Front. Physiol. Frontiers in Physiology Front. Physiol. 1664-042X Frontiers Media S.A. 10.3389/fphys.2019.00837 Physiology Mini Review State-of-the-Art Exercise Concepts for Lumbopelvic and Spinal Muscles – Transferability to Microgravity Hides Julie 1 2 * Hodges Paul 3 Lambrecht Gunda 4 5 1 School of Allied Health Sciences, Griffith University, Nathan, QLD, Australia 2 Mater Back Stability Research Clinic, Mater Health, South Brisbane, QLD, Australia 3 School of Health and Rehabilitation Sciences, NHMRC Centre of Clinical Research Excellence on Spinal Pain, Injury and Health, The University of Queensland, Brisbane, QLD, Australia 4 European Space Agency Space-Medicine Office, European Astronaut Centre, Cologne, Germany 5 Germany Praxis fur Physiotherapie und Osteopathische Techniken, Siegburg, Germany

Edited by: Dieter Blottner, Charité Medical University of Berlin, Germany

Reviewed by: Alan R. Hargens, University of California, San Diego, United States; Elena S. Tomilovskaya, Institute of Biomedical Problems (RAS), Russia; Yves Henchoz, Université de Lausanne, Switzerland

*Correspondence: Julie Hides, j.hides@griffith.edu.au

This article was submitted to Environmental, Aviation and Space Physiology, a section of the journal Frontiers in Physiology

04 07 2019 2019 10 837 10 04 2019 17 06 2019 Copyright © 2019 Hides, Hodges and Lambrecht. 2019 Hides, Hodges and Lambrecht

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Low back pain (LBP) is the leading cause of disability worldwide. Over the last three decades, changes to key recommendations in clinical practice guidelines for management of LBP have placed greater emphasis on self-management and utilization of exercise programs targeting improvements in function. Recommendations have also suggested that physical treatments for persistent LBP should be tailored to the individual. This mini review will draw parallels between changes, which occur to the neuromuscular system in microgravity and conditions such as LBP which occur on Earth. Prolonged exposure to microgravity is associated with both LBP and muscle atrophy of the intrinsic muscles of the spine, including the lumbar multifidus. The finding of atrophy of spinal muscles has also commonly been reported in terrestrial LBP sufferers. Studying astronauts provides a unique perspective and valuable model for testing the effectiveness of exercise interventions, which have been developed on Earth. One such approach is motor control training, which is a broad term that can include all the sensory and motor aspects of spinal motor function. There is evidence to support the use of this exercise approach, but unlike changes seen in muscles of LBP sufferers on Earth, the changes induced by exposure to microgravity are rapid, and are relatively consistent in nature. Drawing parallels between changes which occur to the neuromuscular system in the absence of gravity and which exercises best restore size and function could help health professionals tailor improved interventions for terrestrial populations.

counter-measures trunk muscles anti-gravity space flight back pain

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Exposure to microgravity induces rapid alterations in multiple physiological systems. This mini review focuses on neuromuscular and sensorimotor systems. One of the primary changes in the neuromuscular system in response to microgravity is skeletal muscle atrophy, which occurs especially in muscles that maintain posture while upright on Earth (anti-gravity or postural muscles) (Chang et al., 2016). Changes are greater in the lower body than the upper body, with muscle losses documented in the muscles spanning the trunk, hip, knee, and ankle (Mulavara et al., 2018). In addition, bone mineral density decreases by 1–2% per month (LeBlanc et al., 2000). Back pain among astronauts has a documented incidence rate of 52 (Kerstman et al., 2012) and 70% (Pool-Goudzwaard et al., 2015). Exercise is the only countermeasure available to mitigate declines in muscle size and function, bone density, and is routinely used in spaceflight to protect health of crews and to effectively manage back pain (Kerstman et al., 2012). The NASA roadmap projects that humans will be sent to Mars by the 2030s. Details concerning how exercise can be optimized to limit atrophy are currently inadequate, and development of countermeasures for long duration missions is required. A recent study reported that lessons learned from development of exercise strategies on Earth could inform programs for long duration missions. In particular, programs developed for people with low back pain (LBP) may have application as inflight exercise countermeasures (Hides et al., 2017). Since the last review was written in 2017, there have been considerable advancements in knowledge in the field of LBP research. For example, the mechanisms underpinning the changes in paraspinal muscles observed in people with LBP are only just beginning to be understood. An increased understanding of these changes may inform improved design and timing of exercise interventions. Despite there being a small amount of data for astronauts, and a large amount of data for people on Earth with LBP, studying astronauts provides valuable data as exposure to microgravity provides a discrete perturbation to the system and produces relatively consistent and predictable responses. On Earth, LBP and the accompanying changes in the paraspinal muscles might take decades to occur and have many contributing factors. With astronauts, it is possible to plan longitudinal studies and conduct measures pre-and post- exposure to the discrete modification of microgravity and evaluate the effectiveness of different interventions. Conducting prospective research trials on Earth is difficult, as it requires assessment of a very large pool of individuals, waiting for LBP to develop, and accounting for the multiple contributing variables. Additional information may be gained from Earth-based analogue studies, such as exercise interventions for people following prolonged bed rest.

      Earth-Based Analogue Studies and Trunk Muscles

      Bed rest and dry immersion are models commonly used to simulate microgravity and create a terrestrial model of space flight with the advantage of being able to manipulate research conditions (Parry and Puthucheary, 2015; Ploutz-Snyder et al., 2018; Tomilovskaya et al., 2019). In bed rest, participants follow a strict protocol of lying down in bed at a 6° head down tilt for days to months. In dry immersion, a waterproof elastic fabric is used to immerse subjects into a deep bath up to the neck level in a supine position (Tomilovskaya et al., 2019). These trials are used to understand the implications of muscle disuse/physical inactivity, to simulate the axial unloading experienced by the sensorimotor system in space and in the case of dry immersion, to simulate a lack of support (Reschke et al., 2009; Tomilovskaya et al., 2019).

