Front. Microbiol. Frontiers in Microbiology Front. Microbiol. 1664-302X Frontiers Media S.A. 10.3389/fmicb.2016.02025 Microbiology Original Research Microbial Degradation of a Recalcitrant Pesticide: Chlordecone Chaussonnerie Sébastien 1 2 3 Saaidi Pierre-Loïc 1 2 3 Ugarte Edgardo 1 2 3 Barbance Agnès 1 2 3 Fossey Aurélie 1 2 3 Barbe Valérie 1 Gyapay Gabor 1 Brüls Thomas 1 2 3 Chevallier Marion 1 2 3 Couturat Loïc 1 2 3 Fouteau Stéphanie 1 Muselet Delphine 1 2 3 Pateau Emilie 1 2 3 Cohen Georges N. 4 Fonknechten Nuria 1 2 3 Weissenbach Jean 1 2 3 Le Paslier Denis 1 2 3 * 1Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut de Génomique Evry, France 2Université d'Evry Val d'Essonne Evry, France 3Centre National de la Recherche Scientifique, UMR8030, Génomique métabolique Evry, France 4Institut Pasteur Paris, France

Edited by: Fabrice Martin-Laurent, INRA, France

Reviewed by: Edoardo Puglisi, Catholic University of the Sacred Heart, Italy; Ines Sviličić Petrić, Rudjer Boskovic Institute, Croatia

*Correspondence: Denis Le Paslier denis@genoscope.cns.fr

This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

†These authors have contributed equally to this work.

20 12 2016 2016 7 2025 05 08 2016 02 12 2016 Copyright © 2016 Chaussonnerie, Saaidi, Ugarte, Barbance, Fossey, Barbe, Gyapay, Brüls, Chevallier, Couturat, Fouteau, Muselet, Pateau, Cohen, Fonknechten, Weissenbach and Le Paslier. 2016 Chaussonnerie, Saaidi, Ugarte, Barbance, Fossey, Barbe, Gyapay, Brüls, Chevallier, Couturat, Fouteau, Muselet, Pateau, Cohen, Fonknechten, Weissenbach and Le Paslier

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C10Cl10O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9Cl5H3 (named B1) as well as two minor metabolites C10Cl9HO (named A1) and C9Cl4H4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus, and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process.

anaerobic biodegradation chlordecone Citrobacter kepone organochlorine pesticides analytical chemistry metagenomics

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Chlordecone (Kepone®, C10Cl10O) is an organochlorine pesticide formerly used worldwide (Europe, USA, Latin America, Africa as well as in Asia) (UNEP/POPS/POPRC.3/10, 2007; Fritz, 2009; Le Déault and Procaccia, 2009; Joly, 2010). Its rare perchlorinated bishomocubane structure, present in only two other insecticides, Kelevan and Mirex (used also as fire-retardant), originates from the dimerization of hexachlorocyclopentadiene which is a key intermediate in the synthesis of many other organochlorine pesticides (e.g., aldrin, dieldrin, heptachlor, or endosulfan) (Matolcsy et al., 1988). Mirex (C12Cl12) differs from chlordecone, as it possesses a dichloromethylene group in place of carbonyl moiety. Kelevan (C17H12Cl10O4) used in Europe to fight against the Colorado potato beetle is made from chlordecone by addition of ethyl levulinate onto the ketone function (Gilbert et al., 1966). Both compounds are known to generate chlordecone among other degradative metabolites in environmental conditions (Le Déault and Procaccia, 2009).

      Chlordecone was intensively applied in the French West Indies for the control of the banana root borer (1972–1978; 1981–1993) despite hints of high toxicity reported in a number of animal species (Epstein, 1978). In humans, recent epidemiological and toxicological studies have demonstrated that chlordecone is a reproductive and developmental toxicant, an endocrine-disrupting chemical and a neurotoxic. It is also consistently associated with an increase in the risk of prostate cancer (Multigner et al., 2010, 2016; Cordier et al., 2015; Emeville et al., 2015). Chlordecone persists in the environment (Cabidoche et al., 2009; Fernández-Bayo et al., 2013; Devault et al., 2016), and since it bioaccumulates as it moves through the food chain, it was listed in the Persistent Organic Pollutants (POPs) prohibition list of the Stockholm Convention (UNEP/POPS/POPRC.1/INF/6, 2005).

      In human and some mammals, chlordecone is metabolized in liver: after reduction into chlordecol, a chlordecol-glucuronide is formed and excreted (Fariss et al., 1980; Houston et al., 1981; Soine et al., 1983; Figure 1A). Only a few studies have reported on microbial transformation of chlordecone. In two cases the observed metabolites were limited to mono- and dihydro-chlordecone derivatives with only weak disappearance of chlordecone (Orndorff and Colwell, 1980; George and Claxton, 1988; Figure 1B). Using 14C-chlordecone, Jablonski et al. could detect polar and apolar metabolites, but no additional characterizations were carried out in order to elucidate their structure (Jablonski et al., 1996). Chlorinated derivatives could also arise from commercial chlordecone preparations as exemplified in several studies (Cabidoche et al., 2009; Fernández-Bayo et al., 2013; Merlin et al., 2014) (Supplementary Figure 1). More recently, traces of biomineralization activity coupled with chlordecone decrease were reported independently in aerobic soil microcosms (Fernández-Bayo et al., 2013) and in a fungal population (Merlin et al., 2014), however in neither cases could be detected significant amount of metabolites accounting for putative chlordecone degradation. Instead, Merlin et al. showed a strong sorption of 14C-chlordecone onto fungal biomass (Merlin et al., 2014). As for the metabolites detected so far, very little has been reported on the microbial species mentioned in the previous studies. Given its chemical structure, we hypothesized that chlordecone is more likely to serve as an electron acceptor in the initial degradation steps (Dolfing et al., 2012) than to undergo any other transformation. This initial phase should happen under anaerobic conditions where most highly chlorinated compounds are biotransformed (Hug et al., 2013). Such an assumption is also supported by the known reactivity of chlordecone in presence of chemical reducing agents. Application of zero-valent iron to chlordecone contaminated soils led to the detection of mono- and poly-hydrochlordecone derivatives (C10Cl10−nHn, 1 ≤ n ≤ 5) (Mouvet et al., 2016; Figure 1C) while vitamin B12s (reduced form) induced conversion of chlordecone into both hydrochlordecone derivatives and apolar C9-compounds (C9Cl6−nH2+n, 1 ≤ n ≤ 3) presumably assigned as polychloroindenes (Schrauzer and Katz, 1978; Figure 1D). In comparison, photolytic degradation of chlordecone gave rise only to 5b-monohydrochlordecone and 5b,-6-dihydrochlordecone (Wilson and Zehr, 1979; Figure 1E).

