Front. Microbiol. Frontiers in Microbiology Front. Microbiol. 1664-302X Frontiers Media S.A. 10.3389/fmicb.2016.01227 Microbiology Original Research Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract Strati Francesco 1 2 Di Paola Monica 3 Stefanini Irene 1 Albanese Davide 1 Rizzetto Lisa 1 Lionetti Paolo 3 Calabrò Antonio 4 Jousson Olivier 2 Donati Claudio 1 Cavalieri Duccio 1 5 * De Filippo Carlotta 6 * 1Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all' Adige, Italy 2Centre for Integrative Biology, University of Trento Trento, Italy 3Department of Neuroscience, Psychology, Drug Research and Child Health, Meyer Children's Hospital, University of Florence Florence, Italy 4Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence Florence, Italy 5Department of Biology, University of Florence, Sesto Fiorentino Florence, Italy 6Institute of Biometeorology, National Research Council Florence, Italy

Edited by: Agostinho Carvalho, University of Minho, Portugal

Reviewed by: Norman Pavelka, Singapore Immunology Network (A*STAR), Singapore; Teresa Rinaldi, Sapienza University of Rome, Italy

*Correspondence: Duccio Cavalieri duccio.cavalieri@unifi.it

Carlotta De Filippo c.de.filippo@ibimet.cnr.it

This article was submitted to Fungi and Their Interactions, a section of the journal Frontiers in Microbiology

03 08 2016 2016 7 1227 25 05 2016 22 07 2016 Copyright © 2016 Strati, Di Paola, Stefanini, Albanese, Rizzetto, Lionetti, Calabrò, Jousson, Donati, Cavalieri and De Filippo. 2016 Strati, Di Paola, Stefanini, Albanese, Rizzetto, Lionetti, Calabrò, Jousson, Donati, Cavalieri and De Filippo

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here, we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal (GI) tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C), to acidic and oxidative stress, and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals' life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics-based approaches to fungal gut populations.

commensal fungi human gut mycobiota antifungal resistance fungal metagenomics fungi-host interactions

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The human gut is a complex ecological niche in which archaea, bacteria, protozoa, fungi, and viruses co-exist in close association with the host (Reyes et al., 2010; Arumugam et al., 2011; Human Microbiome Project Consortium, 2012). Even if it has been estimated that the number of bacteria hugely outreaches the number of fungi in the gastrointestinal (GI) tract (Huffnagle and Noverr, 2013), fungi play a relevant role in the physiology of the human host (Oever and Netea, 2014; Underhill and Iliev, 2014). Recent studies showed that, while the composition of the bacterial community is relatively stable over time, the fungal population inhabiting the murine gut undergoes significant changes during the animal's lifetime (Dollive et al., 2013). This brought to the conclusion that gut fungal populations are more variable than bacterial ones and that their composition may be influenced by environmental fungi (Underhill and Iliev, 2014). Despite evidence that fungi inhabit the mammalian GI tract and interact with the host immune system (Romani, 2011; Rizzetto et al., 2014; Underhill and Iliev, 2014), the composition and characteristics of the mycobiota in healthy hosts have been poorly explored. The prevalent interest in describing pathogenic fungi, their phenotypes and the process by which they establish the infection is one of the major cause that brought to neglect the harmless part of the commensal fungal population. Despite this topic has been only marginally explored to date, it has been shown that mucosal fungi are able to modulate both the innate and adaptive immune responses (Romani, 2011; Rizzetto et al., 2014; Underhill and Iliev, 2014) thus supporting the need to further study the whole gut mycobiota. Furthermore, alterations of the gut mycobiota have been associated to different pathologies ranging from metabolic disorders (obesity) to colorectal adenomas and Inflammatory Bowel Diseases (IBDs) (Luan et al., 2015; Mar Rodriguez et al., 2015; Sokol et al., 2016). A recent study showed the association of IBDs to alteration of the gut mycobiota. In particular Sokol and colleagues showed that IBD patients bear a smaller proportion of Saccharomyces cerevisiae and higher of Candida albicans compared to healthy subjects. In addition, they highlighted the existence in Crohn's disease of interconnected alterations between bacterial and fungal communities (Sokol et al., 2016). However, the role of the gut mycobiota in the maintenance of health it is still far from being well-understood because the studies carried out so far focused on disease-causing taxa. Nevertheless, some yeasts have been clinically prescribed for a long time because of their potential probiotic properties, suggesting a beneficial role of some fungi for host health. A great example of “beneficial” fungus is represented by S. cerevisiae var. boulardii, used for the relief of gastroenteritis (Hatoum et al., 2012). In order to reduce the gap of knowledge concerning the gut mycobiota and its interplay with the host, we characterized the gut mycobiota composition of a cohort of healthy subjects by means of metagenomics, fungal cultivation, and phenotypic assays.

      Materials and methods Study participants

      Fecal samples were collected from 111 Italian healthy volunteers (49 male and 62 female, average age, 10 ± 8.2; Table 1) and analyzed within 24 h. Written informed consent has been obtained from all the enrolled subjects or tutors in accordance with the guidelines and regulations approved by the Research Ethical Committees of the Meyer Children's Hospital and the Azienda Ospedaliera Careggi, Florence. All the subjects enrolled were non-smokers, followed a Mediterranean-based diet and they did not take antibiotics, antifungals or probiotics in the 6 months prior to sample collection. None of the participants had any history of GI abnormalities.

      Characteristics of the study participants.

      Age group (year) Infants (0–2) Children (3–10) Adolescents (11–17) Adults (≥18) All subjects
      Number of subjects 18 48 24 21 111
      % with fungi 88.9 83.3 70.8 76.2 80.2
      Subject ID Gender Age (year) Subject ID Gender Age (year) Subject ID Gender Age (year)
      HS1 M 5 HS38* F 25 HS75 F 1
      HS2 M 5 HS39* F 27 HS76* M 1
      HS3 M 14 HS40* M 27 HS77 F 4
      HS4 M 1 HS41* F 24 HS78* M 12
      HS5 F 20 HS42* F 24 HS79* M 0.1
      HS6 F 20 HS43* M 26 HS80 F 0.1
      HS7 F 20 HS44* F 24 HS81 F 7
      HS8 M 5 HS45* F 6 HS82* M 10
      HS9 M 14 HS46* F 6 HS83* M 12
      HS10* F 2 HS47* F 10 HS84 F 6
      HS11 M 16 HS48* F 2.5 HS85 F 10
      HS12 M 15 HS49* M 2.5 HS86* M 7
      HS13* F 18 HS50* F 1.5 HS87* M 9
      HS14 F 0.3 HS51* F 8 HS88* M 7
      HS15* F 11 HS52* F 23 HS89* M 12
      HS16 M 14 HS53* F 23 HS90 F 8
      HS17 M 15 HS54 M 2 HS91 F 2
      HS18 M 11 HS55* M 2 HS92 F 12
      HS19 F 3 HS56* M 2 HS93 F 4
      HS20* F 4 HS57 F 12 HS94 F 4
      HS21* F 5 HS58 F 3 HS95 F 10
      HS22* F 15 HS59* M 5 HS96 F 12
      HS23* F 11 HS60 F 3 HS97* M 6
      HS24 M 15 HS61* M 2 HS98 F 16
      HS25 M 7 HS62 F 4 HS99 F 3
      HS26 M 3 HS63* M 5 HS100* M 0.1
      HS27* F 9 HS64 F 3 HS101* M 4
      HS28 M 5 HS65* M 5 HS102 F 13
      HS29* F 16 HS66* M 0.1 HS103* M 7
      HS30* F 12 HS67 F 1 HS104* M 4
      HS31* F 24 HS68 F 4 HS105 F 8
      HS32* F 32 HS69* M 6 HS106 F 5
      HS33* F 32 HS70 F 11 HS107 M 13
      HS34* F 25 HS71* M 1 HS108 M 4.5
      HS35* F 26 HS72 F 10 HS109 M 1
      HS36* M 20 HS73 F 4 HS110 M 12
      HS37* F 28 HS74* M 6 HS111 M 18

      Samples analyzed also by mean of amplicon-based ITS1metagenomics.

