Front. Microbiol. Frontiers in Microbiology Front. Microbiol. 1664-302X Frontiers Media S.A. 10.3389/fmicb.2024.1464257 Microbiology Original Research The nasal mycobiome of individuals with allergic rhinitis and asthma differs from that of healthy controls in composition, structure and function Pérez-Losada Marcos 1 2 * Castro-Nallar Eduardo 3 4 García-Huidobro Jenaro 5 Boechat José Laerte 6 7 Delgado Luis 6 7 8 Rama Tiago Azenha 6 8 Oliveira Manuela 9 10 1Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States 2CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal 3Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile 4Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile 5Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Talca, Chile 6Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal 7Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, Portugal 8Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, Portugal 9UCIBIO, Research Unit on Applied Molecular Biosciences, Forensic Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra, Gandra, Portugal 10Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra, Gandra, Portugal

Edited by: Alina Maria Holban, University of Bucharest, Romania

Reviewed by: Richard George Douglas, The University of Auckland, New Zealand

Elopy Sibanda, National University of Science and Technology, Zimbabwe

Yu Sun, South China Agricultural University, China

*Correspondence: Marcos Pérez-Losada, mlosada@gwu.edu
17 12 2024 2024 15 1464257 14 07 2024 17 10 2024 Copyright © 2024 Pérez-Losada, Castro-Nallar, García-Huidobro, Boechat, Delgado, Rama and Oliveira. 2024 Pérez-Losada, Castro-Nallar, García-Huidobro, Boechat, Delgado, Rama and Oliveira

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Allergic rhinitis (AR) and asthma (AS) are two of the most common chronic respiratory diseases and a major public health concern. Multiple studies have demonstrated the role of the nasal bacteriome in AR and AS, but little is known about the airway mycobiome and its potential association to airway inflammatory diseases. Here we used the internal transcriber spacers (ITS) 1 and 2 and high-throughput sequencing to characterize the nasal mycobiome of 339 individuals with AR, AR with asthma (ARAS), AS and healthy controls (CT). Seven to ten of the 14 most abundant fungal genera (Malassezia, Alternaria, Cladosporium, Penicillium, Wallemia, Rhodotorula, Sporobolomyces, Naganishia, Vishniacozyma, and Filobasidium) in the nasal cavity differed significantly (p ≤ 0.049) between AS, AR or ARAS, and CT. However, none of the same genera varied significantly between the three respiratory disease groups. The nasal mycobiomes of AR and ARAS patients showed the highest intra-group diversity, while CT showed the lowest. Alpha-diversity indices of microbial richness and evenness only varied significantly (p ≤ 0.024) between AR or ARAS and CT, while all disease groups showed significant differences (p ≤ 0.0004) in microbial structure (i.e., beta-diversity indices) when compared to CT samples. Thirty metabolic pathways (PICRUSt2) were differentially abundant (Wald’s test) between AR or ARAS and CT patients, but only three of them associated with 5-aminoimidazole ribonucleotide (AIR) biosynthesis were over abundant (log2 Fold Change >0.75) in the ARAS group. AIR has been associated to fungal pathogenesis in plants. Spiec-Easi fungal networks varied among groups, but AR and ARAS showed more similar interactions among their members than with those in the CT mycobiome; this suggests chronic respiratory allergic diseases may disrupt fungal connectivity in the nasal cavity. This study contributes valuable fungal data and results to understand the relationships between the nasal mycobiome and allergy-related conditions. It demonstrates for the first time that the nasal mycobiota varies during health and allergic rhinitis (with and without comorbid asthma) and reveals specific taxa, metabolic pathways and fungal interactions that may relate to chronic airway disease.

allergy asthma ITS mycobiome nasal cavity Portugal rhinitis PTDC/ASP-PES/27953/2017 POCI-01-0145-FEDER-027953 IF/00764/2013 European Regional Development Fund10.13039/501100008530 Fundação para a Ciência e a Tecnologia10.13039/501100001871 FCT European Social Fund10.13039/501100004895 Ministério da Educação e Ciência10.13039/501100003381 section-at-acceptance Infectious Agents and Disease

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Allergic rhinitis and asthma are two of the most common chronic airway diseases in Western countries inflicting a relevant health and economic burden to society (Todo-Bom et al., 2007; Sa-Sousa et al., 2012; Fonseca et al., 2021). In Portugal, allergic rhinitis has a prevalence of 9–10% in children and adolescents and 26.1% in adults (Todo-Bom et al., 2007; Falcão et al., 2008; Muc et al., 2014); while asthma has a prevalence of 8.4% in children and adolescents and 6.8% in adults (Sa-Sousa et al., 2012; Muc et al., 2014; Ferreira-Magalhaes et al., 2016).

      Allergic rhinitis is considered an inflammation of the nasal mucosa, characterized by sneezing, congestion, itching, and rhinorrhea (Steelant et al., 2016; Steelant et al., 2018; Acevedo-Prado et al., 2022; Savoure et al., 2022). Similarly, asthma is a multifactorial condition of the airways characterized by obstruction, inflammation, and mucous production (Mims, 2015; Licari et al., 2018; Dharmage et al., 2019). Allergic rhinitis and asthma frequently coexist (Compalati et al., 2010; Pite et al., 2014; Ferreira-Magalhaes et al., 2015; Small et al., 2018; Bousquet et al., 2019)—more than 46% of the Portuguese patients with asthma also show allergic rhinitis (Valero et al., 2009; Acevedo-Prado et al., 2022). This suggests that they may represent a combined airway inflammatory disease with several pathophysiological, epidemiological, and clinical connections within the concept of a united airway disease (Bergeron and Hamid, 2005; Pawankar, 2006; Kim et al., 2008; Compalati et al., 2010; Bousquet et al., 2023).

      Multiple metataxonomic and metagenomic studies have already demonstrated that the upper airway bacteriome is a gatekeeper of respiratory health and plays a significant role in the onset, development, and severity of both allergic rhinitis (Lal et al., 2017; Bender et al., 2020; Gan et al., 2021; Chen et al., 2022; Kim et al., 2022; Azevedo et al., 2023; Pérez-Losada et al., 2023a,b) and asthma (Bogaert et al., 2011; Brar et al., 2012; Huang and Boushey, 2014; Castro-Nallar et al., 2015; Dickson and Huffnagle, 2015; Huang and Boushey, 2015; Pérez-Losada et al., 2015; Teo et al., 2015; Pérez-Losada et al., 2016a,b; Pérez-Losada et al., 2017; Dinwiddie et al., 2018; Frati et al., 2018; Pérez-Losada et al., 2018; Hufnagl et al., 2020; Losol et al., 2021; Raita et al., 2021). These same studies have also shown that the nasal cavity is a major reservoir for opportunistic bacterial pathogens, which can spread to other sections of the respiratory tract and potentially induce respiratory illnesses (Garcia-Rodriguez and Fresnadillo Martinez, 2002; Hilty et al., 2010; Bogaert et al., 2011; Dickson et al., 2013; Biesbroek et al., 2014; Huang and Boushey, 2015; Pérez-Losada et al., 2015; Teo et al., 2015; Pérez-Losada et al., 2016b; Prevaes et al., 2016; Huang, 2017; Lal et al., 2017; Pérez-Losada et al., 2017; Esposito and Principi, 2018; Pérez-Losada et al., 2018; Gan et al., 2021; Chen et al., 2022; Kim et al., 2022).

      Less is known, however, about the human mycobiome and its role in chronic airway diseases (Goldman et al., 2018; Rick et al., 2020; van Tilburg Bernardes et al., 2020; Oliveira et al., 2023). The recent inclusion of fungi in human microbiome research has revealed that they are also implicated in asthma onset and development in susceptible individuals (Carpagnano et al., 2016; Goldman et al., 2018; Rick et al., 2020; van Tilburg Bernardes et al., 2020; Yuan et al., 2023), although very few studies have surveyed the upper airways (Jung et al., 2015; Yuan et al., 2023). Similarly, to the best of our knowledge, only one study so far has characterized the airway mycobiome of patients with allergic rhinitis (Jung et al., 2015); hence, the taxonomic composition and interactions, and functional diversity of the fungal communities inhabiting the nose remain unknown, or poorly understood at best, in both asthmatic and rhinitic patients.

      In this study, we have used the internal transcriber spacer (ITS) 1 and 2 and next-generation sequencing to characterize the nasal mycobiomes of children and adults with allergic rhinitis (with and without asthma comorbidity), asthma and healthy controls. We describe unique fungal taxonomic and functional profiles across those four clinical groups and compare their composition, structure, metabolism, and network interactions.

