Front. Microbiol. Frontiers in Microbiology Front. Microbiol. 1664-302X Frontiers Media S.A. 10.3389/fmicb.2017.02025 Microbiology Original Research Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens Cordero-Bueso Gustavo 1 Mangieri Nicola 2 Maghradze David 3 Foschino Roberto 2 Valdetara Federica 2 Cantoral Jesús M. 1 Vigentini Ileana 2 * 1Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Cádiz, Spain 2Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy 3Department of Viticulture and Enology, Institute of Horticulture, Viticulture and Oenology, Agricultural University of Georgia, Tbilisi, Georgia

Edited by: Sandra Torriani, University of Verona, Italy

Reviewed by: Antonio Santos, Complutense University of Madrid, Spain; Matthias Sipiczki, University of Debrecen, Hungary

*Correspondence: Ileana Vigentini ileana.vigentini@unimi.it

This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

03 11 2017 2017 8 2025 26 07 2017 04 10 2017 Copyright © 2017 Cordero-Bueso, Mangieri, Maghradze, Foschino, Valdetara, Cantoral and Vigentini. 2017 Cordero-Bueso, Mangieri, Maghradze, Foschino, Valdetara, Cantoral and Vigentini

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species (Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae, and Pichia kluyveri) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action.

yeasts molds V. vinifera ssp sylvestris biocontrol fungal diseases

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Plants provide over 80% of the human diet. Just three cereal crops (i.e., rice, maize, and wheat) and two fruit crops (grape-berries and citrus fruits) provide 70% of energy intake and cope the production of 80% of the fermented beverages in the world (FAO, 2011). Since the 1900s, around 75% of crop diversity has been lost from farmers' fields. Regarding harvest products, many losses (up to 25% of total production in industrialized countries and more than 50% in developing countries) are attributed to decay fungi, such as the Botrytis, Penicillium, Aspergillus, or Cholletotrichum genera, which are also the source of mycotoxins, harmful compounds to humans (FAO, 2011). The control of fungal diseases and mycotoxins in food and feed chains is principally based on the use of synthetic fungicides. In 2015, Spain, France, Italy, and Germany together made up 70.5% of the European Union-28's pesticide sales. Fungicides are also increasing the level of hazardous residues in the environment, they are becoming less effective due to both the increasing of resistant fungal strains, and the use of restrictions carried out by the European authorities (Directive 2009/128 /EC). Natural diversity and ecosystems provide agricultural production in many different ways (Power, 2010), but not all are well-known. Although animal and plants have received considerable attention as a resource for natural-product discovery, the microbiological component of this natural richness remains relatively unexplored.

      Yeasts are unicellular fungi that have been isolated from different ecosystems and sources both natural and in connection with human activities. They can be found on/in fruits, including Vitis vinifera ssp vinifera cultivars and V. vinifera ssp. sylvestris, plants, insects, animal intestinal tracts, soils, and marine environments (Kurtzman et al., 2011). In the past 35 years, there have been extensive research activities to explore and develop the potential of yeasts as antagonists to biologically control harvest pathogens and as an alternative to chemical pesticides (Liu et al., 2013). Representing an eco-friendly alternative to synthetic pesticides, the use of antagonist yeasts as biocontrol agents has generated a great enthusiasm (Wisnieswski et al., 2007; Droby et al., 2009; Sipiczki, 2016; Spadaro and Droby, 2016). However, yeasts often show a lower and non-comparable effectiveness against pathogenic fungi (Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum) in comparison to chemical fungicides (Liu et al., 2013), thus reducing their practical applications and leaving the problem of plant fungal disease still unsolved. Considerable progress has been made in increasing knowledge and commitment to elucidate some modes of action of few yeast strains against pathogenic fungi (Sipiczki, 2006; Sharma et al., 2009; Jamalizadeh et al., 2011; Spadaro and Droby, 2016). The described mechanisms are; nutrient or space competition (Suzzi et al., 1995), iron depletion (Sipiczki, 2006; Parafati et al., 2015), extracellular lytic enzymes production (Bar-Shimon et al., 2004), volatile organic compounds (Fredlund et al., 2004), reactive oxygen species (ROS) tolerance (Jamalizadeh et al., 2011; Liu et al., 2011), biofilm formation (Giobbe et al., 2007; Wisnieswski et al., 2007), or inducing host-plant resistance throughout the accumulation of phytoalexins (Arras, 1996; Jeandet et al., 2002) and the synthesis of pathogenesis-related proteins (Chan and Tian, 2006). Inhibition capabilities on mycelial growth or conidia germination in molds have been reported by some yeast strains of species living in vineyards, overwintering grapes, and cellar ecosystems (Elmer and Reglinski, 2006; Nally et al., 2012; Sipizcki, 2016). Nevertheless, all the scientific strategies focused on looking at different components of such interactions separately or taking into consideration binary or ternary trophic levels of the host-pathogen-antagonist interplay (Droby et al., 2009; Spadaro and Droby, 2016). In general, interactions are not between two single microorganisms and the host; they also involve the native microbiota of the host and the environmental factors (i.e., the variation of the climatic conditions and other abiotic factors such as the soil, plant emplacement, or nutrient availability for the plant). In the case of the vineyards, efforts to understand the influence of different agronomic parameters on yeast populations associated to grape-berries have been published (Cordero-Bueso et al., 2011a,b, 2014) but there is still a lack of bibliography. Moreover, there are unexplored ecosystems such as wild vines like the protected species V. vinifera ssp sylvestris (Gmelin) Hegi which could represent a great reservoir of novel and promising yeast species to be used in the food industry, as well as a substitutive of agrochemicals.

      The main aim of this work was to evaluate the antagonistic potential of yeasts isolated from grape berries collected from V. vinifera ssp sylvestris populations in the Mediterranean and Black Sea basins and from V. vinifera ssp vinifera cultivars managed under three different farming systems: organic, biodynamic, and conventional. The mode of action and the grape-berry population associate to grape-berries were investigated as well.

      Materials and methods Yeast strain identification

      Yeast strains were isolated between 2013 and 2016 from grape berries collected in Georgia, Italy, Romania, and Spain from V. vinifera ssp. sylvestris populations as stated in Cordero-Bueso et al. (2017) and in Italy from V. vinifera ssp. vinifera cv. Pinot Noir cultivated in three different farming systems: organic, biodynamic, and conventional in 2014 (Figure 1). Grape samples were treated following the protocol of Vigentini et al. (2016). All yeasts used in this work were stored in YPD medium (20 g/L peptone, 10 g/L yeast extract, 20 g/L glucose) added with 20% (v/v) glycerol at −80°C. Fresh yeast cultures were obtained by inoculation 1% (v/v) glycerol stocks in YPD broth at 25°C for 3 days in aerobic conditions. Isolates were also plated onto Wallerstein Laboratory Nutrient Agar (WL) to evaluate colony diversity as suggested by Pallmann et al. (2001). DNA extraction from the yeast isolates was performed according to Querol et al. (1992). The patterns belonging to the different species were obtained by Restriction Fragment Length Polymorphism (RFLP) analysis of the amplified ITS1-5.8S-ITS2 region; the primers used for DNA amplification were ITSY1 (5′-TCCGTAGGTGAACCTGCGG-3′) e ITSY4 (5′-TCCTCCGCTTATTGATATGC-3′) as described by White et al. (1990). PCR products were digested by CfoI, DdeI, HaeIII, and Hinf I restriction enzymes (Thermo Fisher Scientific, Massachusetts, U.S.A.). Meyerozyma guilliermondii (anamorph Candida guilliermondii) and Meyerozyma caribbica (anamorph Candida fermentati) are closely related species. Thus, to avoid misidentification these species of yeasts were also subjected to RFLP analysis using the enzyme TaqI as stated by Romi et al. (2014). Amplification products and their fragments were separated on 1.4% (w/v) and 2.5% agarose gel, respectively, added with 0.05 μg/L of ethidium bromide in TAE buffer (Tris-acetate 40 mM, EDTA 1 mM, pH 8) at 100 V for 90 min. The agarose gels were visualized using UV and photographed (1000 System, Bio-Rad Laboratories, California, U.S.A.). At least two representative members from each ITS-RFLP genotype group were randomly selected for sequencing LSU sRNA gene D1/D2 domain. Certain database sequences of several species such as Aureobasidium pullulans and Rhodotorula nothogafi, have identical D1/D1 sequences with other species. Thus, when necessary, we included the ITS1-5.8S-ITS2 region sequences. Amplification of D1/D2 region was carried out using primers NL1 (5′-GCATATCAATAAGCGGAGGAAAAG-3′) and NL4 (5′-GGTCCGTGTTTCAAGACGG-3), as previously described Kurtzman and Robnett (1998). Purification and sequencing of PCR products were performed by Macrogen Inc. facilities (Seoul, South Korea) using an ABI3730 XL automatic DNA Analyzer. The obtained sequences were aligned using ClustalX algorithm. The Basic Local Alignment Search Tool (BLAST) (http://www.ebi.ac.uk/blastall/nucleotide.html) was used to compare the sequences obtained with databases from the European Molecular Biology Laboratory (EMBL). As proposed Sipiczki (2016), the sequences of the strain types were also determined by pairwise Blast alignment using the bl2seq algorithm available at the website of the NCBI (http://www.cbs.knaw.nl). We considered an identification as “correct” when the gene sequence showed an identity ≥ 98% and a good query cover with the exception of the species Vishniacozyma carnescens and V. victoriae which D1/D2 sequences of their type strains differ only by 1.8%. Moreover, yeast strains were tested for the fermentation or assimilation of the different compounds as sole carbon, nitrogen, and others sources, with the exception of the hexadecane, vitamin-free, 5-keto-D-glucanase, saccharate, cadaverine, and CoQ component, as stated in Kurtzman et al. (2011) but using a 96-well microtiter plate technology.

