Front. Oncol. Frontiers in Oncology Front. Oncol. 2234-943X Frontiers Media S.A. 10.3389/fonc.2023.1063051 Oncology Review Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Thomas Juvin Ann 1 Gireesh Moly Athira Gireesh 1 Xavier Hima 1 Suboj Priya 2 Ladha Amit 3 Gupta Gaurav 4 Singh Santosh Kumar 5 Palit Partha 6 * Babykutty Suboj 1 * 1 Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India 2 Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India 3 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom 4 Department of Immunology, University of Manitoba, Winnipeg, MB, Canada 5 Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 6 Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India

Edited by: Subhadeep Roy, Indian Institute of Technology Delhi, India

Reviewed by: Rajnish Yadav, Era University, India; Mayank Kumar, Columbia University, United States

*Correspondence: Suboj Babykutty, suboj.babykutty@mic.ac.in; Partha Palit, itspartha_p@yahoo.com

This article was submitted to Pharmacology of Anti-Cancer Drugs, a section of the journal Frontiers in Oncology

28 03 2023 2023 13 1063051 06 10 2022 17 02 2023 Copyright © 2023 Thomas, Gireesh, Xavier, Suboj, Ladha, Gupta, Singh, Palit and Babykutty 2023 Thomas, Gireesh, Xavier, Suboj, Ladha, Gupta, Singh, Palit and Babykutty

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL–1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.

tumor endothelial cells (TECs) hypoxia inducible factors (HIFs) myeloid derived suppressor cells (MDSCs) T regulatory cells (Treg cells) angiogenesis hypoxic tumor microenvironment immunological switch point

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The most prevalent types of cancer diagnosed and the main reason for deaths due to cancer among women is breast cancer (BC) (1). The detection and treatment of BC have undergone a number of advancements in recent years. Since the early 1990s, there has been a 39% decrease in breast cancer mortality thanks to a combination of better screening, earlier detection/diagnosis, and anti-cancer medicines that have made substantial advances. The prognosis for patients with advanced-stage breast cancer can be improved, though further investigations are required to overcome the threat of cancer resistance to treatment.

      Aggressive breast cancers with hypoxic cores account for 40% of cases; these tumours are highly metastatic, and resistant to the majority of treatments. Breast cancer stem cells (BCSCs) multiply in a hypoxic tumor microenvironment, which results in a variety of epigenetic changes that retain cancer stem cells in an undifferentiated state and aid in its development and recurrence (2).Unchecked tumor cell growth outgrows the surrounding vascular system, which leads to a reduction in oxygen delivery relative to demand. Chronic hypoxia refers to this restriction on oxygen diffusion, whereas acute hypoxia occurs when blood arteries abnormally close, leading to reduced perfusion (35). Chronic hypoxia causes DNA breakage, malfunctions in the mending systems and mutagenesis (6). On the other hand, short-term hypoxia boosts the generation of Reactive Oxygen Species (ROS), tumor survival, and spontaneous metastasis (7, 8). Cancer cells have demonstrated radio-resistance in vitro and in vivo under both chronic and acute hypoxia (9). Hypoxia-inducible factors (HIF), which is a transcription factor, serves as the catalyst for tumor growth (10, 11). HIFs are heterodimers made up of the oxygen-sensitive HIF–α and a subsequently expressed HIF–β (12). There are three isoforms; HIF1 and HIF2 are well known, while HIF 3 is also present but has not been well researched in relation to cancer (13). HIF-1 and HIF-2 under normoxic circumstances undergo hydroxylation at particular proline residues. This causes the tumor suppressor protein Von-Hippel Lindau (VHL) protein to bind to HIF 1 and 2, which then makes it easier for them to be degraded by the ubiquitin-proteaosome system (11, 14, 15). A variety of genes encoding proteins are used for anaerobic energy production, vascularization, extracellular matrix (ECM) remodelling, suppression of apoptosis, and metastasis progression. They are transcribed when hypoxia occurs due to which HIF–1 and HIF–2 get dimerized with the subunit. They (HIF–1 and HIF–2) are then translocated to the nucleus and where they activate hypoxia responsive elements (HRE) (11, 16). Patients with breast cancer who had higher levels of HIF expression in their primary tumor biopsies are more likely to develop metastases to the bone, lungs, liver, brain, and local lymph and causes major portion of breast cancer related mortalities (17).

      Through a series of sequential multistep processes the original tumour transforms into a secondary tumour at a distant site (18). The EMT transcription factors (EMT-TFs), mainly belonging to the SNAIL, TWIST, and ZEB families, which play significant roles in all processes of tumour metastasis, cause the epithelial to mesenchymal transition (EMT), which is critical for cancer spread (19).

      EMT type-1, type-2, and type-3 subtypes have been extensively investigated in a variety of physiological and pathological processes. Type -1 EMT is the exchange of Epithelial to Mesenchymal cells and associated with events in embryonic phase such as implantation, embryogenesis and organ development, while Type -2 is the transformation of epithelial to mesenchymal cells that occurs during wound healing and fibrosis driven by inflammation. Type-3 EMT is the transition of epithelial cells to mesenchymal cells and is active in different types of cancers including breast cancer. Therefore, Type-3 EMT is also known as “oncogenic epithelial-mesenchymal transition” (20). Different subtypes of breast cancer show distinct metastatic organ tropisms governed by different molecular mechanisms. Along with distant lymph nodes, common target organs for breast cancer metastasis include the bone, lung, liver, and brain (21). Though all breast cancer subtypes show bone metastasis, Luminal A and B have bone as their major metastatic site. Luminal B subtype is more probable than luminal A subtype to have bone as the first site of relapse when compared to other subtypes. Incidence of bone metastasis is much higher in luminal subtype tumors than in HER-2 positive and basal like subtypes. HER -2 positive subtype is more often positively tropic to liver and luminal B and basal-like subtypes present higher levels of lung -specific metastasis (22). Triple negative breast cancer (TNBC) is often associated with visceral metastases including lung, liver and brain (23). Additionally, it has been reported that hypoxia triggers EMT in different type of cancers including breast cancer, prostate cancer and oral cancer (24). Studies by Peng, Jianheng, et al. (2018). clearly show that TGF-1 and Suppressor of Mothers Against Decapentaplegic (SMAD3) expression levels were both dramatically raised by HIF-1 in breast cancer cells, however SMAD3 overexpression had no effect on either of these proteins’ expression levels (25). Moreover, HIF-1α upregulated the expression of EMT transcription factors, SWIFT and SNAIL. In case of SWIFT in breast cancer cell lines, HIF-1α could directly bind to proximal promoter of SWIFT and enhance transcription (26). Hypoxia triggers a significant up-regulation of angiogenic growth factors and their receptors, which causes endothelial cell migration with enhanced vascular permeability and promotes tumor angiogenesis. Due to the leaky vessels and haphazard arrangement, tumor and stromal cells have limited access to nutrients and oxygen during transformation and proliferation (27). However, tumors make up for this by producing metabolic intermediates that act as precursors for biosynthetic pathways, which allows cancer cells to adapt to these circumstances in the tumor microenvironment (TME) and continue to grow and multiply. Glucose metabolism is switched from the tricarboxylic acid pathway to the oxygen independent glycolysis through the activation of glycolytic pathway regulators such as glucose transport proteins (GLUTs), hexokinase 1 and 2 (HK1, 2), and pyruvate dehydrogenase kinase 1 (PDK1) (2830). The role of HIF–1 in reshaping the topography of the ECM under hypoxia by collagen deposition and promoting the increased expression of remodelling enzymes such prolyl-4-hydroxylases and lysyl oxidases, which leads to ECM stiffness and metastasis, has been determined by studies. An increasing body of research indicates that hypoxia promotes the chemo-invasive and metastatic potential of breast cancer by activating metalloprotease 2 and 9 (MMP-2 and MMP-9), which also degrade ECM (3133). According to multiple studies, hypoxic stress is expected to stimulate VEGF (Vascular Endothelial Growth Factor), a crucial regulator of angiogenesis (34). Immunosurveillance in breast cancer, as in many other tumor forms, is functionally represented by the presence of tumor infiltrating lymphocytes (TILs) into the neoplastic cellular mass (35). According to Ono et al., 2012, when compared to the HER–2-/HR+ subtype, TILs were significantly greater in TNBC (triple negative breast cancer) and HER–2+/HR- breast cancer subtypes. Furthermore, compared to TNBC with low TILs levels, the pathological complete response (pCR) rate was considerably higher in TNBC with high TILs scores (36). It has been found that low oxygen levels in the TME cause TILs to become less activated, which results in immunological suppression and less immune detection. Since hypoxia-associated transcription factors have long been suggested as a viable target for immunostimulatory therapy and immunological detection, numerous researchers have found therapeutic strategies for inhibiting these factors (37). In the TME, it has been demonstrated that overexpression of HIF-1 specifically affects many aspects of the immune cell’s capacity to fight tumors (38). The foregoing discussion has briefly outlined the role of hypoxia in the aggressiveness of breast cancer, specifically in the transformation of normal endothelium into tumorigenic endothelium, as well as the various therapeutic approaches by which immune modulators can specifically target breast cancer and how hypoxic tumor endothelial cells can be targeted within the TME.

      Hypoxia- induced immunosuppression in tumor microenvironment

      Growing body of data indicates that, a hypoxic microenvironment may protect tumors from immunological treatments as well as naturally occurring anti-tumor immune responses by limiting anti-tumor immune effector cells and encouraging immune escape. It is clear that hypoxia affects immune cells either directly or indirectly, supporting the TME in a direction that is immunosuppressive (3941). Understanding the disease biology of Breast Cancer (BC) requires an understanding of the immune surveillance in the tumor microenvironment since it has the potential to either facilitate the eradication of disease or encourage tumor growth. This dual role is sustained by the dynamic interactions between diverse immune effector cells, tumour cells, stromal cells, and soluble substances in the tumour microenvironment (42). Selection favours tumor variants with the genetic trait of escaping immunological detection, while variants lacking it are wiped off by immune surveillance. In addition to genetic variation, deficiencies in antigen presentation methods, T-cell receptor (TCR) signalling, interferon (IFN) signalling pathways, and expression of the MHC class I protein has been lost or mutated, along with tumour antigens (43, 44), which will impair the immune surveillance mechanism in the tumor microenvironment. Inhibition of tumor antigen-specific T cells by intratumoral myeloid-derived suppressor cells (MDSCs), T regulatory cells (Tregs), and the switch from an anti-tumorigenic T-helper type 1 (TH1) to a pro-tumorigenic T-helper type 2 (TH2) immune response are additional factors that significantly support tumor growth. Furthermore, a variety of soluble factors like TGF-β, IL–10 etc are released by tumor/stromal cells inhibit T-cell activation and dendritic function while promoting stromal remodelling and angiogenesis (45, 46). The hypoxic core of the tumors attracts more pro-tumorigenic leukocytes, including MDSCs, tumor-associated macrophages (TAMs), and regulatory T cells. This double down the body’s natural immune defensive measure to evacuate the aggressive tumor (47) ( Figure 1 ). An in-depth study using Balb/c mice found that intra-tumoral hypoxia increases HIF-1 activation, which then sequentially activates the PDL-1, CD73, and CD47 genes to reduce the recruitment and activity of CD8+ T cells, NK cells, and macrophages, ultimately causing activity to evade both innate and adaptive immunity (48). Chemokines and their related receptors are another important hypoxic hotspot (49), which in turn affect tumor endothelial cells and increase the over expression of VEGF, CXCL12, and its receptor CXCR4, making all of them function on endothelial cells in an autocrine way. The expression of the pro-inflammatory chemokines CCL5 and CCL2 increased in HIF–1-deficient tumors, which in turn increased the infiltration of cytotoxic lymphocytes into the tumor (50). Additionally, the CXCR4-CXCR12 axis promotes metastasis to distant organs (51). Thus, hypoxic stress in TME along with activation of HIF transcription factors, is a principal cause for breast cancer angiogenesis, metastasis, immune suppression and overall poor survival rate. In the subsequent sections of this review, a detailed mechanism of hypoxia induced vascular abnormalities that activate endothelial cells (ECs) associated with tumor cells and immune suppression is furnished.

