Front. Neuroinform. Frontiers in Neuroinformatics Front. Neuroinform. 1662-5196 Frontiers Media S.A. 10.3389/fninf.2023.1207721 Neuroscience Technology and Code Enhancing collaborative neuroimaging research: introducing COINSTAC Vaults for federated analysis and reproducibility Martin Dylan 1 * Basodi Sunitha 1 Panta Sandeep 1 Rootes-Murdy Kelly 1 Prae Paul 1 Sarwate Anand D. 1 2 Kelly Ross 1 Romero Javier 1 Baker Bradley T. 1 Gazula Harshvardhan 3 Bockholt Jeremy 1 Turner Jessica A. 1 Esper Nathalia B. 4 Franco Alexandre R. 4 5 6 Plis Sergey 1 Calhoun Vince D. 1 1Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State, Georgia Tech, Emory, Atlanta, GA, United States 2Department of Electrical and Computer Engineering, Rutgers University–New Brunswick, Piscataway, NJ, United States 3Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States 4Center for the Developing Brain, Child Mind Institute, New York, NY, United States 5Center for Brain Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States 6Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States

Edited by: Christian Haselgrove, UMass Chan Medical School, United States

Reviewed by: David Haynor, University of Washington, United States; Bo-yong Park, Inha University, Republic of Korea

*Correspondence: Dylan Martin dmartin99@gsu.edu
19 06 2023 2023 17 1207721 18 04 2023 02 06 2023 Copyright © 2023 Martin, Basodi, Panta, Rootes-Murdy, Prae, Sarwate, Kelly, Romero, Baker, Gazula, Bockholt, Turner, Esper, Franco, Plis and Calhoun. 2023 Martin, Basodi, Panta, Rootes-Murdy, Prae, Sarwate, Kelly, Romero, Baker, Gazula, Bockholt, Turner, Esper, Franco, Plis and Calhoun

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Collaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC (The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation) is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC's federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration, and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

COINSTAC neuroimaging federated learning reproducibility open science datasets privacy collaborative analysis

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1. Introduction

      In recent years, neuroimaging has seen a growing emphasis on data sharing and collaborative research, as evidenced by the development of new standards [e.g., Brain Imaging Data Structure (BIDS), Gorgolewski et al., 2016], open-source software tools, and data repositories. Neuroinformatics consortia such as Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA) (Thompson et al., 2014), and data repositories such as OpenNeuro (Markiewicz et al., 2021) and National Institutes of Health Data Archive,1 were created to facilitate analysis of data and combining data from multiple sites. Pooling data from many studies allows for larger sample sizes that produce more statistical power (Biswal et al., 2010; Andrade, 2020). Though the quantity of neuroimaging data is increasing, there are still barriers to collaboration in the form of technological, policy, administrative, and methodological constraints that can negatively affect data accessibility.

      In this section, we discuss in detail some of the challenges associated with collaborative analysis, particularly in centralized approaches, where the data need to be pooled in one location to perform an analysis. We also discuss COINSTAC, a tool built on the principles of federated analysis to enable analysis without the need to centralize data.

      1.1. Technological challenges

      Technological constraints, such as storage space, download speed, and processing power, play a significant role in the feasibility of performing collaborative analyses on large datasets (Homer et al., 2008; McGuire et al., 2011) such as neuroimaging data. Existing data repositories can contain high-resolution neuroimaging files covering tens of thousands of subjects, with sizes ranging from megabytes to multiple petabytes. Downloading the MPI-Leipzig Mind-Brain-Body dataset (Babayan et al., 2022) (369.78 GB) at the global median download speed of 76.32 Mbps2 onto a modern MacBook Pro with 512 GB of storage3 would take 11 h and 33 min, consuming 72.2 percent of the machine's total storage space. The requirements for storage space and download time can increase when an analysis involves aggregating multiple large datasets. Additionally, processing power may be a limiting factor for performing computations, particularly when certain types of analyses are designed to run on specific hardware like GPUs, which can demand resources beyond the capacity of smaller research groups or institutions with limited budgets.

      1.2. Policy and privacy challenges

      Due to the potentially sensitive nature of neuroimaging datasets, their use in collaborative analysis is often restricted by policies intended to preserve privacy. Collaboration methods include aggregating data in a centralized repository or using Data Usage Agreements (DUAs) (Thompson et al., 2014, 2017). These methods can be cumbersome and, in some cases, insufficient. DUAs may take months or even years to approve without any guarantee of the data's utility. Data sharing might be limited by law, policy, or proprietary restrictions, largely driven by re-identification concerns. In situations where only summary data can be shared, differences in analysis methodology may result in inconsistent measures for meta-analysis (Rootes-Murdy et al., 2022).

      1.3. Administrative challenges

      Administrative challenges can arise when collaborating on an analysis, as various steps demand researchers' time and attention. These steps may include communicating between agencies, formulating and signing data-sharing agreements, agreeing on data preparation and analysis processes, procuring technical resources, monitoring and auditing processes, performing data transfer, initiating computations, disseminating results of analyses, and so on.