      Isolation and identification of cultivable fungal species from Feces

      Stool samples were diluted in sterile Ringer's solution and plated on solid YPD medium (1% Yeast extract, 2% Bacto-peptone, 2% D-glucose, 2% agar) supplemented with 25 U/ml of penicillin, 25 μg/ml of streptomycin (Sigma-Aldrich) and incubated aerobically at 27°C for 3–5 days. All fungal isolates grown on the selective medium were further isolated to obtain single-cell pure colonies. Genomic DNA was extracted from pure cultures of isolated colonies as previously described (Hoffman and Winston, 1987). Strains were identified by amplification and sequencing of the ribosomal Internal Transcribed Spacer (ITS) region, using ITS1 (5′-GTTTCCGTAGGTGAACTTGC-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers, as previously described (Sebastiani et al., 2002). Fungal isolates were identified by using the BLAST algorithm in the NCBI database (minimum 97% sequence similarity and 95% coverage with a described species).

      Phenotypical characterization of fungal isolates

      Fungal isolates were tested for phenotypical features that could be related to the ability of colonization and persistence in the human gut. Cell growth in liquid media was monitored by optical density measurement at 630 nm with a microplate reader (Synergy2, BioTek, USA) after 48 h of incubation under tested conditions. Three independent replicates were performed for each test.

      Growth at supra optimal temperatures

      Fungal isolates (~105 cells/ml) were grown at supra optimal temperatures in liquid YPD medium (40, 42, 44, and 46°C).

      pH impact on growth

      Fungal isolates (~105 cells/ml) were grown at 37°C in liquid YPD medium at pH 2.0 and pH 3.0 adding hydrochloric acid/potassium chloride and citrate buffers, respectively, to test their ability to resist to the acidic environments encountered during GI tract passage.

      Tolerance to bile acids

      Fungal isolates (~105 cells/ml) were grown in liquid YPD medium at 37°C in the presence of three different concentrations of bile [Ox-bile, Sigma-Aldrich; 0.5, 1, and 2% (w/v)] mimicking the physiological intestinal settings (Noriega et al., 2004).

      Resistance to oxidative stress

      Fungal resistance to oxidative stress was evaluated by measuring the inhibition halo induced by the treatment of fungal strains (~107 cells/ml) grown on YPD solid medium with 0.5 mM hydrogen peroxide (H2O2). The percentage of sensitivity to oxidative stress was calculated as the deviation of the inhibition halo diameter (Ø) from that of the environmental, oxidative stress sensitive M28-4D S. cerevisiae strain (Cavalieri et al., 2000) according to the following formula: [(Ø sample—Ø M28-4D)/Ø M284D]*100.

      Invasive growth

      The ability of fungal strains to penetrate the YPD solid medium was tested as previously described (Vopalenska et al., 2005). M28-4D and BY4742 S. cerevisiae strains, known to be invasive and non-invasive, respectively, have been used as controls. The strain invasiveness was assigned with scores from 3 (highly invasive) to 0 (non-invasive).

      Hyphal formation

      Fungal cells (~105 cells/ml) were grown for 7 days in liquid YPD and YNB media [0.67% Yeast Nitrogen Base w/o aminoacids and (NH4)2SO4 (Sigma-Aldrich), 2% glucose], both at 27 and 37°C in order to evaluate hyphae or pseudohyphae formation. Formation of hyphae was inspected by optical microscope observation with a Leica DM1000 led instrument (magnification 40x and 100x).

      Antifungal susceptibility testing

      All fungal isolates were tested for susceptibility to fluconazole, itraconazole, and 5-flucytosine (Sigma-Aldrich) by Minimum Inibitory Concentration (MIC) assays according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations (Rodriguez-Tudela et al., 2008a,b). Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints (CBPs) were used to evaluate the antifungal resistance (Pfaller and Diekema, 2012; Castanheira et al., 2014). CBPs have not been established for non-Candida yeasts and non-Aspergillus molds, however have been used as a proxy for the evaluation of antifungals susceptibility in such isolates.

      DNA extraction and PCR amplification of fungal ITS1 rDNA region

      DNA extraction from fecal samples (250 mg) was performed using the FastDNA™ SPIN Kit for Feces (MP-Biomedicals, USA) following manufacturer's instructions. DNA quality was checked on 1% agarose gel TAE 1X and quantified with a NanoDrop® spectrophotometer. For each sample, fungal ITS1 rDNA region was amplified using a specific fusion primer set coupled with forward primer 18SF (5′-GTAAAAGTCGTAACAAGGTTTC-3′) and reverse primer 5.8S1R (5′-GTTCAAAGAYTCGATGATTCAC-3′; Findley et al., 2013) containing adaptors, key sequence and barcode (Multiple IDentifier) sequences as described by the 454 Sequencing System Guidelines for Amplicon Experimental Design (Roche, Switzerland). The PCR reaction mix contained 1X FastStart High Fidelity PCR buffer, 2 mM MgCl2, 200 μM of dNTPs, 0.4 μM of each primer (PRIMM, Italy), 2.5 U of FastStart High Fidelity Polymerase Blend, and 100 ng of gDNA as template. Thermal cycling conditions used were 5 min at 95°C, 35 cycles of 45 s at 95°C, 45 s at 56°C, and 1.30 min at 72°C followed by a final extension of 10 min at 72°C. All PCR experiments were carried out in triplicates using a Veriti® Thermal Cycler (Applied Biosystems, USA).

      Library construction and pyrosequencing

      The PCR products obtained were analyzed by gel electrophoresis and cleaned using the AMPure XP beads kit (Beckman Coulter, USA) following the manufacturer's instructions, quantified via quantitative PCR using the Library quantification kit—Roche 454 titanium (KAPA Biosystems, USA) and pooled in equimolar way in a final amplicon library. The 454 pyrosequencing was carried out on the GS FLX+ system using the XL+ chemistry following the manufacturer's recommendations (Roche, Switzerland).

      Data analysis

      Pyrosequencing resulted in a total of 1.337.184 reads with a mean of 19.379 ± 13.334 sequences per sample. Raw 454 files were demultiplexed using the Roche's sff file software and submitted to the European Nucleotide Archive with accession number PRJEB11827 (http://www.ebi.ac.uk/ena/data/view/PRJEB11827). Sample accessions and metadata are available in Supplementary Table S1. Reads were pre-processed using the MICCA pipeline (Albanese et al., 2015) (http://www.micca.org). Forward and reverse primers trimming and quality filtering were performed using micca-preproc. De-novo sequence clustering, chimera filtering, and taxonomy assignment were performed by micca-otu-denovo: Operational Taxonomic Units (OTUs) were assigned by clustering the sequences with a threshold of 97% pairwise identity and their representative sequences were classified using the RDP classifier version 2.8 (Wang et al., 2007) against the UNITE fungal ITS database (Koljalg et al., 2013). De novo multiple sequence alignment was performed using T-Coffee (Notredame et al., 2000). Fungal taxonomy assignments were then manually curated using BLASTn against the GenBank's database for accuracy. High quality fungal sequences were detected in all samples. Furthermore, the sequences belonging to Agaricomycetes [unlikely to be residents of the human gut due to their ecology Hibbett, 2006] were manually filtered out.

