Front. Pharmacol. Frontiers in Pharmacology Front. Pharmacol. 1663-9812 Frontiers Media S.A. 10.3389/fphar.2020.588508 Pharmacology Review Current Prevention of COVID-19: Natural Products and Herbal Medicine Huang Junqing 1 * Tao Gabriel 2 Liu Jingwen 2 Cai Junming 3 Huang Zhongyu 1 Chen Jia-xu 1 4 * 1 Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China 2 Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States 3 Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States 4 School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China

Edited by: Banasri Hazra, Jadavpur University, India

Reviewed by: Ruchi Tiwari, U.P. Pandit Deen Dayal Upadhyaya Veterinary University, India; Andy Wai Kan Yeung, The University of Hong Kong, Hong Kong

*Correspondence: Junqing Huang, jqhuang@jnu.edu.cn; Jia-xu Chen, chenjiaxu@hotmail.com

This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

16 10 2020 2020 11 588508 29 07 2020 18 09 2020 Copyright © 2020 Huang, Tao, Liu, Cai, Huang and Chen 2020 Huang, Tao, Liu, Cai, Huang and Chen

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Starting from December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and unprecedented health crisis across the globe. While the development of cure is at full speed, less attention and fewer effort have been spent on the prevention of this rapidly spreading respiratory infectious disease. Although so far, several vaccine candidates have advanced into clinical trials, limited data have been released regarding the vaccine efficacy and safety in human, not mention the long-term effectiveness of those vaccines remain as open question yet. Natural products and herbal medicines have been historically used for acute respiratory infection and generally show acceptable toxicity. The favorable stability for oral formulation and ease of scaling up manufacture make it ideal candidate for prophylactic. Hereby, we summarized the most recent advance in SARS-CoV-2 prevention including vaccine development as well as experimental prophylactics. Mainly, we reviewed the natural products showing inhibitory effect on human coronavirus, and discussed the herbal medicines lately used for COVID-19, especially focused on the herbal products already approved by regulatory agency with identifiable patent number. We demonstrated that to fill in the response gap between appropriate treatment and commercially available vaccine, repurposing natural products and herbal medicines as prophylactic will be a vigorous approach to stop or at least slow down SARS-CoV-2 transmission. In the interest of public health, this will lend health officials better control on the current pandemic.

coronavirus disease 2019 severe acute respiratory syndrome coronavirus 2 prevention prophylactic natural product herbal medicine Jinan University10.13039/501100004024

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The novel coronavirus disease 2019 (COVID-19) pandemic starting from December 2019 has cast unprecedented threat to public health worldwide with over 27.9 million infection cases and 905,000 death till September 10, 2020, and the case number is still soaring (Bai et al., 2020). COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of beta-coronaviruses family (Walls et al., 2020). Coronaviruses (CoVs) are a family of large (ranging from 27–32 kb), enveloped, signal-strand positive-sense RNA viruses, which have characteristic club-like spikes on their surface (Walls et al., 2020). Currently, seven strains of human CoVs are reported. Four of them merely produce mild symptoms: Human coronavirus OC43 (HCoV-OC43), Human coronavirus HKU1 (HCoV-HKU1), Human coronavirus 229E (HCoV-229E), and Human coronavirus NL63 (HCoV-NL63), while the other three cause more severe symptoms: Middle East respiratory syndrome-related coronavirus (MERS-CoV), Severe acute respiratory syndrome coronavirus (SARS-CoV), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Su et al., 2016).

      SARS-CoV-2 initiate its infection via the interaction with angiotensin-converting enzyme 2 (ACE2) receptors and transmembrane protease, serine 2 (TMPRSS2) on host cell membrane (Hoffmann et al., 2020; Zhang H. et al., 2020). The mortality of COVID-19 is mainly due to acute respiratory distress syndrome and severe cytokine release syndrome (Hirano and Murakami, 2020; Mehta et al., 2020). Although over hundreds of clinical trials and preclinical studies have been set to seek cures for tackling COVID-19, up to date there are no approved therapeutics for this widely spreading disease. As for the prevention of COVID-19, several vaccine candidates are in pipelines, but due to the insufficiency of clinical evidence the efficacy of those vaccines remains arguable yet. Also, the safety issue of vaccine involves adaptive immune response which is far more complicated than small-molecule drug toxicity. Moreover, the scale-up of vaccine production is challenging, given that most vaccines are nucleotide or protein-based products which require more delicate manufacturing and storage system compared to small molecules. Those features make it extraordinarily demanding to provide a validated COVID-19 vaccine in the short term.

      Besides vaccine development, great efforts have been dedicated to discovering effective prophylactics against COVID-19 for high risk population, whereas very limited studies give satisfactory outcome. Very recently, several clinical cases and in-vivo results suggest that some anti-inflammation and anti-virus drugs have potential to be prophylactic candidates. But risk of adverse event will come along with the deployment of those medicines to big population, not to mention their preventive effect remains controversial. Natural products and herbal medicines have been used for the prevention of virus infection for years. Those medicinal products show favorable efficacy and tolerable toxicity. It is undeniable that herbal medicine is still a promising resource for drug discovery, and its acceptable toxicity make it a prospective prophylactic candidate against COVID-19. In face of this global health crisis, exploring prophylactics from herbal medicine is probably a promising and practical strategy to contain pandemic.

      In this review, we aimed to provide a new perspective regarding COVID-19 prevention. We called attention to natural products and herbal medicines as potential prophylactic against COVID-19. We summarized the most recent advances in COVID-19 vaccine development and lately reported experimental prophylactics. Then, we discussed both the natural products inhibiting human coronavirus and the herbal medicines proven effective in alleviating respiratory distress syndrome. We performed integrated network analysis upon selected herbal medicine to identify the most promising active components with the potential to be prophylactics. Ultimately, this review attempts to offer alternative conceptual framework for COVID-19 prevention and deeper insight into this unprecedented pandemic.

      Current Prevention of COVID-19

      Development of effective prevention is urged to contain the spread of current pandemic and halt the occurrence of future relapse. Vaccine, convalescent serum, monoclonal antibody, and marketed anti-viral drugs become the most promising options in the spotlight at this point. In this worldwide race to develop vaccine solution against SARS-COV-2, several candidates are standing out as the current front runners ( Table 1 ) with the hope of deploying as early as the end of 2020. While vaccine development at full speed, repurposing or reinventing existing pharmaceutical solutions to meet the challenge will be also necessary. With established safety record, optimized mass-production infrastructure in place, repurposing could fast-track treatment options without compromising rigorous public health standards. To fill in the response gap between treatment and upcoming vaccine, repurposing preventative treatment, or prophylactics, could reduce transmission of the virus for the public and lend health officials better control on the outbreak. Several compounds of interests with ongoing trials are highlighted.

      COVID-19 vaccines in pipeline.

      Lead Developer(s) Vaccine Type Development Status Ref.
      Moderna & NIAID mRNA/nanoparticle Phase III clinical trials ongoing (Corbett et al., 2020; Moderna Inc, 2020)
      AstraZeneca & University of Oxford Plasmid edited gene materials/AdV Phase I/II ongoing; phase II/III recruiting (Oxford COVID-19 vaccine to begin phase II/III human trials | University of Oxford; Doremalen et al., 2020; Folegatti et al., 2020)
      CanSino Biologics & Academy of Military Medical Sciences Plasmid edited gene materials/Ad5 Phase I/II ongoing in China, phase I/II approved in Canada (Halperin and Langley, 2020; Zhu et al., 2020; Zhu et al., 2020)
      Sinovac Biotech & Wuhan Institute of Biological Products Inactivated SARS-COV-2 Phase I/II ongoing (Sinovac Biotech Co., Ltd, 2020)
      Inovio Pharmaceuticals SARS-COV-2 encoding DNA based Phase I ongoing (Inovio Pharmaceuticals, 2020; Smith et al., 2020)
      BioNTech & Pfizer mRNA vaccine Phase II/III ongoing (BioNTech SE, 2020; Mulligan et al., 2020a; Mulligan et al., 2020b)
      Novavax Recombinant Protein Phase I complete, phase II ongoing (Novavax Inc., 2020)
      Johnson & Johnson Recombinant Protein Phase I/II ongoing, accelerating phase III (Janssen Pharmaceutica, 2020)
      Curevac mRNA vaccine Phase I ongoing (CureVac Inc., 2020)
      Imperial College London RNA vaccine Phase I/II ongoing (ISRCTN - ISRCTN17072692: Clinical trial to assess the safety of a coronavirus vaccine in healthy men and women)
      Russia Ministry of Health Plasmid edited gene materials/AdV Phase III ongoing, approved (Logunov et al., 2020)
      Landscape of Global COVID-19 Vaccine Development

      Most potential options can be broadly categorized three types: mRNA delivery, genetic material with viral carrier, and inactivated virus. Currently, more vaccines candidates on the most advanced timeline are in the second and third category for those methods have more responsive and rapid production scheme, suitable for emergent public health crisis of SARS-COV-2.

      Two leading candidates on mRNA delivery are the mRNA-1273 by Moderna in collaboration with National Institute of Allergy and Infectious Diseases (NIAID) in the U.S., and BNT162b1 by BioNTech in collaboration with Pfizer in Germany. Both candidates use RNA motifs of encoding sequence for the Spike (S) protein. Since the commence of the vaccine, Moderna has announced FDA’s permission for phase III recruitment starting July 2020, implying expedited development is currently on track to delivery optimistically by late 2020 (Moderna Inc, 2020). As of early Septermber, Moderna’s phase III clinical trials has recruited more than 20,000 participants, on track with early estimate (ModernaTX. Inc, 2020). BioNTech, in similar timeline, is set to start phase III of clinical trial by the end of July 2020. To date, its global phase 2/3 trial has accumulatively enrolled more than 25,000 participants (BioNTech SE, 2020). It recently releases an interim report as preprint, showing positive response (~1.8–2.8 folds) to SARS-COV-2 when compared to convalescent human sera (Mulligan et al., 2020a). Under the class of genetic material with viral carrier, University of Oxford and Astra Zeneca have advance their candidate ChAdOx1 (AZD1222), a weakened adenovirus enclosure of SARS-COV-2 spike protein’s genetic material, into phase II/III clinical trial (Oxford COVID-19 vaccine to begin phase II/III human trials | University of Oxford). However, limited disclosed data are available in public. A similar and noteworthy candidate is from CanSino Biologics, in collaboration with Academy of Military Medical Sciences in China (Zhu et al., 2020). Both candidates use a variation of adenovirus, commonly found for common cold, are also immunogenic. This carrier approach has yet to be approved in the U.S. nor in EU previously. The other substantially competitive candidate is from Inovio Pharmaceuticals, whose candidate is a DNA based vaccine, INO-4800 (Smith et al., 2020). It announced a positive interim report on its phase I result, and has phase II/III trial expecting in August 2020 (Inovio Pharmaceuticals, 2020). Additionally, Russian Ministry of Health, in collaboration with Russian Direct Investment Fund (RDIF), has developed and approved its first vaccine Sputnik V, and later published its phase 1 results. The Russian vaccine is controversially fast-tracked in absence of phase III clinical trial process (Logunov et al., 2020). For inactivated virus, Sinovac from China is the leading candidate with its phase I/II trial ongoing in China and pending phase III trial in Brazil. This technology named PiCoVacc, uses inactivated or fragmented virus without replicability as the triggering cue to illicit patient’s sustained immunity, the ability to generate neutralizing antibody against SARS-COV-2 (Gao Q. et al., 2020).