      Summary of known metabolic and degradative pathways for chlordecone: (A) human and mammals metabolism (Fariss et al., 1980; Houston et al., 1981; Soine et al., 1983), (B) aerobic and anaerobic bacterial degradation (Orndorff and Colwell, 1980; George and Claxton, 1988), (C) zero-valent iron degradation (Mouvet et al., 2016), (D) vitamin B12s reductive degradation (Schrauzer and Katz, 1978), (E) photolytic known degradation (Wilson and Zehr, 1979). For clarity, hydrated ketone moiety was only represented for chlordecone, even if it presumably occurs for all hydrochlordecones.

      The purpose of the present work was thus to fully characterize microflora able to transform chlordecone, clearly identify its metabolites and determine whether their gene content could explain the chlordecone degradation mechanisms. To achieve this goal, three experimental strategies were explored: direct soils cultures, bacteria extracted from soils/sludges cultures and bacteria extracted from soils/sludges on microcosms. Bacterial samples used for these enrichments came from organochlorines contaminated soils and sediments, as well as from two basins of a wastewater treatment plant (Evry, France). After 1 year several chlordecone metabolites were detected as traces by GC-MS in some cultures from microcosm enrichments. Two consortia (86 and 82) from subsequent enrichments were able to open the perchlorinated bishomocubane structure of chlordecone, resulting in a C9-compound B1 (C9Cl5H3). Similar metabolites were previously obtained by chemical degradation of chlordecone with vitamin B12s (Schrauzer and Katz, 1978), via removal of five chlorine as well as one carbon and one oxygen atoms. Subsequently, two Citrobacter species were isolated from these consortia and showed the same degradative capacity against chlordecone.

      Materials and methods Soils, sediments, and sludge samples: sources of microorganisms

      Three soil types on which bananas were grown were collected in Guadeloupe in April 2010 and their chlordecone concentration was estimated: Andosol (a, 30 mg chlordecone/kg Dry Soil, DS), Fluvisol (b, 60 μg chlordecone/kgDS) and Nitisol (c, 1.5 mg chlordecone/kgDS) by Cabidoche Y.M. (personal communication).

      In addition, organochlorines contaminated soils and sediments (dichloropropane, Bis(2-chloroisopropyl) ether (d); tetrachloroethylene and trichloroethylene (e) were used as well as sludge samples from the aerobic (f) or anoxic (g) basins of the wastewater treatment plant (WWTP) of Evry (Chouari et al., 2003).

      Experimental strategies and enrichment conditions

      The mineral medium (MM) used was as described (Löffler et al., 1996) with the following modification: KH2PO4 was replaced by a 10 mM (KH2PO4 and K2HPO4) phosphate buffer, pH 7.5. When indicated this medium was supplemented with 10 mM pyruvate as carbon source, 2 g/L yeast extract and 2 g/L tryptone (MM+). 0.4 g/L Na2S, 0.05 g/L cysteine-HCl, 0.5 mM dithiothreitol (DTT) were used as reductants and 0.1% resazurin as an indicator of anaerobiosis.

      Liquid cultures in MM or MM+ medium were carried out in 100 mL glass serum vials, sealed with butyl rubber septa and incubated in room temperature.

      Analytical standard chlordecone (Ehrenstorfer GmbH, Fluka 45379, Pestanal® and Supelco 49046) was solubilized in dimethylformamide (DMF) to a 200 mg/mL stock solution.

      Enrichment cultures were conducted following the three strategies described below (Supplementary Figure 2).

      Strategy 1: soil cultures

      Soils (a, b and c) and sediments samples (d and e) were anaerobically transferred to 50 mL MM medium following these conditions: 5 or 10 g of samples as inoculum, MM supplemented or not with yeast extract (5 g/L), chlordecone (final concentrations of 2, 1 or 0.2 mg/mL). Culture vials were incubated under N2, H2, CO2 (90, 5, 5%) atmosphere. During the incubation for ~ 6 months, subculturing by a 10% transfer to fresh media was carried out once 2 weeks.

      Strategy 2: Nycodenz® cultures

      Bacterial fractions from 60 g of soil (a and b), and of 60 g sediments samples (d and e) were collected via a Nycodenz® gradient (Bertrand et al., 2005) and resuspended in 2 mL NaCl 0.8%.

      20 mL MM medium cultures were established using 2, 1 or 0.5 ml of bacterial fraction as inoculum, MM supplemented or not with yeast extract (5 g/L), chlordecone (final concentrations of 2, 1, or, 0.2 mg/mL). Culture vials were incubated under N2, H2, CO2 (90, 5, 5%) atmosphere. 10% of the enrichment cultures were transferred to fresh media (50 mL) once 2 weeks.

      Strategy 3: microcosms

      Microcosms were prepared with 250 g of sieved and autoclaved soil from the Genoscope premises (48° 37′ 22.76″ N; 2° 26′ 20.61″ E). Control microcosms M1 and M2 were inoculated with G1505 Escherichia coli strain (Bouzon-Bloch, unpublished). Microcosms M3 to M6 were inoculated with the purified bacterial fraction obtained after Nycodenz® gradients: M3 was from the aerobic basin (f), M4 was from anoxic basin (g), M5 and M6 were from fluvisol (b). Microcosms were perfused during 1 year with mineral medium (MM) containing 2 mg/mL chlordecone. Excess liquid medium was recovered and used again for perfusion or a new medium was added when the microcosm soils became dry. After 1 year, excess liquid from microcosms was used to inoculate liquid bacterial cultures. 50 mL MM medium were inoculated with a 10% dilution of each of the 6 perfused samples in presence of chlordecone (final concentrations 2, 1, 0.2, or 0.05 mg/mL) and under N2, H2 (95, 5%) atmosphere. During the incubation period (~1 year), subculturing by a 10% transfer to fresh MM was carried out monthly in case of growth, monitored by microscopic observations. Enrichments were also performed on a pool of the 6 liquid cultures (coming from M1 to M6). Sample without inoculum was used as control.

      Enrichment cultures were then plated on 2% agar (MM+, 50 μg/mL chlordecone). Subsequently, picked colonies were grown in liquid MM+ (50 μg/mL chlordecone).

      Bacteria isolation from consortia 86 and 92 (Supplementary Figure <xref ref-type="supplementary-material" rid="SM1">2</xref>)

      Four successive extinction dilution liquid cultures experiments were carried out (v/v, 10−2–10−11) on MM+ (50 μg/mL chlordecone) under H2, N2 (5, 95%) atmosphere. Last dilution growing cultures were spread on 2% agar plates (MM+, 50 μg/mL chlordecone) and isolated colonies were purified three times in the same medium.

      16S rRNA gene analysis

      16S rRNA gene amplification and sequence analyses were performed as described (Riviere et al., 2009).

