Front. Pharmacol. Frontiers in Pharmacology Front. Pharmacol. 1663-9812 Frontiers Media S.A. 10.3389/fphar.2018.00310 Pharmacology Perspective Adenosine Receptor-Mediated Cardioprotection—Current Limitations and Future Directions Lasley Robert D. * Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States

Edited by: Francisco Ciruela, Universitat de Barcelona, Spain

Reviewed by: Francisco Westermeier, Universidad de Chile, Chile; Vadim V. Fedorov, The Ohio State University, United States

*Correspondence: Robert D. Lasley rlasley@med.wayne.edu

This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

04 04 2018 2018 9 310 17 11 2017 19 03 2018 Copyright © 2018 Lasley. 2018 Lasley

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Since the seminal reports of adenosine receptor-mediated cardioprotection in the early 1990s, there have been a multitude of such reports in various species and preparations. Original observations of the beneficial effects of A1 receptor agonists have been followed up with numerous reports also implicating A2A, A3, and most recently A2B, receptor agonists as cardioprotective agents. Although adenosine has been approved for clinical use in the United States for the treatment of supraventricular tachycardia and coronary artery imaging, and the selective A2A agonist, regadenoson, for the latter, clinical use of adenosine receptor agonists for protecting the ischemic heart has not advanced beyond early trials. An examination of the literature indicates that existing experimental studies have several limitations in terms of clinical relevance, as well as lacking incorporation of recent new insights into adenosine receptor signaling. Such deficiencies include the lack of experimental studies in models that most closely mimic human cardiovascular disease. In addition, there have been very few studies in chronic models of myocardial ischemia, where limiting myocardial remodeling and heart failure, not reduction of infarct size, are the primary endpoints. Despite an increasing number of reports of the beneficial effects of adenosine receptor antagonists, not agonists, in chronic diseases, this idea has not been well-studied in experimental myocardial ischemia. There have also been few studies examining adenosine receptor subtype interactions as well as receptor heterodimerization. The purpose of this Perspective article is to discuss these deficiencies to highlight future directions of research in the field of adenosine receptor-mediated protection of ischemic myocardium.

adenosine receptor subtypes cardioprotection chronic myocardial ischemia co-morbidities clinical trials

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Although the hypothesis that adenosine could be cardioprotective first became recognized in the early to mid-1980s, it started inauspiciously. Based on observations that the post-ischemic heart was characterized by both decreased ATP content and reduced ventricular function, Reibel and Rovetto (1978) reported that a reperfusion infusion of adenosine (50 μM) in isolated perfused rat hearts did not improve ATP content, although ventricular function was not measured (Reibel and Rovetto, 1978). Several subsequent studies did yield beneficial effects of exogenous and endogenous adenosine on post-ischemic ATP content and ventricular function, but these results were based in large part on initiating treatment prior to the onset of ischemia (Humphrey and Seelye, 1982; Dhasmana et al., 1983; Ely et al., 1985). Initial reports that reperfusion infusions of adenosine could reduce infarct size (Olafsson et al., 1987; Pitarys et al., 1991), could not be replicated in subsequent studies (Homeister et al., 1990; Goto et al., 1991; Vander Heide and Reimer, 1996). Interest in adenosine's effects in protecting the ischemic heart did not gain widespread acceptance until early 1990 when our laboratory first reported an A1 receptor cardioprotective effect (Lasley et al., 1990). A year later Liu et al. (1991) reported a role for A1 receptors in ischemic preconditioning to reduce myocardial infarct size. Over the next 30 years there has been an explosion in the number of adenosine receptor cardioprotection studies, primarily focusing on infarct size reduction, with all four adenosine receptor subtypes (A1, A2A, A3, A2B) being implicated (Headrick and Lasley, 2009; McIntosh and Lasley, 2012).

      Despite these numerous reports in experimental models, there have been few, if any, clinical trials of adenosine receptor cardioprotection in humans. Searching the database at “ClinicalTrials.gov” with the terms “ischemic heart disease” and “adenosine” yields 192 trials; changing the disease/condition to myocardial infarction (MI) yields only 40 trials. Nearly all of these trials have related to adenosine's effects on arrhythmias, coronary blood flow, and platelets. When searching this database with “adenosine receptor” 582 trials are shown, but combining with “myocardial infarction” only 9 trials are cited, and the majority of these trials used adenosine, not a receptor analog thereof. The only adenosine receptor agonists used in cardiac related clinical trials have been the A1 agonists Selodenoson (DTI-0009) and Capadenoson (BAY68-4986) for controlling ventricular rate in atrial fibrillation, the A2A agonist regadeson and related agents for coronary imaging, and most recently the partial A1 agonist Neladenoson bialanate (BAY1067197) for heart failure.

      This limited translation of hundreds of experimental studies, in every animal species tested to date, to the clinical arena raises the question of whether the past 30 years of adenosine receptor cardioprotection investigations have been for naught. This perspective will examine limitations of our existing knowledge of adenosine-mediated protection of the ischemic heart to help guide future studies to fully understand the cardioprotective effects of adenosine therapeutics and harness its potential in humans.