      Moreover, numerous contenders are collaborating with governments and philanthropic foundations to ramp up production to create stockpile once clinical trials provide evidence for their safety and efficacy, to shorten deployable timeline. NIAID also recently announce an establishment of a new clinical trial network focusing on COVID-19 vaccine and monoclonal antibody testing. However, mRNA vaccine, such as Moderna’s mRNA-1273, has yet to be approved and adopted historically. Lack of similar predecessor likely warrants more scrutiny from regulators and general publics.

      Convalescent Serum Transfusion and Monoclonal Antibody

      Convalescent serum transfusion, where patient received recovered patients’ antibodies-contained plasma to develop the ability to fight viral infection, is currently widely trialed as treatment option for COVID-19 around the world. In April 2020, National Health Service (NHS) in the UK has established Blood and Transplant Service (NHSBT) to conduct recovery trial with Oxford University, studying the application viability of such technology on COVID treatment as well as prevention (NHS Blood and Transplant). To date, more than thousands of subjects are enrolled around the world in convalescent plasma clinical trials (Sheridan, 2020). FDA has also issue recommendation guideline for convalescent plasma investigational use (U.S. Food & Drug Administration, 2020). FDA has later issued an emergency use authorization (EUA) on August 23, while continued to encourage further clinical trials (U.S. Food & Drug Administration, 2020). Commercially, Regeneron has investigated antibodies purified human convalescent plasma and genetically humanized mice, in which the author shows an antibody cocktail of treatment potential (Hansen et al., 2020).

      More recently, monoclonal antibody discovery against SARS-CoV-2 has yield valuable insight into variation of viable antibodies and their mechanisms. Wu et al. discussed the wide variation in neutralizing antibody (NAb) potency among infected patients, which was indicated with NAb titer (ID50: 200 ~ 21567) ranging across two orders of magnitudes (Wu F. et al., 2020). This highlight concerning needs for donor selection and post-processing effort (Robbiani et al., 2020). Another research group then provided example antibodies (B38 and H4) that binds with crucial target site like ACE2 and receptor-binding domain (RBD) (Wu Y. et al., 2020). Rogers et al. also revealed antibodies against both RBD and non-RBD epitopes of Spike (S) protein (Rogers et al., 2020). While Wang et al. identified 47D11 that has neutralization effect on both SARS-CoV and SARS-CoV-2, emphasized the domain conservation in SARS2-S-S1b (Wang C. et al., 2020). Zost et al. and Kreer et al. then add another collection of antibody candidate isolated from patients’ plasma. Moreover, Kreer et al. identified that the broad spectrum of variable genes shared among the potent B cells exists in naïve populations (Kreer et al., 2020; Zost et al., 2020). Both treatment and prophylactics based on antibody could likely be more immediate and rapidly available for high risk populations than a vaccine, but production ramping could introduce uncertainty for its timeline.

      Small Molecule Prophylactic

      Remdesivir, developed by Gilead Sciences, acts as a prodrug of a nucleotide analog. When it is intracellularly metabolized, its product, analogue of adenosine triphosphate, will inhibit regular viral RNA polymerase’s function. It is considered applicable in board spectrum to multiple other coronaviruses, such as Ebola, MERS-COV, and SARS-COV. Remdesivir is not only propelled as a treatment against SARS-COV-2, but also is under investigation for prevention purpose. Early experiment of remdesivir by de Wit et al. (2020) shows both prophylactic and therapeutic benefits, mirroring the recent study on SARS-COV-2 on the same animal model (Casadevall and Pirofski, 2020). WHO is currently also studying remdesivir as one of the options for its “solidarity” clinical trial (World Health Organization, 2020).

      Emtricitabine/tenofovir disoproxil, also commonly known for its brand name TRUVADA® in the U.S., an HIV pre-exposure prophylactic. It is a combination of protease inhibitor and nucleotides reverse transcriptase inhibitor. It is considered to have beneficial effect on treating SARS-COV-2 with its possible inhibition of RNA-dependent RNA polymerase. A recent cohort study also suggests that AIDS patient taking antiretroviral therapy, especially tenofovir disoproxil fumarate/emtricitabine has lower risks of diagnosis, and reduced severity and fatality (del Amo et al., 2020). It is currently on track of the phase III clinical trial to prevent SARS-COV-2 high-risk healthcare workers in Spain, which sets to complete by August (Polo and Hernan, 2020).

      Lopinavir/ritonavir, brand name KALETRA® in the U.S., is a combination used as an HIV aspartate protease inhibitor previously, has in vitro testing inhibitory effect on SARS-COV-2 as well. However, it has not yet been observed efficacy in treating SARS-COV-2 severe patients (Cao et al., 2020). It was solicited by WHO for its SOLIDARITY clinical trial until July 2020. Recently, after NHS/Oxford study finds no clinical benefit from this combination’s usage, Lopinavir/ritonavir is discontinued onwards for WHO’s clinical trial recommendation (Horby et al., 2020).

      Natural Products Inhibiting Human Coronavirus

      Although combinatorial synthesis coupled with molecular docking help discover numerous synthetic drugs, more than one third of Food and Drug Administration (FDA)-approved drugs are natural products (Patridge et al., 2016). Plant, fungus and marine derived natural products have been rich resource of drug/nutrition discovery for many disease prevention (Tao et al., 2016; Wang et al., 2018; Lan et al., 2020). Natural products possess promising antiviral effects against human CoVs, which may guide the development of novel antiviral prophylactics. Here, we discussed updated researches focusing on natural products against MERS-CoV, SARS-CoV, or SARS-CoV-2 ( Figure 1 ) and summarized their specific molecular targets and possible mechanisms of action ( Table 2 ).

      Natural products inhibiting human coronavirus.

      Natural products potentially effective for COVID-19.

      Natural Product Inhibited Virus Drug Targets/Relevant Signaling Mechanism of Action Ref.

      Dihydrotanshinone

      MERS-CoV

      S protein of MERS-CoV

      Block MERS-CoV entry using pre-and post-attachment assay

      (Kim et al., 2018)

      Ouabain

      MERS-CoV

      S protein of MERS-CoV

      Block MERS-CoV entry by HCS assay, IC50 in Vero cells: 0.08 µM

      (Ko et al., 2020)

      Griffithsin

      MERS-CoV

      S protein of MERS-CoV

      Inhibit spike protein function during entry

      (Millet et al., 2016)

      Silvestrol

      MERS-CoV

      eIF4A

      Inhibit eIF4A, EC50: 1.3 nM

      (Müller et al., 2018)

      Emodin

      SARS-CoV

      S protein and ACE2 interaction

      Blocked the binding of S protein to ACE2 using biotinylated ELISA assay, IC50: 200 μM

      (Ho et al., 2007)

      Scutellarein

      SARS-CoV

      SARS-CoV helicase protein

      Inhibit the nsP13ATPase activity by FRET-based double-strand (ds) DNA unwinding assay, IC50: 0.86 ± 0.48 μM

      (Yu et al., 2012)

      Tannic acid

      SARS-CoV

      3CLPro

      Inhibition of 3CLPro, IC50: 3 µM

      (Chen et al., 2005)

      Theaflavin-3-gallate

      SARS-CoV

      3CLPro

      Blocking 3CLPro function, IC50: 7 µM

      (Chen et al., 2005)

      Escins

      SARS-CoV

      NF‐κB and activator protein-1 signaling pathways

      Decrease levels of TNF‐α and IL‐6, EC50: 1.5 and 2.4 μg/ml in HCLE and NHC cells

      (Michelini et al., 2018)

      Daidzin

      SARS-CoV-2

      HSPA5

      High binding affinity to HSPA5 SBDβ tested by virtual docking

      (Elfiky, 2020)

      Genistein
      Formononetin
      Biochanin A

      Lead compounds from Alpinia officinarum

      SARS-CoV-2

      PL protein

      High binding affinity to PLpro tested by molecular docking

      (Dibakar et al., 2020)

      10-Hydroxyusambarensine SARS-CoV-2 3CL protein High binding affinity to 3CLpro tested by tested by molecular docking (Gyebi et al., 2020)

      6-Oxoisoiguesterin

      22-Hydroxyhopan-3-one

      Gallic acid

      SARS-CoV-2

      RdRp

      High binding affinity to RdRp tested by molecular docking

      (El-Aziz Abd et al., 2020)

      Quercetin

      Withanone

      SARS-CoV-2

      TMPRSS2

      Bind and interact at the catalytic site of TMPRSS2

      (Kumar et al., 2020)

      Natural Products Inhibiting MERS-CoV

      MERS-CoV causes Middle East respiratory syndrome (MERS, also known as camel flu). It was first discovered in 2012 in Saudi Arabia. Since then, it has spread to 27 countries through air travel of infected people (Sheahan et al., 2020), causing an outbreak of 2,494 cases and 858 deaths worldwide based on World Health Organization (WHO) report (WHO | Middle East respiratory syndrome coronavirus (MERS-CoV), 2020). MERS-CoV continues infecting human, thus it has been listed as a priority pathogen with pandemic potential by WHO. The mortality rate among patients with confirmed infection is approximately 37%. So far, very few studies have investigated the natural products as potential therapeutic agents for MERS-CoV.