      The efficiency of collaborative analysis is influenced by how quickly these manual steps are executed. Synchronized availability of researchers can present a barrier to the collaboration process. When researchers work asynchronously, each step in a serial process requiring manual interaction introduces potential delays. This can be particularly challenging when researchers are distributed across multiple time zones or have limited time to perform manual tasks. Furthermore, researchers' availability may be constrained by the need for expertise and authority, such as having the authority to sign a data-sharing agreement or the technical expertise to run the appropriate Python script against a dataset. Often, these manual steps must be executed for each new analysis, which can slow down and even impede collaborative analysis. By addressing these administrative barriers, research teams can more effectively collaborate and streamline their analysis processes, ultimately contributing to the advancement of neuroimaging research.

      1.4. Methodological differences

      Variability in methodological approaches to data processing and analysis can make reproducing studies challenging (Vogt, 2023). To validate results, researchers must adhere to the exact methodology used in the original study, which necessitates clear communication of the specific methods employed. However, as methods are often chosen on a case-by-case basis, replicating studies can be time-consuming and difficult (Esteban et al., 2019), and sometimes even impossible. Moreover, when multiple studies adopt different methodologies, combining their results meaningfully becomes challenging, hindering the execution of meta-analyses.

      To overcome these barriers, we introduce COINSTAC,4 a tool that supports federated analysis for neuroimaging data.

      1.5. Federated analysis using COINSTAC

      Federated analysis (also federated learning, or decentralized analysis) (Plis et al., 2016; Kairouz et al., 2021; Rootes-Murdy et al., 2022) allows for multiple datasets to be used in analyses without source data being directly shared. Instead, data holders run computations on their local data and only share the outputs, which are often group-level data derivatives or summary statistics. For example, sites may compute an average or other summary on their local data and send that information. Typically, these summaries are much smaller, meaning that the source data are not shared, thereby removing the technical challenges associated with dataset transfer. A second potential benefit is additional privacy guarantees for the data holders. From a purely policy perspective, datasets are analyzed without being moved from their original location and data holders can determine which computations are and are not allowed on their data. From a technical perspective, strong end-to-end encryption can prevent third parties from acquiring the data derivatives. Depending on the trust model, additional privacy protections are possible, including emerging technologies like secure multiparty computation and differential privacy (Dwork and Roth, 2013; Bonawitz et al., 2016, 2017; Heikkilä et al., 2020; Imtiaz et al., 2021; Senanayake et al., 2022).

      The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC) (see text footnote 4) (Plis et al., 2016; Ming et al., 2017; Gazula et al., 2020, 2023; Turner et al., 2022) is a tool developed to support federated analysis specifically for neuroimaging data by overcoming the aforementioned barriers to collaboration through the use of federated analysis and standardization of collaboration methods. COINSTAC enables researchers to run decentralized neuroimaging analyses to perform larger collaborative studies (Rootes-Murdy et al., 2022; Turner et al., 2022). As of now, COINSTAC has attracted 115 users and has been downloaded 2,386 times, showcasing its growing reach and impact within the research community.

      The COINSTAC desktop application provides an easy-to-use graphical user interface (GUI) for coordinating and executing federated analysis pipelines among multiple collaborators. Image preprocessing and a variety of univariate and multivariate approaches (e.g., VBM regression, group ICA) can be completed within the app.

      For a comprehensive understanding of COINSTAC, its functionalities, and usage, readers are encouraged to refer to the following papers (Plis et al., 2016; Ming et al., 2017; Gazula et al., 2020, 2023; Turner et al., 2022).

      One limitation of the original implementation of COINSTAC is that it requires synchronized coordination (Jwa and Poldrack, 2022), users have to coordinate among data owners to confirm their systems are online, that the data are organized within the same structure and that the data are mapped properly within the COINSTAC system. The need for a centralized coordinator can delay contingent analyses.

      In this paper, we address this limitation by showcasing a method for hosting both private and public datasets where the datasets are persistently accessible for analysis using COINSTAC without the need for synchronized effort from data owners. Analysis of public datasets is made more accessible by removing the need to find, download, preprocess, and prepare datasets for analysis. We provide curated data vaults for various openly available neuroimaging data which COINSTAC users can simply include in their analyses. Access to private datasets can be restricted to a list of computations approved by the vault owner. Standardizing access to data vaults in the COINSTAC system simplifies analysis, optimizes computational performance, and promotes the reusability of neuroimaging datasets.

      2. Method

      In this section, we discuss COINSTAC and the extension of the COINSTAC framework with the addition of vaults, their architecture, and various use-cases they enable. All code for COINSTAC and COINSTAC Vaults can be found in the COINSTAC Github repository.5

      2.1. COINSTAC

      To understand how Vaults improve the workflow of federated analysis in COINSTAC, we will describe the COINSTAC system and how it is used.

      The main components of the COINSTAC system are: the desktop application, the central server, and computation containers. The desktop application provides a graphical user interface (GUI) and manages local computation containers used to participate in federated analyses. The central server manages the central database and runs the containers that act as the inner node in federated analyses.