      Materials and methods Participants

      All participants enrolled in this study were part of the ASMAPORT Project (PTDC/SAU-INF/27953/2017). This study was approved by the “Comissão de Ética para a Saúde” of the Centro Hospitalar Universitário São João/Faculdade de Medicina (Porto, Portugal) in March 2017, Parecer_58-17. Written consent was obtained from all independent participants or their legal guardians using the informed consent documents approved by the Comissão de Ética.

      ASMAPORT was a cross-sectional study of Portuguese children and adults designed to investigate host-microbe during asthma and rhinitis. Participants were recruited from northern Portugal while attending the outpatient clinic of the Serviço de Imunoalergologia in the Centro Hospitalar Universitário São João from July 2018 to January 2020. Healthy volunteers from the Porto area with no history of respiratory illness were also enrolled but did not complete the questionnaire or provide clinical information. The diagnosis of allergic rhinitis was confirmed by an allergy specialist based on clinical criteria and a positive skin prick or specific IgE test to at least one clinically relevant inhalant allergen in the region (Pereira et al., 2006; Bousquet et al., 2009). Diagnosis of asthma was confirmed by the attending physician based in the presence of typical symptoms in the previous 12 months or a positive bronchodilator responsiveness testing with salbutamol (Silva et al., 2019). Further details are provided in Pérez-Losada et al. (2023a,b).

      Sampling

      A total of 339 individuals participated in this study (Supplementary Table S1). They were categorized into four clinical groups: allergic rhinitis (AR = 47), allergic rhinitis with asthma (ARAS = 155), asthma (AS = 12), and healthy controls (CT = 125 individuals). Samples were collected by swabbing the right and left nostrils. Further detail is provided in Pérez-Losada et al. (2023a). Because of the sample size of the AS group, we have only used AS in some of the pairwise comparisons and applied statistical tests that are moderately robust to small sample sizes (see below). Similar considerations were also implemented in other microbiome studies of asthma and rhinitis including small groups or cohorts (Hilty et al., 2010; Castro-Nallar et al., 2015; Pérez-Losada et al., 2015; Lal et al., 2017; Fazlollahi et al., 2018; Pérez-Losada et al., 2023a,b).

      High-throughput sequencing

      Total DNA was extracted from swabs using the ZymoBIOMICS™ DNA Miniprep Kit D4300. DNA extractions were prepared for sequencing using the Schloss’ MiSeq_WetLab_SOP protocol in Kozich et al. (2013). DNA samples were amplified and sequenced for the ITS1-ITS2 region (~230 bp) following the protocols used in the Earth Microbiome Project (Thompson et al., 2017) and primer ITS1F Fwd: CTTGGTCATTTAGAGGAAGTAA and primer ITS2 Rev: GCTGCGTTCTTCATCGATGC—https://earthmicrobiome.org. All samples were sequenced in a single run of the Illumina MiSeq sequencing platform at the University of Michigan Medical School. Negative controls processed as above showed no PCR band on an agarose gel. We used eight water and reagent negative controls and five mock communities (i.e., reference samples with a known composition) to detect contaminating microbial DNA within reagents and measure the sequencing error rate. We did not find evidence of contamination and our sequencing error rate was as low as 0.0051%.

      Mycobiome analyses

      Internal transcriber spacer amplicon sequence variants (ASV) in each sample were inferred using dada2 version 1.18 (Callahan et al., 2016) and following author’s recommendations for the ITS region.1 Reads were filtered using standard parameters, with no uncalled bases, maximum of two expected errors and truncating reads at a quality score of 2 or less. Forward and reverse reads were merged and chimeras were identified. Taxonomic assignment was performed against the UNITE v9.0 2023-07-18 database (Nilsson et al., 2019) using the implementation of the RDP naive Bayesian classifier available in the dada2 R package (Wang et al., 2007; Quast et al., 2013). ASV sequences were aligned in MAFFT (Katoh and Standley, 2013) and used to build a tree with FastTree (Price et al., 2010). The resulting ASV tables and phylogenetic tree were imported into phyloseq (McMurdie and Holmes, 2013) for further analysis. Sequence files and associated metadata and BioSample attributes for all samples used in this study have been deposited in the NCBI (PRJNA1107919). Metadata and ASV abundances with corresponding taxonomic classifications are presented in Supplementary Tables S1, S2, respectively.

      We normalized our samples using the negative binomial distribution (McMurdie and Holmes, 2014) implemented in the Bioconductor package DESeq2 (Love et al., 2014). This approach simultaneously accounts for library size differences and biological variability and has increased sensitivity if groups include less than 20 samples (Weiss et al., 2017). Taxonomic and phylogenetic alpha-diversity (within-sample) were estimated using Chao1 richness and Shannon, Abundance-based Coverage Estimator (ACE), and Phylogenetic Diversity (PD) indices. Beta-diversity (between-sample) was estimated using phylogenetic Unifrac (unweighted and weighted), Bray–Curtis and Jaccard distances, and dissimilarity between samples was explored using principal coordinates analysis (PCoA).

      Differences in taxonomic composition (phyla and genera) and alpha-diversity indices between disease groups (AR, ARAS, and AS) and healthy individuals (CT) were assessed using linear models (mixed and standard) analysis to account for the non-independence of subjects (random effect)—lmer4 R package (Bates et al., 2015). We also included age, season and sex as covariables in all our initial model comparisons. Lineal models with randomized subjects were not better than those without random effects, as suggested by their similar or lower scores for the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Additionally, none of the covariables were significant for any of the taxonomic and diversity indices compared. Beta-diversity indices were compared using permutational multivariate ANOVA (adonis)—vegan R package (Dixon, 2003). We applied the Benjamini–Hochberg method at alpha = 0.05 to correct for multiple hypotheses testing (Cook, 1977; Benjamini and Hochberg, 1995). All the analyses were performed in R (R Development Core Team, 2008) and RStudio (RStudio Team, 2015).

      Functional analyses

      Metabolic pathways were predicted by imputation of gene families and genomes as implemented in PICRUSt2 (Douglas et al., 2020). Briefly, we used the fungi ITS reference database provided by the developers to align our ITS sequences (minimum alignment 0.6) and then place them onto an ITS phylogenetic tree. Using ASV abundances obtained in dada2, we predicted gene family profiles and ultimately sample pathway abundances. Pathways were annotated using the MetaCyc database (Caspi et al., 2020) and differential pathway abundance among groups was determined in DESeq2 (Wald test; adjusted p value <0.01). Statistical analyses and visualization were conducted using functions in the ggpicrust R package (Yang et al., 2023).

      Network analyses

      Changes in fungal community structure were explored using covariation network analysis as implemented in Spiec-Easi (Kurtz et al., 2015). We estimated networks for AR, ARAS, and CT at the genus level (abundance filter threshold = 0.0005; mb method; greedy clustering). Network estimation, statistics, and visualization was carried out in the microeco R package (Liu et al., 2021).

      Results

      We collected nasal swabs from a cohort of 339 participants (214 individuals with respiratory disease and 125 healthy controls) from northern Portugal comprised mainly of children and young adults (Supplementary Table S1). The median age of the participants was 12.5 ± 5.0 years and 53.7% were female. Subjects with respiratory disease were subdivided into three groups: AR (47), ARAS (155), and AS (12 subjects). We sequenced the ITS1-ITS2 gene to characterize the nasal mycobiome of each participant. Twenty-two samples (i.e., technical replicates) from the following groups were sequenced twice due to seemingly faint PCR bands in agarose gels: AR (seven samples), ARAS (13 samples), and CT (two samples). ASV singletons and samples with <1,014 reads were eliminated, rendering a final data set of 306 samples with the following distribution: AR (42 samples from 36 individuals), ARAS (142 samples from 130 individuals), AS (12 samples from 12 individuals), and CT (110 samples from 108 individuals).

      Mycobiome taxonomic diversity and structure

      Our nasal mycobiome (306 samples after quality control) dataset comprised 6,145,342 clean reads, ranging from 1,014 to 223,989 sequences per sample (mean = 20,082.8) and a total of 5,635 ASVs (Supplementary Table S2). AR samples had 570 unique ASVs, ARAS samples had 2,202, AS samples had 138 and CT samples had 1,615 (Supplementary Figure 1). The four groups shared 122 ASVs, the disease groups shared 78 ASVs, while other pairs and trios shared a variable number, ranging from 1 to 323 ASVs (Supplementary Figure 1).

      The nasal mycobiome sequences across all 306 filtered samples were classified into two dominant (>1% abundance) Phyla: Ascomycota (54.0%) and Basidiomycota (44.9%) (Table 1). Those Phyla comprised 14 dominant (>1%) genera (Table 1; Figure 1), being the most abundant Cladosporium (23.0%), Wallemia (8.9%), Malassezia (8.3%), and Rhodotorula (8.2%). All the other detected phyla and genera accounted for <1% of the total ITS sequences each.