      The envelope spike (S) protein of MERS-CoV is important for dipeptidyl peptidase 4 receptor binding and virus-cell membrane fusion, thus it is the key for virus to entry host cells (Mille and Whittaker, 2014). Kim et al. (2018) generated a pseudo-virus expressing the S protein of MERS-CoV (MERS-PV) and screened 502 compounds derived from natural products to test their ability to block MERS-CoV entry. Three compounds (Dihydrotanshinone, E-64-C, and E-64-D) met the screening criteria at a concentration of 1 µg/ml. However, only dihydrotanshinone exhibits antiviral effects on MERS-CoV in the post-attachment assay. Dihydrotanshinone is extracted from the root of Salvia miltiorrhiza Bunge which is commonly used in traditional Chinese medicine. However, studies to confirm antiviral efficacy against MERS-CoV infection in animal model are required.

      Ouabain is from the seeds of Strophanthus gratus (Wall. & Hook.) Baill. It has been used in cell biology studies as standard inhibitor of the Na+-K+-exchanging ATPase. A study (Ko et al., 2020) screened 5,406 compounds, including about 60% of all U.S. FDA-approved drugs, utilizing a Korean MERS patient isolate. By measuring the levels of the S protein expression of infected Vero cells using immunofluorescence analysis, they identified the cardiotonic drugs ouabain had a therapeutic index greater than 100, suggesting it could be considered for anti-MERS-CoV therapy. However, further in vitro and in vivo studies are needed to illustrate the mechanism of action.

      Griffithsin isolated from the Griffithsia genus (red marine alga) is a 121 amino acid long lectin, which is attractive anti-coronavirus candidate because it interacts with coronavirus S proteins due to their highly glycosylated nature and represses coronavirus S protein functions (Millet et al., 2016). It has antiviral activity against HIV-1 within the picomolar range (EC50: 0.043 nM) (Mori et al., 2005). Milletit et al. have shown griffithsin is a potent inhibitor of MERS-CoV infection and production in vitro (Millet et al., 2016). In addition, Griffithsin has been shown a low systematic toxicity, hence making it a promising candidate against MERS-CoV.

      Besides inhibiting MERS-CoV entry host cells, suppressing its replication is an alternative strategy. Silvestrol, a natural compound isolated from the plant Aglaia foveolate Pannell, is known for inhibition of the DEAD-box RNA helicase, eIF4A that participates in preparation of mRNA templates for ribosome recruitment during translation initiation (Todt et al., 2018). Thus, it suppresses the formation of virus replication. Müller and colleagues (Müller et al., 2018) investigated the inhibitory effects of silvestrol against MERS-CoV in human embryonic lung fibroblasts (MRC-5). Silvestrol was a potent antiviral molecule (EC50: 1.3 nM) with no major cytotoxic effects in the primary cells and in liver or spleen. For future studies, the antiviral effects of silvestrol need to be evaluated in vivo infection models to consolidate its therapeutic potential.

      Natural Products Inhibiting SARS-CoV

      From 2002 to 2003, SARS-CoV emerged in Southern China, infecting more than 8,000 people and causing approximately 800 fatalities mostly in China and its neighboring countries. Like MRES-CoV, the envelope S protein of SARS-CoV is also essential for virus tropism and invasion into host cells, which is a potential target for the development therapeutics (Yuan et al., 2017). Angiotensin-converting enzyme 2 (ACE2) is identified as a functional receptor for SARS-CoV, which facilitates S protein-mediated infection, indicating it is also a possible target.

      Emodin, an anthraquinone from Rheum officinale Baill and Reynoutria multiflora (Thunb.) Moldenke, has antibacterial and anti-inflammatory effects. Ho et al. (2007) have reported that emodin blocked the binding of S protein to ACE2 and reduced the infectivity of S protein pseudo-typed retrovirus to Vero E6 cells. Emodin effectively blocked the interaction between S protein and ACE2 in a dose-dependent manner with IC50 of 200 µM, indicating it might be a potential therapeutic agent for the treatment of SARS.

      Scutellarein is a flavone found in Scutellaria lateriflora L. and other members of the genus Scutellaria. Yu et al. (2012) screened 64 purified natural compounds for the inhibitory effects of SARS helicase, nsP13 that possesses dsDNA unwinding activity and the ability to translocate along the nucleic acids, using fluorescence resonance energy transfer-based double-strand DNA unwinding assay. They found that scutellarein potently inhibited the SARS-CoV helicase protein in vitro via inhibiting the ATPase activity of nsP13. Scutellarein holds a promising potential for tackling SARS outbreaks; however, more preclinical/clinical studies to validate its efficacy are needed to evaluate their anti-viral effects.

      Chymotrypsin-like protease (3CLPro) of SARS-CoV, an enzyme responsible for proteolysis, is vital to coronavirus replication, making it considered as an important target for drug discovery against SARS-CoV. Chen et al. (Doremalen et al., 2020) have screened a library with 720 compounds of natural product for inhibitory effect against 3CLPro of SARS-CoV by high-performance liquid chromatography assay and fluorogenic substrate peptide assay. Among them, two natural polyphenols found in black tea (Camellia sinensis (L.) Kuntze), tannic acid, IC50: 3 µM; theaflavin-3-gallate, IC50: 7 µM) showed desired benefits. Black tea is common all over the world, thus this study provides a new perspective that tea-derived supplements might prevent the infection of SARS-CoV. But detailed in vitro and in vivo studies need to be conducted, SARS-CoV infection is related to the release of pro-inflammatory cytokines and uncontrolled inflammation that induce the accumulation of intra‐alveolar fibrin and lead to pulmonary damage. Thus, an alternative strategy is to reduce inflammation. Escins are saponin mixtures from Japanese horse chestnut (seed of Aesculus turbinata Blume) that has been used as an herbal medicine. It has anti-inflammatory activities and anti-antiviral effects against SARS-CoV (an EC50 of 6.0 μM) (Wu et al., 2004). Escin has been reported to decrease the levels of TNF‐α and IL‐6 in J774A.1 cells infected with HSV-1 or stimulated with Toll‐like receptor ligands by the inhibition of NF‐κB and activator protein-1 signaling pathways (Michelini et al., 2018). However, the severe cytotoxic effects in human lung derived cells limits its potential to be a prophylactic. Usually, a more efficient or safer drug can be designed based on the original natural compound that exhibits the wanted activity. Kim et al. (2017) designed and synthesized a series of escin derivatives without the angeloyl or tigloyl groups that are important for cytotoxicity of escins and modified glycosidic linkages by hydrolysis. Those Escin derivative showed lower cytotoxicity.

      Natural Products Inhibiting SARS-CoV-2

      The current COVID-19 pandemic caused by SARS-CoV-2 was identified in Wuhan City, in Hubei province of China. The number of infection case is still progressively growing. The genome of SARS-CoV-2 has over 70% similarity to that of SARS-CoV (Zhang and Holmes, 2020), leading to its current name. There is an urgent need to prevent and treat SARS-CoV-2 infection. Due to the high similarity, many approved or pre-clinical anti-SARS drugs are being tested for antiviral activity against SARS-CoV-2. For example, escin (Gallelli, 2020) and sodium aescinate injection (trial filed in China with ID : ChiCTR2000029742) have been registered. As natural products has been historically used for respiratory infection, there is arising voice calling for the repurposing of natural products for COVID-19 (Wang D. et al., 2020).

      Heat Shock Protein A5 (HSPA5, also known as BiP or GRP78) is one of the host-cell receptors that have been reported to be recognized by virus S protein. When infected, HSPA5 is upregulated and translocated to the cell membrane where it is recognized by the SARS-CoV-2 spike to drive the infection process. Elfiky et al. (Elfiky, 2020) have tested several compounds from natural product against the HSPA5 substrate-binding domain β (SBDβ) by molecular docking and molecular dynamics simulations. The phytoestrogens (Daidzin, Genistein, Formononetin, and Biochanin A) and estrogens have proximal binding affinities with HSPA5. Those compounds may interfere with SARS-CoV-2 attachment to the host cells. Hopefully, those medicinal plants-derived compounds may guide the drug discovery in finding the suited prophylactics for SARS-CoV-2. Detailed studies investigating the antiviral bioactivity of those compounds should be further examined.

      The host enzyme transmembrane protease serine 2 (TMPRSS2) facilitates viral particle entry into host cells. Inhibiting of this enzyme blocks virus fusion with ACE2, making it a potential target to inhibit virus entry. By molecular docking and molecular dynamics simulations, Kumar et al. (2020) have shown that withanone derived from Ashwagandha leaves (Withania somnifera (L.) Dunal) could bind and stably interact at the catalytic site of TMPRSS2 (His296, Asp345 and Ser441). In addition, they have confirmed that withanone significantly downregulated TMPRSS2 in MCF-7 cells, suggesting its dual potential to ramp down TMPRSS2 function.

      SARS-CoV-2 papain-like protease (PL pro) cleaves the viral polyproteins a/b which is essential for its survival and replication. Thus, PL pro is one of the prospective drug targets of SARS-CoV-2. Goswami et al. (Dibakar et al., 2020) established a library of small molecules found in rhizomes, Alpinia officinarum (Alpinia officinarum Hance), ginger (Zingiber officinale Roscoe), and curcuma (Curcuma longa L.). The compounds were docked into the solvent accessible S3-S4 pocket of PLpro. In silico results showed eight lead compounds from galangal (Alpinia officinarum Hance) and ginger (Zingiber officinale Roscoe) bound with high affinity to SARS-CoV-2 PLpro, suggesting their potential as inhibitors against SARS-CoV-2. However, subsequent in vitro and in vivo experiments are needed to elucidate their efficacy against SARS-CoV-2.

      Besides S protein and PLpro, the other promising drug target for combating the infection of SARS-CoV-2 is 3-chymotrypsin-like protease (3CLpro, also known as main protease). The conserved 3CLpro controls virus replication. Gyebi et al. (2020) have screened a series of alkaloids and terpenoids derived from African plants as potential inhibitors of 3CLpro using molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) virtual analysis by the SuperPred webserver. The results revealed that 10-Hydroxyusambarensine, Cryptoquindoline, 6-Oxoisoiguesterin, and 22-Hydroxyhopan-3-one might be potent inhibitors with greatest drug-likeness against SARS-CoV-2 3CLpro.