      In the COINSTAC desktop application, users join collections of users called “consortia” to collaborate on an analysis pipeline. A consortium is a group formed by individual COINSTAC users, each with their machine that is capable of being a node in a federated analysis pipeline. Each member within a consortium will act as a node in the federated analysis group by running local computations inside of a container on their system.

      The following is how a researcher would use the COINSTAC user interface to create a consortium and run a federated analysis pipeline:

      Log in as a user

      Join (as a member) or create (as an owner) a consortium

      Configure a set of computations (a pipeline) to be performed by a consortium

      Map their local data to the pipeline

      Initiate the pipeline (a run)

      View the results of the pipeline run.

      2.2. COINSTAC Vaults 2.2.1. Purpose and high level overview

      The Vaults system is an extension of the COINSTAC platform that allows datasets to be persistently available for participation in federated analyses without requiring manual action from data owners apart from the initial setup. COINSTAC consortium owners can independently add Vaults members to their consortia, allowing vault datasets to participate in federated analyses without the need for coordination between consortia owners and Vault data owners. The Vault client allows datasets to be made available to the larger COINSTAC ecosystem, giving the ability for others to run pipelines using the Vault's data without it ever leaving its respective system.

      2.2.2. Using the GUI to add a Vault to a consortium and run an analysis

      Vault clients can be added to a consortium by a consortium owner without any action required from the owner of the Vault data, as shown in Figure 1.

      Adding vault data to an analysis pipeline.

      2.2.3. Hosting Vaults

      Making datasets available for federated analysis through COINSTAC is simple using Vaults. Vaults can be hosted in a variety of compute environments such as: on personal machines, on-premises servers, on a cluster of compute nodes, or in a virtual cloud. Both publicly available datasets and private datasets can be made available to the COINSTAC platform via Vaults. COINSTAC consortia can include any combination of diverse types of data: public and private datasets, data hosted on local machines, Vaults hosted by the Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), and third-party Vaults connected to COINSTAC as shown in Figure 2.

      Different types of participants interacting with COINSTAC.

      In addition to TReNDS-hosted vaults, data owners are able to host their own (public or private) data as Vaults (Figure 3) by using the coinstac-vault-client software package at https://www.npmjs.com/package/coinstac-vault-client.

      Process of creating a vault in COINSTAC.

      The process for hosting a dataset in a Vault is described below:

      Install the Vault client: The user installs the Vault client on their host machine.

      Request Vault integration: The user submits a request to the COINSTAC team for integrating the Vault into the COINSTAC ecosystem.

      Receive API keys: The COINSTAC team provides the user with the necessary API keys for the user's Vault client.

      Configure dataset directory: The user specifies the local directory containing the dataset in the Vault client configuration.

      Select approved computations: The user chooses a list of computations, granting permission for these computations to be executed on their vault data.

      After this process, the Vault becomes available for use in the COINSTAC system. Consortium owners can select to include the Vault in their consortium and perform federated analysis using Vault data. Whether the data was downloaded from a public repository or collected privately, the process is the same for both types of data since the source data stays on the user's local machine.

      2.2.4. Vault architecture overview

      The Vault client software package is built upon the same core code as the COINSTAC desktop application to manage containers and execute computation pipelines. However, it omits the user interface (UI) component and includes additional code that enables the client to be persistently online and available. The desktop application has been modified to allow consortium owners to add Vault clients to their consortium via the GUI.

      The Vault client is a NodeJS server running on the local machine, responsible for maintaining a persistent connection with the COINSTAC system using the coinstac-vault-client package. The server communicates with the COINSTAC central server using websockets and HTTP protocols. It manages the life-cycle of containers (Docker, Singularity) through the coinstac-container-manager package, which is responsible for isolating and executing the computations within the federated analyses. The Vault client also utilizes other core COINSTAC libraries such as coinstac-client-core, coinstac-client-server, coinstac-pipeline, and coinstac-common, all of which are npm packages, to ensure seamless integration with the COINSTAC ecosystem. An overview is shown in Figure 4.

      Architecture of vaults in COINSTAC.

      Message passing, which is an integral part of federated analyses, is handled by the Vault client using MQTT (MQ Telemetry Transport) and HTTP protocols. MQTT is a lightweight messaging protocol optimized for high-latency or unreliable networks.

      For pipeline runs in consortia that only use Vaults, the result data is uploaded to a secure Amazon S3 bucket, which can then be downloaded by consortium members using the desktop application. This ensures that the results are securely stored and easily accessible by authorized users.

      In summary, the Vault architecture in COINSTAC improves the overall efficiency and user experience of performing federated analyses. By maintaining a persistent connection, the Vault client ensures that datasets are readily available for analysis without the need for manual intervention by data owners. Additionally, the integration of the Vault client within the COINSTAC ecosystem allows for seamless interaction between the desktop application and the Vaults, making it simple for consortium owners to include Vault data in their federated analyses.