      Through endothelial anergy, elevation of proangiogenic chemokines, cell adhesion molecules, and ECM disintegration, the hypoxic core of solid tumors attracts more immunosuppressive cells than immunostimulatory cells to the tumor microenvironment.

      Hypoxia, a prerequisite to vascular alterations in the tumor microenvironment

      Tumor vasculature is different from healthy blood vessels in a number of aspects, including irregular structural dynamics, high permeability, and convoluted arteries, whereas healthy blood vessels are well-organized and provide for the best perfusion of nutrients and oxygen (52). Specialized mural cells called pericytes are seen in the normal vasculature, whereendothelium covers them uniformly (53). Patchy hypoperfusion and blood vessel leakage are caused by the loosening, unstable, and tumor-related pericyte phenotype (54).

      Endothelial cells interact with tumor cells in numerous ways to promote angiogenesis (55) ( Figure 2 ). They serve as the connecting link between cancer cells and immune cells (56). Proangiogenic substances like Vascular Endothelial Growth Factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PGF), and angiopoietin are released by tumor cells to initiate angiogenesis. According to studies, the hypoxic tumor microenvironment might boost VEGF synthesis, which in turn promotes the growth of new blood vessels (57). When the microenvironment experiences a lack of oxygen, endothelial cells and pericytes are stimulated to create VEGF, which functions in an autocrine and paracrine manner to increase the recruitment and activation of endothelial cells in the tumor site (58). Angiopoietin-2 (Ang–2) plays a critical function in destabilising vasculature for normal or pathological angiogenesis and is also up-regulated by hypoxia. It is only expressed at sites of vascular remodelling. Numerous studies have documented the essential function of Ang-2, a ligand for the endothelial cell-specific tyrosine kinase Tie2, in the vascular permeability and blood vessel instability that leads to tumor growth (59, 60). Thus, newly formed blood vessels have an uneven thickness of the basement membrane, a loose interaction between pericytes and endothelial cells, an increase in interstitial pressure, and ultimate vascular leakage (47). One of the main processes behind angiogenesis is the angiopoietin/Tie (tyrosine kinase) signalling pathway, which is composed of growth factors called angiopoietins. These include Ang-1, a strong angiogenic growth factor that communicates with Tie2, and Ang-2, a vascular disruptor with a negative effect that also uses Tie2 as a conduit (61). To cause pericyte separation from the basement membrane and migration, Ang-2 and Tie2 bind in the hypoxic tumor microenvironment. Mice lacking in pericytes had higher Ang–2 levels, suggesting that pericytes may control Ang–2 levels and limit vascular permeability. This finding highlights the importance of Ang–2 in reducing vessel leakiness (62, 63). In a different study, it was reported that reduced pericyte coverage increased IL-6 expression in the hypoxic tumor microenvironment and MDSC transmigration and circulating malignant cell phenotype (64). Rgs5 overexpression in pericytes and endothelium seen in the hypoxic tumor microenvironment causes the vasculature to become unstable. Better pericyte coverage, less vascular leakage, and adequate oxygen perfusion was all observed in the Rgs5-deficient mice (65). In-depth research found that the development of a receptor complex made up of PDGF-R and VEGF-R2 during PDGF-induced angiogenesis is what causes VEGF to activate VEGF-R2 and suppress PDGF-R signalling in vascular smooth muscle cells (66), which then decouples neo-vasculature from pericyte covering. Researchers have shown that inhibiting VEGF and Ang–2 jointly results in tumor necrosis, vascular regression, intra-tumoral phagocyte antigen presentation, and a reduction in breast cancer-brain metastases (67, 68).

      Increased hypoxia inducible factor, which upregulates pro-angiogenic factors and chemokines, draws immunosuppressive cells to the tumor microenvironment. Additionally, increased CLEVER, TRAIL, PD-L1, and FAS-L expression on tumor endothelium impairs effector T cells.

      Endothelial cells in tumors are the “switch point”, aren’t they?

      Endothelial Cells (ECs) ECs have specific functions based on their locations and exhibit distinct heterogeneity across vascular beds. They have a critical role in the regulation of immune responses, inflammation, angiogenesis and actively control the degree of vascular relaxation and constriction (69). ECs that line tumor blood vessels are initially derived from the surrounding tissue, and in due course of the tumor progression, they reprogram to a tumoral phenotype (70). Normal physiologic conditions do not often need the activation of ECs, but in tumors, hypoxia and other inflammatory signals cause ECs in the tumor microenvironment to become active, causing aberrant angiogenesis and impeding normal immune surveillance (71). Numerous inflammatory reactions in the tumor microenvironment, such as inflammatory cytokines, chemokines, reactive oxygen species, etc., directly or indirectly stimulate the tumor endothelium. Tumor endothelium has a very different genetic profile than healthy endothelium ( Table 1 ), with the main variations influencing a number of cell adhesion molecules (such as ICAM1, VCAM1, E-selectin), antigen presentation, and chemokines (such as CCL2, CCL18, CXCL10, and CXCL11) and cytokines involved (such as TNFα, IFNγ, and IL-1) in immune cell recruitment. All of these elements have a deleterious impact on the immune surveillance of tumor cells in the tumor microenvironment. This unique character of TEC that enables them to avoid immune cell extravasation and, unresponsiveness of TECs to pro-inflammatory stimulation is Endothelial cell anergy, also called vascular immune checkpoint (72). ECs lining tumour blood arteries have a very different metabolic profile from ECs in normal tissue. A stronger dependence of tumour ECs on glucose metabolism is supported by the transcriptional elevation of the glycolytic pathway gene, PFKFB3, in comparison to other normal EC. According to a report, tumor ECs and tumor associated macrophages (TAMs) engage in fierce competition for glucose, and the tumor ECs’ intake of the metabolite boosts the angiogenic response in the tumor microenvironment (73). TECs produce energy through aerobic glycolysis and fatty acid oxidation, rather than oxidative phosphorylation. This metabolic reprogramming enables the tumor ECsto check the production of reactive oxygen species (ROS), and also allows the production of ATP more rapidly than through oxidative metabolism (74). Alam et al. (2014) has identified suprabasin as a new marker for TECs. Suprabasin, an upstream component of the AKT pathway, was substantially expressed in TECs compared to normal ECs and linked favourably with TECs’ capacity for migration and tube formation (75). On the other hand, microarray and immunohistochemical studies revealed that biglycan is a specific marker of TEC and an autocrine angiogenic factor of TECs (76). Because of the aggressive behaviour of tumor endothelial cells and their particular molecular, cytogenetic, and metabolic characteristics, the tumor microenvironment can therefore selectively draw in immune suppressive cells. The role of TECs in increasing immunological suppression is discussed in the following sections of this review.

      Factors converting normal endothelium to tumor endothelium.

      Factors converting Normal endothelium to Tumor endothelium
      Antigen presentation ˙TECs act as Antigen Presenting Cells (APCs)
      Recruitment of immune suppressive cells ˙Chemokines - CCL2, CCL18, CXCL10, and CXCL11˙Cytokines - TNFα, IFNγ, and IL-1
      Endothelial anergy ˙Unresponsiveness to inflammatory stimulation˙Downregulation of adhesion molecules- ICAM-1/-2, VCAM-1, E-selectin, and CD34
      Higher dependence on glucose metabolism ˙Elevation of glycolytic pathway gene, PFKFB3.˙Aerobic glycolysis and fatty acid oxidation
      Expression of specific markers ˙Suprabasin˙Biglycan
      Overexpression of Immune checkpoint molecules ˙PDL-1 - Overexpression
      Overexpression of molecules to prevent effector T cells ˙Overexpression of TRAIL and CLEVER
      Tumor endothelium driven immunesupression and tumor progression

      The success of immunotherapy depends on adequate immune cell infiltration, and low immune cell infiltration reduces the effectiveness of immunotherapy. Despite the fact that angiogenesis triggered by tumors is crucial for the growth of solid tumors, mounting evidences indicate that it also aids in immune evasion by fostering a highly immunosuppressive TME by increasing the proportion of T reg cells and MDSCs. Furthermore, by preventing dendritic cell (DC) maturation and T cell growth, VEGF impacts immunological responses in TME (77). Leukocytes are extravasated to tissues from blood arteries during typical inflammation. These leukocytes in circulation were halted and firmly adhered to the endothelium cells by a multi-step procedure. This mechanism calls for the endothelial adhesion molecules (EAM), E-selectin (rolling), ICAM1 and VCAM1 (firm rest), VE-cadherin and CD31 (trans-endothelial migration). In addition to EAMs, surface antigens (such as HLA molecules) must be upregulated, pro-thrombotic endothelial cell changes (such as the loss of the surface anticoagulant molecules thrombomodulin and heparan sulphate), cytokines (such as IL–6, IL–8, and MCP–1) production, and changes in vascular tone (such as the loss of vascular integrity and expression of vasodilators) are associated with inflammation (78). When inflammatory cytokines like TNF, IFN, and IL–1 are released, normal ECs are activated. This causes an up-regulation of adhesion molecules, which in turn triggers the extravasation of leukocytes. However, the continual secretion of pro-angiogenic molecules VEGF and bFGF in hypoxic microenvironments adversely affects this process. Even when TNF is present, they prevent ICAM1, VCAM1, and E-selectin from being overstimulated (7981). The hypoxia inducing factors favour the heterogeneity as well as inflammation of tumor endothelial cell (82). In vitro and in vivo studies by Tellier et al. (2015) showed that ECs exposed to hypoxia expressed tumor-promoting pro-inflammatory cytokines and chemokine such as IL-6, IL-8, and CXCL1 (83). In addition, hypoxic tumor niche affects protein glycosylation and favours recruitment of immune suppressive cells to TME, thereby impacting tumor progression (84). Research shows that the tumor endothelium downregulates the expression of endothelial adhesion molecules (EAM) such as ICAM1/2, VCAM1, E-selectin, and CD34. This lessens immune cell infiltration or leucocyte extravasation in the TME, enabling the TME to adopt an immune evasion strategy and accelerate tumor growth (72, 79, 85). Hypoxic tumor microenvironment alters the tumor endothelium leading to its diversity and also induces its “stemness”. This induction of stemness is favourable for cancer stem cells, which can drive tumor initiation and progression (86). Moreover, breast cancer stem cells enhance its tumorigenic phenotype (87). Cancer stem cells and their role in tumor progression is a vast horizon and beyond the scope of this review. Stemness genes such stem cell antigen-1 (Sca-1), MDR-1, and aldehyde dehydrogenase (ALDH) have been found to have elevated expression in TECs. This tumour stromal stem-like cell population affects the TEC population in the TME (57). With higher VEGF expression, ovarian, oesophageal, and colorectal tumors showed worse survival rates and a higher chance of relapse. VEGF synthesis in tumors affects tumor behaviour by reducing T cell numbers in addition to promoting angiogenesis. In pre-clinical tumor models, it was found that using anti-VEGF antibodies increased the recruitment of T lymphocytes into the tumor microenvironment (88, 89). Increased nitric oxide (NO) in the TME has been found to upregulate VEGF in solid tumors and further regulate the expression of several adhesion molecules involved in the interaction between EC and leukocytes. FoxP3+ T regulatory (Treg) cells predominated and there was little CD8+ infiltration in solid tumors of both humans and mice that express specific Fas ligands in the tumor vasculature. Similarly, blockade of Fas-Fas L signalling increased intra-tumoral CD8+ T cells and subsequent reduction in tumor size (90). It is now understood that the tumor endothelium plays a crucial dual role in the development of the tumor by favouring a niche where inflammation is increased by upregulating EAMs and by negatively regulating the influx of leucocytes through endothelial anergy ( Figure 3 ). The role of hypoxia in attracting immune suppressive cells to the TME and its relationship with cancer endothelium are discussed in the forthcoming sections of this review.