      Origin and source of the yeast strains assayed in this work.

      Mold strains and growth conditions

      The mold strains used in this work were P. expansum UCAF0034 (Colección de la Universidad de Cádiz, Spain), B. cinerea BO5.10 (Colección Española de Cultivos Tipo, Burjassot, Valencia, Spain), and A. carbonarius UCAF0012 (Colección de la Universidad de Cádiz, Spain). Molds were selected based on their virulence by artificial inoculation on wounded grapes (data not shown).Mold cultures were plated on a Potato Dextrose Agar medium (Conda Laboratories, Torrejón de Ardoz, Madrid, Spain). Plates were incubated at 25°C under constant white light for at least 10 days. After incubation, spores were collected in a solution of 0.1% (v/v), Tween 20 (SIGMA). The concentration of the conidial suspension was adjusted to give 6 × 106 spores/mL according to Comménil et al. (1999). Mold strains were stored as conidial suspensions added with 20% (v/v) glycerol at −80°C.

      <italic>In vitro</italic> assays for antagonistic activity Dual screening of antagonistic activity on agar media

      The antagonistic activity of the 241 yeast isolates against A. carbonarius, B. cinerea, and P. expansum molds was investigated by in vitro assay. In the first screening, 5 μL of a fresh conidial suspension of the molds, one for each plate, were inoculated in the center of the PDA plate. Then, 5 μL of six fresh yeast cultures were positioned at 2.5 cm from the center of each Petri dish. The plates were incubated at 25°C for 10 days under constant white light and 80% relative humidity. A clear zone around the yeast colonies was interpreted as total inhibition of the growth of the mold. The strains showing an inhibitory activity were chosen for the second step of selection. In this case the PDA plates were prepared as follows: 10 mL of PDA were first included in each plate; afterwards, 5 mL of soft PDA (7 g/L agar) containing a final concentration 106 CFU/mL of yeast cells, one for each strain, were inoculated in the plates. Subsequently, when the plates were solidified, 5 μL of fresh conidial suspensions of the tested molds were inoculated upon them. The plates were incubated at the same conditions of first screening. After incubation, the radial growth was measured and the inhibition percentage was calculated as follows: inhibition (%) = (DC – DA)/DC x 100, where DC is the diameter of the growth area without the antagonistic yeast (control), DA is the diameter of growth area with the antagonistic yeast (Ruiz-Moyano et al., 2016). The experiments were repeated three times to confirm reproducibility of the results.

      Evaluation of the minimum inhibiting concentration

      An estimation of the starting concentration of yeast cells capable to inhibit the mold growth was carried out by the following test. Fresh cultures of the yeasts that overcome the second step of selection were grown in YPD broth at 25°C for 3 days. PDA plates were prepared for each strain containing a different cell concentration, from 103 to 106 CFU/mL. When the plates solidified, 10 μL of conidial suspensions (3 × 105 spores/mL) of B. cinerea, A. carbonarius, and P. expansum were spotted on the center of the Petri dish. The plates were incubated at 25°C for a week under constant light. The results were considered positive when the yeast was able to inhibit the total mold growth within the time of incubation. Control tests without inoculated yeast cells were carried out. The experiments were repeated three times to confirm reproducibility of the results.

      Killer character assay

      The killer character assay was performed according to Stumm et al. (1977). Plates containing YPD-agar and 0.003% (w/v) of methylene blue that was buffered to pH 4.5 with 0.1 mol/L of citrate-phosphate buffer were used. Yeast strains were cultured in liquid YPD until their exponential growth phase. Then, yeast strains were diluted in YPD and spread onto the plates at a concentration of 105 cells per plate and incubated at 25°C for 48–96 h. Killer activity was scored positive when the killer strain was surrounded by a region of bluish-stained cells, or by a clear zone of growth inhibition bounded by stained cells.

      Test for lytic enzymes activity

      In order to investigate the reason of the observed inhibitory effect, the previous selected strains were examined taking in consideration the production of cell wall lytic enzymes. Yeast fresh cultures were adjusted at a final concentration of 1 × 106 CFU/mL. To evaluate the proteolytic activity, 20 μL of the yeast suspension were spotted onto Skim Milk agar (Merck, Darmstadt, Germany); the formation of a clear halo around the colony after incubation at 25°C for 5 days indicated the enzymatic activity. Glucanase and chitinase activities were determined by replica plating technique. In this case, 20 μL of the yeast suspension were spotted onto YPD plates containing 0.2% β-glucan (Sigma, Town, Nation) and YPD plates containing 0.2% chitin (Sigma). Petri dishes were incubated at 30°C for 5 days. Colonies were rinsed off the plates with distilled water before staining the plates with 0.03% (w/v) Congo Red. A clear zone around the colony meant the presence of glucanase activity. Yeasts were screened for polygalacturonase production with the method described by Strauss et al. (2001) as well; they were spotted onto polygalacturonate Agar Medium containing 12.5 g/L polygalacturonic acid (Sigma), 6.8 g/L potassium phosphate (pH 3.5), 6.7 g/L yeast nitrogen base without ammonium sulfate (YNB, Difco), 10 g/L glucose, and 20 g/L agar. Plates were incubated at 30°C for 5 days. Colonies were rinsed off the plates with deionized water before staining the plates with 0.1% (w/v) Ruthenium Red. Colonies showing a purple halo were considered positive. β-glucosidase activity was tested by plating the yeast onto a selective medium containing 6.7 g/L yeast nitrogen base (YNB, Difco), 5 g/L arbutin (Sigma), and 20 g/L agar (pH 5.0). Two milliliters of a filter-sterilized 1% (v/v) ammonium ferric citrate solution was added to 100 mL media before pouring onto the plates. Petri dishes were incubated at 30°C for 3 days. Positive colonies were identified by the discoloration of the media to a brown color.

      Production of volatile organic compounds (VOCs) and hydrogen sulfide release

      Selected yeast strains were also evaluated for their production of VOCs and hydrogen sulfide released against the molds B. cinerea, A. carbonarius, and P. expansum. Four-part Petri dishes containing 3.5 mL of PDA for each sector were used. In one part, 20 μL of 106 CFU/mL of yeast suspension were inoculated. The plates were incubated at 25°C for 3 days. Then, 20 μL of conidial suspension (6 × 106 spores/mL) of each mold were inoculated in the other three sectors of each plate. Plates without the inoculation of yeasts were utilized as control. Finally, the plates were double wrapped with sterile HDPE film (Parafilm, Neenah, U.S.A) to prevent air escape and incubated for 3 days at 25°C under constant white light. Radial growth reduction, in relation to the control test, was calculated after 6 days. All experiments were performed in triplicate. Data were analyzed by one-way ANOVA. The means were separated at the 5% significance level using Tukey's test. The yeast strains slowed or inhibited the mold growth were also tested for the production of acetic acid and hydrogen sulfide. Ten microliters of yeast cell suspensions (106 CFU/mL) were spotted on Biggy Agar (Oxoid, Bakingstoke, U.K.) and in a CaCO3 agar medium (5.0 g/L yeast extract; 20 g/L glucose; 10 g/L CaCO3; 20 g/L agar). The plates were incubated at 30°C for 3 days. The qualitative amount of H2S production on this indicator medium was determined by the color of the colonies, which ranged from white (no release) through brown to near black, depending on the extent of production (high release). In the case of the acetic acid production, a clear zone around the colony meant the presence of acetic acid. A halo greater than 3 mm of radius meant a high acid release, if the halo was between 2 and 3 mm meant low acid release, if the halo was between 1 and 2 mm meant slight acid formation, and if the halo was less than 1 mm meant traces.