      Mean relative proportions (%) of fungal phyla and genera in the nasal mycobiome of participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS) and healthy controls (CT).

      Mean relative proportions (%) Linear model test significance
      All AR ARAS AS CT AR-CT ARAS-CT AS-CT AR-ARAS AR-AS ARAS-AS
      Phylum
      Ascomycota 54 49.2 56.2 79.2 48.6 ns ns ns ns ns ns
      Basidiomycota 44.9 49.6 43.3 20.4 49.4 ns ns ns ns ns ns
      Genus
      Malassezia 8.3 0.3 1.3 0.2 23.7 <0.0001 <0.0001 <0.0001 ns ns ns
      Alternaria 3.2 3.6 3.6 1.6 2.7 0.024 0.0003 ns ns ns ns
      Cladosporium 23 23.3 28.6 63.6 7.5 <0.0001 <0.0001 <0.0001 ns ns ns
      Penicillium 2.4 1.8 3.3 1.4 1.6 0.049 <0.0001 0.031 ns ns ns
      Aspergillus 4 3.6 3.4 1.9 5.4 ns ns ns ns ns ns
      Candida 4.7 4.2 4.7 4.6 5.2 ns ns ns ns ns ns
      Aleurina 2.4 0.1 0.2 0.3 7 ns ns ns ns ns ns
      Wallemia 8.9 15.8 11.8 2.7 2.5 <0.0001 <0.0001 0.0063 ns ns ns
      Rhodotorula 8.2 12.2 12.1 3.5 1.6 <0.0001 <0.0001 0.0008 ns ns ns
      Sporobolomyces 1.2 1.1 2 0.9 0.1 <0.0001 <0.0001 ns ns ns ns
      Naganishia 1.4 2.9 1.2 0.4 1 0.016 0.0026 ns ns ns ns
      Vishniacozyma 1.4 2.9 1.5 0.9 0.6 <0.0001 <0.0001 0.0023 ns ns ns
      Sistotrema 1 0.5 0.6 1.5 1.7 ns ns ns ns ns ns
      Filobasidium 1.4 1.5 1.4 2.8 1.1 0.0009 <0.0001 0.019 ns ns ns

      p values for significant pairwise comparisons (linear model test) between groups are also displayed. ns, not significant.

      Alpha-diversity estimates (Chao1, Shannon, ACE, and phylogenetic diversity) and statistical significance (linear model test) in nasal fungal communities from participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS), and healthy controls (CT). ns, not significant; *p ≤ 0.05; ****p ≤ 0.0001.

      ASV2 of the genus Cladosporium comprised the nasal core microbiome (prevalence ≥90%) of the respiratory disease patients and accounted for 12.8% of their total reads. No core mycobiome was detected for the control samples. ASV2 may represent the more stable and consistent member of the nasal mycobiomes (Backhed et al., 2012; Shade and Handelsman, 2012) in the disease patients.

      We also compared the mean relative abundance of specific taxa in subjects with respiratory disease and healthy controls. None of the two dominant fungal phyla (Ascomycota and Basidiomycota) comprising the nasal microbiome showed significant differences in their mean relative proportions between the groups compared (Table 1). Of the 14 dominant fungal genera comprising the nasal microbiome (Figure 1; Table 1), 7–10 genera showed significant differences in their mean relative proportions between all respiratory disease group (AS, AR or ARAS) and CT after FDR correction. However, none of the same genera varied significantly between the three respiratory disease groups (Table 1).

      Alpha-diversity indices (Shannon, Chao1, ACE, and PD) of microbial community richness and evenness varied among clinical groups (Figure 2; Supplementary Table S3). AR and ARAS showed the highest diversity for all indices, while CT showed the lowest. ARAS–CT and AR–CT comparisons were significantly distinct for Shannon, Chao1, and ACE after FDR correction (Wilcoxon test; p ≤ 0.024). All the other pairwise comparisons, including those of PD estimates, were not significant.

      Bar plots of mean relative proportions of the top fungal genera in the nasal cavity of participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS), and healthy controls (CT).

      To characterize the structure of the nasal mycobiomes (beta diversity), we applied principal coordinates analysis (PCoAs) to Unifrac (unweighted and weighted), Bray–Curtis and Jaccard distance matrices. All the PCoAs showed partial segregation of the mycobiotas from each clinical group (Figure 3). Subsequently, adonis analyses detected significant differences (p ≤ 0.0004) in beta-diversity between each of the respiratory disease groups (AS, AR and ARAS) and the healthy controls for all the distances. None of the pairwise comparisons between respiratory disease groups resulted significant. This suggests that the nasal mycobiomes of AS, AR and ARAS participants may differ from those of healthy individuals in a similar compositional manner.

      Principal coordinates analysis (PCoA) plots of beta-diversity estimates (Unifrac, Bray-Curtis and Jaccard indices) and statistical significance (Adonis test) in nasal fungal communities from participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS), and healthy controls (CT). ns, not significant.

      Mycobiome functional diversity

      To understand whether different disease groups exhibited differences in the nasal mycobiome functional capabilities, we inferred the functional potential of AR, ARAS, and CT groups. We found significant differences (adjusted p-value <0.01) in abundance in 30 pathways (MetaCyc annotated) between AR and CT or ARAS (Figure 4). Most changes in pathway abundance represented pathways enriched in CT compared to AR or ARAS with negative or nearly zero log2 Fold Change (FC). Only three pathways associated with 5-aminoimidazole ribonucleotide biosynthesis were over abundant (log2 FC > 0.75) in ARAS patients (Figure 4B). These pathways are associated with the de novo biosynthesis of purine nucleotides and of thiamin (PWY-6121; PWY-6122; PWY-6277). Interestingly, the comparison AR versus ARAS yielded no significant results (p-value >0.1), suggesting both conditions share a similar nasal mycobiome functional signature.

      Spiec-Easi networks of fungal taxa in the nasal mycobiomes of participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS) and healthy controls (CT). Nodes represent taxa connected by edges whose width (0.1–0.4) is proportional to the strength of their association. Cyan and pink edges indicate positive and negative correlations, respectively.

      Mycobiome interactions

      We further wanted to investigate potential direct or indirect interactions among fungal groups. We inferred inverse covariance networks using the Spiec-Easi model to compare the structure and connectivity of the nasal mycobiome. In the CT network, we identified seven modules of interacting fungi (Figure 5) with a degree of connectivity between 1 and 2, indicating very low connectivity. Likewise, betweenness centrality, a measure of importance of a node in a network, was also low (range 0–2). In turn, in the ARAS network (Figure 5), degree of connectivity ranged between 1 and 7, indicating higher connectivity. Some fungal genera were connected up to other 7 genera, and of those, Cystobasidium, Pseudopithomyces, Peniophora, and Debaryomyces, presented high betweenness centrality (e.g., Peniophora > 90), highlighting their role as hubs in the ARAS mycobiome. The AR network showed a degree of connectivity and betweenness centrality of 1–4 and 0–30, respectively (Figure 5). It shared similarities with the ARAS network, where Phlebia and Debaryomyces were also highly connected (4 and 5 in AR; 2 and 5 in ARAS). Node overlap between the three networks varied; ARAS and AR shared 23.6% of the nodes, ARAS and CT shared 14.6% and AR and CT shared 9.1%. Edge overlap was limited between networks (<5%), suggesting the overall structure of the networks is different.

      Differential abundance analysis (Wald’s test; adjusted p value <0.01) of functional profiles in the nasal mycobiomes of participants with allergic rhinitis (AR) and healthy controls (CT) (A), and AR participants with comorbid asthma (ARAS) and CT (B).

      Discussion

      The role of the fungal communities residing in the upper airways in allergic rhinitis and asthma is practically unknown (Jung et al., 2015; Yuan et al., 2023). Here we present the results of a cross-sectional study comparing the nasal mycobiome of 339 individuals with allergic rhinitis (with and without comorbid asthma), asthma and healthy controls.

      The nasal mycobiomes were composed of basically two phyla (Ascomycota and Basidiomycota) and 14 genera (Figure 1; Table 1). These two phyla and all dominant genera have been previously described in the airways of both healthy, asthmatic and rhinitic individuals, although with different abundances (Jung et al., 2015; Carpagnano et al., 2016; Goldman et al., 2018; Rick et al., 2020; van Tilburg Bernardes et al., 2020; Yuan et al., 2023). We detected common opportunistic pathogenic fungi like Malassezia, Aspergillus, Candida, and Penicillium (Badiee and Hashemizadeh, 2014). Moreover, exposure to Alternaria spores has been associated with AR symptoms (Andersson et al., 2003; Oliveira et al., 2023). This confirms at fungal level what is already known for bacteria, that the nasal cavity is a major reservoir for opportunistic pathogens that can cause allergic rhinitis and asthma (Garcia-Rodriguez and Fresnadillo Martinez, 2002; Hilty et al., 2010; Bogaert et al., 2011; Dickson et al., 2013; Biesbroek et al., 2014; Huang and Boushey, 2015; Pérez-Losada et al., 2015; Teo et al., 2015; Pérez-Losada et al., 2016b; Prevaes et al., 2016; Huang, 2017; Lal et al., 2017; Pérez-Losada et al., 2017; Esposito and Principi, 2018; Pérez-Losada et al., 2018; Gan et al., 2021; Chen et al., 2022; Kim et al., 2022; Pérez-Losada et al., 2023a).