      In the trunk region, muscles that have been studied include the multifidus, lumbar erector spinae, quadratus lumborum, abdominal wall muscles (transversus abdominis, and obliquus internus and externus abdominis) and psoas. Bed rest studies have shown that preferential atrophy of antigravity muscles occurs in response to this stimulus (Bloomfield, 1997), and there is evidence of progressively greater decrements in muscle size over time (Parry and Puthucheary, 2015). In dry immersion, a significant decrease in the transverse stiffness of the back extensor muscles has been noted (Rukavishnikov et al., 2017). This is interpreted to indicate decreased extensor muscle activity and produce a flexed posture as an acute response to transition to weightlessness (Tomilovskaya et al., 2019). In response to bed rest, the rate of muscle atrophy in the lumbo-pelvic region was greatest in the multifidus (L4 and L5 vertebral levels) and the lumbar erector spinae (at L1 and L2) muscles, where both muscles are known to have their greatest cross section area. A 5-day dry immersion study also found decreased cross-sectional area area of the quadratus lumborum, multifidus, and erector spinae muscles at the L4-L5 vertebral level on MRI (Rukavishnikov et al., 2018). Bed rest induced a contrasting increase in size of the abdominal flexor and psoas muscles (Hides et al., 2007; Belavy et al., 2011). Some of the changes induced in prolonged bed rest studies are long lasting in nature. Changes observed in the lumbar multifidus muscles remained evident 90 days following re-ambulation and return to full pre-bed rest levels of activity (Belavy et al., 2008).

      In addition to changes in muscle size, bed rest, and dry immersion have been found to affect the passive structures of the spine. This includes increased disc volume, spinal length, and loss of the lower lumbar lordosis (Belavy et al., 2011; Rukavishnikov et al., 2018). Although these Earth-based analogue studies provide valuable insights, some responses may not be observed in microgravity. For example, no changes in lumbar inter-vertebral disc height or disc water content were found on pre- to post- space flight imaging (Chang et al., 2016; Bailey et al., 2018) and the occurrence of LBP on Earth during bed rest is different from LBP in microgravity in relation to pain intensity and duration (Pool-Goudzwaard et al., 2015). Innovations including use of in-flight ultrasound imaging are being evaluated as a way to monitor changes occurring during space flight to understand the mechanisms for these differences (Garcia et al., 2018; Harrison et al., 2018).

      Changes in Trunk Muscles Associated with Low Back Pain and Spinal Conditions

      Low back pain is a complex condition with multiple contributors to both the pain and associated disability, including psychological factors, social factors, biophysical factors, comorbidities, and pain-processing mechanisms (Hartvigsen et al., 2018). This mini review will address biophysical factors, namely trunk muscle changes. Changes in trunk muscles have been observed in people with LBP. In those with acute LBP, localized muscle atrophy of the multifidus muscles has been demonstrated (Hides et al., 1996). In subacute LBP, there is adipose accumulation without atrophy (Battie et al., 2012), whereas chronic LBP is characterized by more diffuse atrophy (Hides et al., 2011), fibrosis and fatty infiltration (Zhao et al., 2000). A recent systematic review examined the association between LBP and morphology of paraspinal muscles including the erector spinae, multifidus, psoas, and quadratus lumborum muscles (Ranger et al., 2017). Results showed evidence for a negative association between cross-sectional area (CSA) of the multifidus muscles and LBP (smaller muscle as related to worse LBP). Results were conflicting for the other muscles (Ranger et al., 2017). CSA of the multifidus muscles was predictive of LBP for up to 12 months in men (Ranger et al., 2017) and CSA of the multifidus and erector spinae muscles at the L4 and L5 vertebral levels predicted low back disability (Ranger et al., 2018). Fatty infiltration of paraspinal muscles may result in loss of muscle function and impaired strength (Lang et al., 2010). Although higher levels of MRI defined fat infiltration have been observed in people with LBP (Kjaer et al., 2007; Pezolato et al., 2012), there are conflicting results regarding the relationship between fatty infiltration of the multifidus muscles and LBP (Ranger et al., 2017). The mechanisms underpinning the changes in the paraspinal muscles in people with LBP are complex and time dependent and only beginning to be understood. In the acute phase, animal studies show reduced neural drive to the multifidus muscles (consistent with inhibition) immediately after injury (Hodges et al., 2009). However, this appears to shift to fibrotic, adipose and muscle fiber-type changes (fast-to-slow fiber transformation) in the multifidus muscles mediated by dysregulated inflammatory pathways in the muscle in the subacute period (Hodges et al., 2015), which is thought be related to activity of pro-inflammatory macrophages (James et al., 2018b). In animals, this has been shown following experimental injury to intervertebral disc despite no direct injury to the muscle (Hodges et al., 2009), and after spontaneous intervertebral disc degeneration (James et al., 2018a, 2019). In this latter study, dysregulation of the inflammatory pathways was related to the severity/extent of the disc degeneration and changes were prevented by physical activity (James et al., 2018a). Exercise also prevented the accumulation of fibrosis (James et al., 2019). In addition to these effects, exercise also polarizes macrophages to the anti-inflammatory subtype (Leung et al., 2015) in addition to other effects such as preventing central sensitization (Sluka et al., 2013), as well as effects on muscle fiber types and metabolism. Together, exercise represents a clinical strategy with diverse effects on muscle health, supporting the concept of ‘exercise as medicine’ (Ploutz-Snyder et al., 2018). In the chronic phase, more generalized changes appear consistent with disuse.