      Metagenomic sequencing of bacterial consortia 86 and 92

      Genomic DNA was extracted from 50 mL cultures from the two bacterial consortia 86 and 92 (Bertrand et al., 2005). Sequencing of the two consortia 86 and 92 was performed on Illumina instruments (http://www.illumina.com). Genomic DNA of these metagenomes was extracted and fragmented according to the targeted library fragment size. Inserts from 150 to 300 bp and from 8 to 10 kb were selected to construct paired-end (PE) and mate-pair (MP) libraries respectively. These libraries were loaded on HiSeq2500 sequencing device flowcells (150 nt were sequenced at each extremity) producing 6–10 Gb (PE data) and 23 Gb (MP data). The PE reads of a same fragment were merged (leading to ~ 180 nt read length on average), assembled with Newbler (http://www.roche.com) and contigs larger than 2 kb were ordered by SSPACE (Boetzer et al., 2011). Based on SSPACE output files, we constructed 10 and 7 scaffold pools for consortia 86 and 92 respectively, most of them corresponding to almost complete genome (Table 1). Paired-end and mate-pair data were then individually mapped with BWA (Burrows-Wheeler Aligner, http://bio-bwa.sourceforge.net) on each pool resulting on batch reads that were assembled using a mix of Newbler/SSpace or only Newbler. GapCloser (http://soap.genomics.org.cn/soapdenovo.html) was run successively with the PE and MP data to reduce the number of undetermined bases (Supplementary Table 1). Completeness and representativeness of the assembly was assessed using sequence clustering (binning) software described in Gkanogiannis et al., (2016). The assembly data were integrated for automatic annotation into the Microscope platform (Vallenet et al., 2013), http://www.genoscope.cns.fr/agc/microscope/home. This platform has been used for subsequent manual annotation. Accessions numbers are available in supplementary material.

      General and metabolic features of the 17 genomic scaffolds belonging to consortia 86 and 92.

      Organism Label Mb Reads % Closest bacterium 16S rRNA (%id) Closest bacterium CDS synt.% Style-live Superoxide dismutase Catalase Vitamin B12 biosynthesis Vitamin B12 dependent proteins Fe-S proteins
      Consortium 86 Citrobacter_86-1 KL86CIT1 5 40.6 Citrobacter amalonaticus (99) 90 Facultative 3 2 + 5 91
      Citrobacter_86-2 KL86CIT2 5 2.0 Citrobacter freundii (98) 89 Facultative 3 2 + 5 87
      Clostridiales_86 KL86CLO 3.6 2.06 Pseudoflavonifractor capillosus (96) 44 Anaerobe 1 1 1 70
      Desulfovibrio_86-1 KL86DES1 3.1 20.05 Desulfovibrio desulfuricans (98) 65 Anaerobe 2 1 + 2 103
      Dysgonomonas_86-1 KL86DYS1 5.2 8.5 Dysgonomonas mossii (99) 78 Facultative ND ND 1 39
      Dysgonomonas_86-2 KL86DYS2 4 2.75 Dysgonomonas gadei (97) 79 Facultative ND ND 1 49
      Pleomorphomonas_86 KL86PLE 5.8 0.8 Pleomorphomonas oryzae (99) 64 Facultative 1 2 + 1 70
      α-Proteobacteria_86 KL86APRO 4 2.51 Magnetospirillum gryphiswaldense (91) NS Facultative 2 ND 3 61
      δ-Proteobacteria_86 KL86DPRO 4 10.9 Desulfovibrio vulgaris (89) 32 Anaerobe 2 1 + 2 96
      Sporomusa_86 KL86SPO 5 1.8 Sporomusa sphaeroides (99) KB1-63 Anaerobe 1 3 + 26 169
      Consortium 92 Citrobacter_92-1 KM92CIT1 5 34.14 Citrobacter amalonaticus (99) 90 Facultative 3 2 + 5 91
      Citrobacter_92-3 KM92CIT3 4.8 11.12 Citrobacter freundii (99) 89 Facultative 2 2 + 3 86
      Desulfovibrio_92-1 KM92DES1 3.1 20.07 Desulfovibrio desulfuricans (98) 65 Anaerobe 2 1 + 2 103
      Desulfovibrio_92-2 KM92DES2 3.6 5.2 Desulfovibrio desulfuricans (99) 55 Anaerobe 1 ND + 2 126
      Dysgonomonas_92-1 KM92DYS1 5.2 16.27 Dysgonomonas mossii (99) 78 Facultative ND ND 1 39
      Pleomorphomonas_92 KM92PLE 5 2.01 Pleomorphomonas oryzae (99) 64 Facultative 1 2 + 1 70
      Sporomusa_92 KM92SPO 5 4.77 Sporomusa sphaeroides (99) KB1-63 Anaerobe 1 3 + 26 169

      The above information was retrieved from the “RefSeq synteny statistics” panel from the “Comparative Genomics” section of the MicroScope annotation platform (Vallenet et al., 2013). For the oxygen response, genes coding for three superoxide dismutase proteins (SodA, SodB and SodC) and genes coding for two catalases (KatA and KatE) were used. Vitamin B12 biosynthesis pathway was considered present if all the genes involved in this pathway were unambiguously detected. “Iron-sulfur” proteins were identified based on occurrence of InterPro motifs, using the keywords search functionality in MicroScope. (NS), non-significant; (ND), not detected; (+), all known genes involved in vitamin B12 biosynthesis have been found; (−), genes involved in vitamin B12 biosynthesis are missing; KB1 (Sporomusa sphaeroides) was not sequenced and Sporomusa KB1 was the closest relative. The scaffolds in blue are shared between the two consortia.

      Genomic sequencing of the isolated <italic>Citrobacter</italic> strains

      Genomic DNA was extracted from 50 mL cultures of the two isolated Citrobacter 86-1 and Citrobacter 92-1 as described (Bertrand et al., 2005). Sequencing was performed on Illumina instruments. For both genomes, an overlapping paired-end and a 8 kb mate-pair libraries were constructed out and loaded on MiSeq (2 × 300 nt) and HiSeq2500 (2 × 150 nt) sequencing device flowcells respectively. The PE (corresponding to 38 fold coverage for Citrobacter 86-1 and 25 fold coverage for Citrobacter 92-1) and MP (corresponding to 50 fold coverage for Citrobacter 86-1, 42-fold coverage for Citrobacter 92-1) data were assembled with Newbler. To validate the Citrobacter_86-1 and Citrobacter 92-1 genome assemblies, optical maps were obtained from the Argus Whole-Genome Mapping System (www.opgen.com) for both genomes. The average size of the single-molecule restriction maps was 270 kb and 230 kb for Citrobacter 86-1 and Citrobacter 92-1 respectively. For each genome, we obtained one assembly map with a total size of ~ 4.9 Mb. No misassembly was detected after analysis but variations (essentially due to displacement of insertion sequences) were observed between Citrobacter_86-1 and Citrobacter_92-1 genomes (Supplementary Figure 3). Accessions numbers are available in supplementary material.