      2.2.5. Vault use-cases

      In this section, we present various use-cases that highlight the benefits and versatility of Vaults in COINSTAC.

      2.2.5.1. Curated Vaults

      TReNDS actively curates and hosts public datasets, making them readily available for the COINSTAC community through the creation of Vaults. These curated Vaults ensure that the public datasets are vetted, of high quality, and easily accessible. Users can contribute to this initiative by hosting Vaults for other public datasets, further expanding the range of data resources available within COINSTAC.

      2.2.5.2. User with local data

      A researcher with a local dataset can benefit from incorporating Vault datasets containing relevant variables into their analysis. Integrating multiple datasets is especially advantageous when the researcher's local data is inadequate for conducting a comprehensive analysis. Collaborating with other COINSTAC consortium members and leveraging data from Vaults enables researchers to enhance the sample size and statistical power of their study efficiently while preserving privacy and streamlining the process by eliminating manual collaboration steps.

      2.2.5.3. User with no local data

      For investigators who do not have their own data but want to analyze existing datasets, Vaults provide a valuable solution. The investigator can create a consortium, add selected Vaults using the COINSTAC UI, and initiate the analysis. This approach enables the investigator to obtain meaningful insights from existing datasets without needing to coordinate with the Vault data owners.

      2.2.5.4. User with limited storage/computing resources

      Vaults are also advantageous for researchers with limited storage or computing resources. For example, a researcher with a low-powered laptop and minimal storage capacity can still analyze large datasets by creating a consortium and running an analysis using only Vault clients. The data processing occurs on the respective Vault servers, and the results are sent back to the investigator, eliminating the need for high-capacity local hardware.

      By addressing these diverse use-cases, COINSTAC Vaults offer a flexible and efficient solution for researchers to access, collaborate, and analyze datasets in a federated environment.

      3. Results

      In this section, we conduct a series of analyses using multiple Vaults hosted by TRENDS, emphasizing the practical application and utility of the Vaults feature. We specifically focus on the TReNDS VBM COBRE, TReNDS FreeSurfer COBRE, Child Mind Institute (CMI) VBM, and TReNDS NeuroMark Group-ICA COBRE datasets. These datasets were chosen to be hosted in Vaults based on their relevance to the neuroimaging research community, and their potential to demonstrate the diverse capabilities of COINSTAC Vaults. The hosting decisions were made in coordination with the respective data owners.

      Our analyses highlight how the inclusion of Vault data can significantly increase sample size, thereby enhancing the statistical power of results. The diversity of datasets also underscores the flexibility and adaptability of COINSTAC Vaults, demonstrating how they can accommodate a wide range of research contexts and data types.

      3.1. TReNDS VBM COBRE

      The TReNDS VBM COBRE Vault contains structural MRI images from 152 participants, approximately half healthy volunteers and half individuals diagnosed with schizophrenia, collected as part of the Mind Research Network COBRE study (Aine et al., 2017). The Vault includes gray matter MRI images that have been run through a VBM preprocessing pipeline in the SPM toolbox. In addition, we have demographic information, symptom severity scales, and cognitive measures to select from when building a desired model. Figure 5 shows the beta images from running VBM regression on all the voxels from normalized smoothed gray matter images from the TReNDS COBRE Vault. Age, sex, and diagnosis information were used as covariates in the regression model. Results show decreases in brain volume with age, reduced volume in visual areas and along the gray/white boundary in females, and reduced volume in insular-temporal and medial frontal regions in schizophrenia patients, consistent with previous results.

      (A–C) Rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using COBRE VBM data Vault in COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male's gray matter volume is greater than female's gray matter volume and vice versa. For diagnosis, positive values indicate control's gray matter volume is greater than patient's gray matter volume and vice versa.

      The following section describes this use-case with 55 participant's structural MRI scans collected under MCIC project (Gollub, 2013). The results from running regression on the normalized smoothed gray matter images from this project are shown in Figure 6.

      (A–C) Rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using MCIC sMRI data in COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male's gray matter volume is greater than female's gray matter volume and vice versa. For diagnosis, positive values indicate control's gray matter volume is greater than patient's gray matter volume and vice versa.

      Using the MCIC dataset, we similarly see widespread reduction in brain volume for age, visual and gray/white boundary reductions in volume in females, and insular-temporal and medial frontal (as well as more wide spread) reductions in schizophrenia patients.

      The TReNDS VBM COBRE Vault was combined with the MCIC dataset, allowing for an increased sample size, in the same regression analysis to examine diagnostic effects while accounting for age and sex. The combined dataset was largely consistent with the individual site analysis, with the exception of the male/female effect which shows a more complex pattern of increases and decreases, though still largely conforming to reductions in white/gray matter boundary and primary visual area volumes (Gupta et al., 2015). Results of this study are shown in Figure 7.

      (A–C) MCIC+COBRE vault: rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using MCIC sMRI data along with the data in the COBRE Vault in COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male's gray matter volume is greater than female's gray matter volume and vice versa. For diagnosis, positive values indicate control's gray matter volume is greater than patient's gray matter volume and vice versa.