      Findings of a pro-inflammatory response in the multifidus muscles may also be very relevant for systemic inflammatory conditions affecting the spine such as axial spondyloarthritis (axSpa) and for critically ill patients who are immobilized. Although axSpa is a systemic disease, the initial inflammatory changes occur in the lumbo-pelvic region, and the lumbar paraspinal muscles are therefore a target for any primary or secondary pathological changes. Studies using MRI have demonstrated decreased CSA of the multifidus muscles, as well as changes in composition of the muscles (Akgul et al., 2013; Resorlu et al., 2017). Although exercise is beneficial in diseases such as axSpa, the mechanisms are not known. The effects could be mediated by the complex physiology of cytokines and associated molecular pathways. For instance, cytokines including interleukin 6 (IL-6) are released by muscles on contraction (Ostrowski et al., 2000). IL-6 has both pro- and anti-inflammatory effects and can act in a hormone like manner to produce anti-inflammatory effects, such as increasing IL-10, while decreasing TNF-α (Starkie et al., 2003). On this foundation, it has been proposed that the benefits of exercise on axSpa may be mediated via decreasing inflammation (Sveaas et al., 2017). Regarding critically ill patients, immobility also increases the production of pro-inflammatory cytokines and reactive oxygen species with subsequent muscle proteolysis promoting overall muscle loss (Winkelman, 2009; Puthucheary et al., 2010).

      Exercise and Low Back Pain

      There are many forms of exercise therapy for low back pain (LBP). Over the last three decades, changes to key recommendations in clinical practice guidelines for management of LBP have placed greater emphasis on self-management and exercise programs targeting functional improvement (Foster et al., 2018). Many approaches for management of LBP focus on modifying motor control, which refers to motor, sensory, and central processes for control of posture and movement (Hides et al., 2019). A common assumption of motor control training (MCT) is that the manner in which an individual loads their spine (e.g. posture, movement, and muscle activation strategies) can contribute onset, persistence, and recovery of symptoms. MCT considers sensory and motor aspects of spine function, and each individual’s management program is tailored to the suboptimal features identified on assessment. The MCT approach aims to identify and modify the suboptimal features of motor control, with integration into function. Although there is limited evidence to suggest that MCT is more effective for LBP than other forms of exercise in the general population (Macedo et al., 2014; Smith et al., 2014; Saragiotto et al., 2016), MCT has been considered to be an important component of post-mission neuromuscular reconditioning of astronauts post spaceflight, especially with respect to regaining postural alignment and axial loading (Evetts et al., 2014).

      It has been demonstrated that MCT can remediate changes in trunk muscles associated with LBP, but the effects and design of exercise will depend on the timing, and the underlying mechanisms. In the acute phase, when neural inhibition explains the rapid muscle atrophy, MCT achieved restoration of CSA of the multifidus muscles (Hides et al., 1996) and reduced recurrence of symptoms (Hides et al., 2001) with precise gentle activation. In athletes with more persistent symptoms, MCT decreased pain along with increases in the CSA of the multifidus muscle (Hides et al., 2008). Several studies have shown that in the chronic phase, adequate loading of the muscles is necessary to induce muscle hypertrophy (Danneels et al., 2001; Schoenfeld, 2010). Of note, individuals with LBP who have higher proportions of fatty infiltration into lumbar multifidus (at the L4/5 and L5/S1 vertebral levels) are less likely to respond to exercise therapy. This may suggest that structural changes in muscles are more resistant to change (Hebert et al., 2018), or that further refinement of the exercise design is necessary to optimize effect in this group. Promisingly, there is preliminary evidence that fatty infiltration of the multifidus muscles can be reduced with exercise. A recent study showed that free weight-based resistance training decreased chronic LBP and disability, in conjunction with altered biomechanics of a squat exercise and reduced fatty infiltration of lumbar multifidus and lumbar erector spinae muscles at the L3/4 and L4/5 vertebral levels, but not at L5/S1 (Welch et al., 2015). The L5/S1 vertebral level had higher percentages of fatty infiltration pre-intervention, and the investigators proposed that muscles with a higher percentage of fatty infiltration may be more resilient to change in response to exercise, or alternatively that the loading may have been distributed unevenly with decreased loading on the multifidus muscle in that region.

      Effects of Microgravity on Trunk Muscles

      Recent work has investigated the effect of microgravity on active (Chang et al., 2016; Bailey et al., 2018; Burkhart et al., 2018) and passive structures of the spine (Garcia et al., 2018; Harrison et al., 2018). Both the size and composition of the paraspinal muscles and changes in the lumbar lordosis have been examined pre- and post-spaceflight and 6 months on the International Space Station (ISS) in three recent studies (Chang et al., 2016; Bailey et al., 2018; Burkhart et al., 2018). The lumbar spine was shown to flatten by 11%, and the size of the multifidus muscles decreased by 8–9% (at the L3-4 vertebral level) (Bailey et al., 2018). Of note, changes in multifidus CSA correlated with the changes in the lumbar lordosis. With respect to individual paraspinal muscles decreases in CSA (erector spinae: −4.6%, multifidus: −8.4%, quadratus lumborum: −5.9 to −8.8%) and increased intramuscular fatty infiltration of these muscles (and the psoas) have also been observed post-flight (Burkhart et al., 2018). However, CT scanning was conducted at the L1/L2 vertebral levels, so is possible that the changes observed may have been even greater at the lower lumbar levels, which were not measured in this study. Promisingly, results showed that more resistance exercise was associated with less decline in the CSA of the ES and MF muscles (Burkhart et al., 2018). A study employing MRI showed that paraspinal lean muscle mass at the L3-4 vertebral level decreased significantly post mission, but recovery was incomplete 46 days post-flight (Chang et al., 2016). It is currently unknown whether exercise countermeasures will be effective at preventing inflight paraspinal muscle atrophy in long duration missions (Chang et al., 2016).