      Biofilm formation

      The capability to produce biofilm was evaluated following the protocol of Jin et al. (2003) partially modified. Ten microliters of fresh yeast suspension as previously described were inoculated in 1 mL of Yeast Nitrogen Base (YNB, Difco, Swedesboro, U.S.A.) added with 100 mM glucose and incubated overnight at 28°C. Subsequently, the tubes were centrifuged at 4,000 rpm for 5 min (Rotina 380 R, Hettich Zentrifugen, Tuttlingen, Germany), the cells were washed twice with a 1X phosphate-buffered saline (10X PBS: NaCl 1.37 M, KCl 27 mM, Na2HPO4 100 mM, KH2PO4 18 mM), pH 7.2) and re-suspended in YNB + glucose (100 mM) medium to obtain 107 CFU/mL. A control test was prepared with the medium without yeast cells added. One hundred microliters of the cell suspension were inoculated in triplicate into 96-well polystyrene plate with flat bottom (Starlab, Hamburg, Germany) at 28°C in a shaker at 75 rpm for 3 h. After the adhesion phase, the wells were washed twice with 150 μL of PBS, and then 100 μL of same medium were added into each well and incubated at 28°C in a shaker at 75 rpm for 72 h. The medium was sucked up daily and, then, 100 μL of fresh YNB were put into each well. After incubation, the wells were washed twice with 150 μL of PBS then 100 μL of crystal violet 0.4% (w/v) were put into each well. After 45 min, the wells were washed again for four times with 150 μL of distillate sterile water and immediately 200 μL of 95% (v/v) ethanol were added. After 45 min, 100 μL of solution were transferred to a new polystyrene 96-well plate and then the solution was measured at 590 nm. The absorbance values were subtracted for the control test values.

      Effect of iron concentration on the inhibitory activity of the yeast strains

      In order to investigate the influence of iron concentration on the inhibitory activity of the selected yeasts the following test was carried out. PDA plates without added iron and plates with 5 and 20 μg/mL of FeCl3 were prepared spreading on plates a conidial suspension (3 × 105 spores/mL) of B. cinerea, A. carbonarius, and P. expansum. Then, 10 μL of yeast suspensions (106 CFU/mL) were dropped on Petri dishes in triplicate. Three plates for each mold without yeast addition were used as control. The plates were incubated at 25°C for 1 week under constant white light. The width of reddish halos developing around the yeast colonies were measured according to Parafati et al. (2015). The results of the role of competition for iron on the antagonistic activity of the yeasts were obtained measuring the width of inhibition zones around the yeast colonies after a week.

      Effect of other metabolites released by yeast strains on mold growth

      In order to examine the effect of other potential metabolites derived from the primary or secondary metabolism of yeasts produced by antagonistic yeasts, the molds were grown in a medium containing the supernatant of a yeast culture. The yeast cultures were grown in 50 mL YPD broth at 25°C for 5–7 days in a shaker at 125 rpm. The cell growth was monitored by spectrophotometer measurements at 600 nm (Jenway 7315, Staffordshire, U.K.). When yeast cultures attained the stationary phase the supernatants were collected by centrifugation at 3,500 rpm for 5 min at 4°C (Rotina 380 R, Hettich Zentrifugen, Tuttlingen, Germany) and filtered by a 0.45 μm sterile membrane (Minisart, Goetting, Germany). Five, 0.5, and 0.05 mL of supernatants were mixed with warm (<45°C) and concentrated 5X PDA medium by adjusting the volume with sterile distilled water and poured in Petri dishes. When the plates solidified, 10 μL of conidial suspensions (3 × 105 spores/mL) of B. cinerea, A. carbonarius, and P. expansum were inoculated. The plates were incubated at 25°C for a week under constant light. The test was considered positive if the tested molds did not grow or if a severe growth inhibition was observed with respect to the control.

      <italic>In vivo</italic> assays for inhibitory activity Efficacy of yeast strains in controlling grapes infected by molds

      The yeast strains showing an evident inhibitory activity by in vitro assays were selected for the in vivo test. Fresh yeast cultures were collected by centrifugation at 3,000 rpm (Rotina 380 R, Hettich Zentrifugen, Tuttlingen, Germany) for 5 min at 4°C and washed twice with sterile distilled water. The yeast suspensions were adjusted at 106 CFU/mL. Healthy berries of table grapes (cultivar Superior Seedless, Egypt) were used for the test. Grape berries surface was disinfected by dipping them in a solution 1% (v/v) sodium hypochlorite for 5 min and rinsed three times with sterile distilled water. Afterwards, three berries for treatment were cut with a sterile scalpel (one wound of 5 mm for each berry) and submerged in the yeast cells suspensions for 5 min. The berries were put into sterile 50 mL Falcon tubes (Sigma-Aldrich, Darmstadt, Germany) and incubated for 24 h at 25°C. Then, the wounds were inoculated with 20 μL of conidial suspension (6 × 106 spores/mL) of B. cinerea, A. carbonarius, and P. expansum (three berries for each mold and for each yeast) and incubated at 25°C under constant light for a week. Three berries for each mold without yeast cells were used as control. The disease severity was evaluated by a visual score “1-to-4” (1: no visible symptoms; 2: soft rot; 3: formation of mycelium; 4: sporulation of mold) according to Parafati et al. (2015).

      Inhibitory effect of yeasts vs. a chemical pesticide by <italic>in vivo</italic> tests

      The inhibiting activity of strains, that showed the best results in the previous tests, were compared to the commercial pesticide Switch®, Syngenta (37.5% Cyprodinil and 25% Fluodioxinil). The fresh yeast cultures were prepared as above described. The pesticide was used at the suggested concentration of 1 g/L, according to the manufacturer's instruction, and it was dissolved in 25 mL of distilled sterile water. Healthy berries of table grape (cultivar Sugarone, Chile) for each yeast strain, pesticide, and control, repeated for the three tested molds, were used in this trial. The berries were treated and disinfected as above described. Afterwards, the berries were submerged in the solutions containing the yeast cells and in the solution containing the chemical pesticide for 5 min. Three berries for each mold without yeast cells and pesticide were used as control. The berries were included in six-well plate (Starlab, Hamburg, Germany) at 25°C for 24 h. Then, 10 μL of conidial suspension (6 × 106 spores/mL) of B. cinerea, A. carbonarius, and P. expansum were inoculated on the berries, in the correspondingwound points. The plates were incubated at 25°C for a week under constant light. The results were evaluated by a visual score previously stated.

      Results Identification of yeasts

      Two hundred and thirty-one yeast strains were isolated from grape berries samples of different vines: 85, 62, and 16 from a conventional, a biodynamic, and an organic vineyard, respectively. Sixty-seven yeasts were collected from V. vinifera ssp. sylvestris. The sampling plan and the distribution of the isolates are reported in Supplementary Material 1. Sixteen different morphologies were observed on WL-agar plates (data not shown). Three distinct colony subtypes were also identified within the pink-halo producers. Molecular identification by using amplification and restriction analysis of ITS1-5.8S-ITS2 region revealed 26 different patterns. The D1/D2 region of the 26S rDNA gene of at least two yeast strains, for each potential species was sequenced to identify the species. Table 1 shows the number of strains ascribed to each different species. The accession number of the sequences deposited at GenBank and the most similar CBS strain numbers are shown in Tables 1, 3. Aureobasidium pullullans can easily be confused with Aureobasidium subglaciale, Kabatiella microsticta, or Columnospaeria fagi because many database sequences of these species have identical D1/D2 sequences (Brysch-Herzberg and Siedel, 2015; Sipiczki, 2016). Moreover, R. nothofagi is difficult to distinguish from C. pallidicorallinum because certain database of sequences of these species have identical D1/D2 sequences (Sampaio, 2011; Sipiczki, 2016). Therefore, we analyzed the ITS region of A. pullulans and R. nothofagi as well (Table 1). Since mating partners of the type strains of these species exhibited the most similar ITS sequences and the most similar D1/D2 sequences it's justified to assign the yeast strains of this study to A. pullulans and R. nothofagi. Furthermore, our strain of R. nothofagi did not grow on maltose, trehalose, and inulin, which are usually assimilates by C. pallidicorallinum (Sipiczki, 2016). The D1/D2 sequence of our strain identified as V. carnescens totally fits with the sequences of type strains found in the explored databases.

      Yeast species occurrence and distribution of the isolated and identified from V. vinifera ssp sylvestris and from the different vine cultivars of V. vinifera ssp vinifera (conventional, biodynamic, and organic), GenBank accession numbers of the deposited sequences and The Centraalbureau voor Schimmelcultures (CBS) and D1/D1 Genbank accession numbers of the most similar types.