      Organochlorines extraction for microbiological culture monitoring

      Samples were usually extracted from cultures twice a month. After homogenization of the liquid culture, 500 μL of the turbid solution were collected and extracted twice using 250 μL isooctane.

      GC-MS samples

      Three μL of the combined organic layers were injected in splitless mode into the GC-MS.

      LC-MS samples

      The combined organic layers were air-dried, solubilized in 500 μL acetonitrile, diluted with mobile phase (v/v, 1/4) and filtered. Three micro litter of the resulting solution were injected.

      Gas chromatography coupled to mass spectrometry analysis (GC-MS) for microbiological culture monitoring

      GC-MS analysis was performed on a gas chromatograph (GC), (Thermo Fisher Focus GC) coupled to a single-quadrupole mass spectrometer (Thermo Fisher DSQ II). The instrument was equipped with a non-polar 30 m × 0.25 mm × 0.25 μm DB-5MS column (Agilent J&W) and a split/splitless injector. Carrier gas was helium at a constant flow rate of 1 mL min−1. GC program started at 80°C (hold time 1 min), continued with 50°C min−1 to 140°C, followed by 6°C min−1 to 280°C (hold time 5 min). Injection and transfer line temperatures were set up at 200°C, respectively 280°C. For mass spectrometry (MS) analyses, the following standard working conditions were applied: electronic impact ionization, positive mode detection, ion source at 220°C, detector voltage 70 eV, full scan mode m/z 50–650 (scan time 0.26 sec).

      Liquid chromatography coupled to high resolution mass spectrometry analysis (LC-MS) for exact mass determination of metabolites A1, B1, and B3

      Analyses were conducted using a Dionex Ultimate 3000 LC system (Thermo Fisher Scientific) coupled to a LTQ-OrbiElite mass spectrometer (Thermo Fisher Scientific) fitted with a heated electrospray ionization source (HESI) operating in negative ionization mode. Mass spectra were acquired over an m/z range from m/z 50 up to m/z 2000 with the mass resolution set to 30.000 FWHM at m/z 400 in the Orbitrap analyzer.

      For metabolite A1 and chlordecone, the ion spray voltage was set to 4.5 kV, the sLens RF level to 67.9%, the heater temperature to 50°C and the capillary temperature to 275°C. The sheath and auxiliary gas flows (both nitrogen) were respectively optimized at 60 and 50 (arbitrary units), and the sweep gas was set to 0 (arbitrary unit).

      For metabolites B1 and B3, the ion spray voltage was set to 4.5 kV, the sLens RF level to 60%, the heater temperature to 275°C and the capillary temperature to 275°C. The sheath and auxiliary gas flows (both nitrogen) were respectively optimized at 60 and 50 (arbitrary units), and the sweep gas was set to 0 (arbitrary unit).

      The chromatographic separation was performed using an Acquity®; C18 column (150 x 2.1 mm2; 1.7 μm; Waters) and carried out at 40°C as follow: a mobile phase gradient was used with a flow rate of 0.3 mL min−1 in which mobile phase A consisted of 10 mM ammonium carbonate with pH adjusted to 9 and mobile phase B consisted of acetonitrile. The gradient started at 60% A for 2 min, followed by a linear gradient at 100% B for 18 min, and remained 10 min at 100% B. The system returned to the initial solvent composition in 5 min and was re-equilibrated under these conditions for 15 min.

      Results and discussion Isolation of bacteria that degrade chlordecone

      We initiated a large number of enrichment cultures (in MM medium supplemented with different chlordecone concentrations) under anaerobic conditions using as inoculum different soils or sediments contaminated with chlordecone or organochlorines (Supplementary Figure 2, Strategy 1). In addition, extracted bacterial fractions using a Nycodenz gradient separation method were used as inoculum (Supplementary Figure 2, Strategy 2). Most of these cultures did not grow and never produce detectable chlordecone metabolites (data not shown).

      In parallel, six microcosms were established anaerobically with microorganisms of diverse origins and perfused with a mineral medium containing 2 mg/mL chlordecone (Supplementary Figure 2, Strategy 3). After 1 year of incubation, sediment-free liquid cultures were set up with the perfusing suspensions and renewed once a month by dilution (1/10, v/v) using fresh mineral medium (MM) containing decreasing chlordecone concentrations (from 2 mg/mL to 50 μg/mL).

      Cultures were regularly monitored by (i) microscopic observations showing slow growth and microbial diversity, (ii) GC-MS analysis allowing the detection of more than 40 chlorinated metabolites as trace compounds (Figure 2 and Table 2). Chlordecone metabolites (exempt 5b-monohydrochlordecone present as contaminant in CLD commercial preparations) were never detected by GC-MS analyses of control cultures.

      GC-MS full scan chromatogram of a 700 days microbial culture. Metabolites A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, and B1 were detected (Table 2). *, other chlorinated compounds; Lin, lindane was used as an external extraction tracer.

      Metabolites library based on MS interpretation (Uk et al., 1972; Alley et al., 1974; Harless et al., 1978).

      Metabolites Retention time (min.) Postulated structure/formula
      A1 19.3 monohydro-CLD
      A2 19.0 5b-monohydro-CLD
      A3 18.8 mono or dihydro-CLD
      A4 18.7 mono or dihydro-CLD
      A5 18.5 mono or dihydro-CLD
      A6 18.2 dihydro-CLD
      A7 18.1 mono- or dihydro-CLD
      A8 17.9 mono- or dihydro-CLD
      A9 17.5 dihydro-CLD
      A10 17.1 dihydro-CLD
      A11 16.6 di- or trihydro-CLD
      B1 15.4 C9Cl5H3
      B2 12.9 C9Cl4H4
      B3 11.7 C9Cl4H4

      Metabolites in bold refer to the main metabolites seen in Figure 4.