      Current Exercise Countermeasures on the ISS

      Since 2006, the European Space Agency (ESA) has built a multidisciplinary team that is responsible for astronaut preparation, inflight management while on the ISS and reconditioning after return to Earth. A recent clinical commentary has provided a detailed description of the physiotherapy (Lambrecht et al., 2017) and sports science (Petersen et al., 2016) programs. These were developed over nine long-duration missions. There is also work outlining the Russian countermeasure systems for adverse effects of microgravity on long-duration ISS flights (Kozlovskaya et al., 2015). The principles underlying the ESA astronaut program for lumbo-pelvic neuromuscular reconditioning post spaceflight have also been published (Evetts et al., 2014).

      During pre-flight training, astronauts are familiarized with the Advanced Resistive Exercise Device (ARED), which is an exercise countermeasure on the ISS. This focuses on optimizing spinal posture during the exercise while on Earth, as maintaining a good spinal position in microgravity can be challenging due to the reduced awareness secondary to lesser proprioceptive feedback in the absence of gravitational load and muscle activation. In flight, astronauts perform 2 h of training each day to mitigate the known negative effects of microgravity on the neuro-musculoskeletal system. A comprehensive program including use of cycle ergometry, treadmill and ARED training is used in an attempt to maintain muscular and cardiovascular endurance, muscle strength, and provide axial loading of skeletal structures (Lambrecht et al., 2017). However, it is important to note that the vertical loading provided by a harness on the ISS treadmill only provides a load of approximately 50 to 70–80% of body weight (Petersen et al., 2016) and that previous work has shown peak forces experienced during walking and running on-orbit are markedly lower than those measured on Earth (Cavanagh et al., 2010). Astronauts are monitored using real-time feedback via an audio and video conference link with the ESA physiotherapist and sports scientist, to optimize performance and for safety (Lambrecht et al., 2017).

      Longitudinal monitoring of size of trunk muscles in response to exposure to microgravity and reconditioning has shown that exercises performed using the ARED induce changes that differ between trunk muscles/muscle regions. Although the exercise program successfully maintained the size of the multifidus muscles at the L2-L4 vertebral levels, the multifidus muscle at the L5 level was still reduced post exposure to microgravity (Hides et al., 2016). The localized effect and recalcitrance to rehabilitation at this level parallels findings of some Earth based studies. The multifidus muscle at L5/S1 has been shown to be affected more than other vertebral levels in response to de-loading (Hides et al., 2007; Belavy et al., 2011), acute and chronic LBP (Hides et al., 1996, 2011) and in response to exercise interventions (Hides et al., 2008, 2012; Welch et al., 2015). The observation that size of the multifidus muscles at L4 and L5 predicts disability associated with LBP, reinforces the premise that these lower levels require special attention when prescribing exercise (Ranger et al., 2018). The position of the lumbo-sacral junction has been monitored closely in astronaut reconditioning to allow progression to weightlifting and endurance training for astronauts (Petersen et al., 2017). If the astronaut is unable to control their spinal alignment during exercise and function, they are encouraged to exercise with lower load, where optimal postural alignment can be maintained, prior to progression to greater load.

      Implications for Exercise Countermeasures for Future Human Exploration Missions

      One of the challenges for space travel beyond the ISS is the development of effective countermeasures for future exploration vehicles that are highly restricted in terms of the allocations for exercise hardware, volume, mass, and power (Ploutz-Snyder et al., 2018). Thus, large devices such as the ARED may not be available. NASA is currently developing small exercise devices that combine aerobic and resistance exercise in a single device (Ploutz-Snyder et al., 2018). When tested on bed-rest participants, 1 h per day preserved muscle, cardiovascular fitness and bone mass. This training time is shorter than daily exercise sessions performed on the ISS (Lambrecht et al., 2017), and the smaller size of the device could potentially be used in volume constrained spaceflight. Lower body negative pressure treadmill exercise has also been implemented on bed-rest participants, with findings suggesting this intervention partially counteracts deconditioning associated with simulated microgravity (Cao et al., 2005). It has been proposed that the proprioceptive system could be targeted by countermeasures given current spaceflight constraints (Layne and Forth, 2008; Yarmanova et al., 2015; Mulavara et al., 2018). Neurophysiological studies indicate that when vestibular information becomes unreliable, supplemental information such as proprioception is up-weighted to maintain control of posture and locomotion (Yates et al., 2000; Carriot et al., 2015). The addition of inflight proprioceptive countermeasures coupled with adequate resistance training could therefore help to mitigate the changes seen in response to prolonged exposure to microgravity (Bloomberg et al., 2015). The multifidus muscle is dense with muscle spindles (Nitz and Peck, 1986), and plays an important role in proprioception of the lumbo-pelvic region and control of the lumbar lordosis.