      Isolate Most similar type/reference strain Source
      Strain code D1/D2 accession no. ITS accession no. Taxonomic name D1/D2 accession number Conventional vineyard Biodynamic Vineyard Organic Vineyard Vitis vinifera ssp. sylvestris
      FZ02 MF926292 MF783894 Aureobasidium pullulans CBS584.75 KT361587.1 46 15 9 1
      CABMC2A MF927682 MF770161 Candida californica CBS989 KY816896 1
      FZ03a MF783064 Filobasidium stepposum CBS10265 KY107724.1 2
      HB09c MF783066 Filobasidium wieringae CBS1937 KY107733 1
      CABMB1A MF783060 Hanseniaspora clermontiae CBS8821 EU272040 1
      HURM6B MF926297.1 Hanseniaspora ssp CBS276 KY107853 4
      CAMB9A MF783054 Hanseniaspora uvarum CBS9790 KJ794689 17 34 1 28
      NUR3AM MF926296 Hyphopichia pseudoburtoni CBS2455 KU609072 1
      ROMA10* MF783057 Metschnikowia fructicola CBS8853 AF360542 5
      CABM7C* MF783068 Metschnikowia pulcherrima CBS5833 JN083816 9 8 1 1
      CABM9C* MF783069 Metschnikowia spp CBS5536 KM350710 5
      ROMAM1A* MF783062 Metschnikowia viticola CBS9950 KC859919 2
      SEHMA2 MF783056 Meyerozyma caribbica CBS2829 KX507035 1
      SEHIB8 MF783055 Meyerozyma guilliermondii CBS8105 KY108543 4
      HB01a MF926291 MF783893 Papiliotrema flavescens CBS942 AB035042 4 1
      CABM8C MF926294 MF783895 Pichia fermentans CBS5663 EF550234 1
      SEMA6B MF783059 Pichia kluyveri CBS7274 KY108823 4
      SEHM2A MF927685 MF783892 Rhodosporidium babjevae CBS322 AF387771 1
      EP02c MF783058 MF927679 Rhodotorula glutinis CBS2889 KY109044 3 4 1
      HURM4A MF783067 MF927680 Rhodotorula mucilaginosa CBS482 KY109140 1
      SEHUM7B MF783065 MF784281 Rhodotorula nothofagi CBS9091 AF444736 1
      ARIM1B MF926295 MF783896 Rhodotorula paludigena CBS4477 KY109146.1 1
      CABMA3A MF783053 Saccharomyces cerevisiae CBS2963 KF214442 1
      SEHM1C MF770267 Scheffersomyces stipitis CBS7126 KY109584.1 1
      PIEM5B MF783061 Schwanniomyces polymorphus CBS6456 KY109627 1
      HB02b MF926293 MF783891 Vishniacozyma carnescens CBS973 AB035054 4 1 3
      Total: 85 62 16 67

      This table shows the most probable yeast strain according to the compared databased belonging to the Metschnikowia clade, but these yeast strains cannot be assigned unequivocally to one of the species in the clade.

      Unfortunately, we encountered the problem that isolates ROMA1A, ROM10, CABM7C, and CABM9C (Table 1) which seem to belong to Metschnikowia-like strains, did not show sequence identity of their D1/D2 to any of the type strains despite they were fairly similar to one species of the Metschnikowia pulcherrima clade. It happened also with the ITS sequences. In agreement with Lachance (2011), Sipiczki et al. (2013), Brysch-Herzberg and Siedel (2015), Lachance (2016), and Sipiczki (2016), species belonging to the M. pulcherrima-like strains cannot be unequivocally assigned to one of the species of this clade after rDNA analysis because some species such as M. fructicola or Metschnikowia andauensis have a non-homogenized rDNA array. Moreover, these yeast strains cannot be easily separated by phenotypical and physiological tests. Efforts to clarify the taxonomic situation of the Metschnikowia clade are required. Although was impossible to assign our strains to one of the currently described species in the M. pulcherrima group, we showed in Tables 1, 3, the most probable species related to this genus according to the results obtained after the analysis performed.

      <italic>In vitro</italic> tests <italic>In vitro</italic> dual assays to show the antagonist yeast-mold interactions

      All yeast isolates were subjected to a preliminary in vitro assay for the detection of an antagonistic activity against B. cinerea, P. expansum, and A. carbonarius. Sixty out of the 231 yeast strains showed an effect of slowing down or inhibiting growth of the three tested molds. Thirty-six out of 60 selected antagonistic yeasts were isolated from V. vinifera ssp. sylvestris, 9 from the biodynamic vineyard, 1 from the organic vineyard, and 4 from the conventional one (Table 2). The majority of the strains with antagonistic activity were isolated from wildlife vines (53%), followed by those isolated from the biodynamic (14.5%), the organic farming system (6.2%), and the conventional (4.7%) vines (Table 2).

      In vitro dual assays of yeast strains against mycelial growth of B. cinerea, P. expansum, and A. carbonarius.

      Source Isolates from grapes Isolates with inhibitory capacity at preliminary vitro assaying % of isolates with inhibitory capacity at preliminary vitro assaying Isolates with inhibitory capacity at second vitro test % of isolates with inhibitory capacity at second vitro test % of isolates with inhibitory capacity
      Wildlife vines 67 42 62.7 18 42.9 26.9
      Biodynamic vineyard 62 11 17.7 2 18.2 3.2
      Organic vineyard 16 1 6.2 0 0 0
      Conventional vineyard 85 6 7.1 0 0 0
      Total isolates 230 60 26.1 20 33.3 8.7

      In the first in Vitro assaying, all isolates are present. At second in Vitro test only the positive at first are shown.

      After the preliminary assay, a second in vitro test was performed. It consisted of a test on solid medium where Petri-dishes were plated with a yeast cell-top agar suspension and the mold spores were spotted on the center of the plate. The percentage of the mycelium growth was calculated for each yeast strain against each mold (Table S1, Supplementary Material 1). Twenty yeast strains (plus the control) out of 60, which passed the first screening, inhibited the 100% of hyphal growth of the three tested molds in comparison with the control. Among these, 18 strains were isolated from the wild vines and belonged to H. uvarum (9), M. guilliermondii (2), P. kluyveri (2), S. cerevisiae, H. clermontiae, M. fructicola-like yeast strain, M. viticola, and C. californica species, and two strains were isolated from the biodynamic vines and were ascribed to A. pullulans and V. carnescens species (Table 2). These 20 yeast strains were selected for the successive tests in order to understand the nature of antagonistic activities.

      Evaluation of the minimum inhibiting concentration (MIC)

      MICs were determined in triplicate for all yeast strains selected after dual assays against the different molds. The evaluation of the MIC revealed that the 20 yeasts significantly reduced the progress of hyphal growth of B. cinerea and P. expansum at a concentration of 105 cells/mL, and 10 (5 H. uvarum, 1 P. kluyveri, 1 M. guilliermondii, 1 H. clermontiae, and 1 S. cerevisiae) at a concentration of 103 cells/mL both under the mentioned growth conditions (Table 4). However, the occurrence of A. carbonarius was completely reduced by only 14 yeast strains at a concentration of 106 cells/mL. Only two yeast strains (1 H. uvarum and 1 S. cerevisiae) were able to protect grapes or to compete for the nutrients against A. carbonarius at a concentration of 103 cells/mL and under the same growth conditions of B. cinerea and P. expansum (Table 4). The yeasts that were able to protect grapes or to exhaust the medium from all the assayed molds were those isolated from V. vinifera ssp. sylvestris.

      Phenotypical assaying for yeast antagonistic activity against molds and their volatile organic compounds (VOCs) referred to mycelial growth reduction of B. cinerea, P. expansum, and A. carbonarius.

      Species Strain D1/D2 Accession no. VOCsa (%) Protease Pectinase Glucanase Chitinase Glucosidase Killer activity Acetic acid productionb H2S released Iron depletionc Biofilm formationd
      A. pullulans FZ02a MF926292 28.0 + + + 0.3 + Positive with Botrytis 0.110
      C. californica CABMC2A MF927682 45.0 0 + Positive with Botrytis 0.030
      H. uvarum SEHMA6A MF783054 31.0 + 0 Positive with Botrytis 0.042
      H. uvarum CABM8A MF926284 44.5 + 0.1 + Positive with Botrytis and Aspergillus 0.010
      H. uvarum CABCM1A MF926285 35.8 + 0.2 Positive with Botrytis 0.100
      H. uvarum CAMM3A MF926286 34.8 + + 0.1 Positive with Botrytis 0
      H. uvarum CAMM6A MF926287 40.5 0.3 Negative 0.010
      H. uvarum SEHI3C MF927683 25.8 0.1 Positeive with Botrytis 0.030
      H. uvarum SEHI1C MF926288 21.0 + 0 + Positive with Botrytis 0.080
      H. uvarum SEHM7C MF926289 26.3 0.1 Positive with Botrytis and Aspergillus 0.150
      H. uvarum CAMB9A MF926290 27.7 0 Negative 0.034
      H. clermontiae CABMB1A MF783060 18.7 + 0 Positive with Botrytis 0.011
      H. uvarum Control MF801365 28.7 + 0.3 + Negative 0.033
      M. fructicola* ROMA10 MF783057 28.3 + 0 Positive with Botrytis 0.070
      M. guilliermondii CABM1A MF927684 44.5 + 0.2 + Negative 0.010
      M. guilliermondii SEHIB8 MF783055 37.0 + + 0.2 + Positive with Botrytis 0.027
      M. viticola* ROMMA1A MF783062 46.5 + 0 Positive with Botrytis 0.050
      P. kluyveri SEHMA6B MF783059 26.7 0 + Positive with Botrytis and Aspergillus 0.014
      P. kluyveri CABMC6C MF926283 29.5 + 0 Positive with Botrytis 0.360
      S. cerevisiae CABMA3A MF783053 40.0 + + 0.1 + Positive with Botrytis 0.010
      V. carnescens HB02b MF926293 28.0 0 Positive with Botrytis 0.110

      This table shows the most probable yeast strain according to the compared databased belonging to the Metschnikowia clade, but these yeast strains cannot be assigned unequivocally to one of the species in the clade.

