Front. Microbiol. Frontiers in Microbiology Front. Microbiol. 1664-302X Frontiers Media S.A. 10.3389/fmicb.2016.00895 Microbiology Review Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods Lee Chang-Ro 1 Lee Jung Hun 1 Park Kwang Seung 1 Kim Young Bae 2 Jeong Byeong Chul 1 Lee Sang Hee 1 * 1National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea 2Division of STEM, North Shore Community College, Danvers MA, USA

Edited by: Miklos Fuzi, Semmelweis University, Hungary

Reviewed by: Andrea Endimiani, University of Bern, Switzerland; Sara Richter, University of Padua, Italy

*Correspondence: Sang Hee Lee, sangheelee@mju.ac.kr

These authors have contributed equally to this work.

This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

13 06 2016 2016 7 895 07 01 2016 26 05 2016 Copyright © 2016 Lee, Lee, Park, Kim, Jeong and Lee. 2016 Lee, Lee, Park, Kim, Jeong and Lee

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.

carbapenemase Klebsiella pneumoniae epidemiology KPC NDM OXA-48-like Ministry of Science, ICT and Future Planning10.13039/501100003621

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The increasing prevalence of antibiotic resistance and the lack of new antibiotic drug development has gradually reduced the treatment options for bacterial infections (Lee et al., 2013a; Nathan and Cars, 2014). In 2013, the Centers for Disease Control and Prevention (CDC) named three microorganisms that pose an urgent threat to public health: carbapenem-resistant (CR) Enterobacteriaceae (CRE), drug-resistant Neisseria gonorrhoeae, and Clostridium difficile (Zowawi et al., 2015). Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are antibiotics used for the treatment of severe infections caused by multi-resistant Enterobacteriaceae, such as Klebsiella pneumoniae and Escherichia coli (Nordmann et al., 2009). However, over the past 10 years, CRE have increasingly been reported worldwide (Nordmann et al., 2011a). In particular, K. pneumoniae have acquired carbapenemases, which are enzymes capable of breaking down most β-lactams including carbapenems, and thus conferring resistance to these drugs (Jeon et al., 2015). High mortality rates have been reported in patients with bloodstream infections caused by CR K. pneumoniae (Munoz-Price et al., 2013). Carbapenemases can be divided according to their dependency on divalent cations for enzyme activation into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D; Jeon et al., 2015). The class A carbapenemases, such as the K. pneumoniae carbapenemase (KPC) enzymes, have been identified worldwide in K. pneumoniae (Tangden and Giske, 2015). Various class B and D carbapenemases have also been detected in hospital-acquired multi-resistant K. pneumoniae (Nordmann et al., 2011a), whereas class C carbapenemases have rarely been reported. In this review, we summarize the epidemiology of the major four classes of carbapenemases and discuss their molecular genetics, methods used for their detection, and the therapeutic options available for their treatment.

      The Epidemiology, Genetic Context, Treatment Options, and Detection Methods of Carbapenem-Resistant <italic>K. pneumoniae</italic> Class A Carbapenemases Epidemiology

      Various class A carbapenemases forming six distantly related branches have been identified (Jeon et al., 2015). While some carbapenemases are chromosome-encoded (IMI-1, NMC-A, SME enzymes, SHV-38, and SFC-1), others are plasmid-encoded (KPC enzymes, GES enzymes, and IMI-2). KPCs have been the most frequently observed class A carbapenemases since their first description in the eastern the USA in 1996 (Yigit et al., 2001). Of the many different KPC family variants (KPC-1 to KPC-22), the most well-characterized variants are KPC-2 and KPC-3. KPCs are mostly plasmid-encoded enzymes and bacteria producing these enzymes are susceptible to only a few antibiotics such as colistin, aminoglycosides, and tigecycline. Therefore, the mortality of the patient’s bloodstream infections caused by these bacteria is very high (Munoz-Price et al., 2013).

      The epidemiology of K. pneumoniae producing KPCs varies geographically. The endemic spread of these bacteria has been reported in the USA, China, Italy, Poland, Greece, Israel, Brazil, Argentina, Colombia, and Taiwan (Munoz-Price et al., 2013; Figure 1). Sporadic spread of KPC-producing K. pneumoniae has also been observed in many European countries including Spain, France, Germany, the Netherlands, the UK, Ireland, Belgium, Sweden, and Finland, and in several countries in the Asia-Pacific region, including India, South Korea, and Australia (Munoz-Price et al., 2013; Nordmann and Poirel, 2014). In the USA, the transmission of CR K. pneumoniae is primarily driven by the spread of organisms carrying KPC enzymes (Kaiser et al., 2013), but other carbapenemase enzymes, such as the New-Delhi metallo-β-lactamase (NDM), have also emerged (Lascols et al., 2013). Within the USA, the prevalence of KPC-positive isolates was relatively stable between 2007 and 2009 (5.9% in 2007, 4.9% in 2008, and 5.7% in 2009; Kaiser et al., 2013), and KPC-2 and KPC-3 were the most frequently identified carbapenemases in K. pneumoniae (Deshpande et al., 2006).