      One disadvantage of the ARED is that it only involves movement in one dimension, but humans are designed to move in three dimensions. Elastic bands, such as Theraband, could be used to perform exercises in three dimensions. In addition, axial loading through the use of skinsuits is a possibility (Carvil et al., 2017). Different combinations of exercise countermeasures would be possible, for example, astronauts could perform exercises while wearing skinsuits, and while using technology based solutions already developed on Earth for conditions such as LBP. Virtual reality-based technology has successfully been used to administer LBP interventions (Park et al., 2013; Kim et al., 2014), where patients see themselves as a projected avatar. This could be used to monitor and correct posture, provide customized rehabilitation programs in order to strengthen muscles and increase endurance (Su et al., 2015). In addition, if astronauts were experiencing LBP on long duration missions and having difficulty with activation of the multifidus muscle, ultrasound imaging could be used to provide feedback and enhance MCT (Hides et al., 2012). Ultrasound imaging has been successfully used by crew on the ISS to provide examinations of the spine (Garcia et al., 2018), and ultrasound imaging could be a viable option for inclusion on long duration flights, due to the extremely compact nature of recently developed equipment.

      Conclusion

      Exposure to microgravity is associated with LBP and an elevated risk of disc herniation on return to Earth. Understanding the mechanisms by which the exposure to microgravity affects the spine is important. This information is likely to guide in flight countermeasures. Understanding the effects of microgravity on the spine can provide new and potentially important information which could be used to design future interventions for people on Earth. As we move towards long-term missions, this reciprocal knowledge transfer could benefit both astronauts and people with chronic conditions such as LBP on Earth.

      Author Contributions

      All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The authors wish to thank their colleagues from the European space Agency for their continued collaboration, acknowledge previous funding from the European space Agency, the astronauts who have answered questionnaires regarding low back pain and allowed them to measure their paraspinal muscles permitted us to report the findings, and the co-ordinators and participants from the Berlin Bed Rest Studies.