      The phylogenetic tree was inferred by using micca-phylogeny (Price et al., 2010). Rarefaction analysis resulted in a sequencing depth adequate to capture the ecological diversity of the samples up to saturation. Sampling heterogeneity was reduced by rarefaction. Alpha and beta-diversity estimates were computed using the phyloseq R package (McMurdie and Holmes, 2013). PERMANOVA (Permutational multivariate analysis of variance) was performed using the adonis() function of the vegan R package with 999 permutations. Permutations have been constrained within age groups (corresponding to 0–2, 3–10, 11–17, and >18 y/o) or gender to reduce possible biases related to the unequal age and gender distributions among subjects using the “strata” argument within the adonis() function. Two-sided, unpaired Welch t-statistics were computed using the function mt() in the phyloseq library and the p-values were adjusted for multiple comparison controlling the family-wise Type I error rate (minP procedure; Westfall and Young, 1993). Wilcoxon rank-sum tests and Spearman's correlations were performed using the R software (Team, 2014) through the stats R package (version 3.1.2) and the psych R package (Revelle, 2013), respectively. p-values have been corrected for multiple comparison by using the false discovery rate correction (Benjamini and Hochberg, 1995).

      Results Cultivable gut mycobiota

      The cultivable gut mycobiota of 111 healthy volunteers was investigated through isolation in selective media. Fungi were detected in more than 80% of subjects leading to the identification of 349 different isolates (Supplementary Table S2). Thirty-four different fungal species were detected at different frequencies of isolation (Table 2) among which Aspergillus glaucus, Candida albicans, Candida deformans, Candida fermentati, Candida glabrata, Candida intermedia, Candida lusitaniae, Candida metapsilosis, Candida parapsilosis, Candida pararugosa, Candida tropicalis, Candida zelanoydes, Cryptococcus saitoi, Lichtheimia ramosa, Mucor circinelloides, Pleurostomophora richardsiae, Rhodotorula mucilaginosa, Trichosporon asahii, Yarrowia lipolytica. These species were previously found in different human body sites, including the GI tract as commensal or opportunistic pathogens (Araujo et al., 2007; Johnson, 2009; Alastruey-Izquierdo et al., 2010; Kurtzman et al., 2011; Levenstadt et al., 2012; Gouba et al., 2014; Lee et al., 2014; Rizzetto et al., 2014). We also isolated the environmental fungi Aspergillus pseudoglaucus, Eurotium amstelodami, Eurotium rubrum, Penicillium brevicompactum, Penicillium paneum, Penicillium crustosum, Pichia caribbica, Pichia fermentans, Pichia kluyveri, Pichia manshurica, Rhodosporidium kratochvilovae, Saccharomyces cerevisiae, Starmerella bacillaris, and Torulaspora delbrueckii. Such species were previously found in fermentations, oenological samples (Chitarra et al., 2004; Butinar et al., 2005; Kurtzman et al., 2011; Barata et al., 2012; Bezerra-Bussoli et al., 2013; Tristezza et al., 2013; Vardjan et al., 2013; Belda et al., 2015; de Melo Pereira et al., 2014; Santini et al., 2014; Wang et al., 2014) and rarely found in clinical samples (de la Camara et al., 1996; Kaygusuz et al., 2003; Butinar et al., 2005; Rizzetto et al., 2014). The 39.8% of subjects showed at least one C. albicans isolate, which resulted in the most common yeast species found in our samples, in line with previous reports on the gut mycobiota of healthy subjects (Khatib et al., 2001; Bougnoux et al., 2006).

      Fungal isolates and frequencies of isolation.

      Species % Species %
      Candida albicans 39.8 Rhodosporidium kratochvilovae 0.57
      Rhodotorula mucilaginosa 12.6 Trichosporon asahii 0.57
      Candida parapsilosis 12.3 Yarrowia lipolytica 0.57
      Torulaspora delbrueckii 6.59 Aspergillus cristatus 0.28
      Pichia fermentans 4.29 Candida deformans 0.28
      Penicillium brevicompactum 3.72 Candida fermentati 0.28
      Pichia manshurica 3.43 Candida glabrata 0.28
      Pichia kluyveri 2.86 Candida intermedia 0.28
      Candida lusitaniae 2.58 Candida metapsilosis 0.28
      Pennicillium crustosum 1.43 Candida tropicalis 0.28
      Saccharomyces cerevisiae 1.14 Candida zelanoydes 0.28
      Penicillium paneum 0.58 Eurotium amstelodami 0.28
      Aspergillus glaucus 0.57 Eurotium rubrum 0.28
      Aspergillus pseudoglaucus 0.57 Lichtheimia ramose 0.28
      Candida pararugosa 0.57 Pichia carribica 0.28
      Cryptococcus saitoi 0.57 Pleurostomophora richardsiae 0.28
      Mucor circinelloides 0.57 Starmerella bacillaris 0.28

      Population level analysis of the cultivable gut mycobiota revealed significant gender-related differences, with female subjects showing a higher number of fungal isolates (p < 0.005, Wilcoxon rank-sum test; Figure 1A) and fungal species (p < 0.05, Wilcoxon rank-sum test; Figure 1B) compared to male subjects (not related to individual's age) while we did not observed significant differences in the fungal population among the investigated age groups (Figures 1C,D). Finally, no species per se was responsible for these differences, as indicated by the fact that we did not find significant differences between individual species abundances in male and female subjects for any investigated age group.

      Gender-related and age-related differences in the gut mycobiota of 111 healthy volunteers. Histogram of the mean of (A) abundances and (B) the richness ± standard error of fungal isolates in female and male subjects; box-plot representation of the (C) abundance and (D) richness of fungal isolates in different age groups i.e., infants (0–2 years old), children (3–10 years old), adolescents (11–17 years old) and adults (≥18 years old). **p < 0.005, *p < 0.05, Wilcoxon rank-sum test.

      Fungal gut metagenomics

      To better characterize the intestinal fungal community structure associated to our cohort of healthy subjects we further analyzed a subset of these subjects (57 subjects, 29 females, and 28 males, average age 12 ± 9.5) by means of amplicon-based ITS1 targeted metagenomics, looking at gender and age groups differences. The analysis led to the identification of 68 fully classified (to the genus level) fungal taxa and 26 taxa only partially classified (of which 2 classified to the phylum level, 5 classified to the order level, 9 classified to the class level, and 9 classified to the family level). Measurements of the fungal richness within each sample i.e., the alpha-diversity (see Materials and Methods), revealed no significant differences among male and female subjects (Figure 2A), differently from the above finding based on the culture-based analysis in which we observed an increased number of intestinal fungal species in females compared to males (Figure 1B). Furthermore, we observed that infants and children harbor a higher fungal richness compared to adults as indicated by the number of the observed OTUs (p < 0.05, Wilcoxon rank-sum test, Figure 2B). The analysis of beta-diversity identified significant differences in the composition of the gut mycobiota among gender and age groups. PCoA (Principal Coordinates Analysis) revealed that samples cluster by gender, based on the unweighted UniFrac distance and the Bray-Curtis dissimilarity (p < 0.05, PERMANOVA; Figures 2C,D, Supplementary Table S3) and by age groups, based on the unweighted UniFrac distance (p < 0.05, PERMANOVA; Figure 2C, Supplementary Table S3). We calculated PERMANOVAs constraining permutations within levels (gender or age groups) to avoid biases related to the unequal distribution of genders among age groups and vice-versa. Genus level analysis showed Penicillium, Aspergillus, and Candida as the most abundant genera in this subset of subjects (22.3, 22.2, and 16.9%, respectively; Figure 3, Supplementary Table S4). We further observed that Aspergillus and Tremellomycetes_unidentified_1 were significantly more abundant in male than female subjects (p < 0.05, Welch t-test) and in children than adults (p < 0.05, Welch t-test). To note, the latter result could be biased by the unbalanced distribution of male and female subjects in children and adults groups (14/22 male children and 3/17 male adults). Furthermore, the genus Penicillium was significantly more abundant in infants than adults (p < 0.05, Welch t-test). Interestingly, we identified sequences belonging to the single-cell protozoa Blastocystis, eukaryotes abundant in the human gut microbiota (Scanlan and Marchesi, 2008), only in adolescent and adult females (Figure 3, Supplementary Table S4) that could potentially be due to exposure to animals (Scanlan et al., 2014).

