Front. Neurorobot. Frontiers in Neurorobotics Front. Neurorobot. 1662-5218 Frontiers Media S.A. 10.3389/fnbot.2023.1185052 Neuroscience Original Research Continuous joint velocity estimation using CNN-based deep learning for multi-DoF prosthetic wrist for activities of daily living Meng Zixia 1 2 Kang Jiyeon 1 3 4 * 1Mechanical and Aerospace Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States 2Electrical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States 3School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea 4AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea

Edited by: Luciano Luporini Menegaldo, Federal University of Rio de Janeiro, Brazil

Reviewed by: Federico Masiero, Sant'Anna School of Advanced Studies, Italy; Adriano A. Gonçalves Siqueira, University of São Paulo, Brazil; Chen Chen, Shanghai Jiao Tong University, China

*Correspondence: Jiyeon Kang jkangrobot@gist.ac.kr
07 09 2023 2023 17 1185052 13 03 2023 18 08 2023 Copyright © 2023 Meng and Kang. 2023 Meng and Kang

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Introduction

Myoelectric control of prostheses is a long-established technique, using surface electromyography (sEMG) to detect user intention and perform subsequent mechanical actions. Most machine learning models utilized in control systems are trained using isolated movements that do not reflect the natural movements occurring during daily activities. Moreover, movements are often affected by arm postures, the duration of activities, and personal habits. It is crucial to have a control system for multi-degree-of-freedom (DoF) prosthetic arms that is trained using sEMG data collected from activities of daily living (ADL) tasks.

Method

This work focuses on two major functional wrist movements: pronation-supination and dart-throwing movement (DTM), and introduces a new wrist control system that directly maps sEMG signals to the joint velocities of the multi-DoF wrist. Additionally, a specific training strategy (Quick training) is proposed that enables the controller to be applied to new subjects and handle situations where sensors may displace during daily living, muscles can become fatigued, or sensors can become contaminated (e.g., due to sweat). The prosthetic wrist controller is designed based on data from 24 participants and its performance is evaluated using the Root Mean Square Error (RMSE) and Pearson Correlation.

Result

The results are found to depend on the characteristics of the tasks. For example, tasks with dart-throwing motion show smaller RSME values (Hammer: 6.68 deg/s and Cup: 7.92 deg/s) compared to tasks with pronation-supination (Bulb: 43.98 deg/s and Screw: 53.64 deg/s). The proposed control technique utilizing Quick training demonstrates a decrease in the average root mean square error (RMSE) value by 35% and an increase in the average Pearson correlation value by 40% across all four ADL tasks.

prosthetic control deep learning training strategy surface electromyography activities of daily living

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1. Introduction

      The human upper limb function is crucial to perform daily living activities. The loss of one or both arms causes severe disability that greatly affects a person's ability to perform essential daily activities (Kuiken et al., 2009). To date, there are nearly two million people living with limb loss in the United States, with ~41,000 individuals suffering from major upper limb amputations (Atzori and Müller, 2015). The number of individuals with amputation is increasing, resulting in a significant rise in health care costs. In 2009, hospital costs associated with amputation totaled more than 8.3 billion dollars (Semasinghe et al., 2019). As a result, the development of upper-limb prosthetic devices is considered to be crucial in helping amputees adapt to daily activities and reintegrate into society.

      In order to restore the upper limb function of amputees, the development of myoelectric prosthesis started in the early 1940s (Kobrinskiy, 1960; Popov, 1965). A myoelectric prosthesis is electrically-powered, utilizing the electrical signals generated from some flexor and extensor muscles of the residual limb, which are surface electromyography (sEMG) signals that reflect the user's intention. To date, almost all commercial electric prostheses use a “direct myoelectric control” approach, where each direction of a motor in a prosthetic joint or the opening/closure of a specific grasp type in a robotic hand is controlled by a specific muscle. The myoelectric controller often uses the on-off method using a pre-defined threshold, but all commercial manufacturers also provide proportional control that can provide essentially continuous output to the active DoF of the prosthetic system (Fougner et al., 2012). To actuate multiple active degrees of freedom prosthetic devices, state machine technique has been suggested, which employs two sEMG signals to operate a single joint but also permits switching between other joints by co-activation of both muscles (Vujaklija et al., 2016). For example, SSSA-MyHAND (Controzzi et al., 2017) used state-machine, which switched to various grasps such as lateral, bi-directional, power, hook, pointing up and down by co-activation of both muscles. The state-machine complexity increases significantly when the number of prosthetic joints increases (Resnik et al., 2018) and it lacks the capability of simultaneous control of multiple DoFs which hinders the dexterity of the hand movement during daily living tasks.