      Lack of clinically relevant animal models

      Nearly all experimental studies on adenosine receptor cardioprotection have been conducted in normal, healthy adult animals. In contrast cardioprotective interventions in humans occur in the presence of various co-morbidities, such as arterial hypertension, obesity, diabetes, hypercholesterolemia, and often advanced age. Although there are numerous reports examining the role of adenosine and its receptors in these pathologies (Long et al., 2010; Wang et al., 2010; Bot et al., 2012; Koupenova et al., 2012; Sangsiri et al., 2013; Zhang et al., 2013; Teng et al., 2014; Nayak et al., 2015; Yang et al., 2016), the only one of these areas in which adenosine cardioprotection has been examined is in healthy aged rats and mice, and results have been conflicting. Isolated heart studies in 16–18 month old mice indicate a loss in the ability of adenosine and the A1 and A3 adenosine receptor agonists CPA and Cl-IB-MECA to reduce ischemia-reperfusion injury (Headrick et al., 2003; Peart et al., 2014). Two studies in rat hearts have led to contradictory findings as Schulman et al. (2001) reported a loss of adenosine A1 agonist (CCPA) preconditioning in 18–20 month-old Wistar rats, whereas Kristo et al. (2005) reported enhanced infarct size reduction in 24–26 months Fischer 344 × Brown Norway hybrid (F344 × BN) rats with the mixed (A1 and A2A) agonist AMP579. A major difference in these rat studies is that the former was conducted in an isolated perfused heart preparation, whereas the latter was conducted in vivo, where the effects of the circulating agonist continued into reperfusion. Interestingly in both rat and mouse studies the effects of A1 and A2A agonists on heart rate and coronary flow in aged hearts were similar to those in young adult hearts. These findings are consistent with the reports of unaltered A2A agonist (regadenoson) increases in coronary flow in aged human hearts (Cerqueira et al., 2008). One of the major limitations in the field of adenosine receptor cardioprotection is the lack of studies in animal models with clinically relevant morbidities. It is likely that these co-morbidities will alter myocardial adenosine receptor subtype expression and/or signaling mechanisms, as has been reported in models of atherosclerosis and diabetes (Long et al., 2010; Cabiati et al., 2015).

      Treatment paradigms

      Another deficiency in the literature, related to current experimental studies, are the experimental treatment paradigms that are typically used. The majority of experimental studies on adenosine A1 and A3 receptors, as well as several studies A2B receptors, have involved administration of agonists prior to ischemia to reduce ischemia-reperfusion injury (Headrick and Lasley, 2009; McIntosh and Lasley, 2012). Such a treatment paradigm has relevance to open heart surgery and preservation solutions for cardiac transplantation, but there have been no clinical trials to date, even assessing safety, for the use of adenosine receptor agonists. In contrast experimental studies on adenosine A2A and A2B agonists have focused on reperfusion treatments for the reduction of myocardial infarct size (Headrick and Lasley, 2009; McIntosh and Lasley, 2012), which upon initial review would appear to have some clinical relevance. Initial animal studies with adenosine A2A agonist reperfusion treatment, which were all successful, occurred soon after the controversial experimental results with adenosine (Olafsson et al., 1987; Homeister et al., 1990; Goto et al., 1991; Pitarys et al., 1991; Vander Heide and Reimer, 1996) and the equivocal results of the acute myocardial infarction study of adenosine (AMISTAD) trial published in 1999 (Mahaffey et al., 1999).

      However, the vast majority of experimental studies have initiated treatments during late ischemia or at the onset of reperfusion. Such early reperfusion treatments in the setting of acute myocardial infarction (MI) are not feasible given the time involved from the onset of patient symptoms to the diagnosis of MI and initiation of reperfusion therapy. In fact the results of the AMISTAD-II trial indicated that patients [particularly those receiving thrombolytic therapy, rather than percutaneous coronary intervention (PCI)] receiving intravenous adenosine within 3 h of symptom onset showed significantly reduced 1 and 6 months mortality compared with placebo (Kloner et al., 2006). Patients obtaining adenosine reperfusion treatment later than 3 h of symptom onset received no beneficial effect. These clinical observations were similar to those by (Toufektsian et al., 2006), who reported that a 1 h delay in the reperfusion administration of the highly selective A2A agonist, ATL146e, failed to reduce 24 h infarct size in mice (Toufektsian et al., 2006). Interestingly, the delayed treatment did increase post-MI cardiac function and reduce inflammation. We previously reported (Lasley et al., 2001) that an intracoronary infusion of the A2A agonist CGS21680, 2 h after reperfusion, increased regional preload-recruitable stroke work and stroke work area (load-insensitive parameters of cardiac contractility) in a porcine model of reversible myocardial ischemia-reperfusion injury. This effect was determined to be independent of effects on coronary blood flow, and the same infusion in normal myocardium had no effect on regional contractile function. In summary, the lack of experimental studies in clinically relevant models with appropriate treatment protocols, is likely to have contributed to the lack of clinical trials examining the efficacy of adenosine or receptor agonists for treating acute MI. The primary focus on reduction of acute injury is not only inconsistent with clinical trends of more patients living with chronic myocardial ischemia, but it also neglects some of the other recognized beneficial effects of adenosine receptors.