      Increase in hypoxia, alter the pH and increase in interstitial fluid pressure followed by structural abnormalities in the tumor vasculature.

      Myeloid-derived suppressor cells

      MDSCs are one of the main immunosuppressive elements in TME. Their activation and expansion coincide with metastasis and progression in many types of cancer (91). Those patients with higher levels of MDSCs in the tumor microenvironment have exhibited higher metastatic burden and poor survival (92).Various inflammatory cytokines such as IL-13, IL-4, and transforming growth factor (TGF–β)- are linked to MDSC proliferation, whereas granulocyte-macrophage colony-stimulating factor (GM-CSF), Prostaglandin 2 (PGE2), IL-6, stem cell factor, and vascular endothelial growth factor (VEGF) are linked to MDSC activation (93).The expression of VEGF receptor on MDSCs, explains the correlation between the up-regulation of VEGF in hypoxia and the accumulation of MDSCs in the TME (94). The presence of hypoxia in the tumor microenvironment boosts the production of CCL 5, which in turn stimulates the HIF 1α and VEGF signalling pathways. Hypoxia in the tumor microenvironment increases the production of CCL 5, and which in turn activates VEGF signalling mechanism. The expression of PD L-1 in MDSCs is increased by VEGF production in the tumor microenvironment, which limits the recruitment of cytotoxic lymphocytes (85). In line with this, a related study showed that numerous MDSC chemoattractants were upregulated in the VEGF overexpression group, suggesting that the immunosuppressive effects of VEGF are partially mediated by MDSC recruitment into the tumor microenvironment (95). Similarly, lymphatic endothelial cells (LECs) have shown to recruit MDSCs to the tumor microenvironment and increase tumor progression in TNBC cells via pro-angiogenic receptor CXCR2 on MDSCs. According to the study, tumor-derived vascular endothelial growth factor-C (VEGF-C) stimulated LECs to produce chemokines, which in turn helped MDSCs find their way to lymph nodes. Additionally, LEC-released chemokines increased lymphatic invasion by upregulating VE-cadherin phosphorylation and junction disruption, which in turn increased serum amyloid A1 (SAA1) expression in breast cancer cells (96). In a recent study by Roberts et al. (2022) reported that co-culturing of murine TNBC-4T1 cells with MDSC and murine LECs (iLECs) in culture inserts showed an increase in MDSC invasion in the presence of iLEC (97). Monocyte/M-MDSC recruitment to malignancies is mostly facilitated by CCL2 and CCL5 (C-C motif ligand 2/5) chemokines. There is evidence that CCL2 is crucial for recruiting PMN-MDSC as well (98). Apart from endothelial cells, the absence or presence of immature pericytes, a component of vasculature also acts as a signal for MDSC recruitment in breast cancer patients (64). Taken together, MDSC play a critical role in tumor immune suppression where its activity is tightly regulated by hypoxia via endothelial receptors and growth factors, which overall aids in tumor progression. The trafficking of MDSCs by TECs has not been elicited clearly this far. Thus, establishing this link may offer novel targets of anti-tumor therapies.

      Macrophages

      Macrophages make up a significant portion of the leukocyte infiltrate, which is found in all cancers to variable degrees (99). Macrophages, which are derived from the blood compartment, are renowned for their flexible and variable genomes (100). Overall, macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis (101). Depending upon their nature of activation and the TME, macrophages can either increase or inhibit the immune responses that fight cancer. According to reports, VEGF stimulates the growth of endothelial cells in breast cancer and attracts macrophages through the VEGF receptor. The synthesis of several pro-angiogenic substances by recruited macrophages, such as VEGF, tumor necrosis factor (TNF), and thymidine phosphorylase (TP), is able to accelerate angiogenesis in the TME. This is a form of mutual activation/dependence between TAM and tumor endothelial cells in the TME (102). Tumor cells and stroma, which make up the hypoxic core of the tumor microenvironment, promote the production of VEGF, CCL2, CCL5, CSF-1, EMAP-II, endothelin-2, SEMA3A, oncostatin M, and eotaxin. The overproduction of migratory molecules promotes macrophage infiltration of the tumor (103).Macrophages can be classified as pro inflammatory-immune stimulatory (M1) or alternatively activated anti-inflammatory-immunosuppressive (M2) macrophages depending on the environment in which they are recruited.It has been shown that the recruitment of TAM into the TME is a poor prognostic indicator for overall survival and treatment effectiveness (104). In addition, non-responsive tumor EC-derived IL-6 is a cytokine that encourages macrophage M2-like polarisation in the tumor microenvironment. The EC biomarker ESM1, which is linked to a poor prognosis in human gastrointestinal and hepatocellular carcinomas, is also highly expressed in tumor ECs in a number of mouse tumor models. Furthermore, studies have shown that ESM1 induces ECs to express ICAM1, which draws and polarises M2 macrophages toward the tumor microenvironment (105107). As tumors grows, increased levels of hypoxia cause M1-polarized macrophages to secrete less pro-inflammatory mediators including IL-1, TNFα, and CCL17 and accelerate macrophage differentiation toward the M2-like phenotype. Despite the fact that hypoxia does not affect the proportion of different macrophage subsets, it does cause the M2-like macrophage subset to activate the transcription of pro-tumor genes, including growth factors like FGF2, PDGF, and VEGF (108, 109). Therefore, the dichotomy in macrophage differentiation into M1 and M2 type can have varied outcome on tumor progression via hypoxia and angiogenesis machineries (110). The polarisation of macrophages from the anti-tumor M1 phenotype to the pro-tumor M2 phenotype is clearly influenced by hypoxic stress. Focusing on TAMs that are produced by hypoxia and their trafficking across tumor endothelium may be beneficial given that it has been suggested that TAMs and cancer endothelium interact. The elucidation of this mechanism might produce brand-new indicators and therapeutic outcomes that are promising.

      T cells

      Hypoxic TME can regulate T cell response in two major ways depending upon the T cell subset. Effector T cells, in the form of CD4+ and CD8+ T cells, play a critical role in resolving tumor growth by releasing inflammatory cytokines or by direct lysis of tumor cells. However, these effector T cell responses undergo immune suppression in the tumor microenvironment which is typically hypoxic (111). Multiple factors such as tumor growth factor (TGF-β), IL-10, VEGF, indoleamine 2, 3-dioxygenase (IDO) and arginase contribute to their immune suppression (112). Another mechanism by which hypoxia mediated immune suppression in effector T cells is through the loss of expression of co-stimulatory molecules (CD80, CD86 and CD40) on dendritic cells that interact with T cells and promote immune tolerance in them (113). Cytotoxic CD8+ T cells are capable of infiltrating tumors making them critical for tumor clearance. However, under hypoxic conditions, these CD8+ T cells also undergo immune suppression via defective antigen presentation of tumor cells through low MHC expression, down regulation of transporter associated with antigen processing protein (TAP) and tumor antigen (114116). This tumor hypoxia specifically promotes the immunosuppressive function of T regulatory cells including its migration and activation at the tumor site (117). Treg cells are characterized by the expression of specific cell surface molecules (such as CD25, GITR, CTLA4) and nuclear transcription factor (FOXP3) (118), mediate immune suppression by downregulating activated T cell function through increased production of immunosuppressive cytokines such as IL-10 and TGF-β or via interaction between CTLA-4 on Tregs and CD80/86 on antigen presenting cells or by sequestering IL-2 from naïve T-cells by its IL-2 receptor (CD25) on Tregs (119). Hypoxia induced HIF-1α results in increased expression of FOXP3 in Treg cells (120) and at the same time, also promotes CCL28 in the tumor microenvironment. This CCL28 binds to its cognate receptor CCR10 on Treg cells and thereby promotes the migration of Treg cells (117). HIF-2α is also involved in Treg stability as HIF-2α-deficient Tregs are functionally defective at suppressing effector T-cell function (121). Tumor infiltration by T lymphocytes has shown to increase overall survival in different types of cancer such as colorectal, ovarian, breast and melanoma. Tumor endothelial cells act as a major barrier for the extravasation of effector T lymphocytes into the tumor niche through the downregulation of ICAM1 and VCAM1. Furthermore, TECs can increase the expression of molecules such as common lymphatic and vasculature endothelial receptor 1 (CLEVER1) on their surface to recruit immunosuppressive Treg cells (80). ( Figure 2 ) Interestingly, the expression of TRAIL and FasL on TECs selectively kill effector T cells while not hampering Treg cells. The pre-clinical studies by actively immunizing tumor endothelial expressing antigens via DNA vaccines and protein pulsed DCs successfully inhibited tumor growth and increased the infiltration of CD8+ T cells in the TME. Also, DNA vaccines targeting tumor endothelial marker 1 (TEM1), specific TEC expressing antigen could escalate intratumoral infiltration of endogenous CD3+ T cells (122). Thus, tumor induced hypoxia and tumor associated endothelial cells mediate immune suppression by directly or indirectly regulating T cell functions, which promotes tumor growth and invasiveness.

      Tregs

      Immunosuppressive T cells known as regulatory T (T reg) cells control homeostasis and self-tolerance by limiting erroneous immune responses (123). One of the essential immune cells favouring tumor growth and regulating the immunesurveillance is the CD4+CD25+Foxp3+ Treg cell (124). FoxP3, a sign of Treg activity, has been proposed as a marker of tumor progression and metastasis in breast carcinoma. In order to determine the progression and prognosis of BC, measuring Tregs recruitment and activity has been proven to be a useful approach (125). Hypoxia has been proven to associate with the infiltration of regulatory T cells in breast tumor microenvironment by the upregulation of CXCR4 receptor on Tregs. Hypoxic stress induced expression of CXCR4 by activating HIF pathway has been reported in different stromal cells including endothelial cells in TME. By increasing the expression of FOXP3, a lineage transcriptional regulator of Tregs, HIF-1 may also indirectly stimulate CXCR4 expression.