      Pattern recognition has been suggested and widely explored for the past few decades (Hargrove et al., 2007). Based on sEMG activation patterns, the amplitude of sEMG was used to decode the information and transfer the instructions to the motor, that could identify the user's intended hand and wrist motions (Scheme and Englehart, 2011; Parajuli et al., 2019). Statistical methods such as LDA (Linear Discriminant Analysis) and SVM (Support vector machine) were used to classify user intention with feature extraction, which were clinically tested on several amputee trials (Al-Timemy et al., 2013; Stango et al., 2014). For neural-based models, ANN (Artificial neural network) and MLP (Multilayer perceptron) were one of the initial deep learning algorithms researchers explored (Kawasaki et al., 2014). In comparison to traditional methods, these models were easily trainable and have the capability of modeling with non-linear data (Ahmad et al., 2011). Recently, Tam et al. (2021) designed a gesture recognition system using a CNN for myoelectric hand prosthesis control, in which the user could be able to monitor the gesture recognition output in real time. This pattern recognition-based classification method could only support discrete movement classification, which was rather non-intuitive compared to the natural way of controlling hands' pose (Yang et al., 2022).

      To overcome the limits of classification approaches, several researchers have used deep learning techniques to control hand movements with regressions. Bao et al. (2021b) proposed the regression supervised domain adaptation (SDA) for estimating wrist angles using sEMG data. This study investigated the domain-shifting problem of the model when handling new subjects by categorizing the dataset of each subject as either the source or target domain and generating pairwise samples instead of single ones. A specific loss function, discrepancy loss, was also introduced for better description of the data. Stival et al. (2018) combined and IMU (Inertial Measurement Unit) features for the control of prosthetic devices. However, the study by Bao et al. was limited to simple wrist flexion/extension movements, while Stival et al.'s study was based on an online database and only presented two movements (flexion of three fingers or flexion of the wrist), which had the best performance.

      In this study, to overcome the limitations of existing methods, a CNN-based wrist controller using a regression model is proposed and evaluated based on real-life ADL data. The proposed controller continuously estimates the wrist angle velocity from sEMG sensors placed on the participant's forearm, enabling continuous control of a multi-DoF prosthetic wrist in a more natural way. The model was trained using data collected while participants performing ADL tasks that focused on pronation-supination and dart-throwing-motion of the wrist. To increase the robustness of the model, ADL tasks were conducted to collect movement data at different heights. To use this model by a new participant within a short time, a method utilizing Pre-training and Quick training data is also suggested. This method can be used by participants within the existing data set to reduce the retraining time, as fast training is frequently required for amputee participants due to donning-doffing, muscle fatigue, or contamination (e.g., sweat; Ameri et al., 2020). An overview of the proposed method is shown in Figure 1. The results varied depending on the characteristics of the tasks. For example, tasks with dart-throwing motion showed smaller RSME values (Hammer: 6.68 deg/s and Cup: 7.92 deg/s) compared to tasks with pronation-supination (Bulb: 43.98 deg/s and Screw: 53.64 deg/s). The proposed control technique utilizing Quick training demonstrated a decrease in the average root mean square error (RMSE) value by 35% and an increase in the average Pearson correlation value by 40% across all four ADL tasks.

      Overview of the proposed method. This multi-DoF controller will estimate the angular speed for pronation/supination (PS) and dart-throwing movements (DTM) with a training strategy.

      2. Data collection

      The study was approved by the Institutional Review Board of University at Buffalo. Participants provided written consent prior to the experiment. Only individuals with fully functioning biological arms and unrestricted arm movement were included in the study. And, for the current feasibility test, we recruited only right-handed participants to ensure homogeneous data. Participants included 24 healthy individuals. Their average age, height, and weight were 25.38 ± 3.00 years, 171.74 ± 8.40 cm, and 69.90 ± 14.67 kg, respectively. All participates were right-handed.

      2.1. Sensor system

      The Trigno Wireless Biofeedback System (Delsys, MA) is a device designed to make and biofeedback signal detection reliable and easy. The system transmits signals from Trigno Avanti^TM sensors to a receiving base station using a time-synchronized wireless protocol that minimizes latency in data transmission across sensors. In this study, eight sensors were placed around the forearm near the elbow to capture muscle signals during experiments, as depicted in Figure 2. The sEMG sensor data was sampled at 2,000 Hz. Ten Vero motion capture cameras (Vicon, UK) were used to capture the movements of the participants. A total of nine markers were placed on the upper body and were divided into four different body segments (Fazil et al., 2022).

      sEMG sensors were placed beneath the elbow, uniformly spaced from each other.