      Epidemiological features of KPC-producing Klebsiella pneumoniae. (1) USA; (2) Colombia; (3) Brazil; (4) Argentina; (5) Italy; (6) Greece; (7) Poland; (8) Israel; (9) China; (10) Taiwan; (11) Canada; (12) Spain; (13) France; (14) Belgium; (15) Netherlands; (16) Germany; (17) UK; (18) Ireland; (19) Sweden; (20) Finland; (21) Hungary; (22) India; (23) South Korea; (24) Australia; (25) Mexico; (26) Cuba; (27) Puerto Rico; (28) Uruguay; (29) Portugal; (30) Switzerland; (31) Austria; (32) Czech Republic; (33) Denmark; (34) Norway; (35) Croatia; (36) Turkey; (37) Algeria; (38) Egypt; (39) South Africa; (40) Iran; (41) United Arab Emirates; (42) Pakistan; (43) Russia; (44) Japan.

      The outbreaks caused by KPC-producing K. pneumoniae have been reported in the USA (Woodford et al., 2004) and Israel (Leavitt et al., 2007), but recently, similar outbreaks associated with patients traveling to endemic areas have also been reported in many European counties. Since KPC-producing K. pneumoniae was identified in France, Italy, and Greece (Naas et al., 2005; Tsakris et al., 2008; Giani et al., 2009), the sporadic spread of KPC-producing K. pneumoniae has been observed in many European countries including Spain (Robustillo Rodela et al., 2012), France (Carbonne et al., 2010), Germany (Wendt et al., 2010; Steinmann et al., 2011), the Netherlands (Weterings et al., 2015), the UK (Woodford et al., 2008; Virgincar et al., 2011), Ireland (Roche et al., 2009; Morris et al., 2012), Belgium (Bogaerts et al., 2010), Sweden (Samuelsen et al., 2009), and Finland (Osterblad et al., 2012; Kanerva et al., 2015). KPC-producing K. pneumoniae were also recently detected in eastern European countries including the Czech Republic (Hrabak et al., 2013b), Hungary (Toth et al., 2010), and Croatia (Bedenic et al., 2012).

      In Greece, KPC-producing K. pneumoniae was first isolated in August 2007 (Tsakris et al., 2008), and the prevalence of KPC-producers among carbapenemase-producing K. pneumoniae isolates collected at a tertiary Greek hospital increased from 0% in 2003 to 38.3% in 2010 (Zagorianou et al., 2012). Most of the genotyped KPC-producing K. pneumoniae in Greece harbored KPC-2 (Zagorianou et al., 2012). While many carbapenemase-producing K. pneumoniae in the USA and Greece had KPC enzymes (Nordmann et al., 2009; Zagorianou et al., 2012), several studies in Spain showed that most carbapenemase-producing K. pneumoniae harbored OXA-48-like or class B carbapenemases, and the rate of KPC- producing K. pneumoniae was very low (2–3%; Oteo et al., 2013b; Palacios-Baena et al., 2016). These results indicate that the prevalent genotype of carbapenemase-producing K. pneumoniae varies geographically. For example, in Italy which is a representative southern European country where KPC is becoming endemic, 89.5% of carbapenemase producers have been reported to have KPC-type enzymes, followed by VIM-1 (9.2%) and OXA-48 (1.3%; Giani et al., 2013).

      In America, the endemic spread of KPCs has been reported in Colombia (Villegas et al., 2006; Rojas et al., 2013), Brazil (Peirano et al., 2009; Fehlberg et al., 2012), and Argentina (Pasteran et al., 2008; Gomez et al., 2011). In Canada, KPC-producing K. pneumoniae has sporadically been reported (Goldfarb et al., 2009; Lefebvre et al., 2015), and since plasmid-mediated KPC-producing K. pneumoniae was first detected in Ottawa in Goldfarb et al. (2009), a laboratory surveillance program found a high frequency (89.3%) of KPC-type enzymes among carbapenemase producers between 2010 and 2012 (Lefebvre et al., 2015). The emergence of KPCs in Argentina was characterized by two patterns of dispersion: the first was the irregular occurrence of diverse Enterobacteriaceae harboring blaKPC-2 in the IncL/M transferable plasmid in distant regions and the second was the sudden clonal spread of K. pneumoniae ST258 harboring blaKPC-2 in Tn4401a (Gomez et al., 2011). KPC-producing K. pneumoniae was recently also detected in Cuba (Quinones et al., 2014), Mexico (Garza-Ramos et al., 2014), Uruguay (Marquez et al., 2014), and Puerto Rico (Gregory et al., 2010).