      Box-plot representation of fungal alpha-diversity measures using the number of observed OTUs between (A) genders or (B) age groups and measures of fungal beta-diversity by PCoA of the between samples distances measured using (C) the unweighted UniFrac distance and (D) the Bray-Curtis dissimilarity. *p < 0.05, Wilcoxon rank-sum test.

      Stacked bar-plot representation of the relative abundances at the genus level of the fecal mycobiota of healthy subjects from metagenomics analysis distributed according to individuals' life stage and gender.

      Phenotyping the gut mycobiota

      The characterization of phenotypic features of the isolates related to the ability to survive and colonize the human gut was performed to estimate if such isolates were commensals adapted to this ecological niche or passengers introduced through the diet and delivered with the feces.

      We therefore investigated the isolates' resistance by a series of assays mimicking the conditions that fungal isolates face during passage through the human GI tract. In addition to the fact that the human body temperature (37°C) is higher than the optimum for most fungal species, in the GI tract fungi are also exposed to acidic and oxidative environments and to bile salts, produced by the liver and secreted into the duodenum, exposing the microorganisms to oxidative stress and DNA damage (Kandell and Bernstein, 1991).

      The majority of the isolates were found to tolerate acidic conditions (58.9 and 94.8% of isolates were able to grow at pH 2 and pH 3, respectively) and oxidative stress (85.7% of the isolates showed higher tolerance compared to environmental M28 S. cerevisiae strain), both conditions are characteristic of the gut environment. Tolerance to physiological concentrations of bile acids was also observed (89.8, 87.5, and 85.7% of fungal isolates were able to grow in presence of ox-bile 0.5, 1, and 2%, respectively) as well as the ability to grow at supra optimal temperatures with almost all the isolates (99.4%) being able to grow at 37°C (Supplementary Table S2). The comparison of the growth ability of such isolates at pH 3 and at growing concentrations of ox-bile (i.e., 0.5, 1.0, and 2.0% ox-bile) with respect to the control growth condition (37°C, no bile, pH 6.5) revealed that these stressful conditions do not significantly affect the growth ability of the fungal isolates (Figure 4). By contrast, a significant growth reduction was observed when comparing the isolated grown at pH 2 with respect to the control growth condition (p < 0.0001, Wilcoxon rank-sum test; Figure 4). As expected, a progressive reduction of growth ability was observed in correspondence of incubation temperature increase (i.e., from 40 to 46°C) for all the tested isolates (p < 0.0005, Wilcoxon rank-sum test; Figure 4).

      Box-plot representation of the comparison of fungal isolates growth ability at 37°C (control condition) vs. different stressful conditions mimicking the gastrointestinal tract challenges. **p < 0.0005, ***p < 0.0001, Wilcoxon rank-sum test.

      In addition to the ability of fungal isolates to tolerate the intestinal environmental stresses, we also explored their ability to undergo phenotypic changes favoring their persistence within the human gut. Among these, we assessed the formation of hyphae and the ability to penetrate the solid growth medium, thus to adhere to host tissues. The 56.9% of fungal isolates was able to form hyphae or pseudohyphae (Supplementary Table S2). In addition, the morphotype switch to hyphae and pseudo-hyphae was related to the isolates' invasiveness, with hyphae and pseudohyphae-forming isolates being the most invasive (Figure 5A), suggesting that such isolates may be able to adhere to or invade the host tissues. Furthermore, we observed that hyphae-forming isolates are significantly more resistant to itraconazole than pseudohyphae-forming isolates and isolates unable to form hyphae (p < 0.05, Wilcoxon rank-sum test; Figure 5B). These phenotypic traits in conditions of altered immune system or in association with intestinal dysbiosis, could represent a pathogenic potential for the host.

      Box-plot representation of fungal isolates able (or not) to produce hyphae or pseudohyphae in relationship with (A) their ability to be invasive on YPD solid medium, (B) their resistance to itraconazole. *p < 0.05, **p < 0.005, ***p < 0.001, Wilcoxon rank-sum test.

      It is now recognized that inappropriate antifungal use contributes to the increase in microbial antifungal resistance, complicating therapeutic intervention, and the eventual eradication of pathogens (Chen et al., 2010; Arendrup et al., 2011). Due to the relevance of such aspect and its impact on clinical studies, we tested all fungal isolates for their susceptibility to the widely therapeutically used azoles, fluconazole, and itraconazole (Martin, 2000) as well as the non-azole antifungal 5-flucytosine (Vermes et al., 2000). A total of 31.5% of the isolates were resistant to fluconazole and, as expected, similar levels of itraconazole resistance were found (for 39.2% of the isolates the MIC was ≥1 μg/ml; Supplementary Table S2). Previous studies have indeed suggested that cross-resistance may occur between fluconazole and other azole compounds (i.e., itraconazole) (Pfaller et al., 2006) and we further confirmed such observations with the finding of a significant positive correlation between the isolates resistance to these two antifungals (Spearman's r = 0.43, p < 0.05; Figure 6). Most of the isolates (99.34%) showed high susceptibility to 5-flucytosine with most MIC values ≤0.125 μg/ml (Supplementary Table S2). Among the 9 most abundant species (at least 6 isolates per species), C. albicans, Pichia spp. and Rhodotorula mucillaginosa showed the highest resistance to fluconazole, with MIC90 > 64 μg/ml (Table 3). Furthermore, it is worth to note that resistance to tested antifungals is positively correlated with the ability of strains to grow under stressful conditions, such as supra optimal temperature, acidic conditions, and bile salts exposure (p < 0.05, Spearman's r correlation; Figure 6).

      Spearman's r correlation analysis between antifungals susceptibility and growth ability of the tested fungal isolates under different stress conditions. Solid squares represent the degree of correlation among the variables taken into account. Crossed squares indicate non-significant correlations; significant results with p < 0.05.

      Antifungal activity against the most abundant fungal species.

      #Species (Number of tested) Antifungal MIC (μg/ml) *CBPs
      MIC50 MIC90 %S %SDD %R
      Candida albicans (123) Fluconazole 0.5 >64 65.6 0.8 33.4
      Itraconazole 2 >8 29.3 5.7 65
      5-Flucytosine 0.125 0.5 98.4 0.8 0.8
      Candida lusitaniae (6) Fluconazole 0.125 0.5 100 0 0
      Itraconazole 0.0156 0.125 100 0 0
      5-Flucytosine 0.125 0.125 100 0 0
      Candida parapsilosis (40) Fluconazole 0.5 2 92.5 0 7.5
      Itraconazole 0.031 >8 75 5 20
      5-Flucytosine 0.125 0.125 100 0 0
      Penicillium brevicompactum* (13) Fluconazole 0.125 0.125 100 0 0
      Itraconazole 0.0156 0.0156 92.5 0 7.5
      5-Flucytosine 0.125 0.125 100 0 0
      Pichia fermentans* (15) Fluconazole 32 >64 15.4 0 84.6
      Itraconazole 0.25 4 44.7 20 33.3
      5-Flucytosine 0.5 2 92.3 7.7 0
      Pichia kluyveri* (9) Fluconazole 32 32 11.1 0 88.9
      Itraconazole 0.125 0.125 88.9 11.1 0
      5-Flucytosine 0.5 0.5 100 0 0
      Pichia manshurica* (9) Fluconazole 0.25 >64 77.8 0 22.2
      Itraconazole 0.0156 >8 77.8 0 22.2
      5-Flucytosine 0.125 8 77.8 11.1 11.1
      Rhodotorula mucilaginosa* (41) Fluconazole 0.5 >64 63.4 0 36.6
      Itraconazole 0.0156 2 75.6 2.4 22
      5-Flucytosine 0.125 0.125 100 0 0
      Torulaspora delbrueckii* (23) Fluconazole 0.125 8 87 0 13
      Itraconazole 0.0156 2 69.6 4.3 26.1
      5-Flucytosine 0.125 0.125 100 0 0

      species-specific CBPs are available only for Candida and Aspergillus spp.; for those non-Candida and non-Asperigillus isolates Candida and Asperigillus' CBPs have been used as a proxy;

      MIC50, MIC90, and CBPs have been calculated only for those species with number of isolates >5; S, sensible; SDD, Sensibility Dose-Dependent or Intermediate; R, resistant. MIC ranges: Fluconazole 0.125–64 μg/ml; Itraconazole 0.0156–8 μg/ml; 5-Flucytosine 0.125–64 μg/ml.