      Healthy participants differed greatly in fungal composition from those with chronic respiratory illnesses. The nasal mycobiome of healthy controls contained 28.7% unique ASVs, while the AR, ARAS and AS mycobiomes contained 10.1, 39.1, and 2.4% unique ASVs, respectively (Supplementary Table S2; Supplementary Figure 1). These ASVs are potential biomarkers of disease for each group. Further metataxonomic and metagenomic studies are needed to confirm these results and their potential as therapeutic targets for rhinitis and asthma (Castro-Nallar et al., 2015; Pérez-Losada et al., 2015; Pérez-Losada et al., 2023a,b).

      Fungal phyla (Ascomycota and Basidiomycota) did not vary significantly in their mean relative proportions between groups, but up to 71% of the dominant genera varied significantly between healthy samples and respiratory disease groups (Table 1). The most striking differences were observed between AR or ARAS and CT, where 10 of 14 genera varied in their mean relative abundances, respectively. Alternaria, Cladosporium, Penicillium, Wallemia, Rhodotorula, Sporobolomyces, Naganishia, Vishniacozyma and Filobasidium were significantly more abundant in AR and ARAS, while Malassezia was significantly more abundant in healthy controls. A previous study of the nasal vestibule (Jung et al., 2015) in four patients with allergic rhinitis and four controls showed that Basidiomycota and Malassezia were highly abundant in all samples (>92%); nonetheless, no significant differences were reported among groups. This disagrees with our findings here and could result from the low sample size, fungal gene sequenced (i.e., large ribosomal subunit) or geographic region (i.e., Seoul metropolitan area) in Jung et al.’s study. Seven fungal genera varied significantly between AS and CT, despite the small sample size of this group. As before, Malassezia was also much more abundant in CT, while the other genera varied less in their mean relative abundances. Previous studies have also revealed significant differences in the mycobiota of asthmatic patients for Cladosporium, Rhodotorula, Malassezia or Penicillium (van Woerden et al., 2013; Goldman et al., 2018; Sharma et al., 2019; Yuan et al., 2023). Compositional changes in these fungal groups may provide insights into the pathobiology of allergic rhinitis and asthma. Further studies are required to confirm our findings and untangle the relationship between fungal colonization, dysbiosis and chronic inflammatory disease (Nguyen et al., 2015; Goldman et al., 2018; Rick et al., 2020; van Tilburg Bernardes et al., 2020; Yuan et al., 2023).

      Fungal alpha-diversity (species richness and evenness) was significantly higher in ARAS and AR compared to CT for all indices but PD (Figure 2). The only study that explored the diversity of the nasal mycobiota in individuals with rhinitis (Jung et al., 2015) also reported higher estimates of Shannon diversity for the AR group. If confirmed, this may suggest that allergic rhinitis (with or without asthma comorbidity) may increase microbial diversity in the upper airways, as seen in previous studies of the bacteriome (Choi et al., 2014; Gan et al., 2021; Kim et al., 2022; Pérez-Losada et al., 2023a,b).

      AR, ARAS, and AS samples displayed significant differences in community structure (i.e., beta-diversity) compared to those of healthy controls (Figure 3). This pattern held for all the distance metrics used, whether accounting for phylogenetic diversity or not. No differences were observed between AR and ARAS groups. A previous study of the nasal mycobiota (Jung et al., 2015) has also revealed that AR and CT communities were considerably differentiated. Another study (2020) has also shown specific community structuring associated with distinct bacterial composition of the lung in AS vs. CT. Hence, as indicated before (Pérez-Losada et al., 2023a,b), these results suggest that fungal compositional shifts may be a reliable predictor of allergic rhinitis or asthma in the upper airways, given their lower stochasticity associated to dysbiosis (Ma et al., 2019; Ma, 2020).

      The functional component of the allergic rhinitis mycobiome is largely underexplored. Here, we used an imputation method to indirectly explore the functional potential of the nasal mycobiome (Figure 4). We found modest yet significant differences in metabolic pathway abundance when comparing the AR to CT groups. Pathway relative overexpression was high for three pathways related to 5-aminoimidazole ribonucleotide (AIR) biosynthesis in the ARAS group (log2 FC > 0.75). AIR is a key intermediate for purine nucleotide biosynthesis and a precursor to 4-amino-2-methyl-5-hydroxymethylpyrimidine, the first product of pyrimidine biosynthesis. No studies so far have investigated AIR biosynthesis in the airway microbiome, but, interestingly, studies of the gut bacteriome have related AIR biosynthesis to several clinical conditions and diseases (hyperuricemia, inflammatory bowel disease and colorectal cancer) (Ma et al., 2021; Sheng et al., 2021). The impact (if any) of fungal AIR biosynthesis in human health has not been investigated. Purine metabolism is necessary to synthesize DNA and RNA, and in plant pathogenic fungi is associated with fungal growth and pathogenesis (Sun et al., 2024). Some authors (Chitty and Fraser, 2017) have reviewed the literature regarding purine acquisition and synthesis in human pathogenic fungi, finding that purines are essential in diverse processes such as signal transduction, energy metabolism and DNA synthesis, turning AIR biosynthesis into a potential therapeutic target. More studies are needed to test whether AIR biosynthesis in the human airway mycobiome is associated with respiratory diseases such as allergic rhinitis or asthma.

      We have also explored mycobiome interactions to better understand the role of fungi in the nasal cavity (Figure 5). Direct or indirect interactions are usually inferred based on co-occurrence or co-variation of microbes’ abundance. For instance, positive interactions might be indicative of syntrophy (a relationship in which one or both organisms benefit nutritionally from the presence of the other), while negative interactions may indicate competition. The CT and AR groups showed fewer significant interactions, all of which were positive, suggesting either similar roles of fungi in the community or syntrophy. In turn, the ARAS group exhibited more diverse relationships with multiple modules with positive and negative interactions among fungal taxa. Previous research has shown that these patterns of co-abundance and exclusion seem to be stable across body sites in the healthy human microbiome and that its alteration can be indicative of underlying disease processes (Faust et al., 2012). In previous studies of the bacteriome in patients with allergic rhinitis (Pérez-Losada et al., 2018; Pérez-Losada et al., 2023a,b) or of the mycobiome in asthmatics (Huang et al., 2020; Liu et al., 2020), co-occurrence networks in diseased participants exhibited different interactions than in healthy controls. Our novel analyses of the airway mycobiome in rhinitic patients seem to confirm those results, although with the allergic rhinitis and comorbid asthma group (ARAS) exhibiting a higher and more diverse mycobiome network. Interestingly, in spite of the multiple connections of rhinitis and asthma and the proposed concept of a united airway disease (Compalati et al., 2010), recent omic data (Dizier et al., 2007; Lemonnier et al., 2020) suggest that rhinitis alone and rhinitis with comorbid asthma may represent two distinct diseases with different allergen sensitization and disease onset (Siroux et al., 2018), rhinitis severity (Savoure et al., 2023) and treatment response (Sousa-Pinto et al., 2022). Moreover, the hypothesis that these two distinct diseases are possibly modulated by the microbiome has been recently proposed (Bousquet et al., 2023). Further research is needed to explore the role of fungi in chronic inflammation, particularly in allergic individuals.