      Chronic myocardial ischemia models

      Another weakness in experimental models of adenosine receptor cardioprotection is the primary focus on acute cardioprotection. This is an inherent limitation of in vitro models, but this continues to be a significant weakness of in vivo models, in which the study endpoint is typically infarct size after 2–3 h of reperfusion, with only a limited number of studies extending reperfusion to 24 h. Data from the National Heart, Lung and Blood Institute (NHLBI) and other sources indicate that over the past 40 years, deaths from acute MI have decreased significantly, whereas the incidence of heart failure and deaths from heart failure have increased (Krumholz et al., 2009). Experimental studies with short durations of reperfusion exclude significant components of the post-ischemic inflammatory process, which is a primary contributor to post-MI ventricular remodeling and subsequent heart failure. Such studies also exclude the well-known modulatory effects of adenosine receptors on inflammatory processes. It is also well-recognized that adenosine receptor expression and adenosine formation are increased in chronic inflammation, similar to that seen in chronically ischemic hearts (Xaus et al., 1999; Sun et al., 2006; Hasko et al., 2008; Feoktistov and Biaggioni, 2011; Belikoff et al., 2012).

      Unfortunately, there have only been a very limited number of experimental studies assessing the cardioprotective effects of adenosine and/or receptor agonists in chronic models of myocardial ischemia. In what appears to be the first such study, Villarreal et al. (2003) reported that a 2 h intravenous infusion of an adenosine kinase inhibitor, which increases endogenous adenosine levels, but not adenosine itself, in rats just prior to reperfusion (following a 2 h occlusion) increased 2 week post-MI ischemic zone wall thickness, consistent with reduced ventricular remodeling (Villarreal et al., 2003). Wakeno et al. subsequently reported that a 3 weeks treatment (twice daily intraperitoneal injections) with the non-selective agonist, 2-chloroadenosine, starting at 7-day post-MI in rats reduced cardiac remodeling and cardiac fibrosis (Wakeno et al., 2006). Based on results with multiple adenosine receptor antagonists, the authors concluded that this protective effect was due to adenosine A2B receptor stimulation. More recently Sabbah et al. reported that chronic treatment with a partial A1 receptor agonist (capadenoson), in a coronary microembolization-induced model of heart failure in canines, improved left ventricular function, decreased fibrosis, and reduced plasma n-terminal pro-brain natriuretic peptide concentrations (Sabbah et al., 2013). These beneficial effects observed in the absence of changes in heart rate, blood pressure, or renal function, but were accompanied by increased expression of left ventricular sarcoplasmic reticulum calcium ATPase activity, mitochondrial uncoupling proteins (UCP) and glucose transporters. These latter observations suggest that capadenoson's beneficial effects were due to direct effects on the heart, although the specific mechanism remains unknown.

      Despite the lack of chronic experimental myocardial ischemia studies, there is evidence suggesting that adenosine may exert beneficial effects in patients with chronic myocardial ischemia. Bulluck et al. (2016) conducted a meta-analysis on the results of 13 randomized clinical trials using intracoronary or intravenous adenosine in patients with ST-segment elevation MI (STEMI). They concluded that intracoronary adenosine therapy in the presence of primary percutaneous coronary intervention (PPCI) was effective in reducing post-STEMI heart failure, but not in terms of other end-points such as death, non-fatal MI, or revascularization. They also concluded that these effects were most likely due to infarct size reduction via less reperfusion injury, although they could not exclude a role in reducing ventricular remodeling. A double blinded, placebo controlled Phase 2 clinical trial (7 days of treatment) with the A1 partial agonist BAY1067197 (neladenoson bialanate) in patients with heart failure with reduced ejection fraction indicated that this agent was safe, although no beneficial effects on cardiac function were observed (Voors et al., 2017).

      The possibility that adenosine receptors may modulate post-MI remodeling in patients highlights/emphasizes the need to conduct clinically relevant experimental chronic studies, rather than acute studies. Cardiac remodeling is due to chronic inflammation and fibrosis, mediated by immune cells and fibroblasts, both of which express at least two adenosine receptors. Adenosine A2A receptors are well recognized for their anti-inflammatory effects, and there are reports that A2B receptors may exert both anti- and pro-inflammatory effects (Hasko et al., 2008; Csoka et al., 2010; Feoktistov and Biaggioni, 2011; Linden, 2011; Haskó and Cronstein, 2013). Likewise, there is evidence that both A2A and A2B receptors regulate fibroblast function, including cardiac fibroblasts, although there are conflicting reports on their specific effects (Zhong et al., 2005; Villarreal et al., 2009; Zhang et al., 2014; Karmouty-Quintana et al., 2015; Shaikh and Cronstein, 2016). These observations and reports of adenosine receptor involvement in various chronic diseases (Long et al., 2010; Wang et al., 2010; Bot et al., 2012; Koupenova et al., 2012; Sangsiri et al., 2013; Zhang et al., 2013; Teng et al., 2014; Nayak et al., 2015; Yang et al., 2016), clearly warrant more studies on adenosine receptor modulation of chronic myocardial ischemia.