      RNA-dependent RNA polymerase (RdRp) is an essential virus replicase that catalyzes the synthesis of complementary RNA strands using the virus RNA template. The molecular structure of RdRp was revealed in May 2020 (Gao Y. et al., 2020), providing a new strategy for discovering prophylactic candidates for SARS-CoV-2 inhibition. Abd El-Aziz et al. (El-Aziz Abd et al., 2020) investigated the potential of eight natural polyphenols (quercetin, naringenin, caffeine, oleuropein, ellagic acid, benzoic acid, resveratrol, and gallic acid polyphenols) as inhibitors of SARS-CoV-2 RdRp by molecular docking assay. The studied polyphenols formed hydrogen bonds with the nucleotide triphosphate (NTP) entry channel amino acids (ARG 555, ARG 555, LYS 545) in SARS-CoV-2 RdRp (except caffeine and oleuropein). Binding to NTP may inhibit the entry of the substrate and subsequently repress the enzyme activity. The results suggested that gallic acid and quercetin exhibited high binding affinity to RdRp. The NSP12 is an important RdRp for the coronavirus replicative machinery, which binds to co-factors NSP7 and NSP8 to activate its ability to replicate long RNA. A recent study (Ruan et al., 2020) has established two homologous models for virtual screening. Cepharanthine, an alkaloid tetrandrine isolated from Stephania (Stephania tetrandra S.Moore), has been reported to have anti-inflammatory and antioxidant activities (Weber and Opatz, 2019). The study has shown Cepharanthine could bind to the interface active pockets of the SARS-CoV-2 NSP12-NSP8, suggesting it has therapeutic potential.

      The researches mentioned above are all still in preliminary stages of drug development although they have shown great potentials against SARS-CoV-2 using computer-based screening. Further pre-clinical studies have to be performed to examine the anti-viral effects of those lead compounds. In the meanwhile, great number of clinical trials have registered to investigate the potentials of natural product to halt disease progression. For example, Koshak et al. from King Abdulaziz University will investigate the effects of Nigella sativa seed oil with immunomodulation and antiviral activity in hospitalized adult patients diagnosed with COVID-19 (Koshak et al., 2020). Corrao et al. from University of Palermo is recruiting patients to study the effectiveness of vitamin C to reduce mortality in patients (Corrao, 2020). Since the situation is uncontrollably worsening, many studies are being conducted on this topic, which may contribute to the rapid development of new prophylactics for COVID-19.

      Herbal Medicines Alleviating Acute Respiratory Infection

      Herbal medicines like EPs® 7630, Sinupret®, and KanJang® have proven track record of treating acute respiratory infection due to common cold or influenza (Narimanian et al., 2005; Glatthaar-Saalmüller et al., 2011; Michaelis et al., 2011). Dating back to the beginning of COVID-19 outbreak around December 2019, herbal medicines were widely deployed across China to slow down the surge of infection cases. Its efficacy in alleviating acute respiratory distress syndrome caused by SARS-CoV-2 has been endorsed by both Chinese regulatory agency and the healthcare workers on the frontline. Recent perspectives from academics argued that the potential of herbal medicine to be an appropriate therapy for COVID-19 was open to question in the context that the pharmacological mechanism of those herbs remains unclear and hard to be fully explored (Gray and Belessis, 2020; Tao et al., 2020). That said, it is still undeniable that empirical therapy of herbal medicines contributed to the successful arrest of COVID-19 spreading in China to some extent, based on clinical observation. In addition, several preclinical studies lately proved that herbal medicines rich in flavonoid compounds had anti-virus activity in some human lung derived cell lines (Ding et al., 2017; Kong et al., 2020; Runfeng et al., 2020). Hereby, research digging into underlying mechanisms and identifying active components are urgently needed for the development of more effective herbal therapy and prophylactic.

      A clinical case went public in March 2020 showed that a herbal formulation recommended by National Health Commission of the P.R. China (NHC) was effective in attenuating acute respiratory distress syndrome in a mild COVID-19 patient (Xu and Zhang, 2020). It was the first-of-its-kind to report the potential benefit of herbs in treating COVID-19. More recently several reviews systemically summarized the herbal medicines frequently used in China during COVID-19 pandemic and performed meta-analysis to illustrate its therapeutic outcome (Zhang D. et al., 2020). Xiong et al. indicated that among those herbal medicines widely distributed, Liquoric Root (Glycyrrhiza glabra L.), Baical Skullcap Root (Scutellaria baicalensis Georgi), Pinellia Rhizome [Pinellia ternata (Thunb.) Makino], Forsythia Fruit [Forsythia suspensa (Thunb.) Vahl], and Bitter Apricot Seed (Prunus armeniaca L.) are the most frequently prescribed herbs (Li et al., 2020). Their meta-analysis showed that herbal medicines are effective in halting the disease progression from mild to critical, decreasing hospitalization rate, shortening time of hospital stay, as well as alleviating COVID-19 associated symptoms like fever, cough, fatigue, and inflammation (Li et al., 2020).

      Li et al. tested the potency of Lian-Hua-Qing-Wen, a licensed herbal formulation in inhibiting SARS-CoV-2 infection of Vero E6 cells using cytopathic effect inhibition assay and plaque reduction assay (Runfeng et al., 2020). The results showed that Lian-Hua-Qing-Wen significantly inhibited SARS-CoV-2 replication in Vero E6 cells and reduced pro-inflammatory cytokines like TNF-α, IL-6, CCL-2/MCP-1, and CXCL-10/IP-10 at mRNA level. Though its IC50 with over 400 μg/ml is a far cry from remdesivir efficacy, this study inspires that this herbal formulation can be validated as ideal prophylactic considering its moderate toxicity. Yang et al. performed LC-MS/MS and integrated network analysis to identify the active components of Qing-Fei-Pai-Du and Ma-Xin-Shi-Gan and their possible mechanism of action (Yang et al., 2020). The study revealed great number of compounds making up these two herbal formulations. Those chemicals mainly fall into four categories: flavonoids, glycosides, carboxylic acids, and saponins. In particular, glycyrrhizic acid isolated from Ma-Xin-Shi-Gan exhibited its anti-inflammatory effect by blocking toll-like-receptor and suppressing IL-6 production in macrophage. Huang et al. identified that quercetin, kaempferol, luteolin, isorhamnetin, baicalein, naringenin, and wogonin are probably the main active compounds responsible for the potency of herbs (Huang et al., 2020). Through in silico study, they hypothesized that ACE2, 3CL protein as well as intracellular signaling composed of COX-2, CASP3, MAPK, arachidonic acid, HIF-1, NF-κB, and Ras are all potential targets of herbal medicines. Most recently Ma et al. reported that Liu-Shen a herbal formulation exhibit favorable inhibitory effect against SARS-CoV-2 replication and virus-induced inflammation in vitro probably via suppressing NF-κB pathway (Ma et al., 2020).

      Based on recently emerging studies, we reviewed all the herbal products both used for COVID-19 and approved by regulatory agency of which the patent numbers are identifiable. We summarized the composition and prospective drug targets of those licensed herbal products ( Table 3 ) through literature search. We then ranked their ingredients based on dosage and frequency of use ( Figure 2A ). By narrowing down the sample volume, top nine herbal ingredients were identified as following: Glycyrrhizae Radix Et Rhizoma (Glycyrrhiza inflata Batalin), Forsythiae Fructus [Forsythia suspensa (Thunb.) Vahl], Lonicerae Japonicae Flos (Lonicera Japonica Thunb.), Scutellariae Radix (Scutellaria baicalensis Georgi), Platycodonis Radix [Platycodon grandiflorum (Jacq.) A. DC.], Menthae Haplocalycis Herba (Mentha canadensis L.), Gardeniae Fructus (Gardenia jasminoides J.Ellis), Gypsum Fibrosum, and Moschus (Moschus anhuiensis). Furthermore, we performed integrated network analysis upon those top nine herbal ingredients to identify eighteen lead compounds with greatest drug-likeness potential ( Figures 2B, C ). It showed that ten of those compounds are flavonoid derivatives which possess either flavone or flavanone core. It is known that many flavonoid compounds exhibit a broad spectrum of biological activities including cell membrane protective function, antioxidant activity via inhibition of xanthine oxidase or nitric oxide synthase as well as anti-inflammatory activity via inhibition of leukotriene (Verma and Pratap, 2010). Based on our integrated network analysis, COX-2 and MAPK mediated inflammatory pathways play prominent role in the therapeutic effect of these eighteen herb-derived compounds. Since many of those compounds have been historically used in dietary supplements, its toxicity is largely negligible, which makes them safe to be employed as prophylaxis against COVID-19 for large population.

      Licensed Chinese herbal medicines for acute respiratory infection.