      3.2. TReNDS FreeSurfer COBRE

      This Vault contains data from 152 subjects, approximately half controls and half individuals with chronic schizophrenia, collected as part of the Mind Research Network COBRE study.6 The Vault includes cortical and sub-cortical volumetric and surface-based measurements from two FreeSurfer atlases, Desikan-Killiany and Destrieux. In addition, we have a total of 11 variables across demographic, cognitive, and substance use to select from when building a desired model.

      We ran Ridge regression on the above Vault data on Freesurfer volumetric and surface based measurements on about 500 regions of interest. We noticed the following differences between controls and patients.

      Controls have higher values in temporal lobe, as shown in the thickness measurements of tables (Tables 15).

      Global freesurfer stats for lh_S_temporal_inf_thickness.

      Global stats – lh_S_temporal_inf_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)
      Coefficient 2.5552 -0.0052 0.0323 0.1071
      t stat 44.8963 -5.014 1.0642 4.1085
      P-value 0 0 0.289 1.00E-04
      R squared 0.237444911
      Degrees of freedom 145

      Global freesurfer stats for rh_S_octemp_lat_thickness.

      Global Stats – rh_S_oc-temp_lat_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)
      Coefficient 2.5331 −0.0036 0.0127 0.1158
      t stat 38.8572 −3.0471 0.3663 3.878
      P-value 0 0.0027 0.7147 2.00E-04
      R squared 0.149884354
      Degrees of freedom 145

      Global freesurfer stats for lh_middletemporal_thickness.

      Global Stats – lh_middletemporal_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)
      Coefficient 3.0038 −0.0057 −0.0134 0.0829
      t stat 60.2257 −6.3161 −0.5056 3.63
      P-value 0 0 0.6139 4.00E-04
      R squared 0.275552216
      Degrees of freedom 145

      Global freesurfer stats for lh_superiortemporal_thickness.

      Global Stats – lh_superiortemporal_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)
      Coefficient 2.9341 −0.0067 0.0169 0.0682
      t stat 52.568 −6.6199 0.5679 2.6659
      P-value 0 0 0.571 0.0085
      R squared 0.266849477
      Degrees of freedom 145

      Global freesurfer stats for Left_Inf_Lat_Vent.

      Global Stats – Left_Inf_Lat_Vent β0 (const) β1 (age) β2 (sex) β3 (isControl_True)
      Coefficient 428.1455 4.8982 −144.8783 −164.4922
      t stat 5.1293 3.2264 −3.2585 −4.3021
      P-value 0 0.0015 0.0014 0
      R squared 0.22384763
      Degrees of freedom 145
      3.3. Child Mind Institute (CMI) VBM VAULT

      This Vault contains data from 922 children and adolescents (ages 6–22, 603 Male and 319 female), collected as part of the Healthy Brain Network study (Alexander et al., 2017). The Vault includes gray matter segmentation data from an SPM VBM preprocessing pipeline. In addition, we have a total of 11 variables across various demographic, cognitive and substance use domains to select from when building a desired model.

      Figure 8 shows the beta images from running regression on all the voxels from normalized smoothed gray matter images from the CMI VBM VAULT. Age and sex were used as covariates in the regression model. Results were largely consistent with those from the MCIC and COBRE analyses, showing widespread volume reductions with age, and reductions along the gray/white matter boundary in females.

      (A, B) Rendered images show voxel-wise β values corresponding to the age and sex covariates using CMI VBM Vault data in COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male's gray matter volume is greater than female's gray matter volume and vice versa.

      3.4. TReNDS NeuroMark Group-ICA COBRE VAULT

      Group ICA (Calhoun et al., 2001) is one of the frequently used preprocessing computations for neuroimaging data. Data preprocessed with group ICA can be used to perform different types of analyses. This GICA Vault comprises data from 189 subjects from the COBRE project analyzed with Neuromark template which uses 66 predefined ROIs. This Vault data includes independent component analysis (ICA) maps, Functional network connectivity maps (FNC) data etc. that have been generated using spatially constrained ICA with the Neuromark_fMRI_1.0 template (available in the GIFT software)7,8 including 53 intrinsic networks (components). This Vault data can be readily used for secondary analysis like mancova. In this case, we use the GICA pre-processed data from the Vault to perform univariate regression analysis, the results of which are shown in Figure 9.

      (A–C) Rendered images show univariate regression results demonstrating the effects of age and sex on correlation between the 53 independent components and FNC correlation map using vault data in COINSTAC.

      The Neuromark fMRI domains identified in Du et al. Briefly, these seven identified network templates were divided based on anatomical and functional properties (Du et al., 2020). In each subfigures, one color in the composite maps corresponds to an intrinsic connectivity network (ICN). The Neuromark_fMRI_1.0 template is available in the GIFT software (Figure 10).

      The Neuromark fMRI 1.0 template with 53 intrinsic networks (components) from 7 major networks.