      2.2. Experimental task

      Four representative activities of daily life were specifically chosen for the experiment focusing on pronation-supination (PS) movement or dart-throwing movement (DTM). Specifically, PS and DTM were chosen for our prosthetic emulator in Poddar et al. (2021) and Poddar and Kang (2022). The Bulb twisting task and the Screwdriver task were designed for PS movements, and the Hammering task and the Cup drinking task were designed for DTM, as depicted in Figure 3. In each experiment, the participant started the tasks once all the sensors and markers had been placed. For each experiment, the participant was provided with different tools set up on a table in front of them. For the Bulb Twisting task, a custom-made board with a bulb socket fitted in parallel to the participant was placed at the edge of the table, and a bulb was placed within reach to its right. For the Screwdriver task/Hammering task, a steel panel with a nail in the center was fixed by a clamp and placed at the edge of the table, while the screwdriver/hammer was placed within reach to its right. The nail was placed ~2 cm above the table. For the Cup drinking task, a paper cup was placed in front of the center of the participant's body on the table within reach.

      The activities of daily living (ADL) tasks are trained/tested through the Screw rotation, Bulb twisting, Hammering, and Cup drinking (from left to right).

      For each trial, the procedure was as follows: First, the participant started from the T-pose position which stretches the arm shoulder height with palms facing down and feet on designated marks on the floor. The participant's toes were ~40 cm away from the edge of the table, with the distance adjusted based on the reach range of each individual. Recording began after a voice cue. After 2 s of recording, the participant was visually/orally prompted to begin. In the Screwdriver/Hammering/Cup Drinking task, the participant reached forward to pick up the screwdriver/hammer/cup and performed the screwing/hammering/drinking action 10 times. The procedure for the Bulb twisting task was slightly different. The twisting was performed 10 times in a clockwise direction and 10 times in a counterclockwise direction. After the participant completed the final movement, the tools were returned to the initial position on the table.

      For each activity of daily living task, the trial was repeated three times by incrementally increasing the height of the table. The height of the table for the first trial started at 78.5 cm and increased by 5 cm each time, ending at 88.5 cm. A verbal cue was given before each trial to start. The participant was instructed to perform the movements at a consistent speed to maintain uniformity and integrity of data. A practice trial was conducted prior to the recording sessions to familiarize the participant with the steps involved in each trial. Participants performed four tasks sequentially in random order.

      2.3. Data set generation

      The data collection system consisted of a motion capture system, eight Delsys wearable sensors, a height-adjustable table, and four sets of tools for conducting experiments. In the experiment of this study, upper limb motion is measured using ten motion capture cameras and sEMG data were collected from eight wireless Trigno sensors. In the present ADL tasks, two angles were calculated: the pronation-supination (PS) angle and the dart-throwing motion (DTM) angle. These angles were calculated by constructing pairs of vectors within the markers in 3D space and computing the angle between them as in Fazil et al. (2022). As shown in Figure 4, the sEMG data were first filtered using a low-pass Butterworth first-order filter at 1 Hz. To generate feature data, the filtered data from eight sensors were cut into segments using a sliding window. The length of the window was set to 250 frames, which corresponds to 125 ms, with an overlap of 240 frames. The resulting feature data had a shape of (250, 8).

      Raw data processing pipeline for features and labels.

      3. Deep learning wrist controller 3.1. Inception-time model

      Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE; Lines et al., 2016) recently emerged as one of the most popular methods for Time Series Classification tasks; Such method is a meta-ensemble built on several classifiers, including Time Series Forest, Shapelet Transform Classifier, and KNN-based classifiers. Although this algorithm has achieved outstanding performance on the benchmark datasets, it suffers from O(n2·T4) time complexity. Recently, Ismail Fawaz et al. (2020) introduced a deep Convolutional Neural Network (CNN), called Inception-Time, which not only outperforms the accuracy of HIVE-COTE but is also substantially faster while the complexity of Inception-Time increases almost linearly with an increase in the time series' length. The high accuracy and scalability of Inception-Time make it an ideal candidate for system development. In this study, we adapted the Inception-Time model to handle regression tasks.

      The fully-connected layer at the end of the network is substituted by a fully connected dense layer.

      The loss function is changed to a mean-square-error function.

      In each Inception module, kernel sizes and the numbers of filters are selected to fit the study.

      3.2. Quick training strategy

      As depicted in Figure 5, a unique training strategy is proposed. In this study, 24 participants performed three trials. The data was divided into four parts: pre-training group, model selection group, “Quick training” group, and test group. The pre-training group consisted of all trials of the first 15 individuals and the first trial of the 16th participant's three trials. The data in this group was used to initially train the modified Inception-Time model. The remaining two trials of the 16th participant were used as the validation set, and the model with the best performance, as measured by Pearson Correlation, was selected. The remaining data from the eight participants were considered new subjects, as they were unseen by the selected model. For each participant, the first trial was used for “Quick training,” and the model was evaluated on the rest two trials.