      The percentage is calculated: (M – Mwy)/M*100 where M is the mold growth (cm) without antagonistic yeast on the plate and Mwy is the mold growth in presence of the antagonistic yeast on septet plates (cm). The percentage represents the reduction of mold grown caused by yeast VOCs.

      Values are expressed in centimeters (diameter of the halo of the positive acetic acid-producing yeast strains on the plate) a strain of Acetobacter was used as positive control.

      Positive is when in presence of iron the yeast decreases its antagonistic activity; Negative is when the antagonistic activity of the yeast is the same in presence or in absence of iron.

      The values are expressed as the average of the absorbance at 590 nm of three well-subtracted for the control test values.

      Disease incidence by A. carbonarius, B. cinerea, and P. expansum after simultaneous inoculation with different concentrations of yeast strains on PDA-agar after 5 days at 25°C under constant light.

      Species Strains A. carbonarius B. cinerea P. expansum
      106* 105 104 103 106 105 104 103 106 105 104 103
      A. pullulans FZ02a + + + + +
      C. californica CABMC2A + + + + +
      H. clermontiae CABMB1A + + + + + + + + +
      H. uvarum SEHMA6A + + + + + +
      H. uvarum CABM8A + + + + + + +
      H. uvarum CABCM1A + + + + + + + + + +
      H. uvarum CAMM3A + + + + + + + + + +
      H. uvarum CAMM6A + + + + + + +
      H. uvarum SEHI1C + + + + + +
      H. uvarum SEHM7C + + + + + +
      H. uvarum CAMB9A + + + + + + + + + + + +
      H. uvarum SEHIC3 + + + + + + + +
      H. uvarum Control
      M. guilliermondii CABM1A + + + + + + + + +
      M. guilliermondii SEHIB8 + + + + + + + + +
      P. kluyveri SEHMA6B + + + + + + + +
      P. kluyveri CABMC6C + + + + + + + + + +
      S. cerevisiae CABMA3A + + + + + + + + + + + +
      V. carnescens HB02b + + + + +

      Values are expressed as (+) if yeast strains were able to inhibit the total growth of the mold over a particular concentration and (–) if yeast strains were not able to inhibit mold growth. Values were obtained from three trials.

      The values are expressed in CFU/mL.

      Killer character assay

      From over the 20 yeast strains assayed for the killer character, only S. cerevisiae displayed a slightly killer phenotype (Table 3).

      Enzymatic tests

      All yeasts that passed the dual test were evaluated for extracellular enzymatic activities (β-1, 3-glucanase, proteolytic, and pectinolytic activities). Twelve out of the 20 yeast strains were able to hydrolyze at least one of the assayed compound (milk proteins, pectin, glucan, and chitin). Only five yeast strains (4 M. fructicola-like yeast strains and 1 P. kluyveri) showed all the enzymatic activities (Table 3).

      Production of volatile organic compounds (VOCs) and hydrogen sulfide release

      Percentage data concerning production of VOCs and hydrogen sulfide release among the 20 yeast strains selected showed that 10 yeast strains (3 H. uvarum, 4 M. fructicola-like yeast strains, 2 M. guilliermondii, and 1 S. cerevisiae) evidenced the highest values of growth inhibition. These values significantly differed (p < 0.05) from the control and the other yeast strains analyzed (Table 3).

      Biofilm formation

      Only yeast strains of H. uvarum (1), P. kluyveri (1), V. carnescens, and A. pullulans proved to be able to form biofilm by the adhesion to polystyrene 96-well plate surface (O.D. > 0.1) after 3, 48, and 72 h of incubation (Table 3).

      Effect of iron concentration on the inhibitory activity of the yeast strains

      Antagonistic activity of most of the selected strains were not significantly influenced by tested FeCl3 concentrations showing that inhibition activity of these yeasts against B. cinerea and A. carbonarius were not related with iron competition (Table 3). On the other hand, the activity of the P. kluyveri strains resulted iron-sensitive at a concentration of 20 μg/mL of FeCl3. The potential yeast strain ROMA10 (presumably M. fructicola) always produced red pigments in absence or presence of FeCl3 at different concentrations on PDA plates without affecting the pigment coloration or the inhibition of the mold. Regarding the species A. pullulans, depending on the concentration of iron, yeast colonies, and haloes pigmentation turned from pale white to maroon, but in absence of FeCl3 colonies were not pigmented and the halo was not visible. These findings will be argued in the discussion section.

      Effect of other metabolites released by yeast strains on mold growth

      Yeast primary or secondary metabolism generates numerous compounds as products of the transformation of the carbon, nitrogen, or sulfur sources. Two of the most common substances released are acetic acid and hydrogen sulfide that have antimicrobial effect. Table 3 shows that M. fructicola-like strain, H. uvarum (2 strains), M. guilliermondii (1 strain), S. cerevisiae, and C. californica species are able to produce these compounds probably affecting the mold development.

      <italic>In vivo</italic> assays for inhibitory activity Efficacy of yeast strains in controlling mold infection on grape berries

      The results of the efficacy of the 20 selected strains in reducing molds berry rots are reported in Table 3. P. kluyveri (2 strains), H. uvarum (2 strains), H. clermontiae (1 strain), and M. guilliermondii (1 strain) revealed the highest efficacy in reducing mold infection and growth caused by B. cinerea, A. carbonarius, and P. expansum. On the contrary, a strain of M. guilliermondii showed the worst result in controlling molds decay on grape-berries.

      Comparison of the inhibitory effect with chemical pesticide by <italic>in vivo</italic> test

      The three yeast strains which showed a better antagonistic effectiveness against the studied molds taking into account the above described experiments, were subjected to a comparative in vivo test with a commercial chemical fungicide used against B. cinerea and other molds including P. expansum and A. carbonarius (Table 5). In this case, the strain P. kluyveri SEHMA6B proved to be more effective than the chemical fungicide used under the proposed growth conditions.

      Comparative in vivo test of the most suitable yeast strains against molds vs. a commercial chemical fungicide.

      Species Strains A. carbonarius B. cinerea P. expansum Mean
      H. uvarum SEHMA6A 3 3 3 3 3 3 3 3 3 3.00
      H. uvarum CABMB9A 2 3 3 3 3 3 3 3 3 2.89
      P. kluyveri SEHMA6B 2 2 2 2 1 1 1 3 2 1.78
      Commercial fungicide 1 2 2 3 3 3 2 2 3 2.33
      Control 4 4 4 4 4 4 3 3 3 3.67

      The disease severity was evaluated by a visual score “1-to-4” (1: no visible symptoms; 2: soft rot; 3: formation of mycelium; 4: sporulation of mold) according to Parafati et al. (2015).