      4. Discussion

      In recent decades, data sharing has driven substantial advancements in the field of neuroimaging and expanded opportunities for open science collaboration. Although data sharing has undeniable merits, it also faces inherent limitations, including technological, policy, administrative, and methodological barriers that can hinder progress. COINSTAC Vaults and the federated computing framework within COINSTAC uniquely address these challenges by enabling data analysis while maintaining privacy protection, specifically in the context of neuroimaging research. The “always-on” status of Vaults streamlines collaboration between institutions by eliminating the need for synchronized efforts across users. The accessibility and user-friendly interface of COINSTAC Vaults serve as powerful tools for reproducible research, an area that has faced significant criticism in recent years. By bolstering the collaborative capabilities of federated learning and addressing the limitations of traditional data sharing, COINSTAC Vaults provide a cutting-edge solution for the neuroimaging community, pushing the boundaries of data analysis and open science.

      COINSTAC offers a user-friendly GUI for the neuroimaging field, enabling federated learning on neuroimaging data with ease. Its extensive library includes numerous algorithms and pipelines, facilitating efficient processing of large datasets. Currently, over twenty computations are available in open-source repositories, allowing users to create versatile analytic pipelines. The integration of Vaults further enhances the user experience by providing access to diverse datasets, enabling efficient analysis with robust data, and fostering collaboration across institutions asynchronously.

      Compared to OpenNeuro,9 and OpenfMRI (Poldrack and Gorgolewski, 2017) like projects, where users can access data, download them and perform analysis on their own, Vaults allow users to perform neuroimaging analysis in federated learning platform immediately, without the need to download data and toolboxes onto a centralized computing environment. Vaults can help researchers to run an initial test on a data or their algorithm quickly to help setup their hypotheses or validate it to save time before they commit to a big project.

      In addition to being faster to execute by being immediately available with no downloading or manual coordination, curated Vaults that follow documented standards make studies easier to design, execute, and reproduce. For example: Neuroimaging datasets can contain a large number of variables that apply to each subject: demographic information, cognitive measures, etc. The number of these variables can range from tens to hundreds. Using standard naming conventions makes it easier for researchers to understand what each variable tracks so that they can select the relevant variables for their study. Standard and predictable ways for handling missing data in Vaults makes it easier for researchers to design their analyses.

      COINSTAC is unique in its commitment to open science, with its open-source platform promoting seamless integration of modular computations and streamlining federated analyses. The addition of COINSTAC Vaults reinforces this commitment by simplifying dataset inclusion in federated analyses, encouraging community contributions, and preserving privacy for private datasets. By offering easy access to public datasets and enabling secure contributions from private dataset owners, COINSTAC Vaults foster collaboration and dedication to open science.

      4.1. Limitations and challenges

      COINSTAC Vaults offer numerous benefits, but there are also limitations and challenges to consider, particularly in the areas of data privacy and security, and resource usage.

      One concern is that allowing arbitrary summary queries on a dataset might enable an attacker to reconstruct the data. To mitigate such risks, the system must be privacy-preserving from “end-to-end,” incorporating techniques like secure multiparty computation or differential privacy. Implementing these methods can be difficult due to floating point implementation issues (Mironov, 2012; Ilvento, 2020a,b) and the introduction of noise, which may increase error or variance in the analysis results.

      While differentially private algorithms can provide stronger privacy guarantees, sharing data derivatives without differential privacy might be adequate in some situations, depending on the trust model and privacy concerns of data holders. These issues should be addressed on a case-by-case basis.

      Vault owners can currently restrict computations on their data to a pre-approved list. To enhance privacy protection, further improvements are recommended. Potential solutions include allowing Vault owners to:

      Approve or deny individual analysis runs.

      Specify users and consortia that are allowed to run analyses.

      Limit the overall number of computation runs for a vault.

      Set expiration dates for specific approval permissions.

      Another challenge is handling slowdowns or crashes during resource-intensive analyses due to high compute usage. To address this issue, Vault owners can be given more control over resource usage and compute capacity. They could limit the number of concurrent computations and overall CPU usage. Improving compute capacity could involve strategies like deploying multiple instances behind a load balancer or dynamically scaling resources.

      Additional challenges include data distribution, network bandwidth, and communication speed. Federated learning and open-source solutions can help address some of these problems, but further research and development are needed to optimize COINSTAC Vaults' performance in various research settings. Our “Decentralized Sparse Deep Artificial Neural Networks in COINSTAC (CPU and GPU enabled)” algorithm allows users to save network bandwidth when transferring thousands of derived data/machine learning parameters across nodes.

      In summary, COINSTAC Vaults mark a significant advancement in federated neuroimaging research, data privacy preservation, and open science promotion. By tackling the existing limitations and challenges, COINSTAC Vaults can further improve collaboration and innovation within the field.

      5. Conclusion

      The neuroimaging field is experiencing rapid growth, generating substantial data volumes. However, access to this data is challenged by technological, privacy, administrative, and methodological constraints. In this study, we present COINSTAC Vaults as a solution that streamlines data access and analysis, specifically in the context of neuroimaging research. COINSTAC Vaults ensure continuous availability of high-quality data, promoting the advancement of open science and fostering efficient collaboration between researchers.