      After 1 year cultivation of these bacterial consortia, we attempted to isolate individual consortium members on agar plates on a MM+ medium containing 50 μg/mL chlordecone. 250 colonies were picked and analyzed through their 16S rRNA gene sequences. Twenty colonies representative of the taxonomic diversity were grown further in liquid MM+ medium (with 50 μg/mL chlordecone). Growth was observed for seven colonies only, among which five selectively accumulated metabolite B1 (C9Cl5H3) (Figure 3B). The two most active colonies were selected on the basis of chlordecone degradation, followed by GC-MS. 16S rRNA gene sequences analysis showed that these colonies were bacterial consortia and not pure cultures (hereafter called consortium 86 and consortium 92). Consortium 86 was obtained from the pool of the six microcosms (M1 to M6). Consortium 92 was obtained from microcosm M3 (aerobic basin of the WWTP of Evry). Since soil autoclaving does not ensure sterility, the exact origin of these colonies remains unknown. DNAs extracted from these two consortia were sequenced. Analyses of their metagenomes showed the presence of a dozen of bacterial organisms, five of which being shared between the two consortia (Table 1). To highlight bacteria or bacterium responsible of chlordecone transformation serial dilutions experiments were performed. Thus, consortia cultures were diluted until extinction and ability to produce metabolite B1 (C9Cl5H3) was checked for each dilution where growth was observed. The most diluted (between 10−6 and 10−8) sample producing B1 (C9Cl5H3) was used to inoculate the next dilution experiment. After four successive rounds of serial dilutions only one bacterial morphology was detected and these cultures were plated. Optical mapping and genome sequencing confirmed that colonies were two pure and very similar Citrobacter strains and correspond to Citrobacter_86-1 and Citrobacter_92-1 (Table 1). These two Citrobacter strains showed accumulation of an apparent major metabolite B1 (C9Cl5H3) concomitant to chlordecone decrease while minor metabolites A1 (C10Cl9HO) and B3 (C9Cl4H4) were also formed (Figures 3, 4). Metabolite B1 usually becomes detectable 7–20 days after inoculation. It is worth noticing that, beyond the strict requirement of anaerobic conditions, chlordecone degradation strikingly occurs during the lysis phase, not in the exponential growth phase as one could have expected. This behavior is reminiscent of older observations about the dechlorination of hexachlorocyclohexane (HCH) isomers by Citrobacter freundii (Jagnow et al., 1977). The authors showed indeed that dechlorination of γ-HCH may not be related to Citrobacter freundii growth since release of 36Cl was maximal after a 3 days period of incubation in a complex medium. Therefore, one would hypothesize that dechlorination of chlordecone and γ-HCH are not related to halorespiration.

      Mass spectra analysis of (A) metabolite A1 (RT = 19.3 min) and (B) metabolite B1 (RT = 15.3 min).

      Temporal monitoring of Citrobacter_86-1 culture by GC-MS: metabolite B1 (C9Cl5H3) in blue, metabolite A1 (C10Cl9OH) in red, metabolite B3 (C9Cl4H4) in orange and chlordecone in green.

      Analyses of chlordecone metabolites

      The high chlordecone concentrations (from 2 mg/mL to 50 μg/mL) prevented quantitative measurements of chlordecone consumption, forcing us to mainly focus on the detection of its potential metabolites. The anticipated high number of samples (roughly thousand per year) to be analyzed guided us to a simplified qualitative analytical procedure. LC-MS technique was discarded due to solubility limitation caused by aqueous mobile phase and low MS-response for apolar chlorinated species. A liquid-liquid micro-extraction with pure isooctane followed by direct GC-MS analysis in full scan mode was developed. Contrary to polar organic solvents previously used for chlordecone extraction (Bristeau et al., 2014; Martin-Laurent et al., 2014), isooctane avoided the insertion of additional step (eg. solid phase extraction or solvent switch) prior to GC-MS analysis. Both electronic impact and chemical ionizations have been previously used to detect chlordecone and its two known metabolites (Harless et al., 1978). Since chemical ionization gave rise to broader chromatographic peaks, electronic impact ionization was finally retained. Even if a majority of microbiological experiments did not lead to any new chlorinated compounds, the fast analytical procedure appeared to be successful in a number of cases. Based on the analysis of several thousands of samples, a library associating MS data and retention time (RT) for more than 40 chlorinated metabolites has been established over the years.

      MS data were interpreted using the extensive fragmentation work previously published for polychlorinated bishomocubanes including mirex, chlordecone and its two known partially dechlorinated derivatives (Uk et al., 1972; Alley et al., 1974; Harless et al., 1978). Finally, a chemical formula was postulated for 14 metabolites divided into two families: C10-compounds Ai (1 ≤ i ≤ 11) and C9-compounds Bi (1 ≤ i ≤ 3) (Figure 3 and Table 2). Compared to chlordecone fragments, mass spectra of metabolites Ai (1 ≤ i ≤ 11) showed similar isotopic patterns with one or two Cl atoms being replaced by H atoms: (i) fragments of generic formula C10Cl10−nHnO+, C10Cl9−nHnO+, C10Cl8−nHnO+, and C10Cl7−nHnO+ (n = 1 or 2); (ii) fragments of generic formula C9Cl9−nHn+, C9Cl8−nHn+, C9Cl7−nHn+, C9Cl6−nHn+, and C9Cl5−nHn+ (n = 1 or 2); (iii) fragments of generic formula C5Cl6−nHn+, C5Cl5−nHn+, and C5Cl4−nHnO+ (0 ≤ n ≤ 2); (iv) fragments of formula C9Cl7H2+, C9Cl6H2+ and C9Cl5H2+(Supplementary Figure 4).

      Based on these fragments, identification (i.e., mono-, di-or tri-hydrochlordecone) was made for metabolites Ai (1 ≤ i ≤ 11) (Table 2). Schrauzer and Katz reported in 1978 the formation of C9Cl5−nHn compounds (0 ≤ n ≤ 2) in free-corrinoid degradation of chlordecone (Schrauzer and Katz, 1978). Based on MS and UV data, the authors assigned them as polychloroindenes (Figure 1D). Metabolites Bi (1 ≤ i ≤ 3) turned out to show same type of fragments indicating a probable similar chemical structure: (i) C9Cl5H3+, C9Cl4H3+, C9Cl3H3+, C9Cl3H2+, and C9Cl2H3+ for metabolite B1; (ii) C9Cl4H4+, C9Cl3H4+, C9Cl2H4+, C9Cl2H3+, and C9ClH4+ for metabolites B2 and B3 (Supplementary Figure 4). LC-MS analysis confirmed the proposed chemical formula for the three main metabolites produced by Citrobacter strains (Table 3). Even if neither GC-MS nor LC-MS analysis can, at that stage, quantify the ratio between A1, B1 and B3 in the Citrobacter degradations, it is worth noticing that a loss of five and six chlorine atoms (for metabolites B1 and B3, respectively) has never been observed so far in presence of microbes nor fungi (Orndorff and Colwell, 1980; George and Claxton, 1988; Jablonski et al., 1996; Fernández-Bayo et al., 2013; Merlin et al., 2014).

      Liquid Chromatography-High Resolution Mass Spectrometry analysis of chlordecone and metabolites A1, B1, and B3.