      Receptor agonists or antagonists?

      One aspect related to the lack of studies on adenosine receptor modulation of chronic myocardial ischemia, which has only recently been recognized, is the issue of receptor agonism vs. antagonism. All studies examining acute myocardial ischemia models have focused on treatment with receptor agonists, and in these studies blockade or deletion of any of the four adenosine receptor subtypes has resulted in little exacerbation of ischemia-reperfusion injury. However, there are numerous reports that antagonism or deletion of adenosine receptor subtypes is protective in models of both arterial and pulmonary hypertension, pulmonary and renal fibrosis, and sepsis (Sun et al., 2006; Kolachala et al., 2008; Zhou et al., 2011; Belikoff et al., 2012; Karmouty-Quintana et al., 2012, 2013a; Zhang et al., 2013; Nayak et al., 2015). The majority of these studies have focused on the anti-inflammatory and/or anti-fibrotic effects of A2B receptor blockade.

      At first glance, reports that A2B antagonism is beneficial in chronic disease would appear to be contradictory to the reports of beneficial effects of A2B agonism in the acute phase of myocardial ischemia. However, a review of the literature indicates there is substantial evidence for adenosine receptors playing dual roles in acute vs. chronic pathologies. For example, although the anti-inflammatory role of A2A receptors has been recognized for years, there are more recent reports that A2A receptor stimulation prolong IL-1β release and caspase-1 activity, consistent with inflammasome activation, in murine macrophages (Ouyang et al., 2013) and brain (Chiu et al., 2014). Ingwersen et al. (2016) also reported that while A2A receptor stimulation was acutely beneficial in a murine model of autoimmune neuroinflammation, chronic inflammation was reduced in A2A KO mice (Ingwersen et al., 2016). The time-dependent, opposing effects of adenosine A2A and A2B receptors are in fact consistent with the dual role of inflammation in the post-ischemic heart. Macrophages participate in both the initial pro-inflammatory phase to remove dead and dying tissue, but the subsequent anti-inflammatory period is necessary in order for cardiac fibroblasts to differentiate into myofibroblasts, which then deposit collagen (Nahrendorf et al., 2010; Frangogiannis, 2012; Prabhu and Frangogiannis, 2016). Collagen deposition is critical for maintaining scar thickness and strength in the infarct zone, but prolonged inflammation and excess collagen deposition lead to adverse ventricular remodeling (Nahrendorf et al., 2010; Frangogiannis, 2012; Prabhu and Frangogiannis, 2016).

      To date there are only a very limited number of studies assessing potential beneficial effects of adenosine receptor blockade in chronic heart disease, both in experimental models and in clinical trials. Beneficial effects of A1 receptor antagonists in experimental models of acute heart failure have been reported going back well over a decade (Nagashima et al., 1995; Givertz et al., 2007; Greenberg et al., 2007; Slawsky and Givertz, 2009). These beneficial effects were thought to be due primarily to blockade of A1 receptor-mediated vasoconstriction of the renal afferent artery as well as proximal tubule reabsorption of sodium. Despite these positive findings in initial small trials, a large, randomized, placebo controlled Phase 3 trial (PROTECT) with the A1 antagonist, rolofylline, failed to significantly impact cardiac or renal primary or secondary end points (Massie et al., 2010). More recently, the beneficial effects of A2B receptor antagonism in experimental models of post-MI remodeling have been reported. Toldo et al. (2012) reported that the administration of the A2B antagonist, GS-6201, immediately following a permanent occlusion in mice resulted in a thicker scar, less LV hypertrophy and improved post-MI cardiac function after 4 weeks. Similar findings were reported with the same A2B antagonist in a chronic occlusion-reperfusion model in rats (Zhang et al., 2014). Thus, despite numerous experimental studies reporting beneficial effects of adenosine receptor antagonists in multiple non-cardiac pathologies, there remains a paucity of similar studies in chronic heart disease.