      Discussion

      The vast majority of fungal species inhabiting our body are commensals and opportunistic pathogens that could turn into potential threats depending on strain virulence traits and on the status of the host's immune system. In this perspective to discover a pathogenic infection it seems crucial to define exactly which species are normally present in a given body district.

      The human GI tract is known to contain variable communities of bacteria but also fungi have an important role in this ecological niche (Underhill and Iliev, 2014). Nevertheless, the phylogenetic characterization of fungal microorganisms and their specific role as part of the GI niche have not yet been studied extensively.

      The advent of sanitation and food globalization has reduced the possibility for humans to come across with the richness of fungal species present in traditional fermented foods. Fungal infections are an ever increasing problem either as side effects of antibiotics use, high dose chemotherapy, and of the spread of immunosuppressive diseases. Estimates of global mortality rates suggest that fungi are responsible for more deaths than either tuberculosis or malaria (Brown et al., 2012). Most of this mortality is caused by species belonging to four fungal genera: Aspergillus, Candida, Cryptococcus, and Pneumocystis that are rapidly becoming resistant to most antifungal drugs (Brown et al., 2012; Denning and Bromley, 2015). The information on these fungi so far derives from the study of lung infections, while little is known on the gut mycobiota composition and its role in health and disease. The knowledge on the gut mycobiota is currently limited to few studies making it difficult to assess the significance of differences found in the intestinal fungal populations of diseases such as IBDs due to the lack of information on what the healthy mycobiota is. Here we aimed at defining the “healthy” gut mycobiota, showing that the intestinal fungal community of a cohort of Italian healthy volunteers is a variegate ecosystem that differs in function of individuals' life stage in a gender-dependent manner. We identified 34 fungal species of different ecological origins. While the majority of our fungal isolates has been previously described as inhabitants of the mammalian GI tract (Kurtzman et al., 2011; Rizzetto et al., 2014), some of the isolates belong to species so far identified in environmental samples only. Environmental fungi, in particular putative food-borne fungi, have been previously observed to be able to survive the transition through the GI tract possibly being metabolically active in the gut (David et al., 2014). The phenotypic properties of fungi isolated in this study suggested that these isolates are able to survive in the human GI tract, prompting the hypothesis of an ecological selection and potential ability to colonize this niche (David et al., 2014). Indeed the phenotypic features of the fungal isolates identified endow such isolates with an excellent ecological fitness in the human GI tract. We observed that approximately half of the isolates form hyphae or pseudohyphae, which are known to be involved in the adhesion to or penetration within the GI mucosa (Staab et al., 2013), consolidation of the colony, nutrient intake and formation of 3-dimensional matrices (Brand, 2011). A key factor of C. albicans commensalism/pathogenicity is its ability to switch between different morphologies, comprising cellular, pseudohyphae, and hyphae forms. As reported for C. albicans, the reversible transition to filamentous growth as a response to environmental cues (Sudbery, 2011) and phenotypic switching is essential for mucosal fungal colonization (Vautier et al., 2015).

      Previous studies have also shown that C. albicans over-expresses a wide range of genes involved in resistance to high temperature and pH, oxidative stress, and hyphae formation during ileum and colon commensal colonization of BALB/c mice (Pierce et al., 2013). Similarly, the fungal isolates of this study, showing resistance to oxidative, high temperature, bile acids, and pH stresses may hold the potential to colonize the human gut. It is plausible that fecal fungal isolates with specific characteristics (such as high resistance to acidic pH and bile salts) survived to the gut environment, and that these traits make them able to colonize the gut. Thus, we can hypothesize a long process of evolution, selection or adaptation of environmental and food-borne strains to the human host, suggesting that pathogenic strains of commensal species can evolve through a repeated process of evolution and selection, depending on the immune status of the host (De Filippo et al., 2014). These findings encourage for in-depth, strain-level extensive studies on human gut mycobiota and the integration of such data with immunology to further establish the relevance of fungi in host physiology and host-microbe interaction. Furthermore, fungi may train host's immune system simply when passengers, rather than necessarily persisting only as continuous colonizers (Rizzetto et al., 2016).

      We discovered that several fungal isolates displayed different levels of antifungal resistance. About 20 years ago, azole-sensitive C. albicans dominated infections, with other Candida species rarely observed. Actually C. glabrata is the second most-commonly isolated Candida species in the European Union and United States and has high rates of antifungal resistance (Slavin et al., 2015). Inappropriate antifungal use has contributed to the increase in antifungal resistance, causing objective complications for the treatment of invasive fungal infections that nowadays represent a severe cause of morbidity and mortality among immunocompromised individuals, neonates and elderly (Brown et al., 2012). Recent studies indicated that fungal infections may originate from individual's own commensal strains suggesting that the ability of a commensal microorganism to promote disease is not merely a consequence of impaired host immunity (Odds et al., 2006), suggesting that rural and other commercial uses of azole could be the culprit for the emergence of these resistant strains (Snelders et al., 2012). This underlines the risk that the increase of antifungal usage outside of the clinic could also lead to increased resistance to antifungals of individual's own commensal strains representing an important epidemiological problem in the future and remarking the importance to increase the investment in antifungal research.

      It should be noted that all the samples analyzed by metagenomics resulted in high quality fungal sequences, indicating that all the fecal samples studied had fungal DNA. So far, the estimated ratio fungi/bacteria of 1:10000 (Huffnagle and Noverr, 2013), discourages an approach based on whole metagenome shotgun sequencing (Underhill and Iliev, 2014). We thus performed amplicon-based ITS1 metagenomics on a subset of healthy donors identifying more than 90 different fungal taxa. The first striking evidence was that metagenomics detected also sequences belonging to Agaricomycetes, among which several edible fungi, thus suggesting that dietary fungal intake is a potential confounding effect when studying the gut mycobiota. On the contrary 34 different fungal species were isolated using the culture-based approach. Both methods detected in any case differences in the diverse groups of study (Supplementary Figure S1). The discrepancies observed between culture-dependent and culture-independent approaches on the description of fungal populations could be attributed to the methodological differences of the two procedures applied suggesting that several of the fungal taxa identified by the metagenomics approach are not cultivable, either because we lack the proper culture conditions or because these belong to DNA from dead cells, environmental or food-borne fungi that cannot survive the passage through the GI tract, but whose DNA is still detectable. Furthermore, the DNA extraction method used in this study could not be suited to extract all the fungal DNA from the stool samples since the rare taxa Yarrowia, Starmerella, Rhodosporidium, and Pleurostomophora have been found only by the culture-based approach. On the other hand the culture condition that we used might be responsible for some of the discrepancies observed between the two methods. In our experience most of the commensal fungi commonly found in the human gut can be cultivated in YPD, yet other fungi that we were not able to cultivate might need different culture conditions from those we used in this work.