      Proposed training strategy including Pre-training process and Quick training process.

      For the implementation of the Inception-Time model and Quick training, Python 3.0 was used to design the wrist controller. The NumPy Python library is frequently used for scientific computing operations. The model was built on TensorFlow 2.5.0. Tools which was used for generating labels, normalization, and performance evaluations in Python. Most parts of our programs were computed on an NVIDIA GeForce RTX 3080 10G GPU.

      In the present study, four different models were created for each task. The tasks could be divided into pronation-supination based Bulb and Screw tasks and dart-throwing-motion based Hammer and Cup tasks. The input of models was set in the form of (250, 8), which means the length of the sliding window is 250 frames (125 ms), and eight-channel signals were collected from eight sEMG sensors. Besides the Butterworth filter mentioned before, a scaler was used to normalize the data when generating features from the data. Same scaler was also applied to the data of the validation group, “Quick training” group, and test group.

      3.3. Performance metrics

      In this study, two common measures are used for numerical evaluations: Root Mean Square Error (RMSE) and Pearson correlation (PC), with following formulas. θi represents the true angle (PS angel or DTM angle) at time frame i, while θi represents the true joint velocity at time frame i. θ^ stands for the predicted joint velocity, and (·)¯ as the mean value of (·). The number of total time frames is denoted as n.

      RMSE=i=1nθi.^θi.2n Pearson Correlation=i=1n(θi.^θ˙^¯)(θi.θ˙¯)%i=1n(θi.^θ˙^¯)2i=1n(θi.θ˙¯)2

      where Pearson Correlation is a measure of linear correlation between two sets of data. It is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1.

      4. Result

      The comparisons between the measured and predicted data with Quick training of four different tasks are depicted in Figure 6. The data shows the data fit better for the positive values compared to the negative angular speed in general. The Screw and Bulb task follows the true value better. The Cup and Hammer task has smaller range of angular speed compared to Screw and Bulb tasks.

      Comparison between measured (true) and predicted angular velocity of four different tasks with Quick training. (A) Screw, (B) cup, (C) bulb, (D) hammer.

      The Bulb task used a model with a depth of 5, which means five Inception blocks are used. In each block, there are three convolutional layers with kernel sizes of 64, 16, and 4, respectively. The number of filters is 128. The numbers of epochs for the pre-training and “Quick training” part are both set as 30. When the model is pre-training, optimizer Adam (adaptive moment estimation) is used with a learning rate starting as 1e-3 and other parameters as default. The learning rate is decayed to half of its original value every 10 epochs. On data from the pre-training group, the selected model has RMSE of 19.723 deg/s, and Pearson Correlation of 0.669. On data from the validation group, the selected model has RMSE of 21.123 deg/s, and Pearson Correlation of 0.628. For the Screw task, an eight-depth model is utilized, which employs eight Inception blocks. Each block is composed of three convolutional layers with kernel sizes of 64, 16, and 4, respectively. The number of filters used is 128. Pre-training is done for 40 epochs, while “Quick training” is done for 30 epochs, using the Adam optimizer as before. The pre-training group achieved RMSE of 9.467 deg/s and Pearson Correlation of 0.849. On the validation group data, the selected model achieved RMSE of 25.265 deg/s and Pearson Correlation of 0.727.

      For the Hammer task, a model with a depth of 4 is employed, utilizing four Inception blocks. Each block contains three convolutional layers with kernel sizes of 64, 16, and 4, respectively. The number of epochs for pre-training and “Quick training” is set to 30, and the Adam optimizer is used as before. The selected model achieved RMSE of 5.679 deg/s and Pearson Correlation of 0.817 on the pre-training group data. However, on the validation group data, the selected model achieved RMSE of 5.385 deg/s and Pearson Correlation of 0.166. As for the Cup task, a model with a depth of 3 is used, employing three Inception blocks. Each block consists of three convolutional layers with kernel sizes of 128, 32, and 8, respectively. The number of epochs for pre-training and “Quick training” is set to 30, and the Adam optimizer is used as before. Unfortunately, during the second trial of Subject 2, the sEMG sensors disconnected from the software, so the entire set of Subject 2 had to be dropped. The selected model achieved RMSE of 2.298 deg/s and Pearson Correlation of 0.961 on the pre-training group data. However, on the validation group data, the selected model achieved RMSE of 4.701 deg/s.