      Compound Retention time (min) m/z [M-H]exp m/z [M-H]th Δ (ppm) Proposed neutral formula
      A1 10.51 468.72461 468.72559 2.09 C10Cl9H3O2
      B1 20.15 284.85937 284.85995 2.03 C9Cl5H3
      B3 19.05 250.89834 250.89895 2.43 C9Cl4H4
      chlordecone 12.94 502.68563 502.68637 1.42 C10Cl10H2O2
      (Meta)Genome analysis

      Consortia 86 and 92 are composed of 10 and 7 scaffolds, respectively, and represent almost complete bacterial genomes (Table 1). Out of them, five are shared by the two consortia and correspond mainly to fermenter (Citrobacter sp., Dysgonomonas sp.), sulfate reducing (Desulfovibrio sp.), acetogenic (Sporomusa sp.) and a Pleomorphomonas species. The latter belongs to the order of Rhizobiales which includes among others plant endosymbionts and a large number of nitrogen fixing species. Isolated Citrobacter sp. have the highest sequence coverage, which is consistent with an important role in the two consortia. None of these species are known to be halorespiring bacteria, although a Desulfovibrio dechloracetivorans isolated from marine sediments is able to grow by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol (Sun et al., 2000). However any protein sequence involved in this dehalogenation has been described. Otherwise, no gene sequences related to known reductive dehalogenases (PFAM: PF13486; TIGRFAM: TIGR02486), the key enzymes in halorespiraton (Maymó-Gatell et al., 1997; Hug et al., 2013) have been found in these genomes. Interestingly, Citrobacter and Desulfovibrio spp. were previously reported to be involved in the dehalogenation of hexachlorocyclohexane isomers by a still unknown mechanism (Jagnow et al., 1977; Badea et al., 2009).

      Comparisons with known bacteria were based on 16S rRNA gene sequences alignments and comparative analyses with sequenced genomes sharing a high fraction of syntenic genes. Two different Citrobacter species were found in consortium 86: Citrobacter_86-1 is closely related to Citrobacter amalonaticus and Citrobacter_86-2 to Citrobacter freundii (Table 1). A Desulfovibrio sp. was closely related to D. desulfuricans whereas the affiliation of the other Deltaproteobacterium was not clear and may represent a new genus (the 16S rRNA sequence shares only 89% identity with the closest cultivable bacterium). On the basis of its 16S rRNA gene sequence, the Sporomusa acetogenic bacterium was closely related to Sporomusa sphaeroides (not sequenced so far). The genome of this bacterium is related to the KB1 strain isolated from a trichloroethene dechlorinating consortium (Hug et al., 2012). Two Bacteroidetes belonging to the Dysgonomonas genus as well as two Alphaproteobacteria (one being close to Pleomorphomonas oryzae) are found in consortium 86. Finally, a bacterium belonging to the Clostridiales order was only found in consortium 86.

      Most of the bacteria from consortium 86 appear to be facultative anaerobes, e.g., the Citrobacter genomes harbor a large number of genes involved in response to molecular oxygen (Table 1).

      Since vitamin B12 is an important compound in the reductive dehalogenation, as cofactor of reductive dehalogenases but also as protein-free corrinoid (Bommer et al., 2014; Renpenning et al., 2014; Payne et al., 2015), in both biotic (Fetzner and Lingens, 1994) and abiotic settings (Schrauzer and Katz, 1978), we searched for genes involved in the biosynthesis of this compound. Complete anaerobic pathways for vitamin B12 biosynthesis were actually identified in the genomes of Citrobacter, Desulfovibrio, Sporomusa and Pleomorphomonas detected in consortia. In addition, genes coding for vitamin B12-dependent proteins were found, such as a large number of dimethylamine and trimethylamine methyltransferases present in the Sporomusa genome, which are likely to be involved in growth on N-methylated compounds. Citrobacter_86-1 genome possesses five vitamin B12-dependent proteins involved in different metabolic pathways (see below).

      The reductive dehalogenases being iron-sulfur proteins, special interest has been focused on these proteins of unknown function and on their genomic context (Table 1).

      Because no candidate genes for reductive dehalogenases were found in these consortia genomes, we searched for genes encoding other enzymes that could be involved in dehalogenation of chlordecone such as genes linA, linB (coding respectively for a dehydrochlorinase and a haloalkane dehalogenase) and haloacid dehalogenases (van der Ploeg et al., 1991; Nagata et al., 1999). Although these genes were involved in aerobic dehalogenation, we cannot exclude that homologs of these proteins could act on some CLD dehalogenation steps. In summary, no evidence of proteins involved in CLD transformation has been found through analyses of genomes of consortium 86 and 92.

      A special interest was for the isolated Citrobacter_86-1 and Citrobacter_92-1 which produce A1, B1 and B3 metabolites. Genomes from these two bacteria are nearly identical and are closely related to Citrobacter amalonaticus strain L8A (RefSeq assembly accession: GCF_000731055.1).

      Analysis of Citrobacter_86-1 genome shed light on the anaerobic metabolism of this bacterium. Thus, genes involved in lactate, acetate, CO2 and H2 production from glucose and from pyruvate were found as well as a number of genes coding for proteins involved in anaerobic respiration (Supplementary Table 2). Among them, two DMSO reductases-like for which the substrate is unknown. The presence of a putative selenate reductase could indicate that this Citrobacter could use selenium in anaerobic respiration. Genes involved in the anaerobic glycerol utilization, including oxidative and reductive branches of fermentation were found. The vitamin B12-dependent glycerol dehydratase is the key enzyme in the reductive pathway of this fermentation. Another alcohol metabolized by Citrobacter_86-1 is the 1,2-propanediol (1,2-PD). A gene cluster involved in the degradation of 1,2-PD has been found including genes encoding 1,2-propanediol dehydratase (a vitamin B12-dependent protein) as well as shell protein of the micro compartments. Besides the ability to ferment sugars, Citrobacter_86-1 could ferment several amino acids, notably through vitamin B12-dependent glutamate mutase (glutamate fermentation), threonine and serine deaminases (threonine/serine fermentations). Finally, a gene encoding a vitamin B12 dependent methylmalonyl-CoA mutase has been found in a cluster involved in a pathway allowing the conversion of succinate to propionate in Escherichia coli, although the metabolic context of this pathway is unknown (Haller et al., 2000). Taken together these genome sequence data indicate that Citrobacter_86-1 has a versatile anaerobic metabolism and is able to use a large number of electron acceptors.

      Conclusion

      We report here the isolation and complete genome sequences of two Citrobacter bacteria as well as two consortia that mediate chlordecone transformation. Both isolated strains and consortia could be extremely useful to further investigate routes to eliminate this challenging and harmful molecule. The microbial transformation products, namely a monohydrochlordecone (A1) and two C9-compounds (B1, B3) presumably come from several dehalogenation steps, possibly coupled with elimination of the carbonyl group (C9-metabolites). Genomes of the two isolated Citrobacter organisms, which were shown to produce these metabolites, were scrutinized in more detail for genes potentially relevant to this molecular phenotype. In the absence of convincing evidence for homologs to known reductive dehalogenases and other candidate enzymes in these Citrobacter organisms, elucidation of the degradative pathways remains elusive. MS analyses led to the identification of 14 metabolites belonging to the C10- and C9-families included in a much larger metabolite library. Isolation of these compounds and their use in microbiological experiments would bring new insights into the degradation mechanisms.

      To our knowledge, the present microbial degradation of chlordecone is the first one associating chlordecone disappearance and its ring-opening leading to the apparent major metabolite B1 of formula C9Cl5H3. The destruction of the perchlorinated bishomocubane “cage” structure presumably responsible for its environmental recalcitrance (Huggett, 1989; Macarie et al., 2016) opens the way toward its complete biomineralization.