      By increasing the expression of FOXP3, a lineage transcriptional regulator of Tregs, HIF-1 may also indirectly stimulate CXCR4 expression. Thus, there are opportunities for clinically targeting Tregs by blocking CXCR4 to stratify patients for anti-HIF therapies (126). Mounting evidences suggests the prime role of hypoxia in stimulating the secretion of cytokines and chemo- attractants from cancer cells and tumor associated macrophages, including CCL28, CCL22 and IL-10, that recruit Treg cells from the circulation. Hypoxia induces the expression of CD 73 on various cell types including T regs, and actively involves in the generation of immunosuppressive metabolite adenosine which negatively affects T cell function (127, 128). Treg infiltration in tumor locations can be correlated with increased microvessel density and upregulation of angiogenesis indicators like VEGF in breast and endometrial malignancies, illustrating the relation between Tregs and tumor angiogenesis (127). According to Andrea Facciabene et al., hypoxic intraperitoneal tumors recruit Treg cells, which impair effector T cell activity and promote tumor angiogenesis via VEGF-A. Furthermore, CCL28 secreted by hypoxic tumor cells attract Treg cells in to the tumor niche. Treg cells can directly contribute to the overproduction of VEGF-A and can promote the proliferation and recruitment of endothelial cells (129). In fact, Tregs contribute to angiogenesis indirectly by inhibiting Th1 effector T cells and secreting interferon-induced chemokines like CXCL9, 10 and 11 as well as angiostatic cytokines like TNF and IFN. Another work by Andrea Facciabene et al. shown that depletion of Treg cells reduce VEGF upregulation and angiogenesis (52). Increased expression of CCR8 was noticed in tumor infiltrating Tregs compared to circulating T regs. A promising immunotherapeutic strategy for the treatment of breast cancer would involve targeting CCR8 to prevent the migration of tumor-resident Tregs (130). Targeting T reg cells in tumors using selective immunotoxin against CD 25 (Treg marker) increased CD8+ T cell-dependent antitumor immune response in experimental tumor models (131). T reg cell elimination and subsequent anti-VEGF therapy, restored IFN- production in CD8+ T cells and enhanced the antitumor response from anti-VEGF therapy in tumors (132). Although there are lot of studies depicting hypoxia mediated T reg infiltration, there are no confirmatory studies on the role of hypoxic cancer endothelium, especially breast cancer endothelium in recruiting regulatory T cells to the TME.

      Immune checkpoint inhibitors

      Recently, immune checkpoint blockade therapy has gained attention since it allows patients’ natural immune systems to combat cancer. Immune checkpoint molecules like CTLA4, PD1, PDL–1, LAG3, and TIM–3 inhibit the immune response in different tumor types at different phases of tumor development (133). A significant development in the field of cancer immunotherapy is the discovery ofproteins like programmed cell death protein 1 (PD1), programmed cell death ligand 1 (PDL–1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA4). These molecules block the signals that result from the activation of the T cell receptor (TCR), which eliminates cytotoxic T cells (CTLs) and blocks anti-tumor immunity.

      The FDA recently approved the use of two mouse antibodies (immune checkpoint inhibitors) known as anti-CTLA-4 and anti-PD-1 for the treatment of humans (134). Immune checkpoint (IC) molecules are found in TME cells including cancer cells, immune cells, and stromal cells like TEC. It has been discovered that TECs express PD-L1 and PD-L2 along with other well-known immunoinhibitory molecules such TIM-3, which raises the possibility that they may be able to directly suppress T cell activation when the vasculature is present. It has been shown that pro-inflammatory cytokines like IFN and TNF encourage PDL–1 up-regulation on ECs. Although the most often used biomarker in immune-oncology to determine treatment options and patient stratification is now PDL–1 expression by cancer cells, its therapeutic value has not yet been determined (82). Studies conducted in vitro and in vivo by Barsoum I et al. gave the information for the upregulation of PDL-1 in an HIF dependent way. By utilising glyceryl trinitrate (GTN), an agonist of nitric oxide (NO) for signalling, they were also able to prevent the HIF-1 accumulation and the hypoxia-dependent PDL-1 production and Cytotoxic T Lymphocyte resistance (135). The expression of PD-L1/2 may begin to make T lymphocytes lethargic and exhausted before they even enter the cancer microenvironment. In the pancreatic neuroendocrine tumour model and the polyoma middle T oncoprotein (PyMT) breast cancer model (RT2-PNET), the concomitant administration of anti-VEGFR2 and PDL–1 antibodies promoted the development of specialised vessels known as High Endothelial Venules (HEVs), which support lymphocyte trafficking and enhance T-cell infiltration. Even before T cells penetrate the tumour microenvironment, the expression of PDL–1/2 may start to cause them to become anergic and worn out. In the pancreatic neuroendocrine tumour model and the polyoma middle T oncoprotein (PyMT) breast cancer model (RT2-PNET), the combination of both anti-VEGFR2 antibodies and PDL–1 antibodies stimulated the formation of specialised vessels called High Endothelial Venules (HEVs), which contribute to lymphocyte trafficking and improved T-cell infiltration (129).

      It has proven that Immune checkpoint inhibitors or drugs could increase immune surveillance. Thus, combination therapies targeting Immune checkpoint and metabolism of cancer endothelium could be a promising strategy to reduce tumor progression.

      Trans-endothelial migration

      Due to metastasis and disease recurrence, breast cancer is the cancer that claims the lives of more women than any other (136). Journey of tumor cells across the endothelial membrane is a key step in the process of tumor invasion and metastasis. Tumor cells cross the vascular membrane stimulated by several cytokines and growth factors such as Transforming Growth Factor-Beta (TGF-β) superfamily of proteins,Bone Morphogenetic Proteins (BMPs). This is called Endothelial-mesenchymal transition (EndMT). EndMT induced by TGF-β shows a decrease in the expression of endothelial markers such as VE-cadherin, claudin and zona-occludens 1 (ZO-1) and an elevation in EMT transcription factors such as Snail, Slug and ZEB-1 which marks metastasis. TGF-β promotes ECs to change into CAF-like cells, which results in the loss of endothelial adhesion molecules and remodelling of the endothelium cytoskeleton via the Rho and Rac-1 signalling pathway, which is the primary characteristic of EndMT (76, 137, 138). It has been found that hypoxia associated with inflammation or tissue damage can also cause EndEMT (139). Rokana, et al. (2021) have recently studied the role of ICAM in trans-endothelial migration in breast cancer and also assessed the therapeutic efficacy of anti-ICAM1 neutralizing antibody on breast tumor cell aggregation and trans-endothelial migration. This anti-ICAM treatment inhibited the cluster formation of TNBC cells in suspension. Clinical data also showed high levels of ICAM1 mRNA expression in breast tumors which might mediate distant metastasis. This makes ICAM as a potential therapeutic target in TNBC metastasis (140). S100P and Ezrin, two members of the S100 family of short calcium binding proteins, also encourage the trans-endothelial migration of triple negative breast cancer cells. Furthermore, S100P activity has been linked to a variety of malignancies, a poor prognosis, metastasis and recurrence, and a low rate of survival in TNBC patients (141). An investigation on the SDF-1/CXCR4 axis in a breast carcinoma model revealed their role of hypoxia. It was confirmed that in a hypoxic tumor niche activation of HIF leads to the transcription of an array of HIF target genes including SDF-1 and CXCR4 which contributes to tumor cell migration and adhesion to endothelial cells in breast cancer cells. Moreover, the study also illustrated that SDF-1 binding to CXCR4 stimulated tube formation in endothelial cells, which point towards its role in angiogenesis and trans-endothelial migration (142). Since metastasis and related poor survival is a hallmark of breast cancer, pathways targeting trans-endothelial migration could have a significant impact in clinical trials.

      Recent strategies to overcome hypoxic endothelium driven immunosuppression

      The hypoxic microenvironment and impaired immune response to cancer cells by innate immune cells continue to be major obstacles for immunotherapy. Recent advancements in nano-immunotherapy, however, might lessen immunosuppression brought on by hypoxia and enhance systemic antitumor immune responses to eradicate metastatic breast cancer cells. Similar to this, in situ O2 generation, O2 delivery, normalisation of tumor vasculature, and mitochondrial-respiration inhibition could be the alluring therapy to overcome hypoxia-driven immune suppression for preventing the growth and progression of metastatic breast cancer cell lines. Monoclonal antibodies, immune modulators, and biodegradable bio-nanomaterials could address the problems in a very satisfactory way when used in conjunction with such methodologies. Nowadays, there is a great deal of interest in using nanomaterials as treatments to target the downstream pathways that lead to hypoxia-driven immune suppression in breast cancer (143). In this sense, PD1 receptor antagonist delivered in nanoform has the potential to effectively address the problem of hypoxic endothelium-driven immunosuppression during the treatment of breast cancer. The specific ligand antagonist of the upstream hyper-expressive biomarkers, which is responsible for the immunosuppressive state caused by hypoxic endothelium around the breast cancer microenvironment, can be used to develop new strategies. This may be a new strategy to improve immune monitoring in the treatment of breast cancer, especially for managing disease progression. Additionally, by preventing hypoxia in TME, such an approach could activate the immune cells, strengthen immune surveillance, and destroy breast cancer cells. By disrupting the hypoxia-mediated cancer signaling pathway, they may specifically target the hypoxic TME (144). Through the generation of oxygen-derived free radicals, radiation destroys tumor cells by causing DNA fragmentation. Due to the absence of oxygen and a reduction in DNA repair processes, hypoxia confers resistance to radiation therapy and reduces the effectiveness of radiation. The main cause of chemotherapy resistance in hypoxic tumors is the fact that many of the commonly used medications need oxygen to release the deadly free radicals that kills the tumor cells (145). In addition, another study that looked at the connection between HIF-1α/CAIX and the response to epirubicin found a strong correlation between high HIF-1α expression and a subpar response to treatment (146). This gives a clear insight that hypoxic pathway is involved in significant events that have a direct impact on the efficacy of numerous treatment methods. In the earlier sections of the review, we addressed the role of pro-angiogenic factor stimulation that causes tumor-associated endothelial cells to become anergic, losing the capacity to react to inflammatory signals and rendering them unable to activate EAMs (79, 147). It was discovered that this anti-infiltration barrier helped tumors avoid being destroyed by the immune system. Consequently, it is thought that using angiogenesis inhibitors to encourage leukocyte infiltration into the tumor is a useful way to increase the effectiveness of ICIs (148, 149). Bevacizumab, a VEGFA neutralizing antibody, has been shown to increase the number and activation of DC (149151) as well as the number of cytotoxic T cells (152, 153) and to reverse VEGF-induced T cell exhaustion (154). Whereas, Sutinib, a TKI of VEGFR and other kinases, was shown to decrease the number of MDSCs and T reg cell (155, 156). Xiaodong et al. (2020). identified a tumor endothelial specific marker CLEC14A, which specifically recruits T reg recruitment and subsequently enhance immune suppression in the TME. CLEC 14 A specific CART cells, exhibited substantial decrease in tumor growth through IFN-γ indicating their antitumor potential (157).