      Discussion

      The control of fungal diseases and mycotoxins contamination during grape maturation and post-harvesting is currently based on treatments with chemical fungicides. However, the environmental dispersion, the progressive loss of effectiveness, the emergence of resistant strains, and the increasing level of residues in table grape and wine (Marssat et al., 2016), have led the European Union to restrict the use of these compounds, addressing the researchers toward innovative and eco-friendly protocols to face the problem. In agreement with the recommendations pursued by UE Directive 128/2009, this work has been focused on the exploration of the natural antagonistic potential of 241 yeasts isolated from grape samples of V. vinifera ssp. sylvestris and V. vinifera ssp. vinifera against B. cinerea, A. carbonarius, and P. expansum. These molds are spoilage agents of the berries, both in vineyard after the veraison and during the over-ripening practices, by rotting the grape bunches that cause the falling of the fruit quality and, in the case of Aspergillus and Penicillium genera, a threat to food safety due to the release of mycotoxins. According to Wilson and Wisniewski (1989), biocontrol is the application of selected microorganisms with antagonistic activity against other ones and their usage at large-scale to reduce the impact of chemical synthesis pesticides on human health and environment. Many papers report the discovering of novel microbial strains with antifungal properties, proposing them as biocontrol strains against certain molds (Marssat et al., 2016). Although some natural fungicides have been marketed, they can fail in field practices since climatic conditions affect the establishment, survival and activity of the biocontrol agents (Benbow and Sugar, 1999). Yeasts are structurally and functionally heterogeneous because of their differential expression of genes, in a way that epigenetic factors, such as the host environment or abiotic external factors influence the down/up regulation of the gene expression, changing the behavior of yeast populations and their interactions (Spadaro and Droby, 2016). The present investigation shows that yeast strains isolated from various environments have significant differences on the effectiveness against three potentially harmful fungi. To our knowledge, this is the first report in which yeasts isolated from V. vinifera ssp. sylvestris and from biodynamic or organic grapevines have been assessed for potential antagonist ability against A. carbonarius, B. cinerea, and P. expansum.

      Our results pointed out that there is a greater number of species found on wildlife vines (23), compared to cultivated ones, with only seven species. This is in line with other studies, which demonstrated that the biodiversity level of yeasts community is influenced by human activities (Cordero-Bueso et al., 2011a,b, 2014, 2017; Martins et al., 2014; Drumonde-Neves et al., 2016). In addition, S. cerevisae was also isolated on wildlife grape surfaces. Previous studies on yeast diversity from cultivars or overwintering vines show that Saccharomyces genus is either absent on grapes or found in a small number and incidence (Mortimer and Polsinelli, 1999; Torija et al., 2001; Sipiczki, 2016). The results obtained from the preliminary in vitro dual assay have clearly disclosed how most isolates collected from wildlife vines (18 strains) are able to inhibit the mold growth vs. the isolates from managed cultivars (only two strains in biodynamic farming). Interestingly, yeast strains, which passed the preliminary tests, have been isolated in two ecosystems where the microbial antagonism against molds could only be produced by the associate microbiota onto grape-berries or natural barriers of the plant that hinder the entry of fungal pathogens. Consequently, H. uvarum, H. clermontiae, M. guilliermondii, and Pichia kluyveri strains, all of them isolated from V. vinifera ssp. sylvestris, could play a pivotal role as biocontrol agents in the natural environment. These data cannot be compared with the current literature since this is the first time that isolates from wildlife vines are studied with this aim. It is possible to hypothesize that the observed differences in microbiota structure between grapes from wildlife vines and cultivated ones can be due to the use of synthetic or natural pesticides in vineyards or the isolation from overwintering vineyards, resulting in a diverse selective pressure on resident microorganisms (Sipiczki et al., 2006 Cordero-Bueso et al., 2011a, 2014; Brysch-Herzberg and Siedel, 2015; Sipiczki, 2016). The higher yeast biodiversity found in samples from native conditions, highlighted in this work, might have been because the natural environment is hostile for the mold development. Moreover, it seems reasonable to think that molds exposed to repetitive doses of synthetic fungicides can acquire, modify, or adjust genetic characters that provide them an increase in the resistance.

      The minimum inhibitory concentrations (MICs) assays, defined as the lowest concentrations of yeasts resulting in complete growth inhibition of the molds, have shown that a concentration of 105 cells/mL is enough to reduce the progress of B. cinerea and P. expansum by all yeast strains. The mold A. carbonarius needed a concentration of 106 cells/mL to be inhibited. These concentrations are considerably lower than those found for other antagonistic yeasts (Chanchaichaovivat et al., 2007; Zhang et al., 2007; Nally et al., 2012). However, further experiments are required to evaluate the influence of the growth condition on the MIC values on field.

      Since several mechanisms of action are involved in the biocontrol activity of the antagonistic yeasts, we have examined the main modes of actions, such as iron depletion, cell wall degrading enzymes, diffusible, and volatile antimicrobial compounds, and biofilm formation on the 20 selected yeast strains. Within this group M. guilliermondii, H. clermontiae, P. kluyveri, H. uvarum, A. pullulans, and the yeast strain ROMA10 (M. fructicola-like strain) strains proved to release lytic enzymes potentially capable of hydrolyzing the fungal cell wall. Among these species, it is well-known that A. pullulans is able to produce β-1,3 glucanase, and chitinase active on Monilinia laxa, B. cinerea, and P. expansum, especially when the mold wall represents the sole carbon source (Zhang et al., 2009).

      The yeast metabolism leads to the formation of acetate and ethyl acetate, which are by-products with inhibitory action against molds in storing cereals (Fredlund et al., 2004). Furthermore, some yeasts can emit volatile compounds that inhibit the development of molds, as described by Parafati et al. (2015) where the growth of B. cinerea was counteracted by S. cerevisiae. In our experimental conditions, the species H. uvarum, S. cerevisae, and M. guilliermondii were able to release sufficient levels of acetic acid and hydrogen sulfide (evaluated qualitatively) to cause inhibition to mold growth. Likewise, some M. fructicola-like strains were capable of preventing the development of molds through the emission of volatile compounds. Regarding this species there are no examples in the literature, despite the report of a commercialized product used as biocontrol agent (Shemer, Bayer CropScience, AG, Germany).

      Little is known about the role of biofilms in the biocontrol activity of yeast used to control fungal diseases and the mechanisms involved in their formation. In this work, H. uvarum, P. kluyveri, V. carnescens, and A. pullulans strains revealed the capability to form biofilm. Previous studies carried on the species S. cerevisiae showed that the ability to adhere to a surface was related to the production of extracellular polysaccharides and molecules belonging to glycoproteins family implicated in this action and in the grape wounds protection (Reynolds and Fink, 2001; Parafati et al., 2015). Yeasts cells with the ability to form biofilm are recognized as most effective in limiting pathogen growth being able to colonize more efficiently the inner of grape wounds (Ianiri et al., 2013).

      Iron is essential for fungal growth and pathogenesis, thus, competition for this metal is functional for counteracting of pathogenic molds. Sipiczki (2006) and Spadaro and Droby (2016) reported this action on strains belonging to the genus Metschnikowia that were capable of stopping mold development in crop areas through an iron deficiency mechanism. In the tests we carried out, the presence of iron in growth medium modified the inhibitory properties of the antagonist yeasts (Figure 2A). In particular, for B. cinerea, when an excess of iron was present the mold was able to develop contrary to what was happening in growth media without FeCl3, where the action of yeast prevented its development. Spadaro and Droby (2016) affirmed that some M. fructicola strains were able to produce the red pigment pulcherrimin surrounding its colonies in presence of FeCl3 in the growth medium. However, in accordance to Sipiczki (2006), Sipiczki et al. (2013), Brysch-Herzberg and Siedel (2015), Lachance (2016), and Sipiczki (2016) these yeast strains could not be suitable for the delimitation of the species M. fructicola. This species is not distinguishable from M. andauensis and other species of the M. pulcherrima clade because of a possible heterogeneity of the rRNA repeats. Thus, we will consider that these yeast strains are inside of the M. pulcherrima clade but not as confirmed M. fructicola species. Previous studies investigating the mechanism of antifungal antagonism of pulcherrimin-producing Metschnikowia strains claimed that iron immobilization by pulcherrimin (and thus antifungal activity) was suppressed by iron depletion (Sipiczki, 2006). However, in our study, yeast strain ROMA10 (presumably identified as M. fructicola) was able to produce pulcherrimin-like substances in presence of FeCl3 at the studied concentrations. This result was also previously observed on apple fruits (Saravanakumar et al., 2008). Interestingly, our yeast strain FZ02 identified as A. pullulans, did not show halo without the FeCl3 addition on the medium, but colonies showed a pink halo at low iron concentration and then they turned to red-maroon at high iron concentrations (Figure 2B). This observation is in accordance with Chi et al. (2013) that reported that in a medium supplemented with iron, the colonies of A. pullulans turned to brown. They supposed that the iron was chelated by the secreted siderophores and considerable amount of the intracellular siderophores was responsible for brown colonies. However, further studies are necessary to elucidate both findings described above. The antagonistic potential of the 20 yeast strains selected after in vitro tests was further proven on wounded grape berries inoculated with A. carbonarius, B. cinerea, and P. expansum, P. kluyveri, H. uvarum, H. clermontiae, and M. guilliermondii strains exhibited the best efficacy in reducing the development of tested mold diseases. As reported by Parafati et al. (2015), S. cerevisiae species reveals to be less efficient than the non-Saccharomyces to hamper the fungal growth, probably due to its difficulty to multiply on grape wounds. Nevertheless, these results display that the cumulative effects of different antagonistic activities detected by the in vitro tests are not sufficient to explain the outcome of the most performant strains on grape berries (in vivo experiments). The efficacy of the yeast strains which showed the greatest in vivo action on grape berries, were also compared with a fungicide formulation (37.5% Cyprodinil and 25% Fludioxonil) normally used against Botrytis and as secondary rots Aspergillus spp. and Penicillium spp., according to the supplier's recommendations. We decided to exclude those isolates that show the VOCs production and that release extracellular enzymes, taking into account that the emission of certain compounds, and hydrolytic enzymes by yeasts could alter the balance of the resident microbiota and destabilize the microbial composition of the must. Surprisingly, P. kluyveri strain SEHMA6B was more effective than the commercial fungicide, particularly against Botrytis (Figure 3). Considering that gray mold decay is the main problem of pre-harvesting, the application of this yeast strain in the field could be even more interesting. Moreover, in a recent study (Sipiczki, 2016) a grape-born P. kluyveri strain was tested against Botrytis and S. cerevisiae. It was active against Botrytis but no detectable inhibitory effect on Saccharomyces. Other studies have demonstrated that this species is unable to compete with S. cerevisiae during fermentation (Cocolin and Ciani, 2014), thus, P. kluyveri could be used as biocontrol without alter the fermentation processes. Interestingly, the P. kluyveri strain tested by Sipiczki (2016) was isolated from mummified grapes which indicates that it prefers harsh conditions. This fact makes us hypothesize that P. kluyveri would be able to cope in the different conditions in field. Nevertheless, further studies are needed to test the antagonistic activity of P. kluyveri in field to verify if in the conditions that occur in the vineyard such as temperature swings, high humidity, water, solar radiation, and interaction with the resident microbiota it is able to be effective in counteracting the growth of molds.