      Author contributions

      Conceived and designed the experiments: SC, PS, EU, NF, JW, and DL. Analyzed the data: SC, PS, EU, VB, TB, GC, MC, NF, JW, and DL. Contributed reagents/materials/analysis: SC, PS, EU, AB, AF, VB, TB, GG, MC, LC, SF, DM, and EP. Manuscript preparation and revision: SC, PS, EU, MC, GC, NF, JW, and DL.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      This article is dedicated to the memory of Dr. Yves-Marie Cabidoche. Support was provided by the INRA AIP Demichlord part of PNAC I, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), the CNRS and the University of Evry. MC work was funded by CEA. The authors would like to thank Philippe Bertin, Yves-Marie Cabidoche, Jean-Marie Côme, Stéphane Frenette, Didier Lièvremont, Fabrice Martin-Laurent and Laurent Quillet for providing soils, sediments and wastewater samples. They also thank Anne Zaparucha for helpful discussions, Ekaterina Darii for LC-MS analyses and Laurence Marie for technical skills.

      Supplementary material

      The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.02025/full#supplementary-material

      References Alley E. G. Layton B. R. Minyard J. P. Jr. (1974). Identification of the photoproducts of the insecticides Mirex and Kepone. J. Agric. Food Chem. 22, 442445. 4840509 Badea S. Vogt C. Weber S. Danet A. F. Richnow H. H. (2009). Stable isotope fractionation of g-hexachlorocyclohexane (lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria. Environ. Sci. Technol. 43, 31553161. 10.1021/es801284m19534128 Bertrand H. F. Poly F. Van V. T. Lombard N. Nalin R. Vogel T. M. . (2005). High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J. Microbiol. Methods 62, 111. 10.1016/j.mimet.2005.01.00315823390 Boetzer M. Henkel C. V. Jansen H. J. Butler D. Pirovano W. (2011). Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578579. 10.1093/bioinformatics/btq68321149342 Bommer M. Kunze C. Fesseler J. Schubert T. Diekert G. Dobbek H. (2014). Structural basis for organohalide respiration. Science 346, 455458. 10.1126/science.125811825278505 Bristeau S. Amalric L. Mouvet C. (2014). Validation of chlordecone analysis for native and remediated French West Indies soils with high organic matter content. Anal. Bioanal. Chem. 406, 10731080. 10.1007/s00216-013-7160-223836087 Cabidoche Y. M. Achard R. Cattan P. Clermont-Dauphin C. Massat F. Sansoulet J. (2009). Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ. Pollut. 157, 16971705. 10.1016/j.envpol.2008.12.01519167793 Chouari R. Le Paslier D. Daegelen P. Ginestet P. Weissenbach J. Sghir A. (2003). Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl. Environ. Microbiol. 69, 73547363. 10.1128/AEM.69.12.7354-7363.200314660385 Cordier S. Bouquet E. Warembourg C. Massart C. Rouget F. Kadhel P. . (2015). Perinatal exposure to chlordecone, thyroid hormone status and neurodevelopment in infants: the Timoun cohort study in Guadeloupe (French West Indies). Environ. Res. 138, 271278. 10.1016/j.envres.2015.02.02125747818 Devault D. A. Laplanche C. Pascaline H. Bristeau S. Mouvet C. Macarie H. (2016). Natural transformation of chlordecone into 5b-hydrochlordecone in French West Indies soils: statistical evidence for investigating long-term persistence of organic pollutants. Environ. Sci. Pollut. Res. Int. 23, 8197. 10.1007/s11356-015-4865-026122571 Dolfing J. Novak I. Archelas A. Macarie H. (2012). Gibbs free energy of formation of chlordecone and potential degradation products: implications for remediation strategies and environmental fate. Environ. Sci. Technol. 46, 81318139. 10.1021/es301165p22780863 Emeville E. Giusti A. Coumoul X. Thomé J. P. Blanchet P. Multigner L. (2015). Associations of plasma concentrations of dichlorodiphenyldichloroethylene and polychlorinated biphenyls with prostate cancer: a case-control study in Guadeloupe (French West Indies). Environ. Health Perspect. 123, 317323. 10.1289/ehp.140840725493337 Epstein S. S. (1978). Kepone hazard evaluation. Sci. Total Environ. 9, 162. 74851 Fariss M. W. Blanke R. V. Saady J. J. Guzelian P. S. (1980). Demonstration of major metabolic pathways for chlordecone (kepone) in humans. Drug Metab. Dispos. 8, 434438. 6161768 Fernández-Bayo J. D. Saison C. Voltz M. Disko U. Hofmann D. Berns A. E. (2013). Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions. Sci. Total Environ. 463–464, 395403. 10.1016/j.scitotenv.2013.06.044 Fetzner S. Lingens F. (1994). Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol. Rev. 58, 641685. 7854251 Fritz M. (2009). L'autorisation du Chlordécone en France 1968–1981, Rapport AFSSET. Available online at: http://www.observatoire-pesticides.fr/upload/bibliotheque/457291400429630296486151015810/autorisation_chlordecone_france__1968_1981.pdf George S. E. Claxton L. D. (1988). Biotransformation of chlordecone by Pseudomonas species. Xenobiotica 18, 407416. 10.3109/004982588090416772456645 Gilbert E. E. Lombardo P. Rumanovski E. J. Walker G. L. (1966). Preparation and insecticidal evaluation of alcoholic analogs of kepone. J. Agric. Food Chem. 14, 111114. 10.1021/jf60144a004 Gkanogiannis A. Gazut S. Salanoubat M. Kanj S. Brüls T. (2016). A scalable assembly-free variable selection algorithm for biomarker discovery from metagenomes. BMC Bioinformatics 17:311. 10.1186/s12859-016-1186-327542753 Haller T. Buckel T. Rétey J. Gerlt J. A. (2000). Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39, 46224629. 10.1021/bi992888d10769117 Harless R. L. Harris D. E. Sovocool G. W. Zehr R. D. Wilson N. K. Oswald E. O. (1978). Mass spectrometric analyses and characterization of kepone in environmental and human samples. Biomed. Mass Spectrom. 5, 232237. 10.1002/bms.120005031275747 Houston T. E. Mutter L. C. Blanke R. V. Guzelian P. S. (1981). Chlordecone alcohol formation in the Mongolian gerbil (Meriones Unguiculatus): a model for human metabolism of chlordecone (kepone). Fundam. Appl. Toxicol. 1, 293298. 6192032 Hug L. A. Beiko R. G. Rowe A. R. Richardson R. E. Edwards E. A. (2012). Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics 13:327. 10.1186/1471-2164-13-32722823523 Hug L. A. Maphosa F. Leys D. Löffler F. E. Smidt H. Edwards E. A. . (2013). Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368:20120322. 