      Additional unresolved issues

      In addition to the above clinical-relevance issues, there are some unresolved basic science matters related to adenosine receptor-mediated cardioprotection. Adenosine receptors are differentially expressed on multiple cells types, thus altering the tissue and organ response to even selective agonists or antagonists (Chen et al., 2013; Sheth et al., 2014). This may explain, in part, the reported time-dependent differences in acute vs. chronic effects of adenosine receptor antagonists (Karmouty-Quintana et al., 2013b). As stated earlier, all four adenosine receptors have been implicated in protection against acute myocardial ischemia-reperfusion injury, and there are multiple reports that this is mediated by all four receptor subtypes modulating the same signaling pathways, presumably in cardiomyocytes (McIntosh and Lasley, 2012). There has yet to be an explanation why cardiomyocytes would express four different adenosine receptor subtypes exerting the same effect via the same signaling pathways. As discussed previously, the lack of studies addressing adenosine receptor effects in models of chronic myocardial ischemia have hindered our knowledge of the roles of specific adenosine receptors in non-cardiomyocytes, such as endothelial cells, immune cells and cardiac fibroblasts. Species-dependent differences in the selectivity of adenosine receptor agonists and antagonists have been recognized for many years, and this topic has most recently been addressed by Alnouri et al. (2015) and Jacobson and Müller (2016). This issue has undoubtedly had effects on the interpretation of numerous experimental studies, but its biggest impact has probably been on clinical trials, where despite reports of safety and tolerance, there remain few reports on the efficacy of adenosine receptor analogs in treating ischemic heart disease (Massie et al., 2010; Voors et al., 2017). Finally, there is increasing evidence in multiple tissues, that adenosine receptors may exert their effects, in part, via receptor dimerization (Zhan et al., 2011; McIntosh and Lasley, 2012; Chandrasekera et al., 2013; Chen et al., 2013). This aspect of adenosine receptor modulation of myocardial ischemia-reperfusion injury needs to be further explored, as this may lead to new, clinically relevant therapies.

      In conclusion, nearly 30 years of experimental findings support the hypothesis that adenosine receptors modulate acute myocardial ischemia-reperfusion injury. Despite this evidence, the use of adenosine, adenosine modulators, or adenosine analogs for treatment of cardiac injury has not been accepted clinically, nor have there been many clinical trials. Clearly the next phase of research on adenosine receptor cardioprotection needs to establish the role of adenosine receptor agonists and antagonists in more clinically relevant models of myocardial ischemia.

      Author contributions

      The author confirms being the sole contributor of this work and approved it for publication.