      Herbal Medicines Affected Pathways Potential Targets Composition Ref.
      Herbal components Original Species
      Lian-Hua-Qing-Wen MAPK8, IL-6, COX-2, sEH, RELA, cPLA2α, mPGES-1, TNF, DPP4, IL-1β, CASP3, MAPK1, EGFR, BAX, BCL2, JUN, PIK3CG. Forsythiae Fructus Forsythia suspensa (Thunb.) Vahl (Runfeng et al., 2020; Zhang D. et al., 2020)
      Lonicerae Japonicae Flos Lonicera Japonica Thunb.
      Ehedraep Herba Ephedra sinica Stapf
      Armeniacae Seman Amarum Prunus armeniaca L.
      Gypsum Fibrosum
      Isatidis Radix Isatis tinctoria L.
      Dryopteridis Crassirhizomatis Rhizoma Dryopteris crassirhizoma Nakai
      Houttuyniae Herba Houttuynia cordata Thunb.
      Pogostemonis Herba Pogostemon cablin (Blanco) Benth.
      Rhei Radix Et Rhizoma Rheum palmatum L.
      Rhodiolae Crenulatae Radix Et Rhizoma Rhodiola crenulata (Hook.f. & Thomson) H.Ohba
      Menthol Mentha × piperita L.
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Huo-Xiang-Zheng-Qi PTGS2, HSP90AB1, mPGES-1, LTA4H, NOS2, PTGS2. Atractylodis Rhizoma Atractylodes lancea (Thunb.) DC. (Zhang D. et al., 2020)
      Citri Reticulatae Pericarpium Citrus × aurantium L.
      Magnoliae Officinalis Cortex Magnolia officinalis Rehder & E.H.Wilson
      Angelicae Dahuricae Radix Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav.
      Poria mushroom§ Poria cocos (Schw.) Wolf
      Arecae Pericarpium Areca catechu L.
      Pinelliae Rhizoma Pinellia ternate (Thunb.) Makino
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Pogostemonis Herba Pogostemon cablin (Blanco) Benth.
      Perillae Folium Perilla frutescens (L.) Brittonon
      Jin-Hua-Qing-Gan COX-2, sEH, 5-LOX, PTGS2, AKTI, HSP90AA1, RELA, MAPK1, CASP3, TP53, ALB, TNF, IL6, MAPK8, MAPK14. Lonicerae Japonicae Flos Lonicera Japonica Thunb. (Runfeng et al., 2020; Zhang D. et al., 2020)
      Gypsum Fibrosum
      Ehedraep Herba Ephedra sinica Stapf
      Armeniacae Seman Amarum Prunus armeniaca L.
      Scutellariae Radix Scutellaria baicalensis Georgi
      Forsythiae Fructus Forsythia suspensa (Thunb.) Vahl
      Fritillaria Thunbergii Bulbus Fritillaria thunbergii Miq.
      Anemarrhenae Rhizoma Anemarrhena asphodeloides Bunge
      Arctii Fructus Arctium lappa L.
      Artemisiae Annuae Herba Artemisia annua L.
      Menthae Haplocalycis Herba Mentha canadensis L.
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Shu-Feng-Jie-Du IL6, IL1B, CCL2, IL2, MAPK8, MAPK1, MAPK14, CASP3, FOS, ALB, IL4, IL1B, EGFR, FOS, AR, BCL2L, NOS2, F10, PTGS2, PTGS1, ESR1, DPP4. Polygoni Cuspidati Rhizoma Reynoutria japonica Houtt. (Li et al., 2017; Li et al., 2020; Zhang D. et al., 2020)
      Forsythiae Fructus Forsythia suspensa (Thunb.) Vahl
      Isatidis Radix Isatis tinctoria L.
      Bupleuri Radix Bupleurum chinense DC.
      Patriniae Herba Patrinia scabiosifolia Link
      Vervain Verbena officinalis L.
      Phragmitis Rhizoma Phragmites australis subsp. australis
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Su-He-Xiang N/A Styrax Liquidambar orientalis Mill. (Zhang D. et al., 2020)
      Benzoinum Styrax tonkinensis (Pierre) Craib ex Hartwich
      Borneolum Syntheticumc Dryobalanops aromatica C.F.Gaertn.
      Bubali Cornu* Bubalus bubalis Linnaeus
      Moschus* Moschus berezovskii Flerov
      Santali Albi Lignum Santalum album L.
      Aquilariae Lignum Resinatum Aquilaria sinensis (Lour.) Spreng.
      Aucklandiae Radix Aucklandia costus Falc.
      Cyperi Rhizoma Cyperus rotundus L.
      Olibanum Boswellia carteri Birdw.
      Long Pepper Fruit. Piper longum L.
      Atractylodis Macrocephalae Rhizoma Atractylodes macrocephala Koidz.
      Chebulae Fructus Terminalia chebula Retz.
      Cinnabaris
      An-Gong-Niu-Huang N/A Bovis Calculus* Bos taurus domesticus Gmelin (Zhang D. et al., 2020)
      Bubali Cornu* Bubalus bubalis Linnaeus
      Moschus* Moschus berezovskii Flerov
      Margarita*
      Cinnabaris
      Arsenic (II) sulfide
      Coptidis Rhizoma Coptis chinensis Franch.
      Scutellariae Radix Scutellaria baicalensis Georgi
      Gardeniae Fructus Gardenia jasminoides J.Ellis
      Curcumae Radix Curcuma aromatica Salisb.
      Borneolum Syntheticumc Dryobalanops aromatica C.F.Gaertn.
      Xi-Yan-Ping N/A Andrographolide sulfonatesc Andrographis paniculata (Burm.f.) Nees (Burm.f.) Nees (Zhang D. et al., 2020)(Runfeng et al., 2020; Zhang D. et al., 2020)
      Xue-Bi-Jing LTA4H, 12-LOX, IL2, cPLA2, IL6, RELA, TNF, PTGS2, IL10, NOS2α, CASP3, MAPK1. Carthami Flos Carthamus tinctorius L.
      Paeoniae Radix Rubra Paeonia lactiflora Pall.
      Chuanxiong Rhizoma Conioselinum anthriscoides ‘Chuanxiong’
      Salvia miltiorrhiza Radix Et Rhizoma Salvia miltiorrhiza Bunge
      Angelicae Sinensis Radix Angelica sinensis (Oliv.) Diels
      Re-Du-Ning COX-2, sEH, IL6, CCL2, CASP3, IL4, MAPK1, RELA, FOS, NOS2, IL1B, CXCL10, MAPK14, EGFR. Artemisiae Annuae Herba Artemisia annua L. (Runfeng et al., 2020; Zhang D. et al., 2020)
      Lonicerae Japonicae Flos Lonicera Japonica Thunb.
      Gardeniae Fructus Gardenia jasminoides J.Ellis
      Tan-Re-Qing COX-2, sEH, LTA4H, IL6, IL1B, IL10, MAPK1, IL4, CXCL8, MAPK14, EGFR, CXCL10. Scutellariae Radix Scutellaria baicalensis Georgi (Huang et al., 2020; Runfeng et al., 2020; Zhang D. et al., 2020)
      Saigae Tataricae Cornu* Saiga tatarica Linnaeus
      Lonicerae Japonicae Flos Lonicera Japonica Thunb.
      Forsythiae Fructus Forsythia suspensa (Thunb.) Vahl
      Xing-Nao-Jing N/A Moschus* Moschus berezovskii Flerov
      Borneolum Syntheticum Dryobalanops aromatica C.F.Gaertn. (Runfeng et al., 2020; Zhang D. et al., 2020)
      Gardeniae Fructus Gardenia jasminoides J.Ellis
      Curcumae Radix Curcuma aromatica Salisb.
      Shen-Fu N/A Ginseng Radix Et Rhizoma Panax ginseng C.A. Mey. (Runfeng et al., 2020; Zhang D. et al., 2020)
      Aconiti Lateralis Radix Praeparata Aconitum carmichaeli Debeaux
      Sheng-Mai IL6, GAPDH, ALB, TNF, MAPK1, MAPK3, TP53, EGFR, CASP3. Ginseng Radix Et Rhizoma Panax ginseng C.A. Mey. (Huang et al., 2020; Zhang D. et al., 2020)
      Ophiopogonis Radix Ophiopogon japonicus (Thunb.) Ker Gawl.
      Pu-Di-Lan N/A Scutellariae Radix Scutellaria baicalensis Georgi (Kong et al., 2020)
      Traxaci Herba Taraxacum mongolicum Hand. Mazz.
      Corydalis bungeana Corydalis bungeana Turcz.
      Isatidis Radix Isatis tinctoria L.
      Yin-Qiao N/A Forsythiae Fructus Forsythia suspensa (Thunb.) Vahl (Huang et al., 2020; Li et al., 2020)
      Lonicerae Japonicae Flos Lonicera Japonica Thunb.
      Platycodonis Radix Platycodon grandiflorum (Jacq.) A. DC.
      Menthae Haplocalycis Herba Mentha canadensis L.
      Phyllostachydis Henonis Folium Lophatherum gracile Brongn.
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Schizonepetae Herba Nepeta tenuifolia Benth.
      Sojae Semen Praeparatum Glycine max (L.) Merr.
      Arctii Fructus Arctium lappa L.
      Yu-Ping-Feng-San N/A Saposhnikoviae Radix Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk. (Huang et al., 2020; Li et al., 2020)
      Astragali Radix Astragalus mongholicus Bunge
      Atractylodis Macrocephalae Rhizoma Atractylodes macrocephala Koidz.
      Sang-Ju N/A Mori Folium Morus alba L. (Huang et al., 2020; Li et al., 2020)
      Chrysanthemi Flos Chrysanthemum × morifolium (Ramat.) Hemsl.
      Almond Prunus armeniaca L.
      Forsythiae Fructus Forsythia suspensa (Thunb.) Vahl
      Menthae Haplocalycis Herba Mentha canadensis L.
      Platycodonis Radix Platycodon grandiflorum (Jacq.) A. DC.
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Phragmitis Rhizoma Phragmites australis subsp. australis
      Shuang-Huang-Lian N/A Lonicerae Japonicae Flos Lonicera Japonica Thunb. (Hirano and Murakami, 2020)
      Scutellariae Radix Scutellaria baicalensis Georgi
      Forsythiae Fructus Forsythia suspensa (Thunb.) Vahl
      Ma-Xing-Shi-Gan N/A Ehedraep Herba Ephedra sinica Stapf (Li et al., 2020; Yang et al., 2020)
      Almond Prunus armeniaca L.
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Gypsum Fibrosum
      Bai-He-Gu-Jin N/A Rehmanniae Radix Rehmannia glutinosa (Gaertn.) DC. (Huang et al., 2020; Li et al., 2020)
      Angelicae Sinensis Radix Angelica sinensis (Oliv.) Diels
      Paeoniae Radix Alba Paeonia lactiflora Pall.
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Platycodonis Radix Platycodon grandiflorum (Jacq.) A. DC.
      Scrophulariae Radix Scrophularia ningpoensis Hemsl.
      Fritillaria Thunbergii Bulbus Fritillaria thunbergii Miq.
      Ophiopogonis Radix Ophiopogon japonicus (Thunb.) Ker Gawl.
      Lilii Bulbus Lilium lancifolium Thunb.
      Ren-Shen-Bai-Du N/A Chinese Thorawax Root. Bupleurum scorzonerifolium Willd. (Xian et al., 2020)
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Incised Notopterygium Rhizome Root Hansenia forbesii (H.Boissieu) Pimenov & Kljuykov
      Doubleteeth Angelicae Root Angelica biserrata (R.H.Shan & C.Q.Yuan) C.Q.Yuan & R.H.Shan
      Chinese Thorawax Root Bupleurum scorzonerifolium Willd.
      Common Hogfennel Root Angelica decursiva (Miq.) Franch. & Sav.
      Chuanxiong Rhizoma Conioselinum anthriscoides ‘Chuanxiong’
      Submature Bitter Orange Citrus × aurantium L.
      Menthae Haplocalycis Herba Mentha canadensis L.
      Poria mushroom§ Poria cocos (Schw.) Wolf
      Platycodonis Radix Platycodon grandiflorum (Jacq.) A. DC.
      Glycyrrhizae Radix Et Rhizoma Glycyrrhiza inflata Batalin
      Ginger Zingiber officinale Roscoe

      Mineral products; §Fungus-derived products; *Animal-derived products; Components without labelling are all plant-derived products.

      Chinese herbal medicines alleviating acute respiratory infection (A) ranking of main components in selected herbal medicines according to prescription frequency, (B) integrated network analysis of herbal components and lead compounds, (C) incidence of lead compounds occurring in principal herbal components.

      Lead compounds with greatest drug-likeness isolated from herbs for COVID-19.