      We invite researchers to use COINSTAC Vaults in their studies and to host their own datasets using COINSTAC Vaults. By adopting COINSTAC Vaults, the neuroimaging community can overcome the barriers associated with traditional data sharing and analysis methods, paving the way for groundbreaking discoveries.

      5.1. Future work

      The long-term vision for COINSTAC and COINSTAC Vaults includes:

      Introducing new user interface features, such as the ability to search Vaults and filter by covariates, to improve user experience and efficiency.

      Making new datasets available as Vaults, including those from OpenNeuro, the Autism Brain Imaging Data Exchange (ABIDE), the National Institute of Mental Health Data Archive (NDA), the Open Access Series of Imaging Studies (OASIS), and the Image and Data Archive (IDA), to enhance the diversity of Vaults.

      Increase BIDS (Brain Imaging Data Structure) support to all major neuroimaging modalities and Vault datasets, to ensure interoperability and ease of use.

      Increase compliance to programs such as the FAIR (Findability, Accessibility, Interoperability, and Reuse) Guiding Principles for scientific data management and stewardship, to enhance the overall data sharing ecosystem.

      Exploring the integration of differential privacy techniques to further safeguard data privacy, while preserving the utility of data analysis.

      Data availability statement

      Publicly available datasets were analyzed in this study. This data can be found here: http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/sharing_neuro.html, http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

      Author contributions

      DM, RK, and VC: conceptualization. DM, SB, SPa, and PP: methodology. DM, SB, SPa, KR-M, PP, BB, and JR: writing—original draft preparation. SB and SPa: data analysis. SPl and VC: supervision. All authors: writing—review and editing, read, and agreed to the published version of the manuscript.

      Funding

      This work was funded by the National Institutes of Health (Grants: R01DA040487, R01DA049238, and R01MH121246).

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher's note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      1https://nda.nih.gov/