      Conflict of interest statement

      The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Alnouri M. W. Jepards S. Casari A. Schiedel A. C. Hinz S. Müller C. E. (2015). Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal. 11, 389407. 10.1007/s11302-015-9460-926126429 Belikoff B. G. Vaickus L. J. Sitkovsky M. Remick D. G. (2012). A2B adenosine receptor expression by myeloid cells is proinflammatory in murine allergic-airway inflammation. J. Immunol. 189, 37073713. 10.4049/jimmunol.120120722956582 Bot I. de Vries H. Korporaal S. J. Foks A. C. Bot M. van Veldhoven J. . (2012). Adenosine A2B receptor agonism inhibits neointimal lesion development after arterial injury in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 21972205. 10.1161/ATVBAHA.112.252924 Bulluck H. Sirker A. Loke Y. K. Garcia-Dorado D. Hausenloy D. J. (2016). Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int. J. Cardiol. 202, 228237. 10.1016/j.ijcard.2015.09.00526402450 Cabiati M. Svezia B. Guzzardi M. A. Mattii L. D'Amico A. Caselli C. Prescimone T. . (2015). Adenosine receptor transcriptomic profile in cardiac tissue of a Zucker rat model. DNA Cell Biol. 34, 333341. 10.1089/dna.2014.277025710208 Cerqueira M. D. Nguyen P. Staehr P. Underwood S. R. Iskandrian A. E. ADVANCE-MPI Trial Investigators (2008). Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging integrated ADVANCE-MPI trial results. JACC Cardiovasc. Imaging 1, 307316. 10.1016/j.jcmg.2008.02.00319356442 Chandrasekera P. C. Wan T. C. Gizewski E. T. Auchampach J. A. Lasley R. D. (2013). Adenosine A1 receptors heterodimerize with β1- and β2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling. Cell. Signal. 25, 736742. 10.1016/j.cellsig.2012.12.02223291003 Chen J. F. Eltzschig H. K. Fredholm B. B. (2013). Adenosine receptors as drug targets–what are the challenges? Nat. Rev. Drug Discov. 12, 265286. 10.1038/nrd395523535933 Chiu G. S. Darmody P. T. Walsh J. P. Moon M. L. Kwakwa K. A. Bray J. K. . (2014). Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety. Brain Behav. Immun. 41, 218231. 10.1016/j.bbi.2014.05.01824907587 Csoka B. Nemeth Z. H. Rosenberger P. Eltzschig H. K. Spolarics Z. Pacher P. . (2010). A2B adenosine receptors protect against sepsis-induced mortality by dampening excessive inflammation. J. Immunol. 185, 542550. 10.4049/jimmunol.090129520505145 Dhasmana J. P. Digerness S. B. Geckle J. M. Ng T. C. Glickson J. D. Blackstone E. H. (1983). Effect of adenosine deaminase inhibitors on the heart's functional and biochemical recovery from ischemia: a study utilizing the isolated rat heart adapted to 31P nuclear magnetic resonance. J. Cardiovasc. Pharmacol. 5, 10401047. 10.1097/00005344-198311000-000196196552 Ely S. W. Mentzer R. M. Lasley R. D. Lee B. K. Berne R. M. (1985). Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. J. Thorac. Cardiovasc. Surg. 90, 549556. 4046621 Feoktistov I. Biaggioni I. (2011). Role of adenosine A(2B) receptors in inflammation. Adv Pharmacol. 61, 115144. 10.1016/B978-0-12-385526-8.00005-921586358 Frangogiannis N. G. (2012). Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159173. 10.1161/CIRCRESAHA.111.24316222223212 Givertz M. Massie B. Fields T. Pearson L. Dittrich H. (2007). The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J. Am. Coll. Cardiol. 50, 15511560. 10.1016/j.jacc.2007.07.019 Goto M. Miura T. Iliodoromitis E. K. O'Leary E. L. Ishimoto R. Yellon D. M. . (1991). Adenosine infusion during early reperfusion failed to limit myocardial infarct size in a collateral deficient species. Cardiovasc. Res. 25, 943949. Greenberg B. Thomas I. Banish D. . (2007). Effects of multiple oral doses of an A1 adenosine antagonist, BG9928, in patients with heart failure: results of a placebo-controlled, dose-escalation study. J. Am. Coll. Cardiol. 50, 600606. 10.1016/j.jacc.2007.03.05917692744 Haskó G. Cronstein B. (2013). Regulation of inflammation by adenosine. Front. Immunol. 4:85. 10.3389/fimmu.2013.0008523580000 Hasko G. Linden J. Cronstein B. Pacher P. (2008). Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Rev. Drug Disc. 7, 759770. 10.1038/nrd263818758473 Headrick J. P. Lasley R. D. (2009). Adenosine receptors and reperfusion injury of the heart. Handb. Exp. Pharmacol. 193, 189214. 10.1007/978-3-540-89615-9_7 Headrick J. P. Willems L. Ashton K. J. Holmgren K. Peart J. Matherne G. P. (2003). Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression. J. Physiol. 549, 823833. 10.1113/jphysiol.2003.04154112717009 Homeister J. W. Hoff P. T. Fletcher D. D. Lucchesi B. R. (1990). Combined adenosine and lidocaine administration limits myocardial reperfusion injury. Circulation 82, 595608. 10.1161/01.CIR.82.2.5952372906 Humphrey S. M. Seelye R. N. (1982). Improved functional recovery of ischemic myocardium by suppression of adenosine catabolism. J. Thorac. Cardiovasc. Surg. 84, 1622. Ingwersen J. Wingerath B. Graf J. Lepka K. Hofrichter M. Schröter F. . (2016). Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation. J. Neuroinflammation. 13:48. 10.1186/s12974-016-0512-z Jacobson K. A. Müller C. E. (2016). Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104, 3149. 10.1016/j.neuropharm.2015.12.00126686393 Karmouty-Quintana H. Philip K. Acero L. F. Chen N. Y. Weng T. Molina J. G. . (2015). Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension. FASEB J. 29, 5060. 10.1096/fj.14-26018225318478 Karmouty-Quintana H. Weng T. Garcia-Morales L. J. Chen N. Y. Pedroza M. Zhong H. . (2013a). Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension associated with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 49, 10381047. 10.1165/rcmb.2013-0089OC23855769 Karmouty-Quintana H. Xia Y. Blackburn M. R. (2013b). Adenosine signaling during acute and chronic disease states. J. Mol. Med. 91, 173181. 10.1007/s00109-013-0997-123340998 Karmouty-Quintana H. Zhong H. Acero L. Weng T. Melicoff E. West J. D. . (2012). The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. FASEB J. 26, 25462557. 10.1096/fj.11-20090722415303 Kloner R. A. Forman M. B. Gibbons R. J. Ross A. M. Alexander R. W. Stone G. W. (2006). Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur. Heart J. 27, 24002405. 10.1093/eurheartj/ehl09416782719 Kolachala V. Ruble B. Vijay-Kumar M. Wang L. Mwangi S. Figler H. . (2008). Blockade of adenosine A2B receptors ameliorates murine colitis. Br. J. Pharmacol. 155, 127137. 10.1038/bjp.2008.22718536750 Koupenova M. Johnston-Cox H. Vezeridis A. Gavras H. Yang D. Zannis V. . (2012). A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation. 125, 354363. 10.1161/CIRCULATIONAHA.111.05759622144568 Kristo G. Yoshimura Y. Keith B. J. Mentzer R. M. Jr. Lasley R. D. (2005). Aged rat myocardium exhibits normal adenosine receptor-mediated bradycardia and coronary vasodilation but increased adenosine agonist-mediated cardioprotection. J. Gerontol. A Biol. Sci. Med. Sci. 60, 13991404. 10.1093/gerona/60.11.139916339325 Krumholz H. M. Wang Y. Chen J. Drye E. E. Spertus J. A. Ross J. S. . (2009). Reduction in acute myocardial infarction mortality in the United States: risk-standardized mortality rates from 1995-2006. JAMA 302, 767773. 10.1001/jama.2009.117819690309 Lasley R. D. Jahania M. S. A. Mentzer R. M. Jr. (2001). Beneficial effects of the adenosine A2a agonist CGS 21680 in infarcted and stunned porcine myocardium. Am. J. Physiol. 280, H1660H1666. 10.1152/ajpheart.2001.280.4.H1660 Lasley R. D. Rhee J. W. Van Wylen D. G. Mentzer R. M. Jr. (1990). Adenosine A1 receptor mediated protection of the globally ischemic isolated rat heart. J. Mol. Cell. Cardiol. 22, 3947. 10.1016/0022-2828(90)90970-D2325132 Linden J. (2011). Regulation of leukocyte function by adenosine receptors. Adv Pharmacol. 61, 95114. 10.1016/B978-0-12-385526-8.00004-721586357 Liu G. S. Thornton J. Van Winkle D. M. Stanley A. W. Olsson R. A. Downey J. M. (1991). Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84, 350356. 10.1161/01.CIR.84.1.3502060105 Long X. Mokelke E. A. Neeb Z. P. Alloosh M. Edwards J. M. Sturek M. (2010). Adenosine receptor regulation of coronary blood flow in Ossabaw miniature swine. J. Pharmacol. Exp. Ther. 335, 781787. 10.1124/jpet.110.17080320855445 Mahaffey K. W. Puma J. A. Barbagelata N. A. DiCarli M. F. Leesar M. A. Browne K. F. . (1999). Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J. Am. Coll. Cardiol. 34, 17111720. 10.1016/S0735-1097(99)00418-010577561 Massie B. M. O'Connor C. M. Metra M. Ponikowski P. Teerlink J. R. Cotter G. . (2010). Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N. Engl. J. Med. 363, 14191428. 10.1056/NEJMoa091261320925544 McIntosh V. J. Lasley R. D. (2012). Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J. Cardiovasc. Pharmacol. Ther. 17, 2133. 10.1177/1074248410396877 Nagashima K. Kusaka H. Karasawa A. (1995). Protective effects of KW-3902, an adenosine A1-receptor antagonist, against cisplatin-induced acute renal failure in rats. Jpn. J. Pharmacol. 67, 349357. 10.1254/jjp.67.3497650867 Nahrendorf M. Pittet M. J. Swirski F. K. (2010). Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121, 24372445. 10.1161/CIRCULATIONAHA.109.91634620530020 Nayak S. Khan M. A. Wan T. C. Pei H. Linden J. Dwinell M. R. . (2015). Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: implications for A2B adenosine receptor signaling during hypertension. Purinergic Signal. 11, 519531. 10.1007/s11302-015-9470-726385692 Olafsson B. Forman M. B. Puett D. W. Pou A. Cates C. U. Friesinger G. C. . (1987). Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76, 11351145. 10.1161/01.CIR.76.5.11353664998 Ouyang X. Ghani A. Malik A. Wilder T. Colegio O. R. Flavell R. A. . (2013). Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway. Nat. Commun. 4:2909. 10.1038/ncomms3909 Peart J. N. Pepe S. Reichelt M. E. Beckett N. See Hoe L. Ozberk V. . (2014). Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp. Gerontol. 50, 7281. 10.1016/j.exger.2013.11.01524316036 Pitarys C. J. Virmani R. Vildibill H. D. Jr. Jackson E. K. Forman M. B. (1991). Reduction of myocardial reperfusion injury by intravenous adenosine administered during the early reperfusion period. Circulation 83, 237247. 10.1161/01.CIR.83.1.2371984882 Prabhu S. D. Frangogiannis N. G. (2016). The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91112. 10.1161/CIRCRESAHA.116.30357727340270 Reibel D. K. Rovetto M. J. (1978). Myocardial ATP synthesis and mechanical function following oxygen deficiency. Am. J. Physiol. 234, H620H624. 