      Although, for example, S. cerevisiae is often found in fermented food, it has been shown that it can survive GI tract challenges being a commensal of the human GI tract (Rizzetto et al., 2014) educating also adaptive immunity (Rizzetto et al., 2016). S. cerevisiae has been introduced in the human intestine through diet and fermented beverages and it has accompanied human evolution for at least the past 5150 years (Cavalieri et al., 2003). Our evidence, together with previous results, including a recent description of S. cerevisiae in IBDs (Sokol et al., 2016) showed that this microorganism is a potential commensal of the human intestine. The overall reduction of the amount and diversity of fungi introduced through consumption of fermented beverages suggests that the human gut mycobiota could be in dynamic change and certain potentially beneficial species could be lost as a result of modern food processing procedures, cultural changes, and food globalization. Ongoing studies on microbial anthropology in human populations consuming traditional fermented foods, hold the promise to shed light on the evolution of the fungal microbiota as associated to the evolution of diet. On the contrary the edible fungi belonging to Agaricomycetes cannot settle in the human gut due to their ecology (Hibbett, 2006) so we filtered-out these sequences for downstream analyses to reduce statistical noises on ecological measures, improving our results on the characterization of intestinal fungal communities. We are aware that other taxa identified by our analyses having environmental and food-borne origin may not be able to settle in the human gut, however little is known about these taxa while the Agaricomycetes sequences that we retrieved had a very low prevalence in the dataset and mostly belonged to edible fungi such as Boletus, Suillus or Agrocybe.

      We further observed that amplicon-based ITS1 metagenomics cannot confidently describe fungal populations at a deeper level than genus overlooking species level information provided by the fungal cultivation approach (see Figures 1B, 2A). On the other hand, metagenomics analysis detected community structure differences that fungal cultivation did not identified (see Figures 2B–D). Nevertheless, the analysis of alpha-diversity from cultivation data on the subset of subjects used for the metagenomics analysis revealed no significant differences among genders remarking that the different sample sizes used in this work are an additional factor in the discrepancies observed between the two methods. Although the major limitation of culture-based methods for the study of microbial communities is the loss of ecological information due to the inability to cultivate most microorganisms by standard culturing techniques, fungi included, culture-based analysis of the human gut mycobiota is fundamental to discern fungal phenotypes that would be otherwise lost by metagenomics.

      However, population level analyses with both approaches revealed interesting cues. As occurs for the bacterial microbiota, the intestinal mycobiota is shaped by host's age, gender, diet, and geographical environment (Yatsunenko et al., 2012; Hoffmann et al., 2013; David et al., 2014). Previous studies have shown that the development of the gut bacterial microbiota starts at birth with colonization by a low number of species from the vaginal and fecal microbiota of the mother and is characterized by many shifts in composition during infancy (Yatsunenko et al., 2012). Similarly, the mycobiota may show the same fate, but we observed an inverted trend in which the richness of the gut mycobiota of infants (0–2 years old) and children (3–10 years old) was higher than adults (≥18 years old). It has been shown that suppression of the bacterial microbiota upon treatment with antibiotics results in the outgrowth of the gut mycobiota (Dollive et al., 2013) probably as a consequence of reduced ecological competition. Similarly, a weak bacterial competition, in particular during infancy when the bacterial microbiota is less stable (Koenig et al., 2011; Lozupone et al., 2012), could be the reason why we observed an increased fungal alpha-diversity during the early stages of life or this could be due to the different interactions between intestinal fungi and diet (Hoffmann et al., 2013; David et al., 2014) which is peculiar during infancy. We also found that female subjects had a higher number of fungal isolates and different fungal species compared to male subjects and that female mycobiota cluster apart from male mycobiota. This may be ascribed to the role of sex hormones in modulating microbiota composition (Markle et al., 2013) and of diet in shifting the microbiota composition in a gender-dependent manner (Bolnick et al., 2014). Furthermore, the higher relative abundance of Candida in the fecal samples from female than male subjects could be also attributed to the prevalence of Candida species in the vaginal mycobiota (Drell et al., 2013) due to the anatomical proximity of the two districts. To the best of our knowledge, this is the first time that gender-related differences are described in the human gut mycobiota.

      In conclusion we can state that culture-independent approaches are very promising for future investigation of the mycobiota, but yet require significant improvements in the selection of markers for amplicon-based metagenomics and the reference databases. Additionally development of markers targeting pathogenicity traits, including the genes involved in host invasion or evasion of immune defenses, or markers detecting resistance to azoles or other antifungals, is required to thoughtfully apply metagenomics to fungal infections, discriminating the healthy mycobiota from an altered one. Such improvement can be achieved only through systematic sequencing efforts of the cultivable mycobiota, paralleling what happened for the prokaryotic microbiota. In our experience, currently, the combination of the two methods compensated the methodological limits intrinsic in both approaches avoiding to overlook significant differences present in the gut mycobiota of healthy subjects.

      Availability of supporting data

      Raw sequences are available in the European Nucleotide Archive (ENA) with accession number PRJEB11827 (http://www.ebi.ac.uk/ena/data/view/PRJEB11827).

      Author contributions

      FS designed and performed the experiments, analyzed the data, and wrote the manuscript. IS and MD performed the experiments. IS, DA, and CD supervised and contributed to data analysis. PL and AC recruited subjects and collected specimens. IS, MD, LR, OJ, and CD critically reviewed the manuscript. DC and CDF conceived the study and approved the manuscript.

      Funding

      This work was supported by the Accordo di Programma Integrato “MetaFoodLabs” funded by the research office of the Provincia Autonoma di Trento (Italy; PAT Prot. S216/2012/537723).

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The authors would like to thank Daniela Renzi, Maddalena Sordo, Massimo Pindo, and the lab staff of the Sequencing Platform Daniela Nicolini, Erika Stefani, and Simone Larger for technical support. Furthermore, a special thanks to Unifarm S.p.A. for supporting FS.

      Supplementary material

      The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.01227

      Correspondences between deposited metagenomics data and samples.

      Phenotypic characteristics and antifungals susceptibility of fungal isolates. *calculated as the deviation of the inhibition halo diameter (Ø) from that of the M28-4D S. cerevisiae strain, according to the following formula: (Ø sample—Ø M284D strain)/Ø M284D strain *100. #0, non-invasive; 1, poor invasive; 2, invasive; 3, very invasive. −, no growth as measured by OD630 ≤ 0.2 or cfu/ml ≤ 105; +, poor growth as measured by 0.2 < OD630 ≤ 0.7 or 105 < cfu/ml ≤ 106; ++ good growth as measured by 0.7 < OD630 ≤ 1.2 or 106 < cfu/ml ≤ 107; +++, very good growth as measured by OD630 > 1.2 or cfu/ml > 107. na, not applicable; nd, not detected.

      Permutational multivariate analysis of variance (PERMANOVA) tests on unweighted and weighted UniFrac distances and Bray-Curtis dissimilarity.

      Mean relative abundance (%) of OTUs at the genus level of fungal gut microbiota of healthy subjects from metagenomics analysis.

      Mean relative abundances of the gut mycobiota in the different groups of study measured according to (A) the culture-based approach (at species level) and (B) the amplicon-based ITS1 metagenomics approach (at genus level). In panel (B) are shown the most abundant genera (with relative abundances >0.1%) while all the other less abundant genera were grouped together and labeled as “others”.