      2https://www.speedtest.net/global-index

      3https://www.apple.com/macbook-pro-14-and-16/specs/

      4https://coinstac.org/

      5https://github.com/trendscenter/coinstac

      6http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

      7http://trendscenter.org/software/gift

      8http://trendscenter.org/data

      9https://openneuro.org/

      References Aine C. J. Bockholt H. J. Bustillo J. R. Cañive J. M. Caprihan A. Gasparovic C. . (2017). Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinformatics 15, 343364. 10.1007/s12021-017-9338-928812221 Alexander L. M. Escalera J. Ai L. Andreotti C. Febre K. Mangone A. . (2017). An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 4, 126. 10.1038/sdata.2017.18129257126 Andrade C. (2020). Sample size and its importance in research. Indian J. Psychol. Med. 42, 102103. 10.4103/IJPSYM.IJPSYM_504_1931997873 Babayan A. Baczkowski B. Cozatland R. Dreyer M. Engen H. Erbey M. . (2022). MPI-Leipzig Mind-Brain-Body Dataset.30747913 Biswal B. B. Mennes M. Zuo X.-N. Milham M. P. (2010). Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107, 47344739. 10.1073/pnas.091185510720176931 Bonawitz K. Ivanov V. Kreuter B. Marcedone A. McMahan H. B. Patel S. . (2016). Practical Secure Aggregation for Federated Learning on User-Held Data. Technical Report. 10.48550/arXiv.1611.04482 Bonawitz K. Ivanov V. Kreuter B. Marcedone A. McMahan H. B. Patel S. . (2017). “Practical secure aggregation for privacy-preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17 (New York, NY: ACM), 11751191. Calhoun V. D. Adali T. Pearlson G. Pekar J. (2001). “Group ICA of functional MRI data: separability, stationarity, and inference,” in Proceeedings of the International Conference on ICA and BSS (San Diego, CA), 155. Du Y. Fu Z. Sui J. Gao S. Xing Y. Lin D. . (2020). NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. Neuroimage Clin. 28:102375. 10.1016/j.nicl.2020.10237532961402 Dwork C. Roth A. (2013). The algorithmic foundations of differential privacy. Found. Trends Theoret. Comput. Sci. 9, 211407. 10.1561/0400000042 Esteban O. Markiewicz C. J. Blair R. W. Moodie C. A. Isik A. I. Erramuzpe A. . (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111116. 10.1038/s41592-018-0235-430532080 Gazula H. Kelly R. Romero J. Verner E. Baker B. T. Silva R. F. . (2020). COINSTAC: Collaborative informatics and neuroimaging suite toolkit for anonymous computation. J. Open Source Softw. 5, 2166. 10.21105/joss.02166 Gazula H. Rootes-Murdy K. Holla B. Basodi S. Zhang Z. Verner E. . (2023). Federated analysis in COINSTAC reveals functional network connectivity and spectral links to smoking and alcohol consumption in nearly 2,000 adolescent brains. Neuroinformatics 21, 287301. 10.1007/s12021-022-09604-436434478 Gollub R. L. (2013). The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 11, 367388. 10.1007/s12021-013-9184-323760817 Gorgolewski K. J. Auer T. Calhoun V. D. Craddock R. C. Das S. Duff E. P. . (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 19. 10.1038/sdata.2016.4427326542 Gupta C. N. Calhoun V. D. Rachakonda S. Chen J. Patel V. Liu J. . (2015). Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophr. Bull. 41, 11331142. 10.1093/schbul/sbu17725548384 Heikkilä M. A. Koskela A. Shimizu K. Kaski S. Honkela A. (2020). Differentially private cross-silo federated learning. arXiv preprint arXiv: 2007.05553. 10.48550/arXiv.2007.05553 Homer N. Szelinger S. Redman M. Duggan D. Tembe W. Muehling J. . (2008). Resolving individuals contributing trace amounts of dna to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet. 4, e1000167. 10.1371/journal.pgen.100016718769715 Ilvento C. (2020a). “Implementing differentially private integer partitions,” in Presented at the 2020 Workshop on the Theory and Practice of Differential Privacy. Ilvento C. (2020b). “Implementing sparse vector,” in Presented at the 2020 Workshop on the Theory and Practice of Differential Privacy. Imtiaz H. Mohammadi J. Silva R. Baker B. Plis S. M. Sarwate A. D. . (2021). A correlated noise-assisted decentralized differentially private estimation protocol, and its application to fMRI source separation. IEEE Trans. Signal Process. 69, 63556370. 10.1109/TSP.2021.312654635755147 Jwa A. S. Poldrack R. A. (2022). The spectrum of data sharing policies in neuroimaging data repositories. Hum. Brain Mapp. 43, 27072721. 10.1002/hbm.2580335142409 Kairouz P. McMahan H. B. Avent B. Bellet A. Bennis M. Bhagoji A. N. . (2021). Advances and open problems in federated learning. Found. Trends Mach. Learn. 14, 1210. 10.1561/2200000083 Markiewicz C. J. Gorgolewski K. J. Feingold F. Blair R. Halchenko Y. O. Miller E. . (2021). The OpenNeuro resource for sharing of neuroscience data. eLife 10, e71774. 10.7554/eLife.71774.sa234658334 McGuire A. L. Basford M. Dressler L. G. Fullerton S. M. Koenig B. A. Li R. . (2011). Ethical and practical challenges of sharing data from genome-wide association studies: the emerge consortium experience. Genome Res. 21, 10011007. 10.1101/gr.120329.11121632745 Ming J. Verner E. Sarwate A. Kelly R. Reed C. Kahleck T. . (2017). COINSTAC: decentralizing the future of brain imaging analysis. F1000Research 6, 1512. 10.12688/f1000research.12353.129123643 Mironov I. (2012). “On significance of the least significant bits for differential privacy,” in Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS) (Raleigh, NC), 650661. Plis S. M. Sarwate A. D. Wood D. Dieringer C. Landis D. Reed C. . (2016). COINSTAC: a privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Front. Neurosci. 10, 365. 10.3389/fnins.2016.0036527594820 Poldrack A. R. Gorgolewski K. J. (2017). OpenfMRI: open sharing of task fMRI data. Neuroimage 144(Pt B), 259261. 10.1016/j.neuroimage.2015.05.07326048618 Rootes-Murdy K. Gazula H. Verner E. Kelly R. DeRamus T. Plis S. . (2022). Federated analysis of neuroimaging data: a review of the field. Neuroinformatics 20, 377390. 10.1007/s12021-021-09550-734807353 Senanayake N. Podschwadt R. Takabi D. Calhoun V. Plis S. (2022). NeuroCrypt: machine learning over encrypted distributed neuroimaging data. Neuroinformatics 20, 91108. 10.1007/s12021-021-09525-833948898 Thompson P. M. Andreassen O. A. Arias-Vasquez A. Bearden C. E. Boedhoe P. S. Brouwer R. M. . (2017). ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. Neuroimage 145, 389408. 10.1016/j.neuroimage.2015.11.05726658930 Thompson P. M. Stein J. L. Medland S. E. Hibar D. P. Vasquez A. A. Renteria M. E. . (2014). The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153182. 10.1007/s11682-013-9269-524399358 Turner J. A. Calhoun V. D. Thompson P. M. Jahanshad N. Ching C. R. Thomopoulos S. I. . (2022). ENIGMA + COINSTAC: improving findability, accessibility, interoperability, and re-usability. Neuroinformatics 20, 261275. 10.1007/s12021-021-09559-y34846691 Vogt N. (2023). Reproducibility in MRI. Nat. Methods 20, 34. 10.1038/s41592-022-01737-336635546
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016fzchain.com.cn
      www.l93fh.net.cn
      lbuufo.com.cn
      www.eleonline.com.cn
      www.jlfydj.org.cn
      jjhgsme.com.cn
      icsngr.com.cn
      www.qzdszcdy.org.cn
      www.mnsfbd.com.cn
      nbfxj.net.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p