      Conclusion and Perspective

      Since early 2020, numerous pharma companies collaborating with academics or state-sponsored research institute have joined the race of therapy development to combat wildly spreading COVID-19. As of July 2020, a range of various therapeutics has been discovered, from small molecules, neutralizing antibodies, to bioengineered products. Aided with computational chemistry and virtual screening, researchers has established a large library of novel small molecules, showing favorable binding affinity with validated drug targets (Kupferschmidt and Cohen, 2020; Tahir ul Qamar et al., 2020), but the efficacy and toxicity of those lead compounds need further testing in both preclinical models and human subjects. Nevertheless, at this point, it seems optimizing a novel lead for COVID-19 is not a preferred option as typically the whole pipeline of new drug development takes years even if FDA grants expediated approval, and it is unimaginable for the public to endure another prolonged era of economic and public health hardship. As for neutralizing antibody, the situation is also gloomy, because establishing manufacturing infrastructure and managing supply chain of biologics are much more nuanced and demanding than small molecular drug. Thanks to the recent advances in bioengineering, several nanoengineered therapeutics have been designed to treat COVID-19. Zhang et al. recently reported novel nano-sponges made of the plasma membranes derived from human lung epithelial type II cells (Zhang Q. et al., 2020). These nano-sponges display the membrane receptors recognizable to SARS-CoV-2. They showed that, following incubation with their nano-sponges, SARS-CoV-2 lost infectability. Huo et al. produced an array of nanobodies that bind SARS-CoV-2 receptor and block its interaction with ACE2 (Huo et al., 2020). Though such studies open exciting new path for therapeutics discovery, lack of clinical data stops them from becoming relevant in the short terms. Regretfully, to date there is no approved drug for any kinds of human coronavirus infection, including SARS-CoV, MERS-CoV, or SARS-CoV-2.

      Since the outcome of current therapeutics in severe/critical COVID-19 patients are still debatable, prevention rather than treatment becomes more important to restrain this pandemic. Blocking the entry of SARS-CoV-2 and suppressing infection at initial stage are considered as more practical strategy ( Figure 4 ). Vaccine has been historically used to prevent influenza. Today, antibody responses and serum-neutralizing activity are standard parameters used to evaluate the short-term efficacy of vaccine (Jackson et al., 2020), whereas the long-term effectiveness cannot be truly determined until the vaccinated population show acquired immunity against infection when exposed to the virus of interest without intervention. Besides, recent clinical report pointed out that neutralizing antibody level in patients who experienced asymptomatic SARS-CoV-2 infection declined rapidly after recovery (Long et al., 2020), which leads to a concerning question how long vaccination is able to maintain its protection against COVID-19. In terms of pre-exposure/post-exposure prophylaxis, NIH recently launched trials to test the preventive effectiveness of monoclonal antibody. While the trial is ongoing, intravenous (i.v.) injection of antibody in large population brings up a lot of feasibility issues. Even the prophylactic efficacy of remdesivir was proven to be better than its therapeutic efficacy in rhesus macaque model, current administration route of remdesivir is limited to i.v. infusion that restricts its use in non-hospitalized population (Administration).

      Pros and cons of current prevention of COVID-19 (Created with BioRender.com).

      Natural products and herbal medicine have long track record to treat respiratory infection and many have been approved as drugs, over-the-counter nutrition or food additives. Those products generally have satisfactory safety profiles. The minimal toxicity makes natural product and herbal medicines ideal prophylactic candidates for long-term use. Based on recent in silico results, an array of natural products has been found highly potent in blocking enzyme function and membrane receptors of human coronavirus. Moderate dosing of such bioactive compounds may prevent or at least slow down SARS-CoV-2 infection process. In addition, the progression of COVID-19 is featured with uncontrolled inflammation, like cytokine release syndrome, so anti-inflammatory herbs will be a potential tool to suppress such fatal symptom. The stability of natural products and herbal medicines in human gastrointestinal tract is barely an issue. The low pH in gastric environment, digestive enzymes, and gut microbiome have less impact on the bioavailability of natural products and herbs compared to antibody and other prophylactics. This advantage makes oral dosing rather than IV administration possible. In terms of availability, the ease of production expansion realizes the mass deployment of herbal medicines to big population, while the large-scale synthesis of monoclonal antibody and remdesivir is incredibly challenging. In this day and age, a safe, effective and stable form of oral dosage prophylactics will be a strong asset for us to overcome COVID-19 pandemic.

      Author Contributions

      Conceptualization: GT, JC, and JH. Writing—original draft preparation: GT, JL, and JC. Writing—review and editing: GT, JL, JC, and JH. Visualization: ZH, JH. Supervision: GT and JH. Funding acquisition: J-xC and JH. All authors contributed to the article and approved the submitted version.

      Funding

      This work is supported by the Huang Zhendong Research Fund for Traditional Chinese Medicine of Jinan University (No. 201911).

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Acknowledgments

      We greatly appreciate the comments from Michael Heinrich, University College London (UCL) School of Pharmacy for manuscript preparation.

      Abbreviations

      ACE2, angiotensin-converting enzyme 2; ADMET, absorption, distribution, metabolism, excretion and toxicity; AKTI, Akt inhibitor; ALB, albumin; AR, androgen receptor; BAX, Bcl-2 Assaciated X protein; BCL2, B-cell lymphoma-2; BCL2L, bcl2-like gene; CASP3, caspases-3; CCL2, chemokine (C-C motif) ligand 2; COX-2, cyclooxygenase-2; COVID-19, coronavirus disease 2019; CoVs, coronaviruses; cPLA2, cytosolic Phospholipase A2; cPLA2α, cytosolic Phospholipase A2α; CXCL10, CXC motif chemokine 10; CXCL8, CXC motif chemokine 8; DPP4, Dipeptidyl peptidase-4; EGFR, Epidermal Growth Factor Receptor; ESR1, Estrogen Receptor 1; F10, Coagulation Factor X; FDA, food and drug administration; FRET, fluorescence resonance energy transfer; HCoV-229E, human coronavirus 229E; FOS, Fos proto-oncogene; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HCoV-HKU1, human coronavirus HKU1; HCoV-NL63, human coronavirus NL63; HCoV-OC43, human coronavirus OC43; HCS, high-content screening; HSPA5, heat shock protein A5; HSP90AA1, heat shock protein 90 kDa alpha, class A member 1; HSP90AB1, heat shock protein 90 kDa alpha, class B member 1; IL10, interleukin 10; IL-1β, interleukin 1β; IL2, interleukin 2; IL4, interleukin 4; IL6, interleukin 6; JUN, Jun proto-oncogene; LTA4H, leukotriene A4 hydrolase; MAPK1, mitogen-activated protein kinase 1; MAPK14, mitogen-activated protein kinase 14; MAPK3, mitogen-activated protein kinase 3; MAPK8, mitogen-activated protein kinase 8; MERS-CoV, middle east respiratory syndrome-related coronavirus; mPGES-1, Microsomal prostaglandin E synthase-1; NAb, neutralizing antibody; NOS2, Nitric oxide synthase 2; NOS2α, Nitric oxide synthase 2α; NHC, national health commission of the P.R. China; NHS, national health service; NHSBT, blood and transplant service; NIAID, national institute of allergy and infectious diseases; NTP, nucleotide triphosphate; PIK3CG, Phosphatidylinositol-4; PTGS1, Prostaglandin-Endoperoxide Synthase 1; PTGS2, Prostaglandin-Endoperoxide Synthase 2; PLpro, papain-like protease; RBD, receptor-binding domain; RdRp, RNA-dependent RNA polymerase; RELA, RELA proto-oncogene; S protein, Spike protein; SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SBDβ, substrate-binding domain β; sEH, soluble epoxide hydrolase; TMPRSS2, transmembrane protease; TNF, Tumor necrosis factor; TP53, tumor protein p53; WHO, world health organization; 3CLpro, 3-chymotrypsin-like protease; 5-LOX, 5-liopoxygenase; 12-LOX, 12-liopoxygenase.