      Our study highlights significant differences in the nasal mycobiome composition, structure, and function between individuals with allergic rhinitis and asthma and healthy controls. These findings have profound implications for understanding innate and adaptive host immune responses to fungi in the airways (Bartemes and Kita, 2018; Silva-Gomes et al., 2024). The nasal mycobiome can modulate the local immune environment. Fungal components, such as cell wall polysaccharides (e.g., β-glucans), are known to interact with pattern recognition receptors on immune cells, leading to the activation of various immune pathways (Brown et al., 2012; Bartemes and Kita, 2018). This interaction can exacerbate or alleviate inflammation in the respiratory tract, influencing the severity of allergic reactions. Altered nasal mycobiome profiles, such as those revealed here, may contribute to allergic sensitization. Fungi can also produce potent allergens that trigger Th2-mediated immune responses, characterized by increased production of IgE and activation of mast cells and eosinophils (Noverr and Huffnagle, 2004; Noverr et al., 2004; Bartemes and Kita, 2018). This immune activation plays a critical role in the pathogenesis of allergic rhinitis and asthma. The nasal epithelial barrier’s integrity and the effectiveness of innate immune defenses are closely linked to mycobiome composition. Dysmycobiosis, i.e., imbalance in the fungal community, can compromise these defenses, making individuals more susceptible to infections and exacerbations of allergic conditions (Iliev and Leonardi, 2017). Our findings are supported by previous research demonstrating that distinct nasal mycobiome profiles can activate different immunological responses. For instance, van Woerden et al. (2013) showed that fungal dysbiosis in asthmatic patients correlates with altered immune responses, including increased airway inflammation. A recent review (Jafarlou, 2024) has highlighted that fungal diseases are emerging as a significant global health threat, with the potential to cause a pandemic with widespread outbreaks and significant morbidity and mortality. There is already growing evidence that the lung mycobiome has a significant impact on clinical outcome of chronic respiratory diseases such as asthma (Nguyen et al., 2015). Little is known, however, about allergic rhinitis or the role of the nasal cavity mycobiota (Jung et al., 2015). We showed that nasal dysmycobiosis may contribute to allergic rhinitis with or without asthma comorbidity and warrants further research to elucidate the relationship between the nasal mycobiota and airway pathology.

      This study has several limitations. Metataxonomic approaches suffer from the inherent limitations of collecting sequence data from a single gene target (ITS here) (Hilton et al., 2016; Pérez-Losada et al., 2022). PCR amplification biases can also impact microbial compositional assessments. ITS1-2 has limited resolution at the species and sometimes genus level for taxonomic assignment. Although the composition of the described nasal mycobiomes is similar to those reported by others in the nasal cavity of healthy and diseased individuals (Jung et al., 2015; Carpagnano et al., 2016; Goldman et al., 2018; Rick et al., 2020; van Tilburg Bernardes et al., 2020; Yuan et al., 2023). The sample size of the asthmatic (AS) group is relatively small, although we have tried to account for it using statistical approaches moderately robust to small sample sizes. The metabolic potential of the mycobiomes was predicted by imputation of gene families and genomes in PICRUSt2 instead of inferred using shotgun metagenomics; hence functional profiles should be interpreted with caution. This study focuses on a cohort of Portuguese individuals for whom we have collected limited demographic and clinical data (i.e., heath status, season, age, and sex) for all the participants. It is uncertain to what extent our results can be generalized to other countries and cohorts, but since clinical practices in Portugal for treating rhinitis and asthma follow international guidelines and recommendations and nasal mycobiomes characterized here resembled those described in other studies of cohorts from United States, Europe, and Asia, we feel like our insights are broadly applicable. Nonetheless, future research should address the impact of other demographic, clinical and environmental factors on the diversity of airway mycobiomes (Cavaleiro Rufo et al., 2017; Zhang et al., 2023; Paciencia et al., 2024). The relevance of detecting fungi associated with specific phenotypes of disease is unknown, dual-transcriptomic studies coupled with longitudinal sampling (as opposed to the cross-sectional sampling design used here) can help to clarify whether specific microbes are drivers or bystanders in rhinitic and asthmatic patients. Future microbiome research should address this issue.

      Data availability statement

      The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at: https://www.ncbi.nlm.nih.gov/, PRJNA1107919.

      Ethics statement

      The studies involving humans were approved by Comissão de Ética para a Saúde of the Centro Hospitalar Universitário São João/Faculdade de Medicina (Porto, Portugal) in March 2017 (Parecer_58-17). The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants’ legal guardians/next of kin.

      Author contributions

      MP-L: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. EC-N: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. JG-H: Formal analysis, Methodology, Software, Writing – original draft, Writing – review & editing. JB: Data curation, Methodology, Writing – original draft, Writing – review & editing. LD: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing. TR: Data curation, Methodology, Writing – original draft, Writing – review & editing. MO: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing.

      Funding

      The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was co-funded by the EU via European Regional Development Fund (ERDF) and by national funds via the Fundação para a Ciência e a Tecnologia (FCT) and the project PTDC/ASP-PES/27953/2017—POCI-01-0145-FEDER-027953. MP-L was supported by the FCT under the “Programa Operacional Potencial Humano—Quadro de Referência Estratégico” Nacional funds from the European Social Fund and Portuguese “Ministério da Educação e Ciência” IF/00764/2013.

      We thank all the patients and healthy volunteers who kindly provided biological samples for this study. We also thank all the clinicians, nurses, and technical staff of the Serviço de Imunoalergologia do Centro Hospitalar Universitário São João in Porto (Portugal), namely José Plácido, André Moreira, Carla Martins, and Artur Vilela, who contributed to the project logistic planning, execution of diagnostic tests, sample collection, and collection and interpretation of clinical data.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary material for this article can be found online at: /articles/10.3389/fmicb.2024.1464257/full#supplementary-material

      UpSet plots of amplicon sequence variants (ASVs) in the nasal mycobiome of participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS) and healthy controls (CT).