10.1152/ajpheart.1978.234.5.H620645929 Sabbah H. N. Gupta R. C. Kohli S. Wang M. Rastogi S. Zhang K. . (2013). Chronic therapy with a partial adenosine A1-receptor agonist improves left ventricular function and remodeling in dogs with advanced heart failure. Circ. Heart Fail. 6, 563571. 10.1161/CIRCHEARTFAILURE.112.00020823564604 Sangsiri S. Dong H. Swain G. M. Galligan J. J. Xu H. (2013). Impaired function of prejunctional adenosine A1 receptors expressed by perivascular sympathetic nerves in DOCA-salt hypertensive rats. J. Pharmacol. Exp. Ther. 345, 3240. 10.1124/jpet.112.19961223397055 Schulman D. Latchman D. S. Yellon D. M. (2001). Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 281, H1630H1636. 10.1152/ajpheart.2001.281.4.H163011557553 Shaikh G. Cronstein B. (2016). Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal. 12, 191197. 10.1007/s11302-016-9498-326847815 Sheth S. Brito R. Mukherjea D. Rybak L. P. Ramkumar V. (2014). Adenosine receptors: expression, function and regulation. Int. J. Mol. Sci. 28, 20242052. 10.3390/ijms15022024 Slawsky M. T. Givertz M. M. (2009). Rolofylline: a selective adenosine 1 receptor antagonist for the treatment of heart failure. Expert Opin. Pharmacother. 10, 311322. 10.1517/1465656080268221319236201 Sun C. X. Zhong H. Mohsenin A. Morschl E. Chunn J. L. Molina J. G. . (2006). Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J. Clin. Invest. 116, 21732182. 10.1172/JCI2730316841096 Teng B. Smith J. D. Rosenfeld M. E. Robinet P. Davis M. E. Morrison R. R. . (2014). A1 adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice. Cardiovasc. Res. 102, 157165. 10.1093/cvr/cvu033 Toldo S. Zhong H. Mezzaroma E. Van Tassell B. W. Kannan H. Zeng D. . (2012). GS-6201, a selective blocker of the A2B adenosine receptor, attenuates cardiac remodeling after acute myocardial infarction in the mouse. J. Pharmacol. Exp. Therap. 343, 587595. 10.1124/jpet.111.19128822923737 Toufektsian M. C. Yang Z. Prasad K. M. Overbergh L. Ramos S. I. Mathieu C. . (2006). Stimulation of A2A-adenosine receptors after myocardial infarction suppresses inflammatory activation and attenuates contractile dysfunction in the remote left ventricle. Am. J. Physiol. 290, H1410H1418. 10.1152/ajpheart.00860.200516284233 Vander Heide R. S. Reimer K. A. (1996). Effect of adenosine therapy at reperfusion on myocardial infarct size in dogs. Cardiovasc. Res. 31, 711718. 10.1016/S0008-6363(95)00235-98763400 Villarreal F. Epperson S. A. Ramirez-Sanchez I. Yamazaki K. G. Brunton L. L. (2009). Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. Am. J. Physiol. Cell Physiol. 296, C1178C1184. 10.1152/ajpcell.00291.200819279233 Villarreal F. Zimmermann S. Makhsudova L. Montag A. C. Erion M. D. Bullough D. A. . (2003). Modulation of cardiac remodeling by adenosine: in vitro and in vivo effects. Mol. Cell. Biochem. 251, 1726. 10.1023/A:102540102644114575299 Voors A. A. Düngen H. D. Senni M. Nodari S. Agostoni P. Ponikowski P. . (2017). Safety and tolerability of neladenoson bialanate, a novel oral partial adenosine A1 receptor agonist, in patients with chronic heart failure. J. Clin. Pharmacol. 57, 440451. 10.1002/jcph.82827624622 Wakeno M. Minamino T. Seguchi O. Okazaki H. Tsukamoto O. Okada K. . (2006). Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 114, 19231932. 10.1161/CIRCULATIONAHA.106.63008717043167 Wang H. Zhang W. Tang R. Zhu C. Bucher C. Blazar B. R. . (2010). Adenosine receptor A2A deficiency in leukocytes increases arterial neointima formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 30, 915922. 10.1161/ATVBAHA.109.20257220167656 Xaus J. Mirabet M. Lloberas J. Soler C. Lluis C. Franco R. . (1999). IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J. Immunol. 162, 36073614. Yang T. Zollbrecht C. Winerdal M. E. Zhuge Z. Zhang X. M. Terrando N. . (2016). Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. J. Am. Heart Assoc. 5:7. 10.1161/JAHA.116.00386827431647 Zhan E. McIntosh V. J. Lasley R. D. (2011). Adenosine A2A and A2B receptors are both required for adenosine A1 receptor-mediated cardioprotection. Am. J. Physiol. 301, H1183H1189. 10.1152/ajpheart.00264.2011 Zhang H. Zhong H. Everett T. H. Wilson E. Chang R. Zeng D. . (2014). Blockade of A2B adenosine receptor reduces left ventricular dysfunction and ventricular arrhythmias 1 week after myocardial infarction in the rat model. Heart Rhythm 11, 101109. 10.1016/j.hrthm.2013.10.02324120874 Zhang W. Zhang Y. Wang W. Dai Y. Ning C. Luo R. . (2013). Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ. Res. 112, 14661478. 10.1161/CIRCRESAHA.111.30016623584256 Zhong H. Belardinelli L. Maa T. Zeng D. (2005). Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am. J. Respir. Cell. Mol. Biol. 32, 28. 10.1165/rcmb.2004-0103OC15472138 Zhou Y. Schneider D. J Morschl E Song L Pedroza M. Karmouty-Quintana H. . (2011). Distinct roles for the A2B adenosine receptor in acute and chronic stages of bleomycin-induced lung injury. J. Immunol. 186, 10971106. 10.4049/jimmunol.100290721149612
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016khtwti.com.cn
      www.lnjyzyq.org.cn
      www.kkpwui.com.cn
      lnchain.com.cn
      jlszzxxx.com.cn
      www.nmgsbor.org.cn
      www.pqecch.com.cn
      www.rgchain.com.cn
      www.w88bet.com.cn
      www.ntsfus.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p