      In Table 1, RMSE and Pearson Correlation for all new individuals are presented for each task. When tested on eight new participants, the average RMSE increased and the Pearson Correlation decreased, which means the performance drop of the model by unseen data. However, if the “Quick training” process was applied with a small amount of data, the results improved to similar level as those of the training group. For example, in the Bulb task, the selected model had RMSE of 19.723 deg/s, and a Pearson Correlation of 0.669 on the training group. If new participants were applied to the model, RMSE increased to 43.977 deg/s, and Pearson Correlation dropped to 0.526. After the “Quick training” process was utilized, the average RMSE decreased to 25.813 deg/s and the average Pearson Correlation rose to 0.702. Similar trends were also observed through other tasks. In general, the performance improved after the “Quick training” process, however, there were some exceptional cases, especially on the Cup task for participants 1 and 6. This discrepancy of performance between the participants will be further discussed in the following section.

      RMSE* and Pearson's correlation (PC) values between measured and predicted angular velocity of regression module before and after Quick training.

      Task Train Metric 1 2 3 4 5 6 7 8 Ave
      Bulb WO RMSE* 104.09 20.96 33.66 34.07 40.47 148.33 33.27 41.32 43.98
      Quick PC 0.30 0.60 0.66 0.80 0.50 0.01 0.85 0.61 0.53
      With RMSE* 30.31 21.28 27.56 21.15 35.56 22.26 26.78 21.62 25.81
      Quick PC 0.73 0.62 0.68 0.78 0.71 0.77 0.66 0.67 0.70
      Screw WO RMSE* 50.25 26.97 30.26 48.45 172.91 12.05 62.53 25.70 53.64
      Quick PC 0.65 0.71 0.48 0.32 0.36 0.82 0.54 0.64 0.57
      With RMSE* 15.49 20.23 20.49 20.71 31.60 8.19 10.25 14.90 17.73
      Quick PC 0.77 0.85 0.60 0.59 0.73 0.82 0.68 0.68 0.72
      Hammer WO RMSE* 10.05 5.13 3.31 3.81 6.77 9.56 10.24 4.61 6.68
      Quick PC 0.36 0.41 0.16 0.15 0.48 0.21 0.22 −0.08 0.24
      With RMSE* 8.43 6.38 2.68 3.70 6.37 2.90 7.39 3.98 5.23
      Quick PC 0.48 0.54 0.38 0.19 0.49 0.42 0.33 0.06 0.36
      Cup WO RMSE* 13.02 3.15 9.79 7.29 4.42 14.20 3.59 7.92
      Quick PC −0.15 0.54 0.45 0.57 −0.13 0.68 0.21 0.31
      With RMSE* 6.23 3.06 9.36 7.13 4.33 14.47 3.23 6.83
      Quick PC −0.22 0.59 0.45 0.57 −0.21 0.66 0.26 0.30

      A total of eight new participants were tested. *Unit of RMSE is deg/s.

      5. Discussion

      The presented study shows a new framework to use real ADL task data to train a multi-DoF prosthe tic wrist using sEMG signals. The “Quick training” shows the utilization of a large data pool for creating a generic model but applies to a new user by using only a small amount of data for improving the model performance. Four tasks were tested to create the ML models by recruiting a total of 24 participants and tested on eight participants, which showed comparable performance with other models using a larger data set or training only simple motions.

      Comparing between tasks, the Screw and Bulb tasks showed higher Pearson‘s correlation than the Cup and Hammer tasks. This is presumably because high variation was found in the movement in Cup and Hammer tasks for various reasons. First, participants chose different movement strategy to perform the Cup and Hammer tasks. Some participants preferred moving only their wrists when lifting the hammer, while other participants preferred only moving their wrists when dropping the hammer. Participants chose different movement coordination between the wrist, elbow, and shoulder to perform the Cup and Hammer task. Second, the end-effector (tool) movement to fulfill the task had different kinematic redundancy. The Bulb and Screw tasks required to rotate the screw or bulb exactly along the screw thread. However, the cup or hammer task was not performed with restricted end-effector as Bulb and Screw tasks. Lastly, participants had different fluency to perform the hammer task. Even though 5-min practice session was provided for each task, there were participants who never used a hammer before. This could be another factor to create deviation in the movement, resulting different sEMG patterns among participants. Even though higher Pearson's Correlation was observed in the Cup and Hammer tasks, it should be noted that the Cup and Hammer tasks had larger RMSE. This was due to the different range of motion of the pronation-supination and the dart-throwing-motion tasks. Pronation-supination tasks (Bulb and Screw) had a significantly larger range of motion than dart-throwing-motion tasks (Hammer and Cup), which naturally led to larger RMSE despite higher Pearson's correlation.