      1https://benjjneb.github.io/dada2/ITS_workflow.html

      References Acevedo-Prado A. Seoane-Pillado T. Lopez-Silvarrey-Varela A. Salgado F. J. Cruz M. J. Faraldo-Garcia A. . (2022). Association of rhinitis with asthma prevalence and severity. Sci. Rep. 12:6389. doi: 10.1038/s41598-022-10448-w, PMID: 35430600 Andersson M. Downs S. Mitakakis T. Leuppi J. Marks G. (2003). Natural exposure to Alternaria spores induces allergic rhinitis symptoms in sensitized children. Pediatr. Allergy Immunol. 14, 100105. doi: 10.1034/j.1399-3038.2003.00031.x, PMID: 12675755 Azevedo A. C. Hilario S. Goncalves M. F. M. (2023). Microbiome in nasal mucosa of children and adolescents with allergic rhinitis: a systematic review. Children 10:226. doi: 10.3390/children10020226, PMID: 36832355 Backhed F. Fraser C. M. Ringel Y. Sanders M. E. Sartor R. B. Sherman P. M. . (2012). Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12, 611622. doi: 10.1016/j.chom.2012.10.012, PMID: 23159051 Badiee P. Hashemizadeh Z. (2014). Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J. Med. Res. 139, 195204, PMID: 24718393 Bartemes K. R. Kita H. (2018). Innate and adaptive immune responses to fungi in the airway. J. Allergy Clin. Immunol. 142, 353363. doi: 10.1016/j.jaci.2018.06.015, PMID: 30080527 Bates D. Maechler M. Bolker B. Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 148. doi: 10.18637/jss.v067.i01 Bender M. E. Read T. D. Edwards T. S. Hargita M. Cutler A. J. Wissel E. F. . (2020). A comparison of the bacterial nasal microbiome in allergic rhinitis patients before and after immunotherapy. Laryngoscope 130, E882E888. doi: 10.1002/lary.28599, PMID: 32181890 Benjamini Y. Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289300. doi: 10.1111/j.2517-6161.1995.tb02031.x Bergeron C. Hamid Q. (2005). Relationship between asthma and rhinitis: epidemiologic, pathophysiologic, and therapeutic aspects. Allergy, Asthma Clin. Immunol. 1, 8187. doi: 10.1186/1710-1492-1-2-81, PMID: 20529228 Biesbroek G. Tsivtsivadze E. Sanders E. A. Montijn R. Veenhoven R. H. Keijser B. J. . (2014). Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am. J. Respir. Crit. Care Med. 190, 12831292. doi: 10.1164/rccm.201407-1240OC, PMID: 25329446 Bogaert D. Keijser B. Huse S. Rossen J. Veenhoven R. van Gils E. . (2011). Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One 6:e17035. doi: 10.1371/journal.pone.0017035, PMID: 21386965 Bousquet P. J. Burbach G. Heinzerling L. M. Edenharter G. Bachert C. Bindslev-Jensen C. . (2009). GA2LEN skin test study III: minimum battery of test inhalent allergens needed in epidemiological studies in patients. Allergy 64, 16561662. doi: 10.1111/j.1398-9995.2009.02169.x, PMID: 19824887 Bousquet J. Hellings P. W. Agache I. Amat F. Annesi-Maesano I. Ansotegui I. J. . (2019). Allergic rhinitis and its impact on asthma (ARIA) phase 4 (2018): change management in allergic rhinitis and asthma multimorbidity using mobile technology. J. Allergy Clin. Immunol. 143, 864879. doi: 10.1016/j.jaci.2018.08.049, PMID: 30273709 Bousquet J. Melen E. Haahtela T. Koppelman G. H. Togias A. Valenta R. . (2023). Rhinitis associated with asthma is distinct from rhinitis alone: the ARIA-MeDALL hypothesis. Allergy 78, 11691203. doi: 10.1111/all.15679, PMID: 36799120 Brar T. Nagaraj S. Mohapatra S. (2012). Microbes and asthma: the missing cellular and molecular links. Curr. Opin. Pulm. Med. 18, 1422. doi: 10.1097/MCP.0b013e32834dccc0, PMID: 22113000 Brown G. D. Denning D. W. Gow N. A. Levitz S. M. Netea M. G. White T. C. (2012). Hidden killers: human fungal infections. Sci. Transl. Med. 4:165rv113. doi: 10.1126/scitranslmed.3004404 Callahan B. J. McMurdie P. J. Rosen M. J. Han A. W. Johnson A. J. Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581583. doi: 10.1038/nmeth.3869, PMID: 27214047 Carpagnano G. E. Malerba M. Lacedonia D. Susca A. Logrieco A. Carone M. . (2016). Analysis of the fungal microbiome in exhaled breath condensate of patients with asthma. Allergy Asthma Proc. 37, 4146. doi: 10.2500/aap.2016.37.3943, PMID: 27178886 Caspi R. Billington R. Keseler I. M. Kothari A. Krummenacker M. Midford P. E. . (2020). The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res. 48, D445D453. doi: 10.1093/nar/gkz862, PMID: 31586394 Castro-Nallar E. Shen Y. Freishtat R. J. Pérez-Losada M. Manimaran S. Liu G. . (2015). Integrating metagenomics and host gene expression to characterize asthma-associated microbial communities. BMC Med. Genet. 8:50. doi: 10.1186/s12920-015-0121-1, PMID: 26277095 Cavaleiro Rufo J. Madureira J. Paciencia I. Aguiar L. Pereira C. Silva D. . (2017). Indoor fungal diversity in primary schools may differently influence allergic sensitization and asthma in children. Pediatr. Allergy Immunol. 28, 332339. doi: 10.1111/pai.12704 Chen M. He S. Miles P. Li C. Ge Y. Yu X. . (2022). Nasal bacterial microbiome differs between healthy controls and those with asthma and allergic rhinitis. Front. Cell. Infect. Microbiol. 12:841995. doi: 10.3389/fcimb.2022.841995 Chitty J. L. Fraser J. A. (2017). Purine acquisition and synthesis by human fungal pathogens. Microorganisms 5:33. doi: 10.3390/microorganisms5020033, PMID: 28594372 Choi C. H. Poroyko V. Watanabe S. Jiang D. Lane J. deTineo M. . (2014). Seasonal allergic rhinitis affects sinonasal microbiota. Am. J. Rhinol. Allergy 28, 281286. doi: 10.2500/ajra.2014.28.4050, PMID: 25197913 Compalati E. Ridolo E. Passalacqua G. Braido F. Villa E. Canonica G. W. (2010). The link between allergic rhinitis and asthma: the united airways disease. Expert Rev. Clin. Immunol. 6, 413423. doi: 10.1586/eci.10.15, PMID: 20441427 Cook R. D. (1977). Detection of influential observation in linear regression. Technometrics 19, 1518. doi: 10.1080/00401706.1977.10489493 Dharmage S. C. Perret J. L. Custovic A. (2019). Epidemiology of asthma in children and adults. Front. Pediatr. 7:246. doi: 10.3389/fped.2019.00246, PMID: 31275909 Dickson R. P. Erb-Downward J. R. Huffnagle G. B. (2013). The role of the bacterial microbiome in lung disease. Expert Rev. Respir. Med. 7, 245257. doi: 10.1586/ers.13.24, PMID: 23734647 Dickson R. P. Huffnagle G. B. (2015). The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 11:e1004923. doi: 10.1371/journal.ppat.1004923, PMID: 26158874 Dinwiddie D. L. Denson J. L. Kennedy J. L. (2018). Role of the airway microbiome in respiratory infections and asthma in children. Pediatr. Allergy Immunol. Pulmonol. 31, 236240. doi: 10.1089/ped.2018.0958, PMID: 30595952 Dixon P. (2003). VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927930. doi: 10.1111/j.1654-1103.2003.tb02228.x Dizier M. H. Bouzigon E. Guilloud-Bataille M. Genin E. Oryszczyn M. P. Annesi-Maesano I. . (2007). Evidence for a locus in 1p31 region specifically linked to the co-morbidity of asthma and allergic rhinitis in the EGEA study. Hum. Hered. 63, 162167. doi: 10.1159/000099828, PMID: 17310125 Douglas G. M. Maffei V. J. Zaneveld J. R. Yurgel S. N. Brown J. R. Taylor C. M. . (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685688. doi: 10.1038/s41587-020-0548-6, PMID: 32483366 Esposito S. Principi N. (2018). Impact of nasopharyngeal microbiota on the development of respiratory tract diseases. Eur. J. Clin. Microbiol. Infect. Dis. 37, 17. doi: 10.1007/s10096-017-3076-7, PMID: 28795339 Falcão H. Ramos E. Marques A. Barros H. (2008). Prevalence of asthma and rhinitis in 13 year old adolescents in Porto, Portugal. Rev. Port. Pneumol. 14, 747768. doi: 10.1016/S0873-2159(15)30285-3 Faust K. Sathirapongsasuti J. F. Izard J. Segata N. Gevers D. Raes J. . (2012). Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8:e1002606. doi: 10.1371/journal.pcbi.1002606, PMID: 22807668 Fazlollahi M. Lee T. D. Andrade J. Oguntuyo K. Chun Y. Grishina G. . (2018). The nasal microbiome in asthma. J. Allergy Clin. Immunol. 142, 834843.e2. doi: 10.1016/j.jaci.2018.02.020, PMID: 29518419 Ferreira-Magalhaes M. Pereira A. M. Sa-Sousa A. Morais-Almeida M. Azevedo I. Azevedo L. F. . (2015). Asthma control in children is associated with nasal symptoms, obesity, and health insurance: a nationwide survey. Pediatr. Allergy Immunol. 