      (A) Biocontrol activity of P. kluyveri SEHMB8A against P. expansum in PDA at different concentration of iron. The activity of this yeast strain is iron-sensitive in presence of an excess of iron the strain loses its antagonism. (B) Depending on the concentration of iron added to the PDA medium, the species A. pullulans turned from pale white to maroon, but in absence of FeCl3 the halo was not visible.

      Comparison of the three selected antagonistic yeast strains against A. carbonarius (A) and B. cinerea (B) and the commercial fungicide. Line 1: Grapes soaked with H. uvarum strain 1, Line 2: Grapes soaked with P. kluyveri SEHMB8A, Line 3: Grapes soaked with H. uvarum SEHMA61 strain 2, Line 4: Grape soaked with commercial fungicide, Line 5: Grapes without treatment.

      Actually, several yeast strains tested in the in vitro trials, when air exchange was limited, proved to be effective against molds, while under the in vivo outdoor conditions turned out to be ineffective. The main studies on volatile substances are aimed at storing, packaging, and transporting fruit and vegetables (Gomes et al., 2015). From a commercial point of view, it is important to understand the ways in which yeast acts to develop an appropriate formulation and method of application (Spadaro and Droby, 2016). The ability to compete with some nutrient yeast, for example for iron or biofilm formation, is the desired interaction. For these reasons, two isolates of H. uvarum and one of P. kluyveri, which do not produce hydrolytic enzymes, have been used for the final test with the phytopoietic drug.

      Though variable performances in field can be a significant constraint for its practical implementation (Stewart, 2001; Elmer and Reglinski, 2006), the interest in the use of bio-control is renewed because of the recent normative (Directive 2009/128/EC), by matching the specific requirements of International Organization of Vine and Wine for the sustainable production of wine.

      In conclusion, this investigation on antagonism patterns in new yeast isolates, over all from V. vinifera ssp. sylvestris, can constitute a promising source of knowledge and experience to set strategies in preventing or reducing harvested commodity damages and to test the use of selected yeast strains as a substitutive of the chemical fungicide.

      Author contributions

      GC contributed to the design of the work, to the yeast isolation, and identification, to the in vitro assays for antagonistic activity, to the analysis and to the interpretation of data for the work, to draft the work and revising it, NM contributed to the in vitro assays for antagonistic activity, to in vivo assays for inhibitory activity, to draft the work, and revising it, DM to the samples collection for yeast isolation, RF and JC contributed to draft the work and revising it, FV contributed to the yeast identification, IV contributed to the design of the work, to the interpretation of data for the work, to draft the work, and revising it for important intellectual content, and ensured that that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      PRiSM: Project approved by the Andalucía Talent Hub Program launched by the Andalusian Knowledge Agency, co-funded by the European Union's Seventh Framework Program, Marie Skłodowska-Curie actions (COFUND—Grant Agreement n° 291780) and the Ministry of Economy, Innovation, Science, and Employment of the Junta de Andalucía, Spain.

      YeSVitE: Yeasts for the Sustainability in Viticulture and Oenology (http://cordis.europa.eu/project/rcn/109193_en.html, www.yesvite.unimi.it), EU project, 7FP, Marie Curie Actions, IRSES, GA n° 612442. DM was the researcher supported by the YeSViTE project in his secondment to the University of Milan. Our thanks to David Hughes for revising the manuscript.

      Supplementary material

      The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2017.02025/full#supplementary-material