      A few other researchers also studied various regression models for controlling prosthetic wrist. Stival et al. (2018) combined sEMG and IMU features to control prosthetic systems, and tested their model on a publicly available database as shown in Table 2. The Pearson's correlation of our study in Table 1 was changed to correlation coefficient similar to the study in Stival et al. (2018). Our controller performed comparably to theirs on the Bulb and Hammer tasks, and significantly better on the Screw task, exceeding their sEMG and IMU data fusion methods. It should be noted that Stival et al.'s method only showed results for two tasks that performed the best (three-finger flexion and wrist flexion), while our method focused on more complex ADL movements. Our model was trained with data from 16 participants, with each of them performing three trials, whereas Stival et al.'s method was trained on 35 participants, with six trials each.

      Correlation coefficient for the considered movements Stival et al. (2018) method and ADL tasks in our method.

      Movement 3 Movement 13
      sEMG and IMU (Stival et al., 2018) 0.7659 0.8634
      Bulb Screw Hammer Cup
      Our method 0.7651 0.8863 0.7578 0.5463

      Pearson's correlation in Table 1 is converted to correlation coefficient.

      Bao et al. (2021a) also proposed a CNN-LSTM model for wrist kinematics estimation. The data was collected from six participants with 12 sensors. Bao et al.'s method trained a model on 3/4 of the data and tested it on the remaining 1/4. The trained model was evaluated by using R2, and the detailed numeric results for the model are listed in Table 3. Although our method showed less R2 values, it is important to note that our study performed more complicated ADL movements with only eight sensors. Additionally, our “Quick Training” process required much less training data, and the performance of LSTM models would decrease substantially over time due to its natural instincts that the model itself depends on its previous predictions, which means minor turbulence could cause large deviation. Moreover, the way they combined CNN and LSTM required separate tuning, which would affect the efficiency of the proposed method significantly.

      Best R2 of the hybrid CNN-LSTM model (Bao et al., 2021a) on single-Dof tasks and our method on ADL tasks.

      Task R2
      CNN-LSTM (Bao et al., 2021a) Flexion/Extension 0.89
      Pronation/Supination 0.70
      Radial/Ulnar deviation 0.83
      Our method Bulb 0.530
      Screw 0.685
      Hammer 0.195
      Cup 0.405

      Pearson's correlation in Table 1 is converted to R2.

      Another study proposed the regression Supervised Domain Adaptation (SDA) for estimation of the wrist angle of flexion/extension through sEMG data (Bao et al., 2021b). Domain shifting problem was applied to the model to increase the performance on new subjects. Eight participants were recruited in total, trained on 7, and tested on the last one. The model was evaluated by Normalized root mean square error (NRMSE) and the RMSE of our result in Table 1 was changed to NRMSE for selected models. Detailed information is shown in the Table 4. The study showed that the model had NRMSE of 0.181 on designated simple flexion/extension movements. Our method had slightly worse NRMSE on Bulb (0.191) and Screw (0.185) tasks but achieved further improvements on overall more complicated movements with the introduction of the “Quick Train” process (0.133 on Bulb task, 0.120 on Screw task, 0.138 on Hammer task, and 0.191 on Cup task, respectively).

      Average NMSE of regression SDA (Bao et al., 2021b) on the selected movements and our method on ADL tasks.

      Flexion/Extension
      Regression SDA (Bao et al., 2021b) 0.181
      Bulb Screw Hammer Cup
      Without “Quick training” 0.191 0.185 0.726 0.443
      With “Quick training” 0.133 0.120 0.138 0.191

      RMSE in Table 1 is converted to NMSE.

      Our future studies will focus on addressing the current limitation of the study. First, we performed four different ADL tasks in the present work, thus, more diverse ADL tasks could be explored, and taking extra data into consideration would potentially improve the performance, such as including elbow angles as additional data when predicting wrist angles for tasks that showed different coordination between wrist and elbow joint movements among participants. Secondly, we used MSE as loss function in our model. The model could be presumably improved by modifying the loss function by introducing functions related to Pearson's correlation. Thirdly, the current model was designed for each task. Future models will classify motions into DTM or PS movements and then performing regression could allow our method to be used more generically, similar to previous work (Swami et al., 2021). Some other promising aspects of model generalization including associating not only types of ADL tasks, but also grasp types (Masiero et al., 2023), or arm positions (Gloumakov et al., 2022), could also be utilized to improve the performance. Lastly, complex ADLs that include three dimensional wrist motion will be trained in the model as well in the future. The current study uses ADLs that focus on majorly one dimensional rotation. In the future, the suggested controller will be implemented in the UBArm (Kim, 2022) featuring all three dimensional rotation of the prosthetic wrist with power grasping. With the UBArm, the tasks that were used to train in the presented paper and new tasks will be evaluated in real-time. To test the controller on amputee participants, the protocol will be further optimized and tested. For example, the number of sensors with less importance will be reduced by computing feature importance. Local surrogate models for identifying feature importance will be used such as SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016a,b) to determine the important sensors. For the amputee participants, the sEMG signals can be inconsistent depending on the location of the amputation. We will test 20% or 30% MVC (Maximum Voluntary Contraction) test and check which position of the muscle shows the most consistent sEMG signals for the controller.