      References Alastruey-Izquierdo A. Hoffmann K. De Hoog G. S. Rodriguez-Tudela J. L. Voigt K. Bibashi E. . (2010). Species recognition and clinical relevance of the zygomycetous genus Lichtheimia (syn. Absidia pro parte, Mycocladus). J. Clin. Microbiol. 48, 21542170. 10.1128/JCM.01744-0920357218 Albanese D. Fontana P. De Filippo C. Cavalieri D. Donati C. (2015). MICCA: a complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5:9743. 10.1038/srep0974325988396 Araujo R. Pina-Vaz C. Rodrigues A. G. (2007). Susceptibility of environmental versus clinical strains of pathogenic Aspergillus. Int. J. Antimicrob. Agents 29, 108111. 10.1016/j.ijantimicag.2006.09.01917189101 Arendrup M. C. Sulim S. Holm A. Nielsen L. Nielsen S. D. Knudsen J. D. . (2011). Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J. Clin. Microbiol. 49, 33003308. 10.1128/JCM.00179-1121715585 Arumugam M. Raes J. Pelletier E. Le Paslier D. Yamada T. Mende D. R. . (2011). Enterotypes of the human gut microbiome. Nature 473, 174180. 10.1038/nature0994421508958 Barata A. Malfeito-Ferreira M. Loureiro V. (2012). The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243259. 10.1016/j.ijfoodmicro.2011.11.02522189021 Belda I. Navascues E. Marquina D. Santos A. Calderon F. Benito S. (2015). Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl. Microbiol. Biotechnol. 99, 19111922. 10.1007/s00253-014-6197-225408314 Benjamini Y. Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B 57, 289300. Bezerra-Bussoli C. Baffi M. A. Gomes E. Da-Silva R. (2013). Yeast diversity isolated from grape musts during spontaneous fermentation from a Brazilian winery. Curr. Microbiol. 67, 356361. 10.1007/s00284-013-0375-923636496 Bolnick D. I. Snowberg L. K. Hirsch P. E. Lauber C. L. Org E. Parks B. . (2014). Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500. 10.1038/ncomms550025072318 Bougnoux M. E. Diogo D. Francois N. Sendid B. Veirmeire S. Colombel J. F. . (2006). Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J. Clin. Microbiol. 44, 18101820. 10.1128/JCM.44.5.1810-1820.200616672411 Brand A. (2011). Hyphal growth in human fungal pathogens and its role in virulence. Int. J. Microbiol. 2012:517529. 10.1155/2012/51752922121367 Brown G. D. Denning D. W. Gow N. A. Levitz S. M. Netea M. G. White T. C. (2012). Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv113. 10.1126/scitranslmed.300440423253612 Butinar L. Zalar P. Frisvad J. C. Gunde-Cimerman N. (2005). The genus Eurotium - members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol. Ecol. 51, 155166. 10.1016/j.femsec.2004.08.00216329864 Castanheira M. Messer S. A. Jones R. N. Farrell D. J. Pfaller M. A. (2014). Activity of echinocandins and triazoles against a contemporary (2012) worldwide collection of yeast and moulds collected from invasive infections. Int. J. Antimicrob. Agents 44, 320326. 10.1016/j.ijantimicag.2014.06.00725129315 Cavalieri D. McGovern P. E. Hartl D. L. Mortimer R. Polsinelli M. (2003). Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 57 (Suppl. 1), S226S232. 10.1007/s00239-003-0031-215008419 Cavalieri D. Townsend J. P. Hartl D. L. (2000). Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc. Natl. Acad. Sci. U.S.A. 97, 1236912374. 10.1073/pnas.21039529711035792 Chen S. C. Playford E. G. Sorrell T. C. (2010). Antifungal therapy in invasive fungal infections. Curr. Opin. Pharmacol. 10, 522530. 10.1016/j.coph.2010.06.00220598943 Chitarra G. S. Abee T. Rombouts F. M. Posthumus M. A. Dijksterhuis J. (2004). Germination of Penicillium paneum Conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl. Environ. Microbiol. 70, 28232829. 10.1128/AEM.70.5.2823-2829.200415128538 David L. A. Maurice C. F. Carmody R. N. Gootenberg D. B. Button J. E. Wolfe B. E. . (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559563. 10.1038/nature1282024336217 De Filippo C. Di Paola M. Stefanini I. Rizzetto L. Berná L. Ramazzotti M. . (2014). Population genomics of Saccharomyces cerevisiae human isolates: passengers, colonizers, invaders. bioRxiv. 10.1101/001891 de la Camara R. Pinilla I. Munoz E. Buendia B. Steegmann J. L. Fernandez-Ranada J. M. (1996). Penicillium brevicompactum as the cause of a necrotic lung ball in an allogeneic bone marrow transplant recipient. Bone Marrow Transplant. 18, 11891193. 8971395 de Melo Pereira G. V. Soccol V. T. Pandey A. Medeiros A. B. Andrade Lara J. M. Gollo A. L. . (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. Int. J. Food Microbiol. 188, 6066. 10.1016/j.ijfoodmicro.2014.07.00825087206 Denning D. W. Bromley M. J. (2015). Infectious Disease. How to bolster the antifungal pipeline. Science 347, 14141416. 10.1126/science.aaa609725814567 Dollive S. Chen Y. Y. Grunberg S. Bittinger K. Hoffmann C. Vandivier L. . (2013). Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE 8:e71806. 10.1371/journal.pone.007180623977147 Drell T. Lillsaar T. Tummeleht L. Simm J. Aaspollu A. Vain E. . (2013). Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS ONE 8:e54379. 10.1371/journal.pone.005437923372716 Findley K. Oh J. Yang J. Conlan S. Deming C. Meyer J. A. . (2013). Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367370. 10.1038/nature1217123698366 Gouba N. Raoult D. Drancourt M. (2014). Eukaryote culturomics of the gut reveals new species. PLoS ONE 9:e106994. 10.1371/journal.pone.010699425210972 Hatoum R. Labrie S. Fliss I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front. Microbiol. 3:421. 10.3389/fmicb.2012.0042123267352 Hibbett D. S. (2006). A phylogenetic overview of the Agaricomycotina. Mycologia 98, 917925. 10.3852/mycologia.98.6.91717486968 Hoffman C. S. Winston F. (1987). A 10-Minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia Coli. Gene 57, 267272. 10.1016/0378-1119(87)90131-43319781 Hoffmann C. Dollive S. Grunberg S. Chen J. Li H. Wu G. D. . (2013). Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8:e66019. 10.1371/journal.pone.006601923799070 Huffnagle G. B. Noverr M. C. (2013). The emerging world of the fungal microbiome. Trends Microbiol. 21, 334341. 10.1016/j.tim.2013.04.00223685069 Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature 486, 207214. 10.1038/nature1123422699609 Johnson E. (2009). Rare and emerging Candida species. Curr. Fungal Infect. Rep. 3, 152159. 10.1007/s12281-009-0020-z Kandell R. L. Bernstein C. (1991). Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr. Cancer 16, 227238. 10.1080/016355891095141611775385 Kaygusuz I. Mulazimoglu L. Cerikcioglu N. Toprak A. Oktay A. Korten V. (2003). An unusual native tricuspid valve endocarditis caused by Candida colliculosa. Clin. Microbiol. Infect. 9, 319322. 10.1046/j.1469-0691.2003.00511.x12667244 Khatib R. Riederer K. M. Ramanathan J. Baran J. Jr. (2001). Faecal fungal flora in healthy volunteers and inpatients. Mycoses 44, 151156. 10.1046/j.1439-0507.2001.00639.x11486452 Koenig J. E. Spor A. Scalfone N. Fricker A. D. Stombaugh J. Knight R. . (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl. 1), 45784585. 10.1073/pnas.100008110720668239 Koljalg U. Nilsson R. H. Abarenkov K. Tedersoo L. Taylor A. F. Bahram M. . (2013). Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 52715277. 10.1111/mec.1248124112409 Kurtzman C. P. Fell J. W. Boekhout T. (eds.). (2011). The yeasts, a taxonomic study volume 1 fifth edition preface, in Yeasts: A Taxonomic Study, Vol. 1–3, 5th Edn (Elsevier Science), 13. Lee S. C. Billmyre R. B. Li A. Carson S. Sykes S. M. Huh E. Y. . (2014). Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. Mbio 5, e01390e01314. 