      References Arras G. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruit. Postharvest Biol. Technol. 8, 191198. 10.1016/0925-5214(95)00071-2 Bar-Shimon M. Yehuda H. Cohen L. Weiss B. Kobeshnikov A. Daus A. . (2004). Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila. Curr. Gen. 45, 140148. 10.1007/s00294-003-0471-714716497 Benbow J. M. Sugar D. (1999). Fruit surface colonization and biological control of postharvest diseases of pear by Preharvest yeast applications. Plant Dis. 83, 839844. 10.1094/PDIS.1999.83.9.839 Brysch-Herzberg M. Siedel M. (2015). Yeast diversity in two German wine growing regions. Int. J. Food Microbiol. 214, 137144. 10.1016/j.ijfoodmicro.2015.07.03426292165 Chanchaichaovivat A. Ruenwongsa P. Panijpan B. (2007). Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol. Control 42, 326335. 10.1016/j.biocontrol.2007.05.016 Chan Z. Tian S. (2006). Induction of H2O2-metabolizing enzymes and total protein synthesis in sweet cherry fruit by Pichia membranaefaciens and salicylic acid treatment. Postharvest Biol. Technol. 39. 314320. 10.1016/j.postharvbio.2005.10.009 Chi Z. Wang X. X. Geng Q. Chi Z. M. (2013). Role of a GATA-type transcriptional repressor Sre1 in regulation of siderophore biosynthesis in the marine derived Aureobasidium pullulans HN6.2. Biometals 26, 955967. 10.1007/s10534-013-9672-923990279 Cocolin L. Ciani M. (2014). I lieviti non-Saccharomyces, in Microbiologia Enologica, eds Suzzi G. Tofalo R. (Milano: Edagricole), 95111. Comménil P. Belingheri L. Bauw G. Dehortyer B. (1999). Molecular characterization of a lipase induced in Botrytis cinerea by components of grape berry cuticle. Physiol. Mol. Plant Pathol. 55, 3743. 10.1006/pmpp.1999.0206 Cordero-Bueso G. Arroyo T. Valero E. (2014). A long-term field study of the sensitivity of grape berry yeasts to the fungicides penconazole and sulfur. Int. J. Food Microbiol. 189, 189194. 10.1016/j.ijfoodmicro.2014.08.013 Cordero-Bueso G. Arroyo T. Serrano A. Valero E. (2011a). Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries. Int. J. Food Microbiol. 148, 2329. 10.1016/j.ijfoodmicro.2011.04.02121620506 Cordero-Bueso G. Arroyo T. Serrano A. Tello J. Aporta I. Vélez M. D. . (2011b). Influence of the farming system and vine variety on yeast communities associated with grape-berries. Int. J. Food Microbiol. 145, 132139. 10.1016/j.ijfoodmicro.2010.11.04021185102 Cordero-Bueso G. Vigentini I. Foschino R. Maghradze D. Cantoral J. M. (2017). Genetic diversity of yeasts isolated from Eurasian populations of Vitis vinifera ssp. sylvestris Hegi. Bio Web Conf. 9:02019. 10.1051/bioconf.20170902019 Directive 2009/128/EC (2009). Directive 2009/128/EC of the European parliament and of the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off. J. Eur. Union L 309, 7186. Droby S. Wisniewski M. Macarisin D. Wilson C. (2009). Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol. Technol. 52, 137145. 10.1016/j.postharvbio.2008.11.009 Drumonde-Neves J. Franco-Duarte R. Lima T. Schuller D. Pais C. (2016). Yeast biodiversity in vineyard environments is increased by human intervention. PLoS ONE 11:e0160579. 10.1371/journal.pone.016057927500638 Elmer P. A. G. Reglinski T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathol. 55, 155177. 10.1111/j.1365-3059.2006.01348.x FAO. (2011). Global Food Losses and Food Waste — Extent, Causes and Prevention. Rome: FAO Fredlund E. Druvefors U. A. Olstorpe M. N. Passoth V. Schnurer J. (2004). Influence of ethyl acetate production and ploidy on the anti-mould activity of Pichia anomala. FEMS Microbiol. Lett. 238, 133137. 10.1016/j.femsle.2004.07.02715336413 Giobbe S. Marceddu S. Scherm B. Zara G. Mazzarello V. Budroni M. . (2007). The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res. 7, 13891398. 10.1111/j.1567-1364.2007.00301.x17727660 Gomes A. A. M. Queiroz M. V. Pereira O. L. (2015). Mycofumigation for the biological control of post-harvest diseases in fruits and vegetables: a review. Austin J. Biotechnol. Bioeng. 2, 1051. Ianiri G. Idnurmb A. Wrighta S. A. I. Durán-Patrónc R. Manninad L. Ferracane R. . (2013). Searching for genes responsible for Patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this Mycotoxin. Appl. Environ. Microbiol. 79, 31013115. 10.1128/AEM.03851-1223455346 Jamalizadeh M. Etebarian H. R. Aminian H. Alizadeh A. (2011). A review of mechanismsof action of biological control organisms against post-harvest fruit spoilage. Bull. OEPP/EPPO 41, 6571. 10.1111/j.1365-2338.2011.02438.x Jeandet P. Douillet-Breuil A. C. Bessis R. Debord S. Sbaghi M. Adrian M. (2002). Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50, 27312741. 10.1021/jf011429s11982391 Jin Y. Yip H. K. Samaranayake Y. H. Yau J. Y. Samaranayake L. P. (2003). Biofilm forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J. Clin. Microbiol. 41, 29612967. 10.1128/JCM.41.7.2961-2967.200312843027 Kurtzman C. P. Robnett C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73, 331371. 10.1023/A:10017610088179850420 Kurtzman C. P. Fell J. W. Boekhout T. (2011). The Yeast, a Taxonomic Study. Amsterdam: Elsevier. Lachance M. A. (2011). Metschnikowia Kamienski (1989), in The Yeasts, a Taxonomy Study, 5th Edn, eds Kurtzman C. P. Fell J. W. Boekhout T. (San Diego, CA: Elsevier), 75619. Lachance M. A. (2016). Metschnikowia: half tetrads, a regicide and the fountain of youth. Yeast 33, 563574. 10.1002/yea.3208 Liu J. Michael W. Droby S. Vero S. Tian S. Hershkovitz V. (2011). Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int. J. Food Microbiol. 146, 7683. 10.1016/j.ijfoodmicro.2011.02.00721353322 Liu J. Sui Y. Wisniewski M. Droby S. Liu Y. (2013). Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 167, 153160. 10.1016/j.ijfoodmicro.2013.09.00424135671 Marssat S. Martínez-Medina M. Haissam J. M. (2016). Biological control in the microbiome era: challenges and opportunities. Biol. Control 89, 98108. 10.1016/j.biocontrol.2015.06.003 Martins G. Vallance J. Mercier A. Albertin W. Stamatopoulos P. Rey P. . (2014). Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. Int. J. Food Microbiol. 177, 2128. 10.1016/j.ijfoodmicro.2014.02.00224603471 Mortimer R. Polsinelli M. (1999). On the origin of wine yeast. Res. Microbiol. 150, 199204. 10.1016/S0923-2508(99)80036-9 Nally M. C. Pesce V. M. Maturano Y. P. Munoz C. J. Combina M. Toro M. E. . (2012). Biocontrol of Botrytis cinerea in table grapes by non-pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biol. Technol. 64, 4048. 10.1016/j.postharvbio.2011.09.009 Pallmann C. L. Brown J. A. Olineka T. L. Cocolin L. Mills D. A. Bisson L. (2001). Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 58, 198203. Parafati L. Vitale A. Restuccia C. Cirvilleri G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol. 47, 8592. 10.1016/j.fm.2014.11.01325583341 Power A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. B 365, 29592971. 10.1098/rstb.2010.014320713396 Querol A. Barrio E. Huerta T. Ramòn D. (1992). Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Eviron. Microbiol. 58, 2948295316348768 Reynolds T. B. Fink G. R. (2001). Bakers' yeast, a model for fungal biofilm formation. Science 291, 878881. 10.1126/science.291.5505.87811157168 Romi W. Keisam S. Ahmed G. Jeyaram K. (2014). Reliable differentiation of Meyerozyma guilliermondii from Meyerozyma caribbica by internal transcribed spacer restriction fingerprinting. BMC Microbiol. 14:52. 10.1186/1471-2180-14-5224575831 Ruiz-Moyano S. Martín A. Villalobos M. C. Calle A. Serradilla M. J. Córdoba M. G. . (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiol. 57, 4553. 10.1016/j.fm.2016.01.00327052701 Sampaio J. P. (2011). Rhodosporidium Banno (1967), in The Yeasts: a Taxonomic Study, 5th Edn, eds Kurtzman C. P. Fell J. W. Boekhout T. (San Diego, CA: Elsevier), 15231539. Saravanakumar D. Ciavorella A. Spadaro D. Garibaldi A. Gullino M. L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol. Technol. 49, 121128. 10.1016/j.postharvbio.2007.11.006 Sharma R. Singh D. Singh R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control 50, 205221. 10.1016/j.biocontrol.2009.05.001 Sipiczki M. (2006). Metschnikowia strains isolated from botrytized grapes antagonize. Fungal and bacterial growth by iron depletion. Appl. Environ. Microbiol. 72, 67166724. 10.1128/AEM.01275-0617021223 Sipiczki M. (2016). Overwintering of vineyard yeasts: survival of interacting yeast communities in grapes mummified on vines. Front. Microbiol. 7:212. 10.3389/fmicb.2016.0021226973603 Sipiczki M. Pflieger W. P. Holb I. J. (2013). Metschnikowia species share a pool of diverse rRNA genes differing in regions that determine hairpin-loop structures and evolve by reticulation. PLOS ONE 8:e67384. 10.1371/journal.pone.006738423805311. Spadaro D. Droby S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 47, 3949. 10.1016/j.tifs.2015.11.003 Stewart A. (2001). Commercial biocontrol – reality or fantasy. Austral. Plant Pathol. 30, 127131. 10.1071/AP01011 Strauss M. L. Jolly N. P. Lambrechts M. G. Van Resemburg P. (2001). Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J. Appl. Microbiol. 91, 182190. 11442729 Stumm C. Hermans M. H. Middelbeek E. J. Croes A. F. Dde Vires G. J. M. L. (1977). Killer-sensitive relationships in yeast from natural habitats. Antonie Van Leeuwenhoek 43, 11251128. 10.1007/BF00395667 Suzzi G. Romano P. Ponti I. Montuschi C. (1995). Natural wine yeast as biocontrol agents. J. Appl. Bacteriol. 78, 304308. 10.1111/j.1365-2672.1995.tb05030.x Torija M. J. Rozès N. Poblet M. Guillamòn J. M. Mas A. (2001). Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79, 345352 10.1023/A:101202771870111816978 Vigentini I. Maghradze D. Petrozziello M. Bonello F. Mezzapelle V. Valdetara F. . (2016). Indigenous Georgian wine-associated yeasts and grape cultivars to edit the wine quality in a precision oenology perspective. Front. Microbiol. 7:352. 10.3389/fmicb.2016.0035227047468 White T. J. Bruns T. Lee S. Taylor J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: A Guide to Methods and Applications, eds Innis M. A. Gelfand D. H. Sninsky J. J. White T. J. (New York, NY: Academic Press Inc), 315322. Wilson C. L. Wisniewski M. (1989). Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu. Rev. Phytopathol. 27, 425441. 10.1146/annurev.py.27.090189.002233 Wisniewski M. Wilson C. Droby S. Chalutz E. El Ghaouth A. Stevens C. (2007). Postharvest biocontrol: new concepts and applications, in Biological Control A Global Perspective. CABI, eds Vincent C. Goettel M. S. Lazarovits G. (Cambridge, MA), 262273. 10.1079/9781845932657.0262 Zhang D. Spadaro D. Garibaldi A. Gullino M. L. (2009). Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biol. Technol. 55 174181. 10.1016/j.postharvbio.2009.09.007 Zhang H. Zheng X. Yu T. (2007). Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18, 287291. 10.1016/j.foodcont.2005.10.007
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.ipkoo.org.cn
      grchain.com.cn
      ktchain.com.cn
      www.lynsxf.com.cn
      www.phqzbz.com.cn
      qzship.com.cn
      mrxmwp.com.cn
      www.mj5ryf.com.cn
      wqbw.com.cn
      wltgsn.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p