      6. Conclusion

      This study employed a data collection approach that included activities of daily living to ensure the datasets reflect realistic wrist motions used in day-to-day scenarios. A CNN model based on the Inception-Time architecture was implemented to train the models using a specific method that allows the designed wrist controller to perform on new subjects. The Quick training process improved the performance of the controller when facing new subjects, while significantly decreasing on-site training time. We believe our method will provide a practical solution for new participants using the model as well as handling situations where sensors may displace during daily living, muscles can become fatigued, or sensors can become contaminated (e.g., due to sweat).

      Ethics statement

      The studies involving humans were approved by Institutional Review Board of University at Buffalo. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any identifiable images or data included in this article.

      Author contributions

      JK: conceptualization and supervision. ZM: data collection and analysis. ZM and JK: visualization, writing the manuscript, and editing. All authors have read and agreed to the published version of the manuscript.

      Funding

      This research was supported by Disability and Rehabilitation Engineering (DARE) Program under National Science Foundation Award (CBET-2221979) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00240085). JK also acknowledge the support by Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea government [MSIT; No. 2019-0-01842, Artificial Intelligence Graduate School Program (GIST)].

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher's note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Ahmad S. Ishak A. Ali S. H. Chappell P. H. (2011). Review of electromyography control systems based on pattern recognition for prosthesis control application. Aust. J. Basic Appl. Sci. 5, 15121518. 10.1007/978-3-642-21729-6_139 Al-Timemy A. H. Bugmann G. Escudero J. Outram N. (2013). Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE J. Biomed. Health Inform. 17, 608618. 10.1109/JBHI.2013.224959024592463 Ameri A. Akhaee M. A. Scheme E. Englehart K. (2020). A deep transfer learning approach to reducing the effect of electrode shift in EMG pattern recognition-based control. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 370379. 10.1109/TNSRE.2019.296218931880557 Atzori M. Müller H. (2015). Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front. Syst. Neurosci. 9, 162. 10.3389/fnsys.2015.0016226648850 Bao T. Zaidi S. A. R. Xie S. Yang P. Zhang Z.-Q. (2021a). A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography. IEEE Trans. Instrument. Measure. 70, 19. 10.1109/TIM.2020.303665437252871 Bao T. Zaidi S. A. R. Xie S. Yang P. Zhang Z.-Q. (2021b). Inter-subject domain adaptation for CNN-based wrist kinematics estimation using SEMG. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 10681078. 10.1109/TNSRE.2021.308640134086574 Controzzi M. Clemente F. Barone D. Ghionzoli A. Cipriani C. (2017). The SSSA-myhand: a dexterous lightweight myoelectric hand prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 459468. 10.1109/TNSRE.2016.257898027305682 Fazil M. Meng Z. Kang J. (2022). “CNN-based controller for multi-DoF prosthetic wrist using SEMG data during activities of daily living,” in 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) (New York, NY), 16. 10.1109/BioRob52689.2022.9925506 Fougner A. Stavdahl Ø. Kyberd P. J. Losier Y. G. Parker P. A. (2012). Control of upper limb prostheses: terminology and proportional myoelectric control-a review. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 663677. 10.1109/TNSRE.2012.219671122665514 Gloumakov Y. Bimbo J. Dollar A. M. (2022). Trajectory control-an effective strategy for controlling multi-DoF upper limb prosthetic devices. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 420430. 10.1109/TNSRE.2022.315105535171774 Hargrove L. J. Englehart K. Hudgins B. (2007). A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans. Biomed. Eng. 54, 847853. 10.1109/TBME.2006.88919217518281 Ismail Fawaz H. Lucas B. Forestier G. Pelletier C. Schmidt D. F. Weber J. . (2020). Inceptiontime: Finding alexnet for time series classification. Data Mining Knowl. Discov. 34, 19361962. 10.1007/s10618-020-00710-y Kawasaki H. Kayukawa M. Sakaeda H. Mouri T. (2014). “Learning system for myoelectric prosthetic hand control by forearm amputees,” in The 23rd IEEE International Symposium on Robot and Human Interactive Communication (New York, NY), 899904. 