10.1098/rstb.2012.032223479752 Huggett R. J. (1989). Kepone and the James river, in Contaminated Marine Sediments: Assessments and Remediation, U.S. Environmental Protection Agency (EPA) and Food and Drug Administration (FDA) (Washington, DC: National Academic Press), 417424. Jablonski P. E. Pheasant D. J. Ferry J. G. (1996). Conversion of kepone by Methanosarcina thermophila. FEMS Microbiol. Lett. 139, 169176. Jagnow G. Haider K. Ellwardt P. C. (1977). Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch. Microbiol. 115, 285292. 74989 Joly P. B. (2010). La saga du chlordécone aux Antilles françaises. Reconstruction Chronologique 1968–2008. Rapport INRA Sens. Available online at: http://www.observatoire-pesticides.fr/upload/bibliotheque/852173530783222242256849728077/saga_chlordecone_antilles_francaises_1968_2008.pdf (in French). Le Déault J. Y. Procaccia C. (2009). Les Impacts de l'utilisation de la Chlordécone et des Pesticides aux Antilles: Bilan et Perspectives d'évolution. Report no. 1778 of French National Assembly (in French). Löffler F. E. Sanford R. A. Tiedje J. M. (1996). Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl. Environ. Microbiol. 62, 38093813. 16535425 Macarie H. Novak I. Sastre-Conde I. Labrousse Y. Archelas A. Dolfing J. (2016). Theoretical approach of chlordecone biodegradation, in Crisis Management of Chronic Pollution: Contaminated Soil and Human Health, eds Jannoyer M. Cattan P. Woignier T. Clostre F. (Boca Raton, FL: CRC Press), 191209. Martin-Laurent F. Sahnoun M. Merlin C. Vollmer G. Lübke M. (2014). Detection and quantification of chlordecone in contaminated soils from the French West Indies by GC-MS using the 13C10-chlordecone stable isotope as a tracer. Environ. Sci. Pollut. Res. Int. 21, 49284933. 10.1007/s11356-013-1839-y23733305 Matolcsy C. Nadasy M. Andriska V. (1988). Pesticide chemistry. Stud. Environn. Sci. 32, 1809. Maymó-Gatell X. Chien Y. Gossett J. M. Zinder S. H. (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276, 15681571. 9171062 Merlin C. Devers M. Crouzet O. Heraud C. Steinberg C. Mougin C. . (2014). Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies. Environ. Sci. Pollut. Res. Int. 21, 49144927. 10.1007/s11356-013-1971-823872892 Mouvet C. Dictor M. C. Bristeau S. Breeze D. Mercier A. (2016). Remediation by chemical reduction in laboratory mesocosms of three chlordecone-contaminated tropical soils. Environ. Sci. Pollut. Res. Int. [Epub ahead of print]. 10.1007/s11356-016-7582-427628922 Multigner L. Ndong J. R. Giusti A. Romana M. Delacroix-Maillard H. (2010). Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 28, 34573462. 10.1200/JCO.2009.27.215320566993 Multigner L. Kadhel P. Rouget F. Blanchet P. Cordier S. (2016). Chlordecone exposure and adverse effects in French West Indies populations. Environ. Sci. Pollut. Res. Int. 23, 38. 10.1007/s11356-015-4621-525940496 Nagata Y. Futamura A. Miyauchi K. Takagi M. (1999). Two different types of dehalogenases, LinA and LinB, involved in gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 are localized in the periplasmic space without molecular processing. J. Bacteriol. 181, 54095413. 10464214 Orndorff S. A. Colwell R. R. (1980). Microbial transformation of kepone. Appl. Environ. Microbiol. 39, 398406. 6155103 Payne K. A. Quezada C. P. Fisher K. Dunstan M. S. Collins F. A. Sjuts H. . (2015). Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517, 513516. 10.1038/nature1390125327251 Renpenning J. S. Keller S. S. Cretnik S. O. Shouakar-Stash O. M. Elsner M. T. Schubert T. . (2014). Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum Multivorans Pcea) in reductive dehalogenation of tetrachloroethene, but not trichloroethene. Environ. Sci. Technol. 48, 1183711845. 10.1021/es503306g25216120 Riviere D. Desvignes V. Pelletier E. Chaussonnerie S. Guermazi S. Weissenbach J. . (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3, 700714. 10.1038/ismej.2009.219242531 Schrauzer G. N. Katz R. N. (1978). Reductive dechlorination and degradation of mirex and kepone with vitamin B12. Bioinorg. Chem. 9, 23143. 81074 Soine P. J. Blanke R. V. Schwartz C. C. (1983). Chlordecone metabolism in the pig. Toxicol. Lett. 17, 3541. 6194575 Sun B. Cole J. R. Sanford R. A. Tiedje J. M. (2000). Isolation and characterization of Desulfovibrio dechloracetivorans Sp. Nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl. Environ. Microbiol. 66, 2413. 10.1128/AEM.66.6.2408-2413.200010831418 Uk S. Himel C. M. Dirks T. F. (1972). Mass spectral pattern of Mirex (dodecachlorooctahydro-1,3,4-metheno-2H-cyclobuta (cd) pentalene) and of Kepone (decachlorooctahydro-1,3,4-metheno-2H-cyclobuta (cd)-pentalen-2-one) and its application in residue analysis. Bull. Environ. Contam. Toxicol. 7, 207215. 4669488 UNEP/POPS/POPRC.1/INF/6 (2005). United Nations Environment Programme, Stockholm Convention on Persistent Organic Pollutants. Persistent Organic Pollutants Review Committee, Consideration of chemicals proposed for inclusion in Annexes A, B, and C of the Convention: Chlordecone. Available onilne at: http://www.pops.int/%5C/documents/meetings/poprc/meeting_docs/en/POPRC1-INF6-w-anx.pdf UNEP/POPS/POPRC.3/10 (2007). Projet d'évaluation de la Gestion des Risques: Chlordécone. Available online at: http://www.pops.int/documents/meetings/poprc_3/meetingdocs/poprc3_doc/10/K0762894.F_POPS_POPRC_3_10.pdf Vallenet D. Belda E. Calteau A. Cruveiller S. Engelen S. Lajus A. . (2013). MicroScope–an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 41, D636D647. 10.1093/nar/gks119423193269 van der Ploeg J. van Hall G. Janssen D. B. (1991). Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene. J. Bacteriol. 173, 79257933. 1744048 Wilson N. K. Zehr R. D. (1979). Structures of some kepone photoproducts and related chlorinated pentacyclodecanes by C-13 and proton nuclear magnetic resonance. J. Org. Chem. 44, 12781282.
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hocgnw.com.cn
      hyuemp.com.cn
      www.hxiaol.com.cn
      www.kpwfit.com.cn
      ilynn.com.cn
      mbaksw.com.cn
      jhzixun.com.cn
      www.skanojete.com.cn
      pyqdl.com.cn
      www.omseoe.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p