10.1128/mBio.01390-1425006230 Levenstadt J. S. Poutanen S. M. Mohan S. Zhang S. Silverman M. (2012). Pleurostomophora richardsiae - an insidious fungus presenting in a man 44 years after initial inoculation: a case report and review of the literature. Can. J. Infect. Dis. Med. Microbiol. 23, 110113. 10.1155/2012/40698223997775 Lozupone C. A. Stombaugh J. I. Gordon J. I. Jansson J. K. Knight R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489, 220230. 10.1038/nature1155022972295 Luan C. Xie L. Yang X. Miao H. Lv N. Zhang R. . (2015). Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci. Rep. 5:7980. 10.1038/srep0798025613490 Markle J. G. Frank D. N. Mortin-Toth S. Robertson C. E. Feazel L. M. Rolle-Kampczyk U. . (2013). Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 10841088. 10.1126/science.123352123328391 Mar Rodriguez M. Perez D. Javier Chaves F. Esteve E. Marin-Garcia P. Xifra G. . (2015). Obesity changes the human gut mycobiome. Sci. Rep. 5:14600. 10.1038/srep1460026455903 Martin M. V. (2000). The use of fluconazole and itraconazole in the treatment of Candida albicans infections: a review. J. Antimicrob. Chemother. 45, 555. 10.1093/oxfordjournals.jac.a02088010747841 McMurdie P. J. Holmes S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. 10.1371/journal.pone.006121723630581 Noriega L. Gueimonde M. Sanchez B. Margolles A. De Los Reyes-Gavilan C. G. (2004). Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. Int. J. Food Microbiol. 94, 7986. 10.1016/j.ijfoodmicro.2004.01.00315172487 Notredame C. Higgins D. G. Heringa J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205217. 10.1006/jmbi.2000.404210964570 Odds F. C. Davidson A. D. Jacobsen M. D. Tavanti A. Whyte J. A. Kibbler C. C. . (2006). Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J. Clin. Microbiol. 44, 36473658. 10.1128/JCM.00934-0617021093 Oever J. T. Netea M. G. (2014). The bacteriome-mycobiome interaction and antifungal host defense. Eur. J. Immunol. 44, 31823191. 10.1002/eji.20134440525256886 Pfaller M. A. Diekema D. J. (2012). Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 50, 28462856. 10.1128/JCM.00937-12 Pfaller M. A. Diekema D. J. Sheehan D. J. (2006). Interpretive breakpoints for fluconazole and Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clin. Microbiol. Rev. 19, 435447. 10.1128/CMR.19.2.435-447.200616614256 Pierce J. V. Dignard D. Whiteway M. Kumamoto C. A. (2013). Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot. Cell 12, 3749. 10.1128/EC.00236-1223125349 Price M. N. Dehal P. S. Arkin A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. 10.1371/journal.pone.000949020224823 Revelle W. (2013). Psych: Procedures for Psychological, Psychometric, and Personality Research. R Package Version 1.3.10. Evanston, IL: Northwestern University. Reyes A. Haynes M. Hanson N. Angly F. E. Heath A. C. Rohwer F. . (2010). Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334338. 10.1038/nature0919920631792 Rizzetto L. De Filippo C. Cavalieri D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur. J. Immunol. 44, 31663181. 10.1002/eji.20134440325257052 Rizzetto L. Ifrim D. C. Moretti S. Tocci N. Cheng S. C. Quintin J. . (2016). Fungal chitin induces trained immunity in human monocytes during cross-talk of the host with Saccharomyces cerevisiae. J. Biol. Chem. 291, 79617972. 10.1074/jbc.M115.69964526887946 Rodriguez-Tudela J. Arendrup M. Arikan S. Barchiesi F. Bille J. Chryssanthou E. . (2008a). EUCAST DEFINITIVE DOCUMENT E. DEF 9.1: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. Clin. Microbiol. Infect. 14, 982984. Rodriguez-Tudela J. Arendrup M. Barchiesi F. Bille J. Chryssanthou E. Cuenca-Estrella M. . (2008b). EUCAST Definitive Document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts: subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST)*. Clin. Microbiol. Infect. 14, 398405. 10.1111/j.1469-0691.2007.01935.x Romani L. (2011). Immunity to fungal infections. Nat. Rev. Immunol. 11, 275288. 10.1038/nri293921394104 Santini A. Mikušová P. Sulyok M. Krska R. Labuda R. Šrobárová A. (2014). Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile. Mycotoxin Res. 30, 213220. 10.1007/s12550-014-0205-325109845 Scanlan P. D. Marchesi J. R. (2008). Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2, 11831193. 10.1038/ismej.2008.7618670396 Scanlan P. D. Stensvold C. R. Rajilic-Stojanovic M. Heilig H. G. De Vos W. M. O'toole P. W. . (2014). The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol. Ecol. 90, 326330. 10.1111/1574-6941.1239625077936 Sebastiani F. Barberio C. Casalone E. Cavalieri D. Polsinelli M. (2002). Crosses between Saccharomyces cerevisiae and Saccharomyces bayanus generate fertile hybrids. Res. Microbiol. 153, 5358. 10.1016/S0923-2508(01)01286-411881899 Slavin M. Van Hal S. Sorrell T. C. Lee A. Marriott D. J. Daveson K. . (2015). Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin. Microbiol. Infect. 21, e491490. 10.1016/j.cmi.2014.12.02125677259 Snelders E. Camps S. M. Karawajczyk A. Schaftenaar G. Kema G. H. Van Der Lee H. A. . (2012). Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE 7:e31801. 10.1371/journal.pone.003180122396740 Sokol H. Leducq V. Aschard H. Pham H. P. Jegou S. Landman C. . (2016). Fungal microbiota dysbiosis in IBD. Gut. 10.1136/gutjnl-2015-310746. [Epub ahead of print]. 26843508 Staab J. F. Datta K. Rhee P. (2013). Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans. PLoS ONE 8:e80842. 10.1371/journal.pone.008084224260489 Sudbery P. E. (2011). Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9, 737748. 10.1038/nrmicro263621844880 Team R. C. (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna: Austria. 2012. ISBN 3-900051-07-0. Tristezza M. Vetrano C. Bleve G. Spano G. Capozzi V. Logrieco A. . (2013). Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 36, 335342. 10.1016/j.fm.2013.07.00124010615 Underhill D. M. Iliev I. D. (2014). The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14, 405416. 10.1038/nri368424854590 Vardjan T. Mohar Lorbeg P. Rogelj I. Canzek Majhenic A. (2013). Characterization and stability of lactobacilli and yeast microbiota in kefir grains. J. Dairy Sci. 96, 27292736. 10.3168/jds.2012-582923497996 Vautier S. Drummond R. A. Chen K. Murray G. I. Kadosh D. Brown A. J. . (2015). Candida albicans colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cell. Microbiol. 17, 445450. 10.1111/cmi.1238825346172 Vermes A. Guchelaar H. J. Dankert J. (2000). Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46, 171179. 10.1093/jac/46.2.17110933638 Vopalenska I. Hulkova M. Janderova B. Palkova Z. (2005). The morphology of Saccharomyces cerevisiae colonies is affected by cell adhesion and the budding pattern. Res. Microbiol. 156, 921931. 10.1016/j.resmic.2005.05.01216081250 Wang C. Esteve-Zarzoso B. Mas A. (2014). Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. Int. J. Food Microbiol. 191, 19. 10.1016/j.ijfoodmicro.2014.08.01425218463 Wang Q. Garrity G. M. Tiedje J. M. Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 52615267. 10.1128/AEM.00062-0717586664 Westfall P. H. Young S. S. (1993). Resampling-Based Multiple Testing: Examples and Methods for p-value Adjustment. Vol. 279. New York, NY: John Wiley & Sons. Yatsunenko T. Rey F. E. Manary M. J. Trehan I. Dominguez-Bello M. G. Contreras M. . (2012). Human gut microbiome viewed across age and geography. Nature 486, 222227. 10.1038/nature1105322699611
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016exc-led.com.cn
      www.lpjqyo.com.cn
      geqxnq.com.cn
      hzyxzs.com.cn
      www.quqie.com.cn
      nu1.com.cn
      www.qb8news.com.cn
      txhrdk.com.cn
      qinxi.net.cn
      www.szwallet.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p