26, 466473. doi: 10.1111/pai.12395, PMID: 25939454 Ferreira-Magalhaes M. Sa-Sousa A. Morais-Almeida M. Pite H. Azevedo L. F. Azevedo M. I. . (2016). Asthma-like symptoms, diagnostic tests, and asthma medication use in children and adolescents: a population-based nationwide survey. J. Asthma 53, 269276. doi: 10.3109/02770903.2015.1095926, PMID: 26444577 Fonseca J. Taveira-Gomes T. Pereira A. M. Branco-Ferreira M. Carreiro-Martins P. Alves-Correia M. . (2021). ARIA 2019: an integrated care pathway for allergic rhinitis in Portugal. Acta Medica Port. 34, 144157. doi: 10.20344/amp.13777, PMID: 33275547 Frati F. Salvatori C. Incorvaia C. Bellucci A. Di Cara G. Marcucci F. . (2018). The role of the microbiome in asthma: the gut(−)lung Axis. Int. J. Mol. Sci. 20:123. doi: 10.3390/ijms20010123, PMID: 30598019 Gan W. Yang F. Meng J. Liu F. Liu S. Xian J. (2021). Comparing the nasal bacterial microbiome diversity of allergic rhinitis, chronic rhinosinusitis and control subjects. Eur. Arch. Otorrinolaringol. 278, 711718. doi: 10.1007/s00405-020-06311-1, PMID: 32860131 Garcia-Rodriguez J. A. Fresnadillo Martinez M. J. (2002). Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J. Antimicrob. Chemother. 50, 5973. doi: 10.1093/jac/dkf506, PMID: 12556435 Goldman D. L. Chen Z. Shankar V. Tyberg M. Vicencio A. Burk R. (2018). Lower airway microbiota and mycobiota in children with severe asthma. J. Allergy Clin. Immunol. 141, 808811.e7. doi: 10.1016/j.jaci.2017.09.018, PMID: 29031597 Hilton S. K. Castro-Nallar E. Pérez-Losada M. Toma I. McCaffrey T. A. Hoffman E. P. . (2016). Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Front. Microbiol. 7:484. doi: 10.3389/fmicb.2016.00484, PMID: 27092134 Hilty M. Burke C. Pedro H. Cardenas P. Bush A. Bossley C. . (2010). Disordered microbial communities in asthmatic airways. PLoS One 5:e8578. doi: 10.1371/journal.pone.0008578, PMID: 20052417 Huang Y. J. (2017). Nasopharyngeal microbiota: gatekeepers or fortune tellers of susceptibility to respiratory tract infections? Am. J. Respir. Crit. Care Med. 196, 15041505. doi: 10.1164/rccm.201707-1470ED, PMID: 28800258 Huang Y. J. Boushey H. A. (2014). The microbiome and asthma. Ann. Am. Thorac. Soc. 11, S48S51. doi: 10.1513/AnnalsATS.201306-187MG, PMID: 24437406 Huang Y. J. Boushey H. A. (2015). The microbiome in asthma. J. Allergy Clin. Immunol. 135, 2530. doi: 10.1016/j.jaci.2014.11.011 Huang C. Yu Y. Du W. Liu Y. Dai R. Tang W. . (2020). Fungal and bacterial microbiome dysbiosis and imbalance of trans-kingdom network in asthma. Clin. Transl. Allergy 10:42. doi: 10.1186/s13601-020-00345-8, PMID: 33110490 Hufnagl K. Pali-Scholl I. Roth-Walter F. Jensen-Jarolim E. (2020). Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 42, 7593. doi: 10.1007/s00281-019-00775-y, PMID: 32072252 Iliev I. D. Leonardi I. (2017). Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat. Rev. Immunol. 17, 635646. doi: 10.1038/nri.2017.55, PMID: 28604735 Jafarlou M. (2024). Unveiling the menace: a thorough review of potential pandemic fungal disease. Front. Fungal Biol. 5:1338726. doi: 10.3389/ffunb.2024.1338726, PMID: 38711422 Jung W. H. Croll D. Cho J. H. Kim Y. R. Lee Y. W. (2015). Analysis of the nasal vestibule mycobiome in patients with allergic rhinitis. Mycoses 58, 167172. doi: 10.1111/myc.12296, PMID: 25675851 Katoh K. Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772780. doi: 10.1093/molbev/mst010, PMID: 23329690 Kim H. Bouchard J. Renzi P. M. (2008). The link between allergic rhinitis and asthma: a role for antileukotrienes? Can. Respir. J. 15, 9198. doi: 10.1155/2008/416095, PMID: 18354749 Kim H. J. Kim J. H. Han S. Kim W. (2022). Compositional alteration of the nasal microbiome and Staphylococcus aureus-characterized dysbiosis in the nasal mucosa of patients with allergic rhinitis. Clin. Exp. Otorhinolaryngol. 15, 335345. doi: 10.21053/ceo.2021.01928, PMID: 35680131 Kozich J. J. Westcott S. L. Baxter N. T. Highlander S. K. Schloss P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 51125120. doi: 10.1128/AEM.01043-13, PMID: 23793624 Kurtz Z. D. Muller C. L. Miraldi E. R. Littman D. R. Blaser M. J. Bonneau R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11:e1004226. doi: 10.1371/journal.pcbi.1004226, PMID: 25950956 Lal D. Keim P. Delisle J. Barker B. Rank M. A. Chia N. . (2017). Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int. Forum Allergy Rhinol. 7, 561569. doi: 10.1002/alr.21934, PMID: 28481057 Lemonnier N. Melen E. Jiang Y. Joly S. Menard C. Aguilar D. . (2020). A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy 75, 32483260. doi: 10.1111/all.14314, PMID: 32277847 Licari A. Brambilla I. Marseglia A. De Filippo M. Paganelli V. Marseglia G. L. (2018). Difficult vs. severe asthma: definition and limits of asthma control in the pediatric population. Front. Pediatr. 6:170. doi: 10.3389/fped.2018.00170, PMID: 29971223 Liu C. Cui Y. Li X. Yao M. (2021). Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97:fiaa255. doi: 10.1093/femsec/fiaa255, PMID: 33332530 Liu H. Y. Li C. X. Liang Z. Y. Zhang S. Y. Yang W. Y. Ye Y. M. . (2020). The interactions of airway bacterial and fungal communities in clinically stable asthma. Front. Microbiol. 11:1647. doi: 10.3389/fmicb.2020.01647, PMID: 32849339 Losol P. Choi J. P. Kim S. H. Chang Y. S. (2021). The role of upper airway microbiome in the development of adult asthma. Immune Netw. 21:e19. doi: 10.4110/in.2021.21.e19, PMID: 34277109 Love M. I. Huber W. Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi: 10.1186/s13059-014-0550-8, PMID: 25516281 Ma Z. S. (2020). Testing the Anna Karenina principle in human microbiome-associated diseases. iScience 23:101007. doi: 10.1016/j.isci.2020.101007, PMID: 32305861 Ma Z. S. Li L. Gotelli N. J. (2019). Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. ISME J. 13, 19111919. doi: 10.1038/s41396-019-0395-y, PMID: 30894688 Ma Y. Zhang Y. Xiang J. Xiang S. Zhao Y. Xiao M. . (2021). Metagenome analysis of intestinal bacteria in healthy people, patients with inflammatory bowel disease and colorectal cancer. Front. Cell. Infect. Microbiol. 11:599734. doi: 10.3389/fcimb.2021.599734, PMID: 33738265 McMurdie P. J. Holmes S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: 23630581 McMurdie P. J. Holmes S. (2014). Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10:e1003531. doi: 10.1371/journal.pcbi.1003531, PMID: 24699258 Mims J. W. (2015). Asthma: definitions and pathophysiology. Int. Forum Allergy Rhinol. 5, S2S6. doi: 10.1002/alr.21609 Muc M. Mota-Pinto A. Padez C. (2014). Prevalence of asthma and rhinitis symptoms among children living in Coimbra, Portugal. Rev. Port. Pneumol. 20, 208210. doi: 10.1016/j.rppneu.2013.08.002, PMID: 24373330 Nguyen L. D. Viscogliosi E. Delhaes L. (2015). The lung mycobiome: an emerging field of the human respiratory microbiome. Front. Microbiol. 6:89. doi: 10.3389/fmicb.2015.00089, PMID: 25762987 Nilsson R. H. Larsson K. H. Taylor A. F. S. Bengtsson-Palme J. Jeppesen T. S. Schigel D. . (2019). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259D264. doi: 10.1093/nar/gky1022, PMID: 30371820 Noverr M. C. Huffnagle G. B. (2004). Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12, 562568. doi: 10.1016/j.tim.2004.10.008 Noverr M. C. Noggle R. M. Toews G. B. Huffnagle G. B. (2004). Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect. Immun. 72, 49965003. doi: 10.1128/IAI.72.9.4996-5003.2004, PMID: 15321991 Oliveira M. Oliveira D. Lisboa C. Boechat J. L. Delgado L. (2023). Clinical manifestations of human exposure to Fungi. J. Fungi 9:381. doi: 10.3390/jof9030381, PMID: 36983549 Paciencia I. Sharma N. Hugg T. T. Rantala A. K. Heibati B. Al-Delaimy W. K. . (2024). The role of biodiversity in the development of asthma and allergic sensitization: a state-of-the-science review. Environ. Health Perspect. 132:66001. doi: 10.1289/EHP13948, PMID: 38935403 Pawankar R. (2006). Allergic rhinitis and asthma: are they manifestations of one syndrome? Clin. Exp. Allergy 36, 14. doi: 10.1111/j.1365-2222.2006.02420.x Pereira C. Valero A. Loureiro C. Davila I. Martinez-Cocera C. Murio C. . (2006). Iberian study of aeroallergens sensitisation in allergic rhinitis. Eur Ann Allergy Clin Immunol 38, 186194, PMID: 16929745 Pérez-Losada M. Alamri L. Crandall K. A. Freishtat R. J. (2017). Nasopharyngeal microbiome diversity changes over time in children with asthma. PLoS One 12:e0170543. doi: 10.1371/journal.pone.0170543, PMID: 28107528 Pérez-Losada M. Authelet K. J. Hoptay C. E. Kwak C. Crandall K. A. Freishtat R. J. (2018). Pediatric asthma comprises different phenotypic clusters with unique nasal microbiotas. Microbiome 6:179. doi: 10.1186/s40168-018-0564-7, PMID: 30286807 Pérez-Losada M. Castro-Nallar E. Bendall M. L. Freishtat R. J. Crandall K. A. (2015). Dual transcriptomic profiling of host and microbiota during health and disease in pediatric asthma. PLoS One 10:e0131819. doi: 10.1371/journal.pone.0131819 Pérez-Losada M. Castro-Nallar E. Laerte Boechat J. Delgado L. Azenha Rama T. Berrios-Farias V. . (2023a). Nasal Bacteriomes of patients with asthma and allergic rhinitis show unique composition, structure, function and interactions. Microorganisms 11:683. doi: 10.3390/microorganisms11030683, PMID: 36985258 Pérez-Losada M. Castro-Nallar E. Laerte Boechat J. Delgado L. Azenha Rama T. Berrios-Farias V. . (2023b). The oral bacteriomes of patients with allergic rhinitis and asthma differ from that of healthy controls. Front. Microbiol. 