      References Administration, D Fact Sheet For Health Care Providers Emergency Use Authorization (EUA) of REMDESIVIR (GS-5734TM). Available at: https://www.fda.gov/emergency- (Accessed July 16, 2020). Bai Y. Yao L. Wei T. Tian F. Jin D. Y. Chen L. . (2020). Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA J. Am. Med. Assoc. 323, 14061407. doi: 10.1001/jama.2020.2565 BioNTech SE . (2020). Study to Describe the Safety, Tolerability, Immunogenicity, and Potential Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Adults ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04368728 (Accessed July 14, 2020). Cao B. Wang Y. Wen D. Liu W. Wang J. Fan G. . (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 382, 17871799. doi: 10.1056/NEJMoa2001282 Casadevall A. Pirofski L. A. (2020). The convalescent sera option for containing COVID-19. J. Clin. Invest. 130, 15451548. doi: 10.1172/JCI138003 Chen C.-N. Lin C. P. C. Huang K.-K. Chen W.-C. Hsieh H.-P. Liang P.-H. . (2005). Inhibition of SARS-CoV 3C-like ProteaseActivity by Theaflavin–3,3’–digallate (TF3). Evid. Based Complementary Altern. Med. 2 (2), 209215. doi: 10.1093/ecam/neh081 Corbett K. S. Edwards D. Leist S. R. Abiona O. M. Boyoglu-Barnum S. Gillespie R. A. . (2020). SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness. bioRxiv 2020, 2020.06.11.145920. doi: 10.1101/2020.06.11.145920 Corrao S. (2020) Use of Ascorbic Acid in Patients With COVID 19 - Full Text View - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04323514 (Accessed July 14, 2020). CureVac Inc. (2020). CureVac Receives Regulatory Approval from German and Belgian Authorities to Initiate Phase 1 Clinical Trial of its SARS–CoV–2 Vaccine Candidate. Available at: www.curevac.com (Accessed July 14, 2020). de Wit E. Feldmann F. Cronin J. Jordan R. Okumura A. Thomas T. . (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. U. S. A. 117, 67716776. doi: 10.1073/pnas.1922083117 del Amo J. Polo R. Moreno S. Díaz A. Martínez E. Arribas J. R. . (2020). Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy. Ann. Intern. Med. doi: 10.7326/M20-3689 Ding Y. Zeng L. Li R. Chen Q. Zhou B. Chen Q. . (2017). The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement. Altern. Med. 17, 111. doi: 10.1186/s12906-017-1585-7 El-Aziz Abd N. M. Mohamed G. S. Awad O. M. E. El-Sohaimy S. A. (2020). Inhibition of COVID-19 RNA-Dependent RNA Polymerase by Natural Bioactive Compounds: Molecular Docking Analysis. Preprint. doi: 10.21203/RS.3.RS-25850/V1 Elfiky A. A. (2020). Natural products may interfere with SARS-CoV-2 attachment to the host cell. J. Biomol. Struct. Dyn. 110. doi: 10.1080/07391102.2020.1761881 Folegatti P. M Ewer K. J. Aley P. K. Angus B. Becker S. Belij-Rammerstorfer S. . (2020) A Study of a Candidate COVID-19 Vaccine (COV001) ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04324606 (Accessed July 14, 2020). Gallelli L. (2020). Escin in Patients With Covid–19 Infection – Full Text View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04322344 (Accessed July 14, 2020). Gao Q. Bao L. Mao H. Wang L. Xu K. Yang M. . (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Sci. (80 ) 369, eabc1932. doi: 10.1126/science.abc1932 Gao Y. Yan L. Huang Y. Liu F. Zhao Y. Cao L. . (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Sci. (80 ) 368, 779782. doi: 10.1126/science.abb7498 Glatthaar-Saalmüller B. Rauchhaus U. Rode S. Haunschild J. Saalmüller A. (2011). Antiviral activity in vitro of two preparations of the herbal medicinal product Sinupret® against viruses causing respiratory infections. Phytomedicine 19, 17. doi: 10.1016/j.phymed.2011.10.010 Goswami D. Kumar M. Ghosh S. K. Das A. (2020). Natural Product Compounds in Alpinia officinarum and Ginger are Potent SARS-CoV-2 Papain-like Protease Inhibitors. chemRxiv. doi: 10.26434/chemrxiv.12071997.v1 Gray P. E. Belessis Y. (2020). The use of Traditional Chinese Medicines to treat SARS-CoV-2 may cause more harm than good. Pharmacol. Res. 156:104776. doi: 10.1016/j.phrs.2020.104776 Gyebi G. A. Ogunro O. B. Adegunloye A. P. Ogunyemi O. M. Afolabi S. O. (2020). Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL pro): an in silico screening of alkaloids and terpenoids from African medicinal plants. J. Biomol. Struct. Dyn. 113. doi: 10.1080/07391102.2020.1764868 Halperin S. A. Langley J. M. Blood and Transplant, Plasma programme (2020) Phase I/II Clinical Trial of Recombinant Novel Coronavirus Vaccine (Adenovirus Type 5 Vector) in Canada - Full Text View - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04398147 (Accessed July 14, 2020). Hansen J. Baum A. Pascal K. E. Russo V. Giordano S. Wloga E. . (2020). Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Sci. (80 ) 0827, eabd0827. doi: 10.1126/science.abd0827 Hirano T. Murakami M. (2020). COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity 52, 731733. doi: 10.1016/j.immuni.2020.04.003 Ho T. Y. Wu S. L. Chen J. C. Li C. C. Hsiang C. Y. (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 74, 92101. doi: 10.1016/j.antiviral.2006.04.014 Hoffmann M. Kleine-Weber H. Schroeder S. Krüger N. Herrler T. Erichsen S. . (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271280.e8. doi: 10.1016/j.cell.2020.02.052 Horby P. Lim W. S. Emberson J. R. Mafham M. Bell J. L. Linsell L. . (2020) No clinical benefit from use of lopinavir-ritonavir in hospitalised COVID-19 patients studied in RECOVERY — RECOVERY Trial. Available at: https://clinicaltrials.gov/ct2/show/NCT04381936 (Accessed July 13, 2020). Huang Y. F. Bai C. He F. Xie Y. Zhou H. (2020). Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19). Pharmacol. Res. 158:104939. doi: 10.1016/j.phrs.2020.104939 Huo J. Le Bas A. Ruza R. R. Duyvesteyn H. M. E. Mikolajek H. Malinauskas T. . (2020). Neutralizing nanobodies bind SARS-CoV-2 spikeRBD and block interaction with ACE2. Nat. Struct. Mol. Biol. 27 (9), 846854. doi: 10.1038/s41594-020-0469-6 Inovio Pharmaceuticals (2020). Inovio Pharmaceuticals, Inc. - INOVIO"s COVID-19 DNA Vaccine INO-4800 Demonstrates Robust Neutralizing Antibody and T Cell Immune Responses in Preclinical Models. 1–5. Available at: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIOs-COVID-19-DNA-Vaccine-INO-4800-Demonstrates-Robust-Neutralizing-Antibody-and-T-Cell-Immune-Responses-in-Preclinical-Models/default.aspx (Accessed July 13, 2020). ISRCTN - ISRCTN17072692 Clinical trial to assess the safety of a coronavirus vaccine in healthy men and women. Available at: http://www.isrctn.com/ISRCTN17072692 (Accessed July 14, 2020). Jackson L. A. Anderson E. J. Rouphael N. G. Roberts P. C. Makhene M. Coler R. N. . (2020). An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. N. Engl. J. Med. doi: 10.1056/NEJMoa2022483. NEJMoa2022483. Janssen Pharmaceutica N. V . (2020). A Study to Evaluate the Efficacy and Safety of Sirukumab in Confirmed Severe or Critical Confirmed Coronavirus Disease (COVID)-19 – Full Text View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04380961 (Accessed July 14, 2020). Kim J. W. Ha T. K. Q. Cho H. Kim E. Shim S. H. Yang J. L. . (2017). Antiviral escin derivatives from the seeds of Aesculus turbinata Blume (Japanese horse chestnut). Bioorg. Med. Chem. Lett. 27, 30193025. doi: 10.1016/j.bmcl.2017.05.022 Kim J. Y. Kim Y. Park S. J. Kim I. K. Choi Y. K. Kim S. H. (2018). Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein. Int. J. Antimicrob. Agents 52, 730732. doi: 10.1016/j.ijantimicag.2018.05.003 Ko M. Chang S. Y. Byun S. Y. Choi I. d’Alexandry d’Orengiani A.-L. P. H. Shum D. . (2020). Screening of FDA-approved drugs using a MERS-CoV clinical isolate from South Korea identifies potential therapeutic options for COVID-19. bioRxiv 2020.02.25.965582. doi: 10.1101/2020.02.25.965582 Kong Q. Wu Y. Gu Y. Lv Q. Qi F. Gong S. . (2020). Analysis of the molecular mechanism of Pudilan (PDL) treatment for COVID-19 by network pharmacology tools. Biomed. Pharmacother. 128:110316. doi: 10.1016/j.biopha.2020.110316 Koshak A. Koshak E. A. Mobeireek A. F. Badawi M. A. Wali S. O. . (2020) Nigella Sativa in COVID-19 – Full Text View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04401202 (Accessed July 14, 2020). Kreer C. Zehner M. Weber T. Ercanoglu M. S. Gieselmann L. Rohde C. . (2020). Longitudinal Isolation of Potent Near-GermlineSARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients. Cell 182 (4), 843854.e12. doi: 10.1016/j.cell.2020.06.044 Kumar V. Dhanjal J. K. Bhargava P. Kaul A. Wang J. Zhang H. . (2020). Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J. Biomol. Struct. Dyn. 113. doi: 10.1080/07391102.2020.1775704 Kupferschmidt K. Cohen J. (2020). Race to find COVID-19 treatments accelerates. Science 367 (6485), 1412 LP1413. doi: 10.1126/science.367.6485.1412 Lan M. Li H. Tao G. Lin J. Lu M. Yan R. . (2020). Effects of four bamboo derived flavonoids onadvanced glycation end products formation in vitro. J. Funct. Foods 71, 103976. doi: 10.1016/j.jff.2020.103976 Li J.-P. Liu Y. Guo J.-M. Shang E.-X. Zhu Z.-H. Zhu K. Y. . (2017). A Comprehensive Strategy to Evaluate Compatible Stability of Chinese Medicine Injection and Infusion Solutions Based on Chemical Analysis and Bioactivity Assay. Front. Pharmacol. 8:833. doi: 10.3389/fphar.2017.00833 Li Y. Liu X. Guo L. Li J. Zhong D. Zhang Y. . (2020). Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: Protocol for a systematic review and meta-Analysis. Syst. Rev. 9, 75. doi: 10.1186/s13643-020-01343-4 Logunov D. Y. Dolzhikova I. V. Zubkova O. V. Tukhvatullin A. II Shcheblyakov D. V. Dzharullaeva A. S. . (2020). Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 396 (10255), 887897. doi: 10.1016/S0140-6736(20)31866-3 Long Q. X. Tang X. J. Shi Q. L. Li Q. Deng H. J. Yuan J. . (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26 (8), 12001204. doi: 10.1038/s41591-020-0965-6 Ma Q. Pan W. Li R. Liu B. Li C. Xie Y. . (2020). Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharmacol. Res. 158:104850. doi: 10.1016/j.phrs.2020.104850 Mehta P. McAuley D. F. Brown M. Sanchez E. Tattersall R. S. Manson J. J. . (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 10331034. doi: 10.1016/S0140-6736(20)30628-0 Michaelis M. Doerr H. W. Cinatl J. (2011). Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine 18, 384386. doi: 10.1016/j.phymed.2010.09.008 Michelini F. M. Alché L. E. Bueno C. A. (2018). Virucidal, antiviral and immunomodulatory activities of β-escin and Aesculus hippocastanum extract. J. Pharm. Pharmacol. 