      References Akgul O. Gulkesen A. Akgol G. Ozgocmen S. (2013). MR-defined fat infiltration of the lumbar paravertebral muscles differs between non-radiographic axial spondyloarthritis and established ankylosing spondylitis. Mod. Rheumatol. 23, 811816. doi: 10.1007/s10165-012-0750-6 Bailey J. F. Miller S. L. Khieu K. O’Neill C. W. Healey R. M. Coughlin D. G. . (2018). From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J. 18, 714. doi: 10.1016/j.spinee.2017.08.261, PMID: 28962911 Battie M. C. Niemelainen R. Gibbons L. E. Dhillon S. (2012). Is level- and side-specific multifidus asymmetry a marker for lumbar disc pathology? Spine J. 12, 932939. doi: 10.1016/j.spinee.2012.08.020, PMID: 23084154 Belavy D. L. Armbrecht G. Richardson C. A. Felsenberg D. Hides J. A. (2011). Muscle atrophy and changes in spinal morphology: is the lumbar spine vulnerable after prolonged bed-rest? Spine 36, 137145. doi: 10.1097/BRS.0b013e3181cc93e8 Belavy D. L. Hides J. A. Wilson S. J. Stanton W. Dimeo F. C. Rittweger J. . (2008). Resistive simulated weightbearing exercise with whole body vibration reduces lumbar spine deconditioning in bed-rest. Spine 33, E121E131. doi: 10.1097/BRS.0b013e3181657f98, PMID: 18317179 Bloomberg J. J. Peters B. T. Cohen H. S. Mulavara A. P. (2015). Enhancing astronaut performance using sensorimotor adaptability training. Front. Syst. Neurosci. 9:129. doi: 10.3389/fnsys.2015.00129, PMID: 26441561 Bloomfield S. A. (1997). Changes in musculoskeletal structure and function with prolonged bed rest. Med. Sci. Sports Exerc. 29, 197206. doi: 10.1097/00005768-199702000-00006, PMID: 9044223 Burkhart K. Allaire B. Bouxsein M. (2018). Negative effects of long-duration spaceflight on paraspinal muscle morphology. Spine. 44, 879886. doi: 10.1097/brs.0000000000002959 Cao P. Kimura S. Macias B. R. Ueno T. Watenpaugh D. E. Hargens A. R. (2005). Exercise within lower body negative pressure partially counteracts lumbar spine deconditioning associated with 28-day bed rest. J. Appl. Physiol. 99, 3944. doi: 10.1152/japplphysiol.01400.2004, PMID: 15761083 Carriot J. Jamali M. Cullen K. E. (2015). Rapid adaptation of multisensory integration in vestibular pathways. Front. Syst. Neurosci. 9:59. doi: 10.3389/fnsys.2015.00059, PMID: 25932009 Carvil P. A. Attias J. Evetts S. N. Waldie J. M. Green D. A. (2017). The effect of the gravity loading countermeasure skinsuit upon movement and strength. J. Strength Cond. Res. 31, 154161. doi: 10.1519/JSC.0000000000001460, PMID: 27135470 Cavanagh P. R. Genc K. O. Gopalakrishnan R. Kuklis M. M. Maender C. C. Rice A. J. (2010). Foot forces during typical days on the international space station. J. Biomech. 43, 21822188. doi: 10.1016/j.jbiomech.2010.03.044, PMID: 20462584 Chang D. G. Healey R. M. Snyder A. J. Hargens A. R. Sayson J. V. Macias B. R. . (2016). Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the international space station. Spine 41, 19171924. doi: 10.1097/BRS.0000000000001873, PMID: 27779600 Danneels L. A. Vanderstraeten G. G. Cambier D. C. Witvrouw E. E. Bourgois J. Dankaerts W. . (2001). Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br. J. Sports Med. 35, 186191. doi: 10.1136/bjsm.35.3.186, PMID: 11375879 Evetts S. N. Caplan N. Debuse D. Lambrecht G. Damann V. Petersen N. . (2014). Post space mission lumbo-pelvic neuromuscular reconditioning: a European perspective. Aviat. Space Environ. Med. 85, 764765. doi: 10.3357/ASEM.3943.2014, PMID: 25022167 Foster N. E. Anema J. R. Cherkin D. Chou R. Cohen S. P. Gross D. P. . (2018). Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet 391, 23682383. doi: 10.1016/S0140-6736(18)30489-6, PMID: 29573872 Garcia K. M. Harrison M. F. Sargsyan A. E. Ebert D. Dulchavsky S. A. (2018). Real-time ultrasound assessment of astronaut spinal anatomy and disorders on the international space station. J. Ultrasound Med. 37, 987999. doi: 10.1002/jum.14438, PMID: 28960477 Harrison M. F. Garcia K. M. Sargsyan A. E. Ebert D. Riascos-Castaneda R. F. Dulchavsky S. A. (2018). Preflight, in-flight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp. Med. Hum. Perform. 89, 3240. doi: 10.3357/AMHP.4878.2018, PMID: 29233242 Hartvigsen J. Hancock M. J. Kongsted A. Louw Q. Ferreira M. L. Genevay S. . (2018). What low back pain is and why we need to pay attention. Lancet 391, 23562367. doi: 10.1016/S0140-6736(18)30480-X, PMID: 29573870 Hebert J. J. Le Cara E. C. Koppenhaver S. L. Hoffman M. D. Marcus R. L. Dempsey A. R. . (2018). Predictors of clinical success with stabilization exercise are associated with lower levels of lumbar multifidus intramuscular adipose tissue in patients with low back pain. Disabil. Rehabil. 17. doi: 10.1080/09638288.2018.1506510, PMID: 30508498 Hides J. A. Belavý D. L. Stanton W. Wilson S. J. Rittweger J. Felsenberg D. . (2007). Magnetic resonance imaging assessment of trunk muscles during prolonged bed rest. Spine 32, 16871692. doi: 10.1097/BRS.0b013e318074c386, PMID: 17621220 Hides J. Donelson R. Lee D. Prather H. Sahrmann S. Hodges P. W. (2019). Convergence and divergence between exercise based approachs for managment of low back pain that consider motor control. JOSPT 49, 437452. doi: 10.2519/jospt.2019.8451, PMID: 31092126 Hides J. A. Jull G. A. Richardson C. A. (2001). Long-term effects of specific stabilizing exercises for first-episode low back pain. Spine 26, E243E248. doi: 10.1097/00007632-200106010-00004 Hides J. Lambrecht G. Ramdharry G. Cusack R. Bloomberg J. Stokes M. (2017). Parallels between astronauts and terrestrial patients – taking physiotherapy rehabilitation “To infinity and beyond”. Musculoskelet. Sci. Pract. 27(Suppl. 1), S32S37. doi: 10.1016/j.msksp.2016.12.008 Hides J. A. Lambrecht G. Stanton W. R. Damann V. (2016). Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research. Eur. Spine J. 25(Suppl. 1), 175182. doi: 10.1007/s00586-015-4311-5 Hides J. A. Richardson C. A. Jull G. A. (1996). Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine 21, 27632769. doi: 10.1097/00007632-199612010-00011, PMID: 8979323 Hides J. A. Stanton W. R. McMahon S. Sims K. Richardson C. A. (2008). Effect of stabilization training on multifidus muscle cross-sectional area among young elite cricketers with low back pain. J. Orthop. Sports Phys. Ther. 38, 101108. doi: 10.2519/jospt.2008.2658, PMID: 18349481 Hides J. A. Stanton W. R. Mendis M. D. Gildea J. Sexton M. J. (2012). Effect of motor control training on muscle size and football games missed from injury. Med. Sci. Sports Exerc. 44, 11411149. doi: 10.1249/MSS.0b013e318244a321, PMID: 22157811 Hides J. Stanton W. Mendis M. D. Sexton M. (2011). The relationship of transversus abdominis and lumbar multifidus clinical muscle tests in patients with chronic low back pain. Man. Ther. 16, 573577. doi: 10.1016/j.math.2011.05.007, PMID: 21641268 Hodges P. W. Galea M. P. Holm S. Holm A. K. (2009). Corticomotor excitability of back muscles is affected by intervertebral disc lesion in pigs. Eur. J. Neurosci. 29, 14901500. doi: 10.1111/j.1460-9568.2009.06670.x, PMID: 19519631 Hodges P. W. James G. Blomster L. Hall L. Schmid A. Shu C. . (2015). Multifidus muscle changes after back injury are characterized by structural remodeling of muscle, adipose and connective tissue, but not muscle atrophy: molecular and morphological evidence. Spine 40, 10571071. doi: 10.1097/BRS.0000000000000972, PMID: 25943090 James G. Klyne D. M. Millecamps M. Stone L. S. Hodges P. W. (2019). ISSLS prize in basic science 2019: physical activity attenuates fibrotic alterations to the multifidus muscle associated with intervertebral disc degeneration. Eur. Spine J. 28, 893904. doi: 10.1007/s00586-019-05902-9, PMID: 30737621 James G. Millecamps M. Stone L. S. Hodges P. W. (2018a). Dysregulation of the inflammatory mediators in the multifidus muscle after spontaneous intervertebral disc degeneration SPARC-null mice is ameliorated by physical activity. Spine 43, E1184E1194. doi: 10.1097/BRS.0000000000002656 James G. Sluka K. A. Blomster L. Hall L. Schmid A. B. Shu C. C. . (2018b). Macrophage polarization contributes to local inflammation and structural change in the multifidus muscle after intervertebral disc injury. Eur. Spine J. 27, 17441756. doi: 10.1007/s00586-018-5652-7 Kerstman E. L. Scheuring R. A. Barnes M. G. DeKorse T. B. Saile L. G. (2012). Space adaptation back pain: a retrospective study. Aviat. Space Environ. Med. 83, 27. doi: 10.3357/ASEM.2876.2012, PMID: 22272509 Kim S. S. Min W. K. Kim J. H. Lee B. H. (2014). The effects of VR-based Wii fit yoga on physical function in middle-aged female LBP patients. J. Phys. Ther. Sci. 26, 549552. doi: 10.1589/jpts.26.549, PMID: 24764631 Kjaer P. Bendix T. Sorensen J. S. Korsholm L. Leboeuf-Yde C. (2007). Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. 5:2. doi: 10.1186/1741-7015-5-2, PMID: 17254322 Kozlovskaya I. B. Yarmanova E. N. Yegorov A. D. Stepantsov V. I. Fomina E. V. Tomilovaskaya E. S. (2015). Russian countermeasure systems for adverse effects of microgravity on long-duration ISS flights. Aerosp. Med. Hum. Perform. 86, A24A31. doi: 10.3357/AMHP.EC04.2015, PMID: 26630192 Lambrecht G. Petersen N. Weerts G. Pruett C. Evetts S. Stokes M. . (2017). The role of physiotherapy in the European Space Agency strategy for preparation and reconditioning of astronauts before and after long duration space flight. Musculoskelet. Sci. Pract. 27(Suppl. 1), S15S22. doi: 10.1016/j.math.2016.10.009 Lang T. Cauley J. A. Tylavsky F. Bauer D. Cummings S. Harris T. B. (2010). Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J. Bone Miner. Res. 25, 513519. doi: 10.1359/jbmr.090807, PMID: 20422623 Layne C. S. Forth K. E. (2008). Plantar stimulation as a possible countermeasure to microgravity-induced neuromotor degradation. Aviat. Space Environ. Med. 79, 787794. doi: 10.3357/ASEM.2293.2008, PMID: 18717120 LeBlanc A. Schneider V. Shackelford L. West S. Oganov V. Bakulin A. . (2000). Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet. Neuronal Interact. 1, 157160. PMID: 15758512 Leung A. Gregory N. S. Allen L.-A. H. Sluka K. A. (2015). Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing interleukin-10 in mice. Pain 157, 7079. doi: 10.1097/j.pain.0000000000000312 Macedo L. G. Maher C. G. Hancock M. J. Kamper S. J. McAuley J. H. Stanton T. R. . (2014). Predicting response to motor control exercises and graded activity for patients with low back pain: preplanned secondary analysis of a randomized controlled trial. Phys. Ther. 94, 15431554. PMID: 29620686 Mulavara A. P. Peters B. T. Miller C. A. Kofman I. S. Reschke M. F. Taylor L. C. . (2018). Physiological and functional alterations after spaceflight and bed rest. Med. Sci. Sports Exer. 50, 19611980. doi: 10.1249/MSS.0000000000001615, PMID: 29620686 Nitz A. J. Peck D. (1986). Comparison of muscle spindle concentrations in large and small human epaxial muscles acting in parallel combinations. Am. Surg. 52, 273277. PMID: 2422993 Ostrowski K. Schjerling P. Pedersen B. K. (2000). Physical activity and plasma interleukin-6 in humans–effect of intensity of exercise. Eur. J. Appl. Physiol. 83, 512515. doi: 10.1007/s004210000312, PMID: 11192058 Park J. H. Lee S. H. Ko D. S. (2013). The effects of the Nintendo Wii exercise program on chronic work-related low back pain in industrial workers. J. Phys. Ther. Sci. 25, 985988. doi: 10.1589/jpts.25.985, PMID: 24259899 Parry S. M. Puthucheary Z. A. (2015). The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extrem. Physiol. Med. 4:16. doi: 10.1186/s13728-015-0036-7, PMID: 26457181 Petersen N. Jaekel P. Rosenberger A. Weber T. Scott J. Castrucci F. . (2016). Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS. Extrem. Physiol. Med. 5:9. doi: 10.1186/s13728-016-0050-4 Petersen N. Lambrecht G. Scott J. Hirsch N. Stokes M. Mester J. (2017). Postflight reconditioning for European astronauts – a case report of recovery after six months in space. Musculoskelet. Sci. Pract. 