14:1197135. doi: 10.3389/fmicb.2023.1197135, PMID: 37440882 Pérez-Losada M. Crandall K. A. Freishtat R. J. (2016a). Comparison of two commercial DNA extraction kits for the analysis of nasopharyngeal bacterial communities. AIMS Microbiol. 2, 108119. doi: 10.3934/microbiol.2016.2.108 Pérez-Losada M. Crandall K. A. Freishtat R. J. (2016b). Two sampling methods yield distinct microbial signatures in the nasopharynges of asthmatic children. Microbiome 4:25. doi: 10.1186/s40168-016-0170-5, PMID: 27306800 Pérez-Losada M. Narayanan D. B. Kolbe A. R. Ramos-Tapia I. Castro-Nallar E. Crandall K. A. . (2022). Comparative analysis of metagenomics and metataxonomics for the characterization of vermicompost microbiomes. Front. Microbiol. 13:854423. doi: 10.3389/fmicb.2022.854423, PMID: 35620097 Pite H. Pereira A. M. Morais-Almeida M. Nunes C. Bousquet J. Fonseca J. A. (2014). Prevalence of asthma and its association with rhinitis in the elderly. Respir. Med. 108, 11171126. doi: 10.1016/j.rmed.2014.05.002 Prevaes S. M. de Winter-de Groot K. M. Janssens H. M. de Steenhuijsen Piters W. A. Tramper-Stranders G. A. Wyllie A. L. . (2016). Development of the nasopharyngeal microbiota in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 193, 504515. doi: 10.1164/rccm.201509-1759OC, PMID: 26492486 Price M. N. Dehal P. S. Arkin A. P. (2010). FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi: 10.1371/journal.pone.0009490 Quast C. Pruesse E. Yilmaz P. Gerken J. Schweer T. Yarza P. . (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590D596. doi: 10.1093/nar/gks1219, PMID: 23193283 R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Raita Y. Pérez-Losada M. Freishtat R. J. Harmon B. Mansbach J. M. Piedra P. A. . (2021). Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma. Nat. Commun. 12:3601. doi: 10.1038/s41467-021-23859-6, PMID: 34127671 Rick E. M. Woolnough K. F. Seear P. J. Fairs A. Satchwell J. Richardson M. . (2020). The airway fungal microbiome in asthma. Clin. Exp. Allergy 50, 13251341. doi: 10.1111/cea.13722 RStudio Team (2015). Integrated development for R. RStudio, IncBoston, MA. Sa-Sousa A. Morais-Almeida M. Azevedo L. F. Carvalho R. Jacinto T. Todo-Bom A. . (2012). Prevalence of asthma in Portugal—the Portuguese National Asthma Survey. Clin. Transl. Allergy 2:15. doi: 10.1186/2045-7022-2-15, PMID: 22931550 Savoure M. Bousquet J. Jaakkola J. J. K. Jaakkola M. S. Jacquemin B. Nadif R. (2022). Worldwide prevalence of rhinitis in adults: a review of definitions and temporal evolution. Clin. Transl. Allergy 12:e12130. doi: 10.1002/clt2.12130, PMID: 35344304 Savoure M. Bousquet J. Leynaert B. Renuy A. Siroux V. Goldberg M. . (2023). Rhinitis phenotypes and multimorbidities in the general population: the CONSTANCES cohort. Eur. Respir. J. 61:2200943. doi: 10.1183/13993003.00943-2022, PMID: 36202419 Shade A. Handelsman J. (2012). Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 412. doi: 10.1111/j.1462-2920.2011.02585.x, PMID: 22004523 Sharma A. Laxman B. Naureckas E. T. Hogarth D. K. Sperling A. I. Solway J. . (2019). Associations between fungal and bacterial microbiota of airways and asthma endotypes. J. Allergy Clin. Immunol. 144, 12141227.e7. doi: 10.1016/j.jaci.2019.06.025, PMID: 31279011 Sheng S. Chen J. Zhang Y. Qin Q. Li W. Yan S. . (2021). Structural and functional alterations of gut microbiota in males with hyperuricemia and high levels of liver enzymes. Front Med 8:779994. doi: 10.3389/fmed.2021.779994, PMID: 34869502 Silva D. Severo M. Paciencia I. Rufo J. Martins C. Moreira P. . (2019). Setting definitions of childhood asthma in epidemiologic studies. Pediatr. Allergy Immunol. 30, 708715. doi: 10.1111/pai.13111 Silva-Gomes R. Caldeira I. Fernandes R. Cunha C. Carvalho A. (2024). Metabolic regulation of the host-fungus interaction: from biological principles to therapeutic opportunities. J. Leukoc. Biol. 116, 469486. doi: 10.1093/jleuko/qiae045, PMID: 38498599 Siroux V. Ballardini N. Soler M. Lupinek C. Boudier A. Pin I. . (2018). The asthma-rhinitis multimorbidity is associated with IgE polysensitization in adolescents and adults. Allergy 73, 14471458. doi: 10.1111/all.13410, PMID: 29331026 Small P. Keith P. K. Kim H. (2018). Allergic rhinitis. Allergy, Asthma Clin. Immunol. 14:51. doi: 10.1186/s13223-018-0280-7, PMID: 30263033 Sousa-Pinto B. Schunemann H. J. Sa-Sousa A. Vieira R. J. Amaral R. Anto J. M. . (2022). Comparison of rhinitis treatments using MASK-air(R) data and considering the minimal important difference. Allergy 77, 30023014. doi: 10.1111/all.15371 Steelant B. Farre R. Wawrzyniak P. Belmans J. Dekimpe E. Vanheel H. . (2016). Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J. Allergy Clin. Immunol. 137, 10431053.e5. doi: 10.1016/j.jaci.2015.10.050 Steelant B. Seys S. F. Van Gerven L. Van Woensel M. Farre R. Wawrzyniak P. . (2018). Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J. Allergy Clin. Immunol. 141, 951963.e8. doi: 10.1016/j.jaci.2017.08.039, PMID: 29074456 Sun M. Dai P. Cao Z. Dong J. (2024). Purine metabolism in plant pathogenic fungi. Front. Microbiol. 15:1352354. doi: 10.3389/fmicb.2024.1352354, PMID: 38384269 Teo S. M. Mok D. Pham K. Kusel M. Serralha M. Troy N. . (2015). The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17, 704715. doi: 10.1016/j.chom.2015.03.008, PMID: 25865368 Thompson L. R. Sanders J. G. McDonald D. Amir A. Ladau J. Locey K. J. . (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457463. doi: 10.1038/nature24621, PMID: 29088705 Todo-Bom A. Loureiro C. Almeida M. M. Nunes C. Delgado L. Castel-Branco G. . (2007). Epidemiology of rhinitis in Portugal: evaluation of the intermittent and the persistent types. Allergy 62, 10381043. doi: 10.1111/j.1398-9995.2007.01448.x Valero A. Pereira C. Loureiro C. Martinez-Cocera C. Murio C. Rico P. . (2009). Interrelationship between skin sensitization, rhinitis, and asthma in patients with allergic rhinitis: a study of Spain and Portugal. J Investig Allergol Clin Immunol 19, 167172, PMID: 19610258 van Tilburg Bernardes E. Gutierrez M. W. Arrieta M. C. (2020). The fungal microbiome and asthma. Front. Cell. Infect. Microbiol. 10:583418. doi: 10.3389/fcimb.2020.583418, PMID: 33324573 van Woerden H. C. Gregory C. Brown R. Marchesi J. R. Hoogendoorn B. Matthews I. P. (2013). Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: a community based case control study. BMC Infect. Dis. 13:69. doi: 10.1186/1471-2334-13-69, PMID: 23384395 Wang Q. Garrity G. M. Tiedje J. M. Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 52615267. doi: 10.1128/AEM.00062-07, PMID: 17586664 Weiss S. Xu Z. Z. Peddada S. Amir A. Bittinger K. Gonzalez A. . (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27. doi: 10.1186/s40168-017-0237-y, PMID: 28253908 Yang C. Mai J. Cao X. Burberry A. Cominelli F. Zhang L. (2023). ggpicrust2: an R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics 39:btad470. doi: 10.1093/bioinformatics/btad470, PMID: 37527009 Yuan H. Liu Z. Dong J. Bacharier L. B. Jackson D. Mauger D. . (2023). The fungal microbiome of the upper airway is associated with future loss of asthma control and exacerbation among children with asthma. Chest 164, 302313. doi: 10.1016/j.chest.2023.03.034, PMID: 37003356 Zhang M. Tang H. Yuan Y. Ou Z. Chen Z. Xu Y. . (2023). The role of indoor microbiome and metabolites in shaping children’s nasal and oral microbiota: a pilot multi-omic analysis. Meta 13:1040. doi: 10.3390/metabo13101040
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gschain.com.cn
      jijjrj.com.cn
      www.fhjszp.com.cn
      hisealine.org.cn
      hmdeyiju.com.cn
      laimaiche.com.cn
      www.superong.org.cn
      www.nb9dx.net.cn
      www.neurub.com.cn
      www.ryupqm.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p