10.1109/ROMAN.2014.6926367 Kim M. (2022). A transradial prosthesis with a high-functional wrist for various daily living task (Master's thesis). University at Buffalo, Buffalo, NY, United States. 10.1109/UR57808.2023.10202316 Kobrinskiy A. (1960). Bioelectrical control of prosthetic devices. Her. Acad. Sci. 30, 5861. Kuiken T. A. Li G. Lock B. A. Lipschutz R. D. Miller L. A. Stubblefield K. A. . (2009). Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 619628. 10.1001/jama.2009.11619211469 Lines J. Taylor S. Bagnall A. (2016). “Hive-cote: the hierarchical vote collective of transformation-based ensembles for time series classification,” in 2016 IEEE 16th International Conference on Data Mining (ICDM) (New York, NY), 10411046. 10.1109/ICDM.2016.0133 Lundberg S. Lee S. (2017). “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems (Cambridge, MA), 47654774. Masiero F. Fagioli I. Truppa L. Mannini A. Cappello L. Controzzi M. (2023). Looking for synergies in healthy upper limb motion: a focus on the wrist. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 12481257. 10.1109/TNSRE.2023.324378537022805 Parajuli N. Sreenivasan N. Bifulco P. Cesarelli M. Savino S. Niola V. . (2019). Real-time EMG based pattern recognition control for hand prostheses: a review on existing methods, challenges and future implementation. Sensors 19, 4596. 10.3390/s1920459631652616 Poddar S. Cummiskey D. Kang J. (2021). “A cable-actuated prosthetic emulator for transradial amputees,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (New York, NY), 45294532. 10.1109/EMBC46164.2021.963110834892224 Poddar S. Kang J. (2022). “A lightweight transradial prosthetic emulator for optimizing prosthetic wrist design,” in 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) (New York, NY), 16. 10.1109/BioRob52689.2022.9925286 Popov B. (1965). The bio-electrically controlled prosthesis. J. Bone Joint Surg. 47, 421424. 10.1302/0301-620X.47B3.42114341055 Resnik L. Huang H. H. Winslow A. Crouch D. L. Zhang F. Wolk N. (2018). Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. J. Neuroeng. Rehabil. 15, 113. 10.1186/s12984-018-0361-329544501 Ribeiro M. Singh S. Guestrin C. (2016a). “Why should i trust you?” Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY), 11351144. 10.1145/2939672.2939778 Ribeiro M. Singh S. Guestrin C. (2016b). “Model-agnostic interpretability of machine learning,” in ICML Workshop on Human Interpretability in Machine Learning (WHI) (New York, NY), 9195. Scheme E. Englehart K. (2011). Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48, 643659. 10.1682/JRRD.2010.09.017721938652 Semasinghe C. L. Madusanka D. G. K. Ranaweera R. K. P. S. Gopura R. A. R. C. (2019). Transradial prostheses: trends in development of hardware and control systems. Int. J. Med. Robot. Comput. Assist. Surg. 15, e1960. 10.1002/rcs.196030248231 Stango A. Negro F. Farina D. (2014). Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 189198. 10.1109/TNSRE.2014.236675225389242 Stival F. Michieletto S. De Agnoi A. Pagello E. (2018). “Toward a better robotic hand prosthesis control: using EMG and IMU features for a subject independent multi joint regression model,” in 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (New York, NY), 185192. 10.1109/BIOROB.2018.8487188 Swami C. P. Lenhard N. Kang J. (2021). A novel framework for designing a multi-DoF prosthetic wrist control using machine learning. Sci. Rep. 11, 113. 10.1038/s41598-021-94449-134294804 Tam S. Boukadoum M. Campeau-Lecours A. Gosselin B. (2021). Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning. Sci. Rep. 11, 114. 10.1038/s41598-021-90688-434050220 Vujaklija I. Farina D. Aszmann O. C. (2016). New developments in prosthetic arm systems. Orthop. Res. Rev. 8, 3139. 10.2147/ORR.S7146830774468 Yang Z. Clark A. B. Chappell D. Rojas N. (2022). “Instinctive real-time SEMG-based control of prosthetic hand with reduced data acquisition and embedded deep learning training,” in 2022 International Conference on Robotics and Automation (ICRA) (New York, NY), 56665672. 10.1109/ICRA46639.2022.9811741
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.gcqjwc.com.cn
      www.lr-ade.com.cn
      www.lt17b.net.cn
      www.emwphs.com.cn
      hckylu.com.cn
      fxcvssd.com.cn
      www.rfchain.com.cn
      rjshjf.com.cn
      qjnftk.com.cn
      wcwbjr.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p