70, 15611571. doi: 10.1111/jphp.13002 Mille J. K. Whittaker G. R. (2014). Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. U. S. A. 111, 1521415219. doi: 10.1073/pnas.1407087111 Millet J. K. Séron K. Labitt R. N. Danneels A. Palmer K. E. Whittaker G. R. . (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res. 133, 18. doi: 10.1016/j.antiviral.2016.07.011 Moderna Inc. (2020). Moderna Announces Positive Interim Phase 1 Data for its mRNA Vaccine ( mRNA-1273 ) Against Novel Coronavirus. Available at: https://www.businesswire.com/news/home/20200518005348/en/ [Accessed September 7th, 2020] ModernaTX. Inc . (2020). A Study to Evaluate Efficacy, Safety, and Immunogenicity of mRNA-1273 Vaccine in Adults Aged 18 Years and Older to Prevent COVID–19 ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04470427?term=NCT04470427 (Accessed September 10, 2020). Mori T. O’Keefe B. R. Sowder R. C. Bringans S. Gardella R. Berg S. . (2005). Isolation and characterization of Griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem. 280, 93459353. doi: 10.1074/jbc.M411122200 Müller C. Schulte F. W. Lange-Grünweller K. Obermann W. Madhugiri R. Pleschka S. . (2018). Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res. 150, 123129. doi: 10.1016/j.antiviral.2017.12.010 Mulligan M. J. Lockhart S. Neuzil K. Raabe V. Bailey R. Kena A. (2020a). Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report Mark. medrxiv, 116. doi: 10.1101/2020.06.30.20142570 Mulligan M. J. Lyke K. E. Kitchin N. Absalon J. Gurtman A. Lockhart S. . (2020b). Final-submission v2.0 P a g e | 1 Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report. medRxiv. doi: 10.1101/2020.06.30.20142570. 2020.06.30.20142570. Narimanian M. Badalyan M. Panosyan V. Gabrielyan E. Panossian A. Wikman G. . (2005). Randomized trial of a fixed combination (KanJang®) of herbal extracts containing Adhatoda vasica, Echinacea purpurea and Eleutherococcus senticosus in patients with upper respiratory tract infections. Phytomedicine 12, 539547. doi: 10.1016/j.phymed.2004.10.001 NHS Blood and Transplant . Plasma programme - COVID-19 research and trials - NHS Blood and Transplant. Available at: https://www.nhsbt.nhs.uk/covid-19-research/plasma-programme/ (Accessed July 13, 2020). Novavax Inc. (2020) Evaluation of the Safety and Immunogenicity of a SARS-CoV-2 rS (COVID- 19) Nanoparticle Vaccine With/Without Matrix–M Adjuvant ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04368988 (Accessed July 14, 2020). Oxford COVID-19 vaccine to begin phase II/III human trials | University of Oxford. Available at: https://www.ox.ac.uk/news/2020-05-22-oxford-covid-19-vaccine-begin-phase-iiiii-human-trials (Accessed July 13, 2020). Patridge E. Gareiss P. Kinch M. S. Hoyer D. (2016). An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discovery Today 21, 204207. doi: 10.1016/j.drudis.2015.01.009 Polo R. Hernan M. (2020) Randomized Clinical Trial for the Prevention of SARS-CoV-2 Infection (COVID-19) in Healthcare Personnel - Full Text View - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04334928 (Accessed July 13, 2020). Robbiani D. F. Gaebler C. Muecksch F. Lorenzi J. C. C. Wang Z. Cho A. . (2020). Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals. BioRxiv 2020.05.13.092619. doi: 10.1101/2020.05.13.092619 Rogers T. F. Zhao F. Huang D. Beutler N. Burns A. He W. . (2020). Isolation of potent SARS-CoV-2 neutralizingantibodies and protection from disease in a small animal model. Science 369 (6506), 956 LP963. doi: 10.1126/science.abc7520. eabc7520 Ruan Z. Liu C. Guo Y. He Z. Huang X. Jia X. . (2020). SARS-CoV-2 and SARS-CoV: Virtual Screening ofPotential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J. Med. Virol 112. doi: 10.1002/jmv.26222 Runfeng L. Yunlong H. Jicheng H. Weiqi P. Qinhai M. Yongxia S. . (2020). Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 156:104761. doi: 10.1016/j.phrs.2020.104761 Sheahan T. P. Sims A. C. Leist S. R. Schäfer A. Won J. Brown A. J. . (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 11, 114. doi: 10.1038/s41467-019-13940-6 Sheridan C. (2020). Convalescent serum lines up as first-choice treatment for coronavirus. Nat. Biotechnol. 38, 655658. doi: 10.1038/d41587-020-00011-1 Sinovac Biotech Co. Ltd. (2020). Safety and Immunogenicity Study of Inactivated Vaccine for Prophylaxis of SARS CoV-2 Infection (COVID-19) - Full Text View - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04352608 (Accessed July 14, 2020). Smith T. R. F. Patel A. Ramos S. Elwood D. Zhu X. Yan J. . (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 11, 113. doi: 10.1038/s41467-020-16505-0 Su S. Wong G. Shi W. Liu J. Lai A. C. K. Zhou J. . (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 24, 490502. doi: 10.1016/j.tim.2016.03.003 Tahir ul Qamar M. Alqahtani S. M. Alamri M. A. Chen L. L. (2020). Structural basis of SARS-CoV-2 3CLpro andanti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal. 10 (4), 313319. doi: 10.1016/j.jpha.2020.03.009 Tao G. Dagher F. Moballegh A. Ghose R. (2020). Role of Oxidative Stress in the Efficacy and Toxicity of Herbal Supplements. Curr. Opin. Toxicol. 20–21, 36–40. doi: 10.1016/j.cotox.2020.04.004 Tao G. Y. Liu J. Jung J. H. Guo W. Wen X. Q. Liu Y. (2016). Compounds from a jellyfish-derived fungus Aspergillus fumigates. Nat. Prod. Sci. 22, 8286. doi: 10.20307/nps.2016.22.2.82 Todt D. Moeller N. Praditya D. Kinast V. Friesland M. Engelmann M. . (2018). The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo. Antiviral Res. 157, 151158. doi: 10.1016/j.antiviral.2018.07.010 U.S. Food & Drug Administration (2020) Recommendations for Investigational COVID-19 Convalescent Plasma | FDA. Available at: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma (Accessed July 13, 2020). van Doremalen N. Lambe T. Spencer A. Belij-Rammerstorfer S. Purushotham J. N. Port J. R. . (2020). ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv 2020.05.13.093195. doi: 10.1101/2020.05.13.093195 Verma A. K. Pratap R. (2010). The biological potential of flavones. Nat. Prod. Rep. 27, 15711593. doi: 10.1039/c004698c Walls A. C. Park Y. J. Tortorici M. A. Wall A. McGuire A. T. Veesler D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281292.e6. doi: 10.1016/j.cell.2020.02.058 Wang C. Li W. Drabek D. Okba N. M. A. van Haperen R. Osterhaus A. D. M. E. . (2020). A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11, 16. doi: 10.1038/s41467-020-16256-y Wang D. Huang J. Yeung A. W. K. Tzvetkov N. T. Horbańczuk J. O. Willschke H. . (2020). The Significance of Natural Product Derivatives and Traditional Medicine for COVID-19. Processes 8:937. doi: 10.3390/pr8080937 Wang W. Qin J.-J. Li X. Tao G. Wang Q. Wu X. . (2018). Prevention of prostate cancer by natural product MDM2 inhibitor GS25: in vitro and in vivo activities and molecular mechanisms. Carcinogenesis 39, 10261036. doi: 10.1093/carcin/bgy063 Weber C. Opatz T. (2019). “Chapter One - Bisbenzylisoquinoline Alkaloids,” in Alkaloids: Chemistry and Biology. H.-J. B. T.-T. A. C. and B. Knölker, Eds. (Academic Press Inc) 81, 1114. doi: 10.1016/bs.alkal.2018.07.001 WHO | Middle East respiratory syndrome coronavirus (MERS-CoV) (2020). (WHO). Available at: http://www.who.int/emergencies/mers-cov/en/ (Accessed July 13, 2020). World Health Organization . (2020). Solidarity clinical trial for COVID-19 treatments. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments (Accessed July 13, 2020). Wu C. Y. Jan J. T. Ma S. H. Kuo C. J. Juan H. F. Cheng Y. S. E. . (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. U. S. A. 101, 1001210017. doi: 10.1073/pnas.0403596101 Wu F. Wang A. Liu M. Wang Q. Chen J. Xia S. . (2020). Neutralizing antibody responses to SARS-CoV-2in a COVID-19 recovered patient cohort and their implications. MedRxiv 2020.03.30.20047365. doi: 10.1101/2020.03.30.20047365 Wu Y. Wang F. Shen C. Peng W. Li D. Zhao C. . (2020). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368, 12741278. doi: 10.1126/science.abc2241 Xian Y. Zhang J. Bian Z. Zhou H. Zhang Z. Lin Z. . (2020). Bioactive natural compounds against humancoronaviruses: a review and perspective. Acta Pharm. Sin. B 10 (7), 11631174. doi: 10.1016/j.apsb.2020.06.002 Xu J. Zhang Y. (2020). Traditional Chinese Medicine treatment of COVID-19. Complement. Ther. Clin. Pract. 39:101165. doi: 10.1016/j.ctcp.2020.101165 Yang R. Liu H. Bai C. Wang Y. Zhang X. Guo R. . (2020). Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacol. Res. 157:104820. doi: 10.1016/j.phrs.2020.104820 Yu M. S. Lee J. Lee J. M. Kim Y. Chin Y. W. Jee J. G. . (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 22, 40494054. doi: 10.1016/j.bmcl.2012.04.081 Yuan Y. Cao D. Zhang Y. Ma J. Qi J. Wang Q. . (2017). Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8, 19. doi: 10.1038/ncomms15092 Zhang D. Zhang B. Lv J. T. Sa R. N. Zhang X. M. Lin Z. J. (2020). The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. Pharmacol. Res. 157:104882. doi: 10.1016/j.phrs.2020.104882 Zhang H. Penninger J. M. Li Y. Zhong N. Slutsky A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intens. Care Med. 46, 586590. doi: 10.1007/s00134-020-05985-9 Zhang Q. Honko A. Zhou J. Gong H. Downs S. N. Vasquez J. H. . (2020). Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Lett. 20, 5574. doi: 10.1021/acs.nanolett.0c02278 Zhang Y. Z. Holmes E. C. (2020). A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell 181, 223227. doi: 10.1016/j.cell.2020.03.035 Zhu F. C. Guan X. H. Li Y. H. Huang J. Y. Jiang T. Hou L. H. . (2020). A Phase II Clinical Trial to Evaluate the Recombinant Vaccine for COVID-19 (Adenovirus Vector) ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT04341389 (Accessed July 14, 2020). Zhu F. C. Li Y. H. Guan X. H. Hou L. H. Wang W. J. Li J. X. . (2020). Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395, 18451854. doi: 10.1016/S0140-6736(20)31208-3 Zost S. J. Gilchuk P. Chen R. E. Case J. B. Reidy J. X. Trivette A. . (2020). Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat. Med. 26 (9), 14221427. doi: 10.1038/s41591-020-0998-x
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.mdeykb.com.cn
      sparktive.com.cn
      www.qfchain.com.cn
      www.mymzmj.com.cn
      www.skchain.com.cn
      npnvh.net.cn
      www.qsbk.org.cn
      www.obpzpl.com.cn
      www.qurong123.com.cn
      mocamera.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p