. Joyce C. B. (2020). Environmental drivers of sediment carbon storage in temperate seagrass meadows. Hydrobiologia 847, 17731792. doi: 10.1007/s10750-019-04153-5 Macinnis-Ng C. M. O. Ralph P. J. (2002). Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni. Mar. Pollut. Bull. 45, 100106. doi: 10.1016/S0025-326X(01)00300-9, PMID: 12398373 Macreadie P. I. Hughes A. R. Kimbro D. L. (2013). Loss of ‘blue carbon’ from coastal salt marshes following habitat disturbance. PLoS One 8:e69244. doi: 10.1371/journal.pone.0069244, PMID: 23861964 Manly B. F. J. (2006). Randomization, bootstrap and Monte Carlo methods in biology. 3rd Edn. Boca Raton, Florida, USA: CRC Press. Martin A. Landis E. Bryson C. Lynaugh S. Mongeau A. Lutz S. (2016). Blue carbon-nationally determined contributions. Norway: GRID-Arendal. Maxwell P. S. Eklöf J. S. Katwijk M. M. van O’Brien K. R. Torre-Castro M. de la Boström C. . (2017). The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – a review. Biol. Rev. 92, 15211538. doi: 10.1111/brv.12294, PMID: 27581168 McKenzie L. Nordlund L. M. Jones B. L. Cullen-Unsworth L. C. Roelfsema C. M. Unsworth R. (2020). The global distribution of seagrass meadows. Environ. Res. Lett. 15:074041. doi: 10.1088/1748-9326/ab7d06 Mcleod E. Chmura G. L. Bouillon S. Salm R. Björk M. Duarte C. M. . (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552560. doi: 10.1890/110004 Minx J. C. Callaghan M. Lamb W. F. Garard J. Edenhofer O. (2017). Learning about climate change solutions in the IPCC and beyond. Environ. Sci. Pol. 77, 252259. doi: 10.1016/j.envsci.2017.05.014 Miyajima T. Hori M. Hamaguchi M. Shimabukuro H. Adachi H. Yamano H. . (2015). Geographic variability in organic carbon stock and accumulation rate in sediments of east and southeast Asian seagrass meadows. Glob. Biogeochem. Cycles 29, 397415. doi: 10.1002/2014GB004979 Nordlund L. M. Koch E. W. Barbier E. B. Creed J. C. (2016). Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One 11:e0163091. doi: 10.1371/journal.pone.0163091, PMID: 27732600 Ondiviela B. Losada I. J. Lara J. L. Maza M. Galván C. Bouma T. J. . (2014). The role of seagrasses in coastal protection in a changing climate. Coastal Engineering 87, 158168. doi: 10.1016/j.coastaleng.2013.11.005 Orth R. J. Luckenbach M. L. Marion S. R. Moore K. A. Wilcox D. J. (2006). Seagrass recovery in the Delmarva coastal bays, USA. Aquat. Bot. 84, 2636. doi: 10.1016/j.aquabot.2005.07.007 OSPAR Commission (2017). OSPAR list of threatened and/or declining species and habitats. London: OSPAR Commission. Paulo D. Cunha A. H. Boavida J. Serrão E. A. Gonçalves E. J. Fonseca M. (2019). Open coast seagrass restoration. Can we do it? Large scale seagrass transplants. Front. Mar. Sci. 6:52. doi: 10.3389/fmars.2019.00052 Pauly D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10:430. doi: 10.1016/S0169-5347(00)89171-5, PMID: 21237093 Perkins E. J. (1988). The impact of suction dredging upon the population of cockles Cerastoderma edule in Auchencairn Bay. Scotland: Nature Conservancy Council, South-west Region. Prange J. A. Dennison W. C. (2000). Physiological responses of five Seagrass species to trace metals. Mar. Pollut. Bull. 41, 327336. doi: 10.1016/S0025-326X(00)00126-0 Röhr M. E. Holmer M. Baum J. K. Björk M. Boyer K. Chin D. . (2018). Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows. Glob. Biogeochem. Cycles 32, 14571475. doi: 10.1029/2018GB005941 Ruiz J. M. Guillén J. E. Ramos Segura A. Otero M. M. (2015). Atlas de las praderas marinas de España. Murcia-Alicante-Málaga: IEO/IEL/UICN, 681. Short F. (2018). UNEP-WCMC. Short F. T. Carruthers T. J. R. Waycott M. Kendrick G. A. F. Ourqurean J. W. Callabine A. . (2010). Zostera marina. The IUCN red list of threatened species. IUCN Global Species Programme Red List Unit. Thurstan R. H. Hawkins J. P. Raby L. Roberts C. M. (2013). Oyster (Ostrea edulis) extirpation and ecosystem transformation in the Firth of Forth, Scotland. J. Nat. Conserv. 21, 253261. doi: 10.1016/j.jnc.2013.01.004 Unsworth R. K. F. McKenzie L. J. Collier C. J. Cullen-Unsworth L. C. Duarte C. M. Eklöf J. S. . (2019). Global challenges for seagrass conservation. Ambio 48, 801815. doi: 10.1007/s13280-018-1115-y, PMID: 30456457 Unsworth R. K. F. Williams B. Jones B. L. Cullen-Unsworth L. C. (2017). Rocking the boat: damage to eelgrass by swinging boat moorings. Front. Plant Sci. 8:1309. doi: 10.3389/fpls.2017.01309, PMID: 28791040 Valdez S. R. Zhang Y. S. van der Heide T. Vanderklift M. A. Tarquinio F. Orth R. J. . (2020). Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 7:91. doi: 10.3389/fmars.2020.00091 Watson S. C. Preston J. Beaumont N. J. Watson G. J. (2020). Assessing the natural capital value of water quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. Sci. Total Environ. 744:140688. doi: 10.1016/j.scitotenv.2020.140688 Waycott M. Duarte C. M. Carruthers T. J. B. Orth R. J. Dennison W. C. Olyarnik S. . (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 1237712381. doi: 10.1073/pnas.0905620106, PMID: 19587236 Whiteley J. D. Pearce N. J. G. (2003). Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK. Appl. Geochem. 18, 901913. doi: 10.1016/S0883-2927(02)00183-X Widdows J. Pope N. D. Brinsley M. D. Asmus H. Asmus R. M. (2008). Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension. Mar. Ecol. Prog. Ser. 358, 125136. doi: 10.3354/meps07338 Wilkie L. (2011). The role of intertidal seagrass Zostera spp. in sediment deposition and coastal stability in the Tay Estuary, Scotland. PhD Thesis. Wilkinson M. Wood P. (2003). Type-specific reference conditions for macroalgae and angiosperms in Scottish transitional and coastal waters. Final report. Scottish Environment Protection Agency (SEPA) Available at: https://www.sepa.org.uk/media/163257/macroalgae_angiosperms_report.pdf (Accessed January 31, 2018). Winch J. (1831). Flora of Northumberland and Durham. Newcastle-upon-Tyne: Barter Books Ltd.

      Funding. This work was funded by the Natural Environmental Research Council (AG grant number NE/L002485/1 to AG; https://nerc.ukri.org/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

      1https://seagrassspotter.org/sighting/1816

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hnmzx.com.cn
      ezqkuf.com.cn
      www.lxchain.com.cn
      www.hzjyc.com.cn
      www.lrvrtm.org.cn
      www.kychain.com.cn
      lezhexue.com.cn
      www.qhmz.com.cn
      www.shkuaijie.com.cn
      www.ojpenw.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p