      Future perspectives

      TNBCs exhibit a markedly increased HIF transcriptional activity and a subpar response to the existing therapeutic strategies (158). Therefore, it makes sense to speculate that a novel therapeutic approach to treat TNBCs might involve targeting hypoxia in the TME. Preclinical investigations indicate that the combination of cytotoxic chemotherapy with molecules that block HIFs is particularly promising. Therapeutic studies with Digoxin and acriflavine, two HIF-1α inhibitors, demonstrated reduced initial tumor development, vascularization, invasion, and metastasis in breast cancer animal models. Furthermore, digoxin prevents HIF–1α dependent transcriptional responses that encourage cancer stem cell (CSC) resistance to chemotherapy, which causes tumor regression in TNBC when combined with paclitaxel or gemcitabine (159). Numerous synthetic and natural substances have been shown to block the regulation of HIF-1 on downstream target genes by lowering HIF-1 mRNA levels, accelerating the protein’s breakdown, and preventing HIF-1 and HIF-1 dimerization (160, 161) ( Table 2 ). An effective anticancer therapy may include normalizing the tumor vasculature rather than destroying it. Anti-angiogenic drugs must be dosed carefully during vascular normalization in order to reverse the aberrant phenotype of the tumor vasculature and increase blood flow and oxygenation. Through vessel maturation and the alleviation of immunosuppression brought on by hypoxia and/or VEGF, it has been demonstrated that vascular normalization enhances immunological responses (16, 162). It indicates that restoring the structural and functional integrity of the tumour vasculature is a viable method for polarising TAMs to an anti-tumor phenotype (163). The hypoxic tumor endothelium is hyperglycolytic, thus, targeting tumor endothelial metabolism might offer a novel therapeutic strategy. Glycolysis is the energy source for endothelial sprouting in angiogenesis rather than oxidative phosphorylation for ATP production. Thus, blocking PFKFB3, a key molecule involved in endothelial glycolysis pathway, reduced vessel sprouting and angiogenesis (164). VEGF and PFKFB3, which are both implicated in the TEC’s glycolytic pathway, were downregulated when tumor-cell-specific cyclooxygenase (COX-2) was pharmacologically inhibited. The restoration of glucose metabolism in TECs and the reduction of tip cells, filopodia, and branching are affected by COX-2 inhibitor therapy-induced inhibition of PFKFB3-mediated endothelial cell motility (165). The role of anti-angiogenic drugs in regulating the tumor vasculature and reducing hypoxia-induced immune suppression has been shown in a number of preclinical investigations. These anti-angiogenic therapies have also been successful in overcoming endothelial anergy, which results in normalized production of endothelial adhesion molecules, which are necessary for leukocyte trans-endothelial migration into the TMC. Treatment that targets the VEGF pathway may result in increased immune infiltration and ICAM1 overexpression in renal cell carcinoma (166). Since TECs have higher glycolytic rates than typical proliferating ECs, reducing glycolysis by blocking PFKFB3 with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) may be able to suppress tumor growth. According to studies, 3PO therapy increased the effectiveness of chemotherapy, aided in the normalisation of tumor vessels, tightened the EC barrier to prevent cancer metastasis, and encouraged tumor vessel normalisation. In mouse tumor models, proliferating ECs were treated with the weak mitochondrial uncoupler Embelin, which resulted in reduced mitochondrial oxidative phosphorylation, inhibited tumor growth, and reduced microvessel density (164). The endothelium of tumors significantly differs from endothelium of healthy tissues in a number of aspects, including metabolic reprogramming, alternative morphology, cytogenetics, and molecular genetics (82). So, a viable strategy to restore normal tumor vasculature involves attacking tumor endothelium. The research carried out by our group has also shown a rise in the infiltration of effector T cells, which in mouse TNBC inhibit the pro-angiogenic CXCR2 receptor. Targeting CXCR2 or other pro-angiogenic expressed on tumor endothelium may produce breakthrough outcomes in accordance with the promising results. (Unpublished data). Similar results were seen in vitro when a novel synthetic quinoline derivative was administered to block the pro-angiogenic chemokine (Unpublished data). Targeting the molecules involved in the regulation of tumors would open up the potential of a wide range of therapeutic options, normalising vascular function, and improving immune surveillance. Future therapeutic implications may benefit from knowledge of the variations in chemokines or pro-angiogenic substances produced by NECs and TECs in a hypoxic environment, as well as the expression of these receptors in normal and malignant cells.

      Hypoxia and vascular targeting compounds.

      HIF Targeting Novel Compounds Action Vascular targeting Compounds Action
      DigoxinAcriflavine Prevents HIF -1 α dependent transcriptional responses -Tumor regressionPrevents dimerization of HIF-1α – Prevents tumor vascularization Bevacizumab - VEGFA neutralizing antibody Increase the number of DCs, Tc cells
      Sanguinarine,Elemene (C15H24),Isoliquiritigenin (ISL),Cardamonin,Anhydroicaritin (AHI),Melittin (MEL),Fucoidan,Curcumin,Arsenic sulfide (As4S4),Acriflavine, Ganetespib, and Echinomycin Prevents the dimerization of HIF-1α and HIF-1β Sutinib - TKI of VEGFR Decrease the number of MDSCs and Treg cells
      TEC specific marker - CLEC 14 A specific CART cells Reduction in tumor growth via IFN-γ
      Tumor-cell-specific cyclooxygenase (COX)-2 Inhibitor Downregulation of PFKFB3, involved in hyper-glycolysis of TECDownregulation of VEGF
      PFKFB3 blocker - 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) Reducing hyper-glycolysis in TECsNormalisation of tumor vessels
      Conclusion

      In the light of the foregoing discussion, it will be wise to more effectively employ therapeutic alternatives in BCs with treatment resistance. Understanding the control of selective immune cell trafficking via hypoxic tumour endothelium may also be necessary. Clinical studies have found that the early preventative methods for the development of new blood vessels have only limited effects. The establishment of resistant mechanisms and enhanced tumor hypoxia are the causes of this insufficient efficacy. The development of effective treatment combinations can be facilitated by an understanding of how tumors use hypoxic endothelium cells to evade the immune system. Hypoxia regulating molecules and Immune Checkpoint Inhibitors (ICIs) should be combined to improve the prognosis of patients with hypoxic breast cancer in the light of the role played by the hypoxic TME in immune evasion. Therefore, molecules linked to selective trafficking may offer brand-new prognostic criteria to justify the use of particular immunotherapy regimens in conjunction with vascular targeting therapeutics. Though it will take time to investigate and comprehend such issues, promising research on anti-angiogenic adjuvant immunotherapy techniques offers hope for the improvement of treatment ways to improve the outcomes of breast cancer patients. A concerted effort from all investigators is imperative to usher in an era free from the woes of life-threatening diseases such as the BCs.

      Author contributions

      SB and PP conceived the concept and contributed writing and editing of the review. All authors contributed to the article and approved the submitted version.

      Funding

      This study was supported by Teachers Associateship for Research Excellence, SERB, Govt. of. India. (TAR/2021/000147) and Kairali Research Award (Biological Science), KSCSTE, Govt. of Kerala (KSHECA3/ 352/Kairali Research Award/109/2021).