27, S23S31. doi: 10.1016/j.msksp.2016.12.010, PMID: 28173929 Pezolato A. de Vasconcelos E. E. Defino H. L. Nogueira-Barbosa M. H. (2012). Fat infiltration in the lumbar multifidus and erector spinae muscles in subjects with sway-back posture. Eur. Spine J. 21, 21582164. doi: 10.1007/s00586-012-2286-z, PMID: 22465969 Ploutz-Snyder L. L. Downs M. Goetchius E. Crowell B. English K. L. Ploutz-Snyder R. . (2018). Exercise training mitigates multi-system deconditioning during bed rest. Med. Sci. Sports Exer. 50, 19201928. doi: 10.1249/MSS.0000000000001618, PMID: 29924746 Pool-Goudzwaard A. L. Belavý D. L. Hides J. A. Richardson C. A. Snijders C. J. (2015). Low back pain in microgravity and bed rest studies. Aerosp. Med. Hum. Perform. 86, 541547. doi: 10.3357/AMHP.4169.2015, PMID: 26099126 Puthucheary Z. Montgomery H. Moxham J. Harridge S. Hart N. (2010). Structure to function: muscle failure in critically ill patients. J. Physiol. 588, 46414648. doi: 10.1113/jphysiol.2010.197632, PMID: 20961998 Ranger T. A. Cicuttini F. M. Jensen T. S. Heritier S. Urquhart D. M. (2018). Paraspinal muscle cross-sectional area predicts low back disability but not pain intensity. Spine J. 19, 862868. doi: 10.1016/j.spinee.2018.12.004 Ranger T. A. Cicuttini F. M. Jensen T. S. Peiris W. L. Hussain S. M. Fairley J. . (2017). Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J. 17, 17291748. doi: 10.1016/j.spinee.2017.07.002, PMID: 28756299 Reschke M. F. Bloomberg J. J. Paloski W. H. Mulavara A. P. Feiveson A. H. Harm D. L. (2009). Postural reflexes, balance control, and functional mobility with long-duration head-down bed rest. Aviat. Space Environ. Med. 80(Suppl. 5), A45A54. doi: 10.3357/ASEM.BR06.2009 Resorlu H. Savas Y. Aylanc N. Gokmen F. (2017). Evaluation of paravertebral muscle atrophy and fatty degeneration in ankylosing spondylitis. Mod. Rheumatol. 27, 683687. doi: 10.1080/14397595.2016.1245176 Rukavishnikov I. V. Amirova L. E. Kitov V. V. Tomilovskaya E. S. Kozlovskaya I. B. (2018). “MRI study of structural and functional changes of back muscles and spine under conditions of Dry Immersion” in Proceedings of the 42nd assembly Cospar 2018. (Pasadena, CA). Rukavishnikov I. V. Amirova L. E. Kukoba T. B. Tomilovskaya E. S. Kozlovskaya I. B. (2017). Effects of gravitational unloading on back muscles tone. Hum. Physiol. 43, 291300. doi: 10.1134/S0362119717030173 Saragiotto B. T. Maher C. G. Yamato T. P. Costa L. O. Menezes Costa L. C. Ostelo R. W. . (2016). Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst. Rev. 1:Cd012004. doi: 10.1002/14651858.cd012004 Schoenfeld B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 24, 28572872. doi: 10.1519/JSC.0b013e3181e840f3, PMID: 20847704 Sluka K. A. O’Donnell J. M. Danielson J. Rasmussen L. A. (2013). Regular physical activity prevents development of chronic pain and activation of central neurons. J. Appl. Physiol. 114, 725733. doi: 10.1152/japplphysiol.01317.2012, PMID: 23271699 Smith B. E. Littlewood C. May S. (2014). An update of stabilisation exercises for low back pain: a systematic review with meta-analysis. BMC Musculoskelet. Disord. 15:416. doi: 10.1186/1471-2474-15-416, PMID: 25488399 Starkie R. Ostrowski S. R. Jauffred S. Febbraio M. Pedersen B. K. (2003). Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 17, 884886. doi: 10.1096/fj.02-0670fje, PMID: 12626436 Su W. C. Yeh S. C. Lee S. H. Huang H. C. (2015). “A virtual reality lower-back pain rehabilitation approach: system design and user acceptance analysis” in Universal access in human-computer interaction. Access to learning, health and well-being. UAHCI 2015. Lecture Notes in Computer Science. Vol. 9177, eds. Antona M. Stephanidis C. (Cham: Springer). Sveaas S. H. Smedslund G. Hagen K. B. Dagfinrud H. (2017). Effect of cardiorespiratory and strength exercises on disease activity in patients with inflammatory rheumatic diseases: a systematic review and meta-analysis. Br. J. Sports Med. 51, 10651072. doi: 10.1136/bjsports-2016-097149, PMID: 28455366 Tomilovskaya E. Shigueva T. Sayenko D. Rukavishnikov I. Kozlovskaya I. (2019). Dry immersion as a ground-based model of microgravity physiological effects. Front. Physiol. 10:284. doi: 10.3389/fphys.2019.00284, PMID: 30971938 Welch N. Moran K. Antony J. Richter C. Marshall B. Coyle J. . (2015). The effects of a free-weight-based resistance training intervention on pain, squat biomechanics and MRI-defined lumbar fat infiltration and functional cross-sectional area in those with chronic low back. BMJ Open Sport Exerc. Med. 1:e000050. doi: 10.1136/bmjsem-2015-000050, PMID: 27900136 Winkelman C. (2009). Bed rest in health and critical illness: a body systems approach. AACN Adv. Crit. Care 20, 254266. doi: 10.1097/NCI.0b013e3181ac838d, PMID: 19638747 Yarmanova E. N. Kozlovskaya I. B. Khimoroda N. N. Fomina E. V. (2015). Evolution of Russian microgravity countermeasures. Aerosp. Med. Hum. Perform. 86(Suppl. 12), A32A37. doi: 10.3357/amhp.Ec05.2015 Yates B. J. Jian B. J. Cotter L. A. Cass S. P. (2000). Responses of vestibular nucleus neurons to tilt following chronic bilateral removal of vestibular inputs. Exp. Brain Res. 130, 151158. doi: 10.1007/s002219900238, PMID: 10672468 Zhao W. P. Kawaguchi Y. Matsui H. Kanamori M. Kimura T. (2000). Histochemistry and morphology of the multifidus muscle in lumbar disc herniation: comparative study between diseased and normal sides. Spine 25, 21912199. doi: 10.1097/00007632-200009010-00009, PMID: 10973402
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.mgwfge.com.cn
      gzpzqc.org.cn
      heyin.net.cn
      www.henryxuan.com.cn
      www.u302.org.cn
      sxfkch.com.cn
      twrzuk.com.cn
      www.uschool.org.cn
      www.plolpr.com.cn
      www.szwallet.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p