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Siegel RL Miller KD Fuchs HE Jemal A . Cancer statistics, 2022. CA: Cancer J Clin (2022) 72(1):733. doi: 10.3322/caac.21708 Yun Z Lin Q . Hypoxia and regulation of cancer cell stemness. Tumor Microenviron Cell Stress (2014) 772:4153. doi: 10.1007/978-1-4614-5915-6_2 Jing X Yang F Shao C Wei K Xie M Shen H . Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer (2019) 18(1):115. doi: 10.1186/s12943-019-1089-9 Chen A Sceneay J Gödde N Kinwel T Ham S Thompson EW . Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene (2018) 37(31):4214–25. doi: 10.1038/s41388-018-0259-3 Saxena K Jolly MK . Acute vs. chronic vs. cyclic hypoxia: Their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules (2019) 9(8):339. doi: 10.3390/biom9080339 Chan N Koritzinsky M Zhao H Bindra R Glazer PM Powell S . Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res (2008) 68(2):605–14. doi: 10.1158/0008-5472.CAN-07-5472 Rofstad EK Gaustad JV Egeland TA Mathiesen B Galappathi K . Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer (2010) 127(7):1535–46. doi: 10.1002/ijc.25176 Bayer C Vaupel P . Acute versus chronic hypoxia in tumors. Strahlenther Onkol (2012) 188(7):616–27. doi: 10.1007/s00066-012-0085-4 Muz B de la Puente P Azab F Azab AK . The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (2015) 3:83. doi: 10.2147/HP.S93413 Petrova V Annicchiarico-Petruzzelli M Melino G Amelio I . The hypoxic tumor microenvironment. Oncogenesis (2018) 7(1):113. doi: 10.1038/s41389-017-0011-9 Emami Nejad A Najafgholian S Rostami A Sistani A Shojaeifar S Esparvarinha M . The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int (2021) 21(1):126. doi: 10.1186/s12935-020-01719-5 Chao Y Zhong ZF Sheng-Peng W Chi-Teng V Bin Y Yi-Tao W . HIF-1: Structure, biology and natural modulators. Chin J Nat Med (2021) 19(7):521–7. doi: 10.1016/S1875-5364(21)60051-1 Tolonen JP Heikkilä M Malinen M Lee HM Palvimo JJ Wei GH . A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci (2020) 77(18):3627–42. doi: 10.1007/s00018-019-03387-9 Gilreath C Boerma M Qin Z Hudson MK Wang S . The hypoxic microenvironment of breast cancer cells promotes resistance in radiation therapy. Front Oncol (2021) 10:629422. doi: 10.3389/fonc.2020.629422 Vettori A Greenald D Wilson GK Peron M Facchinello N Markham E . Glucocorticoids promote Von hippel lindau degradation and hif-1α stabilization. Proc Natl Acad Sci (2017) 114(37):9948–53. doi: 10.1073/pnas.1705338114 Kim J w Tchernyshyov I Semenza GL Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab (2006) 3(3):177–85. doi: 10.1016/j.cmet.2006.02.002 Gilkes DM Semenza GL . Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol Lond Engl (2013) 9(11):1623–36. doi: 10.2217/fon.13.92 Park M Kim D Ko S Kim A Mo K Yoon H . Breast cancer metastasis: Mechanisms and therapeutic implications. Int J Mol Sci (2022) 23(12):6806. doi: 10.3390/ijms23126806 Brabletz T Kalluri R Nieto MA Weinberg RA . EMT in cancer. Nat Rev Cancer (2018) 18(2):128–34. doi: 10.1038/nrc.2017.118 Eskiizmir G Özgür E . Epithelial-mesenchymal transition in tumor microenvironment induced by hypoxia. Cancer Metastasis (2018). doi: 10.5772/intechopen.78717 Cao J Zhang M Wang B Zhang L Zhou F Fang M . Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical strategies. Front Oncol (2021) 11:658552. doi: 10.3389/fonc.2021.658552 Wang L Zhang S Wang X . The metabolic mechanisms of breast cancer metastasis. Front Oncol (2021) 10:602416. doi: 10.3389/fonc.2020.602416 O’Reilly D Al Sendi M Kelly CM . Overview of recent advances in metastatic triple negative breast cancer. World J Clin Oncol (2021) 12(3):164. doi: 10.5306/wjco.v12.i3.164 Joseph JP Harishankar MK Pillai AA Devi A . Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol (2018) 80:2332. doi: 10.1016/j.oraloncology.2018.03.004 Peng J Wang X Ran L Song J Luo R Wang Y . Hypoxia-inducible factor 1α regulates the transforming growth factor β1/SMAD family member 3 pathway to promote breast cancer progression. J Breast Cancer (2018) 21(3):259–66. doi: 10.4048/jbc.2018.21.e42 Tam SY Wu VW Law HK . Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front Oncol (2020) 10:486. doi: 10.3389/fonc.2020.00486 Ezdakova MI Andreeva ER Gurieva TS Dadasheva OA Orlova VS Buravkova LB . Effects of hypoxia and growth factors on the angiogenic activity of multipotent mesenchymal stromal cells. Aviakosmicheskaia Ekol Meditsina Aerosp Environ Med (2015) 49(5):2935. Adekola K Rosen ST Shanmugam M . Glucose transporters in cancer metabolism. Curr Opin Oncol (2012) 24(6):650. doi: 10.1097/CCO.0b013e328356da72 Courtnay R Ngo DC Malik N Ververis K Tortorella SM Karagiannis TC . Cancer metabolism and the warburg effect: The role of HIF-1 and PI3K. Mol Biol Rep (2015) 42(4):841–51. doi: 10.1007/s11033-015-3858-x Shin E Koo JS . Glucose metabolism and glucose transporters in breast cancer. Front Cell Dev Biol (2021) 2404. doi: 10.3389/fcell.2021.728759 Dekker Y Le Dévédec SE Danen EH Liu Q . Crosstalk between hypoxia and extracellular matrix in the tumor microenvironment in breast cancer. Genes (2022) 13(9):1585. doi: 10.3390/genes13091585 Munoz-Najar UM Neurath KM Vumbaca F Claffey KP . Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene (2006) 25(16):2379–92. doi: 10.1038/sj.onc.1209273 Quintero-Fabián S Arreola R Becerril-Villanueva E Torres-Romero JC Arana-Argáez V Lara-Riegos J . Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol (2019) 9:1370. doi: 10.3389/fonc.2019.01370 Zhu H Zhang S . Hypoxia inducible factor-1α/vascular endothelial growth factor signaling activation correlates with response to radiotherapy and its inhibition reduces hypoxia-induced angiogenesis in lung cancer. J Cell Biochem (2018) 119(9):7707–18. doi: 10.1002/jcb.27120 El Bairi K Haynes HR Blackley E Fineberg S Shear J Turner S . The tale of TILs in breast cancer: A report from the international immuno-oncology biomarker working group. NPJ Breast Cancer (2021) 7(1):117. doi: 10.1038/s41523-021-00346-1 Ono M Tsuda H Shimizu C Yamamoto S Shibata T Yamamoto H . Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat (2012) 132(3):793805. doi: 10.1007/s10549-011-1554-7 Wigerup C Påhlman S Bexell D . Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther (2016) 164:152–69. doi: 10.1016/j.pharmthera.2016.04.009 Pezzuto A Carico E . Role of HIF-1 in cancer progression: Novel insights. A review. Curr Mol Med (2018) 18(6):343–51. doi: 10.2174/1566524018666181109121849 Duechler M Peczek L Zuk K Zalesna I Jeziorski A Czyz M . The heterogeneous immune microenvironment in breast cancer is affected by hypoxia-related genes. Immunobiology (2014) 219(2):158–65. doi: 10.1016/j.imbio.2013.09.003 Chouaib S Messai Y Couve S Escudier B Hasmim M Noman MZ . Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol (2012) 3:21. doi: 10.3389/fimmu.2012.00021 Wei J Wu A Kong LY Wang Y Fuller G Fokt I . Hypoxia potentiates glioma-mediated immunosuppression. PloS One (2011) 6(1):e16195. doi: 10.1371/journal.pone.0016195 Cimino-Mathews A Foote JB Emens LA . Immune targeting in breast cancer. Oncology (2015) 29(5):375–5. DeNardo DG Coussens LM . Inflammation and breast cancer. balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res (2007) 9(4):110. doi: 10.1186/bcr1746 Singh R Paterson Y . Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res (2007) 67(5):1887–92. doi: 10.1158/0008-5472.CAN-06-3960 Dunn GP Bruce AT Ikeda H Old LJ Schreiber RD . Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol (2002) 3(11):991–8. doi: 10.1038/ni1102-991 Swann JB Smyth MJ . Immune surveillance of tumors. J Clin Invest (2007) 117(5):1137–46. doi: 10.1172/JCI31405 Hida K Maishi N Ryo Takeda D Hida Y . The roles of tumor endothelial cells in cancer metastasis. Exon Publ (2022), 137–48. doi: 10.36255/exon-publications.metastasis.endothelial-cells Semenza GL . Intratumoral hypoxia and mechanisms of immune evasion mediated by hypoxia-inducible factors. Physiology (2021) 36(2):7383. doi: 10.1152/physiol.00034.2020 Korbecki J Kojder K Kapczuk P Kupnicka P Gawrońska-Szklarz B Gutowska I . The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors–a review of literature. Int J Mol Sci (2021) 22(2):843. doi: 10.3390/ijms22020843 Harlin H Meng Y Peterson AC Zha Y Tretiakova M Slingluff C . Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res (2009) 69(7):3077–85. doi: 10.1158/0008-5472.CAN-08-2281 Raman D Baugher PJ Thu YM Richmond A . Role of chemokines in tumor growth. Cancer Lett (2007) 256(2):137–65. doi: 10.1016/j.canlet.2007.05.013 Rajani C Borisa P Karanwad T Borade Y Patel V Rajpoot K . Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier. Pharm Appl Dendrimers (2020) p:151–98. doi: 10.1016/B978-0-12-814527-2.00007-X Carmeliet P Jain RK . Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov (2011) 10(6):417–27. doi: 10.1038/nrd3455 Berthiaume AA Grant RI McDowell KP Underly RG Hartmann DA Levy M . Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep (2018) 22(1):816. doi: 10.1016/j.celrep.2017.12.016 Lopes-Bastos BM Jiang WG Cai J . Tumor–endothelial cell communications: Important and indispensable mediators of tumor angiogenesis. Anticancer Res (2016) 36(3):1119–26. Solimando AG Summa SD Vacca A Ribatti D . Cancer-associated angiogenesis: The endothelial cell as a checkpoint for immunological patrolling. Cancers (2020) 12(11):3380. doi: 10.3390/cancers12113380 Maishi N Annan DA Kikuchi H Hida Y Hida K . Tumor endothelial heterogeneity in cancer progression. Cancers (2019) 11(10):1511. doi: 10.3390/cancers11101511 Nomura M Yamagishi S i Harada S i Hayashi Y Yamashima T Yamashita J . Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem (1995) 270(47):28316–24. doi: 10.1074/jbc.270.47.28316 Reiss Y Knedla A Tal AO Schmidt MH Jugold M Kiessling F . Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol J Pathol Soc G B Irel (2009) 217(4):571–80. doi: 10.1002/path.2484 Imanishi Y Hu B Jarzynka MJ Guo P Elishaev E Bar-Joseph I . Angiopoietin-2 stimulates breast cancer metastasis through the α5β1 integrin-mediated pathway. Cancer Res (2007) 67(9):4254–63. doi: 10.1158/0008-5472.CAN-06-4100 Zhang Y Kontos CD Annex BH Popel AS . Angiopoietin-tie signaling pathway in endothelial cells: A computational model. Iscience (2019) 20:497511. doi: 10.1016/j.isci.2019.10.006 Geranmayeh MH Rahbarghazi R Farhoudi M . Targeting pericytes for neurovascular regeneration. Cell Communication Signaling (2019) 17(1):13. doi: 10.1186/s12964-019-0340-8 Daneman R Zhou L Kebede AA Barres BA . Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature (2010) 468(7323):562–6. doi: 10.1038/nature09513 Hong J Tobin NP Rundqvist H Li T Lavergne M García-Ibáñez Y . Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. J Natl Cancer Inst (2015) 107(10):djv209. doi: 10.1093/jnci/djv209 Enström A Carlsson R Özen I Paul G . RGS5: A novel role as a hypoxia-responsive protein that suppresses chemokinetic and chemotactic migration in brain pericytes. Biol Open (2022) 11(10):bio059371. doi: 10.1242/bio.059371 Mamer SB Chen S Weddell JC Palasz A Wittenkeller A Kumar M . Discovery of high-affinity PDGF-VEGFR interactions: redefining RTK dynamics. Sci Rep (2017) 7(1):114. doi: 10.1038/s41598-017-16610-z Schmittnaegel M Rigamonti N Kadioglu E Cassará A Wyser Rmili C Kiialainen A . Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med (2017) 9(385):eaak9670. doi: 10.1126/scitranslmed.aak9670 Bohn KA Sechrest ER Adkins CE Mittapalli RK Nounou MI Terrell-Hall TB . Inhibition of VEGF and angiopoietin-2 to reduce brain metastases of breast cancer burden. Cancer Res (2015) 75:1388–8. doi: 10.1158/1538-7445.AM2015-1388 Krüger-Genge A Blocki A Franke RP Jung F . Vascular endothelial cell biology: An update. Int J Mol Sci (2019) 20(18):4411. doi: 10.3390/ijms20184411 Nagy JA Chang SH Shih SC Dvorak AM Dvorak HF . Heterogeneity of the tumor vasculature. InSeminars Thromb Hemostasis (2010) 36, No. 03:321–31. doi: 10.1055/s-0030-1253454 Griffioen AW Damen CA Mayo KH Barendsz-Janson AF Martinotti S Blijham GH . Angiogenesis inhibitors overcome tumor induced endothelial cell anergy. Int J Cancer (1999) 80(2):315–9. doi: 10.1002/(SICI)1097-0215(19990118)80:2<315::AID-IJC23>3.0.CO;2-L Klein D . The tumor vascular endothelium as decision maker in cancer therapy. Front Oncol (2018) 8:367. doi: 10.3389/fonc.2018.00367 De Palma M Biziato D Petrova TV . Microenvironmental regulation of tumor angiogenesis. Nat Rev Cancer (2017) 17(8):457–74. doi: 10.1038/nrc.2017.51 Cantelmo AR Conradi LC Brajic A Goveia J Kalucka J Pircher A . Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell (2016) 30(6):968–85. doi: 10.1016/j.ccell.2016.10.006 Alam MT Nagao-Kitamoto H Ohga N Akiyama K Maishi N Kawamoto T . Suprabasin as a novel tumor endothelial cell marker. Cancer Sci (2014) 105(12):1533–40. doi: 10.1111/cas.12549 Liang J Wang S Zhang G He B Bie Q Zhang B . A new antitumor direction: Tumor-specific endothelial cells. Front Oncol (2021) 11. doi: 10.3389/fonc.2021.756334 Huinen ZR Huijbers EJ van Beijnum JR Nowak-Sliwinska P Griffioen AW . Anti-angiogenic agents–overcoming tumor endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol (2021) 18(8):527–40. doi: 10.1038/s41571-021-00496-y Kwaifa IK Bahari H Yong YK Noor SM . Endothelial dysfunction in obesity-induced inflammation: Molecular mechanisms and clinical implications. Biomolecules (2020) 10(2):291. doi: 10.3390/biom10020291 Griffioen AW Damen CA Blijham GH Groenewegen G . Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood (1996) 667–73. doi: 10.1182/blood.V88.2.667.bloodjournal882667 De Sanctis F Ugel S Facciponte J Facciabene A . The dark side of tumor-associated endothelial cells. Semin Immunol (2018) 35:3547. doi: 10.1016/j.smim.2018.02.002 Flati V Pastore LI Griffioen AW Satijn S Tomato E D’alimonte I . Endothelial cell anergy is mediated by bFGF through the sustained activation of p38-MAPK and NF-κB inhibition. Int J Immunopathol Pharmacol (2006) 19(4):761–73. doi: 10.1177/039463200601900406 Nagl L Horvath L Pircher A Wolf D . Tumor endothelial cells (TECs) as potential immune directors of the tumor microenvironment–new findings and future perspectives. Front Cell Dev Biol (2020) 766. doi: 10.3389/fcell.2020.00766 Tellier C Desmet D Petit L Finet L Graux C Raes M . Cycling hypoxia induces a specific amplified inflammatory phenotype in endothelial cells and enhances tumor-promoting inflammation in vivo. Neoplasia (2015) 17(1):6678. doi: 10.1016/j.neo.2014.11.003 Brown Chandler K E Costello C Rahimi N . Glycosylation in the tumor microenvironment: implications for tumor angiogenesis and metastasis. Cells (2019) 8(6):544. doi: 10.3390/cells8060544 Dirkx AE oude Egbrink MG Kuijpers MJ van der Niet ST Heijnen VV Steege JCB t . Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res (2003) 63(9):2322–9. Zeng H Ji J Song X Huang Y Li H Huang J . Stemness related genes revealed by network analysis associated with tumor immune microenvironment and the clinical outcome in lung adenocarcinoma. Front Genet (2020) 1095. doi: 10.3389/fgene.2020.549213 Pei J Wang Y Li Y . Identification of key genes controlling breast cancer stem cell characteristics via stemness indices analysis. J Transl Med (2020) 18(1):115. doi: 10.1186/s12967-020-02260-9 Huang Y Yuan J Righi E Kamoun WS Ancukiewicz M Nezivar J . Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci (2012) 109(43):17561–6. doi: 10.1073/pnas.1215397109 Dings RP Vang KB Castermans K Popescu F Zhang Y Mescher MF . Enhancement of t-cell–mediated antitumor response: Angiostatic adjuvant to immunotherapy against CancerEnhancement of t-cell–mediated antitumor response. Clin Cancer Res (2011) 17(10):3134–45. doi: 10.1158/1078-0432.CCR-10-2443 Motz GT Santoro SP Wang LP Garrabrant T Lastra RR Hagemann IS . Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med (2014) 20(6):607–15. doi: 10.1038/nm.3541 Dysthe M Parihar R . Myeloid-derived suppressor cells in the tumor microenvironment. Tumor Microenviron (2020) 1224:117–40. doi: 10.1007/978-3-030-35723-8_8 Safarzadeh E Hashemzadeh S Duijf PH Mansoori B Khaze V Mohammadi A . Circulating myeloid-derived suppressor cells: An independent prognostic factor in patients with breast cancer. J Cell Physiol (2019) 234(4):3515–25. doi: 10.1002/jcp.26896 Li Y He H Jihu R Zhou J Zeng R Yan H . Novel characterization of myeloid-derived suppressor cells in tumor microenvironment. Front Cell Dev Biol (2021) 9:698532. doi: 10.3389/fcell.2021.698532 Curiel TJ Wei S Dong H Alvarez X Cheng P Mottram P . Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat Med (2003) 9(5):562–7. doi: 10.1038/nm863 Horikawa N Abiko K Matsumura N Hamanishi J Baba T Yamaguchi K . Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor CellsVEGF induces MDSCs and blocks tumor immunity in HGSOC. Clin Cancer Res (2017) 23(2):587–99. doi: 10.1158/1078-0432.CCR-16-0387 Chen JY Lai YS Chu PY Chan SH Wang LH Hung WC . Cancer-derived VEGF-c increases chemokine production in lymphatic endothelial cells to promote CXCR2-dependent cancer invasion and MDSC recruitment. Cancers (2019) 11(8):1120. doi: 10.3390/cancers11081120 Roberts LM Perez MJ Balogh KN Mingledorff G Cross JV Munson JM . Myeloid derived suppressor cells migrate in response to flow and lymphatic endothelial cell interaction in the breast tumor microenvironment. Cancers (2022) 14(12):3008. doi: 10.3390/cancers14123008 Kumar V Patel S Tcyganov E Gabrilovich DI . The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol (2016) 37(3):208–20. doi: 10.1016/j.it.2016.01.004 Noy R Pollard JW . Tumor-associated macrophages: From mechanisms to therapy. Immunity (2014) 41(1):4961. doi: 10.1016/j.immuni.2014.06.010 Poh AR Ernst M . Targeting macrophages in cancer: From bench to bedside. Front Oncol (2018) 8:49. doi: 10.3389/fonc.2018.00049 Bellac CL Dufour A Krisinger MJ Loonchanta A Starr AE auf dem Keller U . Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis. Cell Rep (2014) 9(2):618–32. doi: 10.1016/j.celrep.2014.09.006 Leek RD Hunt NC Landers RJ Lewis CE Royds JA Harris AL . Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol (2000) 190(4):430–6. doi: 10.1002/(SICI)1096-9896(200003)190:4<430::AID-PATH538>3.0.CO;2-6 Mantovani A Marchesi F Malesci A Laghi L Allavena P . Tumor-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol (2017) 14(7):399416. doi: 10.1038/nrclinonc.2016.217 Jayasingam SD Citartan M Thang TH Mat Zin AA Ang KC Ch’ng ES . Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: Technicalities and challenges in routine clinical practice. Front Oncol (2020) 9:1512. doi: 10.3389/fonc.2019.01512 Wang Q He Z Huang M Liu T Wang Y Xu H . Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. Nat Commun (2018) 9(1):559. doi: 10.1038/s41467-018-03050-0 Abid MR Yi X Yano K Shih SC Aird WC . Vascular endocan is preferentially expressed in tumor endothelium. Microvascular Res (2006) 72(3):136–45. doi: 10.1016/j.mvr.2006.05.010 Huang X Chen C Wang X Zhang JY Ren BH Ma DW . Prognostic value of endocan expression in cancers: Evidence from meta-analysis. OncoTargets Ther (2016) 9:6297–304. doi: 10.2147/OTT.S110295 White JR Harris RA Lee SR Craigon MH Binley K Price T . Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics (2004) 83(1):18. doi: 10.1016/S0888-7543(03)00215-5 Burke B Giannoudis A Corke KP Gill D Wells M Ziegler-Heitbrock L . Hypoxia-induced gene expression in human macrophages: Implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol (2003) 163:1233–43. doi: 10.1016/S0002-9440(10)63483-9 Li X Liu R Su X Pan Y Han X Shao C . Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer (2019) 18(1):16. doi: 10.1186/s12943-019-1102-3 Sitkovsky M Lukashev D . Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nat Rev Immunol (2005) 5(9):712–21. doi: 10.1038/nri1685 Vinay DS Ryan EP Pawelec G Talib WH Stag0g J Elkord E . Immune evasion in cancer: Mechanistic basis and therapeutic strategies. In: Semin Cancer Biol Elsevier; (2015) p:S185–98. doi: 10.1016/j.semcancer.2015.03.004 Winning S Fandrey J . Dendritic cells under hypoxia: How oxygen shortage affects the linkage between innate and adaptive immunity. J Immunol Res (2016) 2016. doi: 10.1155/2016/5134329 Garrido F Ruiz-Cabello F Cabrera T Perez-Villar JJ López-Botet M Duggan-Keen M . Implications for immunosurveillance of altered HLA class I phenotypes in human tumors. Immunol Today (1997) 18(2):8995. doi: 10.1016/S0167-5699(96)10075-X Johnsen AK Templeton DJ Sy MS Harding CV . Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol (1999) 163(8):4224–31. doi: 10.4049/jimmunol.163.8.4224 Maeurer MJ Gollin SM Martin D Swaney W Bryant J Castelli C . Tumor escape from immune recognition:Llethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest (1996) 98(7):1633–41. doi: 10.1172/JCI118958 Facciabene A Peng X Hagemann IS Balint K Barchetti A Wang LP . Tumor hypoxia promotes tolerance and angiogenesis via CCL28 and treg cells. Nature (2011) 475(7355):226–30. doi: 10.1038/nature10169 Corthay A . How do regulatory T cells work? Scand J Immunol (2009) 70(4):326–36. doi: 10.1111/j.1365-3083.2009.02308.x Vignali DA Collison LW Workman CJ . How regulatory T cells work. Nat Rev Immunol (2008) 8(7):523–32. doi: 10.1038/nri2343 Clambey ET McNamee EN Westrich JA Glover LE Campbell EL Jedlicka P . Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci (2012) 109(41):E2784–93. doi: 10.1073/pnas.1202366109 Hsu TS Lin YL Wang YA Mo ST Chi PY Lai ACY . HIF-2α is indispensable for regulatory T cell function. Nat Commun (2020) 11(1):116. Lanitis E Irving M Coukos G . Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol (2015) 33:5563. doi: 10.1016/j.coi.2015.01.011 Niederlova V Tsyklauri O Chadimova T Stepanek O . CD8+ tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol (2021) 51(3):512–30. doi: 10.1002/eji.202048614 Verma A Mathur R Farooque A Kaul V Gupta S Dwarakanath BS . T-Regulatory cells in tumor progression and therapy. Cancer Manag Res (2019) 11:10731. doi: 10.2147/CMAR.S228887 Stenström J Hedenfalk I Hagerling C . Regulatory T lymphocyte infiltration in metastatic breast cancer–an independent prognostic factor that changes with tumor progression. Breast Cancer Res (2021) 23(1):112. doi: 10.1186/s13058-021-01403-0 Yan M Jene N Byrne D Millar EK O’Toole SA McNeil CM . Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res (2011) 13(2):110. doi: 10.1186/bcr2869 Lužnik Z Anchouche S Dana R Yin J . Regulatory T cells in angiogenesis. J Immunol (2020) 205(10):2557–65. doi: 10.4049/jimmunol.2000574 Chambers AM Lupo KB Matosevic S . Tumor microenvironment-induced immunometabolic reprogramming of natural killer cells. Front Immunol (2018) 9:2517. doi: 10.3389/fimmu.2018.02517 Georganaki M van Hooren L Dimberg A . Vascular targeting to increase the efficiency of immune checkpoint blockade in cancer. Front Immunol (2018) 9:3081. doi: 10.3389/fimmu.2018.03081 Plitas G Konopacki C Wu K Bos PD Morrow M Putintseva EV . Regulatory T cells exhibit distinct features in human breast cancer. Immunity (2016) 45(5):1122–34. doi: 10.1016/j.immuni.2016.10.032 Onda M Kobayashi K Pastan I . Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. Proc Natl Acad Sci (2019) 116(10):4575–82. doi: 10.1073/pnas.1820388116 Long Y Tao H Karachi A Grippin AJ Jin L Chang YE . Dysregulation of glutamate transport enhances treg function that promotes VEGF blockade resistance in GlioblastomaAnti-VEGF therapy promotes treg function. Cancer Res (2020) 80(3):499509. doi: 10.1158/0008-5472.CAN-19-1577 Hu M Li Y Lu Y Wang M Li Y Wang C . The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ (2021) 9:e11306. doi: 10.7717/peerj.11306 Rupp T Genest L Babin D Legrand C Hunault M Froget G . Anti-CTLA-4 and anti-PD-1 immunotherapies repress tumor progression in preclinical breast and colon model with independent regulatory T cells response. Transl Oncol (2022) 20:101405. doi: 10.1016/j.tranon.2022.101405 Barsoum IB Smallwood CA Siemens DR Graham CH . A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res (2014) 74(3):665–74. doi: 10.1158/0008-5472.CAN-13-0992 DeSantis CE Ma J Gaudet MM Newman LA Miller KD Goding Sauer A . Breast cancer statistics, 2019. CA Cancer J Clin (2019) 69(6):438–51. doi: 10.3322/caac.21583 Maishi N Kikuchi H Sato M Nagao-Kitamoto H Annan DA Baba S . Development of immortalized human tumor endothelial cells from renal cancer. Int J Mol Sci (2019) 20(18):4595. doi: 10.3390/ijms20184595 Ciszewski WM Sobierajska K Wawro ME Klopocka W Chefczyńska N Muzyczuk A . The ILK-MMP9-MRTF axis is crucial for EndMT differentiation of endothelial cells in a tumor microenvironment. Biochim Biophys Acta BBA-Mol Cell Res (2017) 1864(12):2283–96. doi: 10.1016/j.bbamcr.2017.09.004 Xu X Tan X Tampe B Sanchez E Zeisberg M Zeisberg EM . Snail is a direct target of hypoxia-inducible factor 1α (HIF1α) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem (2015) 290(27):16653–64. doi: 10.1074/jbc.M115.636944 Taftaf R Liu X Singh S Jia Y Dashzeveg NK Hoffmann AD . ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nat Commun (2021) 12(1):115. doi: 10.1038/s41467-021-25189-z Kikuchi K McNamara KM Miki Y Iwabuchi E Kanai A Miyashita M . S100P and ezrin promote trans-endothelial migration of triple negative breast cancer cells. Cell Oncol (2019) 42(1):6780. doi: 10.1007/s13402-018-0408-2 Jin F Brockmeier U Otterbach F Metzen E . New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: Hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res (2012) 10(8):1021–31. doi: 10.1158/1541-7786.MCR-11-0498 Wang Y Shang W Niu M Tian J Xu K . Hypoxia-active nanoparticles used in tumor theranostic. Int J Nanomedicine (2019) 14:3705. doi: 10.2147/IJN.S196959 Bosco MC D’Orazi G Del Bufalo D . Targeting hypoxia in tumor: a new promising therapeutic strategy. J Exp Clin Cancer Res (2020) 39(1):13. doi: 10.1186/s13046-019-1517-0 Minassian LM Cotechini T Huitema E Graham CH . Hypoxia-induced resistance to chemotherapy in cancer. Hypoxia Cancer Metastasis (2019) 1136:123–39. doi: 10.1007/978-3-030-12734-3_9 Generali D Berruti A Brizzi MP Campo L Bonardi S Wigfield S . Hypoxia-inducible factor-1α expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res (2006) 12(15):4562–8. doi: 10.1158/1078-0432.CCR-05-2690 Griffioen AW Damen CA Martinotti S Blijham GH Groenewegen G . Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res (1996) 56(5):1111–7. Khan KA Kerbel RS . Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol (2018) 15(5):310–24. doi: 10.1038/nrclinonc.2018.9 Rahma OE Hodi FS . The intersection between tumor angiogenesis and immune SuppressionAntiangiogenesis and immunotherapy. Clin Cancer Res (2019) 25(18):5449–57. doi: 10.1158/1078-0432.CCR-18-1543 Gabrilovich DI Ostrand-Rosenberg S Bronte V . Coordinated regulation of myeloid cells by tumors. Nat Rev Immunol (2012) 12(4):253–68. doi: 10.1038/nri3175 Boucher Y Kumar AS Posada JM Gjini E Pfaff K Lipschitz M . Bevacizumab improves tumor infiltration of mature dendritic cells and effector T-cells in triple-negative breast cancer patients. NPJ Precis Oncol (2021) 5(1):16. doi: 10.1038/s41698-021-00197-w Liu Y Zhang T Zhang L Zhao C Zhang Z Wang Z . Combined application of bevacizumab and PD-1 blockade displays durable treatment effects by increasing the infiltration and cytotoxic function of CD8+ T cells in lung cancer. Immunotherapy (2022) 14(9):695–708. doi: 10.2217/imt-2021-0196 Martino EC Misso G Pastina P Costantini S Vanni F Gandolfo C . Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov (2016) 2(1):18. doi: 10.1038/cddiscovery.2016.25 Bourhis M Palle J Galy-Fauroux I Terme M . Direct and indirect modulation of T cells by VEGF-a counteracted by anti-angiogenic treatment. Front Immunol (2021) 12:616837. doi: 10.3389/fimmu.2021.616837 Ozao-Choy J Ma G Kao J Wang GX Meseck M Sung M . The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res (2009) 69(6):2514–22. doi: 10.1158/0008-5472.CAN-08-4709 Ko JS Zea AH Rini BI Ireland JL Elson P Cohen P . Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res (2009) 15(6):2148–57. doi: 10.1158/1078-0432.CCR-08-1332 Zhuang X Maione F Robinson J Bentley M Kaul B Whitworth K . CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth. JCI Insight (2020) 5(19). doi: 10.1172/jci.insight.138808 Xu R . P4HA1 is a new regulator of the HIF-1 pathway in breast cancer. Cell Stress (2019) 3(1):27. doi: 10.15698/cst2019.01.173 Zhang Y Zhang H Wang M Schmid T Xin Z Kozhuharova L . Hypoxia in breast cancer–scientific translation to therapeutic and diagnostic clinical applications. Front Oncol (2021) 11:652266. doi: 10.3389/fonc.2021.652266 Liu Q Guan C Liu C Li H Wu J Sun C . Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. BioMed Pharmacother (2022) 156:113861. doi: 10.1016/j.biopha.2022.113861 Bailey CM Liu Y Peng G Zhang H He M Sun D . Liposomal formulation of HIF-1α inhibitor echinomycin eliminates established metastases of triple-negative breast cancer. Nanomedicine Nanotechnol Biol Med (2020) 29:102278. doi: 10.1016/j.nano.2020.102278 Fukumura D Kloepper J Amoozgar Z Duda DG Jain RK . Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol (2018) 15(5):325–40. doi: 10.1038/nrclinonc.2018.29 He Z Zhang S . Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front Immunol (2021) 12. doi: 10.3389/fimmu.2021.741305 Li J Eu JQ Kong LR Wang L Lim YC Goh BC . Targeting metabolism in cancer cells and the tumor microenvironment for cancer therapy. Molecules (2020) 25(20):4831. doi: 10.3390/molecules25204831 Zhang L Li S Li L Chen Z Yang Y . COX-2 inhibition in the endothelium induces glucose metabolism normalization and impairs tumor progression. Mol Med Rep (2018) 17(2):2937–44. doi: 10.3892/mmr.2017.8270 Nowak-Sliwinska P van Beijnum JR Griffioen CJ Huinen ZR Sopesens NG Schulz R . Proinflammatory activity of VEGF-targeted treatment through reversal of tumor endothelial cell anergy. Angiogenesis (2022), 115. doi: 10.1007/s10456-022-09863-4 Glossary
      TME Tumor Microenvironment
      BC Breast Cancer
      HIF Hypoxia Inducible Factor
      VHL Von-Hippel Lindau
      EMT Epithelial to mesenchymal transition
      EMT-TFs EMT transcription factors EMT transcription factors
      TNBC Triple negative breast cancer
      TGF-β1 Transforming growth factor-β1
      SMAD3 Suppressor of Mothers against Decapentaplegic
      GLUTs Glucose Transport Proteins
      HK1, 2 Hexokinase 1 and 2
      PDK1 Pyruvate Dehydrogenase Kinase 1
      ECM Extra Cellular Matrix
      ROS Reactive Oxygen Species
      BCSCs Breast cancer stem cells
      MMP-2 and MMP-9 Metalloprotease 2 and 9
      VEGF Vascular Endothelial Growth Factor
      TILs Tumor Infiltrating Lymphocytes
      TCR T-cell receptor
      IFN Interferon
      MHC Major Histocompatibility Complex
      MDSCs Myeloid-Derived Suppressor Cells
      Tregs T regulatory cells
      TH1 T-helper type 1
      TH2 T-helper type 2
      TAMs Tumor-Associated Macrophages
      NK cells Natural Killer Cells
      PDL-1 Programmed Death Ligand-1
      CXCL12 C-X-C Motif Chemokine Ligand 12
      CXCR4 C-X-C Motif Chemokine Receptor 4
      CXCR12 C-X-C Motif Chemokine Receptor 12
      CCL5 CC-chemokine Ligand 5
      CCL2 CC-chemokine Ligand 2
      bFGF basic Fibroblast Growth Factor
      PGF Placental Growth Factor
      Ang-2 Angiopoietin-2
      ECs Endothelial Cells
      ICAM1 Intercellular Adhesion Molecule 1
      VCAM1 Vascular Cell Adhesion Molecule 1
      TNFα Tumor Necrosis Factor α
      IFNγ Interferon γ
      IL-1 Interleukin 1
      PFKFB 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
      Sca-1 stem cell antigen-1
      MDR-1 Multi-Drug Resistance Mutation 1
      ALDH Aldehyde Dehydrogenase
      NO Nitric Oxide
      GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
      PGE2 Prostaglandin 2
      LECs Lymphatic Endothelial Cells
      SAA1 Serum Amyloid A1
      TEM1 Tumor Endothelial Marker 1
      CTLA4 Cytotoxic T Lymphocyte-associated Antigen 4
      TCR T cell receptor
      HEVs High Endothelial Venules
      EndMT Endothelial-mesenchymal transition
      ICIs Immune Checkpoint Inhibitors
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gjmpjs.com.cn
      hjterj.com.cn
      mtsjzs.org.cn
      www.uigsnj.com.cn
      www.sptqyh.com.cn
      smoz.com.cn
      pesyun.com.cn
      qgchain.com.cn
      shouyou88.com.cn
      www.wxstest.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p