      In the Asia-Pacific region, the endemic dissemination of KPC-producing K. pneumoniae has been reported in China (Li et al., 2014) and Taiwan (Tseng et al., 2015), and the sporadic spread has been reported in India (Shanmugam et al., 2013), South Korea (Yoo et al., 2013), and Australia (Partridge et al., 2015). A novel KPC-15 variant which is closely homologous with KPC-4 was discovered in China (Wang et al., 2014b) and its enzymatic activity and phenotype was characterized (Wang et al., 2014a). In China, the frequency of KPC-type enzymes among carbapenemase producers was high (63%; Li et al., 2014). While ST258 is the predominant clone observed in European countries and the USA (Giani et al., 2013; Chen et al., 2014e; Bowers et al., 2015), ST11, which is closely related to ST258, is the prevalent clone associated with the spread of KPC-producing K. pneumoniae in Asia (particularly in China and Taiwan; Qi et al., 2011; Yang et al., 2013; Tseng et al., 2015). KPC-producing ST11 strain has also been reported in Latin America (Munoz-Price et al., 2013). Although it is unknown why ST11 is prevalent, a recent report showed that the KPC-producing K. pneumoniae ST11 clone was resistant to serum killing (Chiang et al., 2016). In a Chinese hospital, another nosocomial outbreak of KPC-2-producing K. pneumoniae was caused by multiple K. pneumoniae strains including ST37, ST392, ST395, and ST11, implying the horizontal transfer of blaKPC-2 gene between different K. pneumoniae clones in China (Yang et al., 2013). In Taiwan, two novel KPC variants were identified; KPC-16 and KPC-17 differed from KPC-2 by two (P202S and F207L) and a single (F207L) amino acid substitutions, respectively (Yu et al., 2015). A nationwide survey in Taiwan between 2011 and 2013 reported the national spread of KPC-2 and KPC-17 (Tseng et al., 2015). KPC-producing K. pneumoniae was recently also detected in Japan (Saito et al., 2014), Pakistan (Pesesky et al., 2015), Iran (Nobari et al., 2014), and United Arab Emirates (Sonnevend et al., 2015a). In the Arabian Peninsula, the prevalence of KPC-producing K. pneumoniae was very low in comparison to NDM-1 and OXA-48-like carbapenemases (Sonnevend et al., 2015b). Sonnevend et al. (2015a), two K. pneumoniae ST14 strains producing KPC-2 were first identified in the United Arab Emirates of the Arabian Peninsula. In Africa, several countries such as South Africa (Brink et al., 2012), Algeria (Bakour et al., 2015b), and Egypt (Metwally et al., 2013), have also isolated KPC-producing K. pneumoniae.

      The coexistence of KPCs and other carbapenemases in K. pneumoniae was frequently reported worldwide, including in Italy (KPC-3/VIM-2 and KPC-2/VIM-1; Richter et al., 2012; Perilli et al., 2013), Colombia (KPC-2/VIM-24; Rojas et al., 2013), Brazil (KPC-2/NDM-1; Pereira et al., 2015), China (KPC-2/NDM-1, KPC-2/CMY-2, and KPC-2/IMP-4; Hu et al., 2014; Dong et al., 2015; Liu et al., 2015), Canada (KPC-3/CMY-2; Leung et al., 2012), and Greece (KPC-2/VIM-1; Giakkoupi et al., 2009), indicating the worldwide prevalence of K. pneumoniae co-harboring two carbapenemases.

      Aside from KPC-type carbapenemases, other class A carbapenemases, such as GES-2, GES-4, GES-5, GES-6, GES-11, GES-14, GES-18, SFC-1, SHV-38, NMC-A, SME-1, and IMI-type enzymes, were rarely found in K. pneumoniae (Table 1).

      The epidemiology of various carbapenemases in Klebsiella pneumoniae.

      Molecular class Carbapenemase Geographical distribution
      A SME types Not found
      IMI types Not found
      GES types Greece (Vourli et al., 2004), Finland (Osterblad et al., 2012), Brazil (Picao et al., 2010), and South Korea (Jeong et al., 2005; Bae et al., 2007)
      SFC-1, SHV-38, and NMC-A France (Poirel et al., 2003) and Brazil (Tollentino et al., 2011)
      B OXA-23, OXA-24/40, OXA-51, OXA-58, OXA-134, OXA-143, OXA-211, OXA-213, OXA-214, OXA-229, and OXA-235 Not found
      C DHA-1 Taiwan (Lee et al., 2012b), South Korea (Park et al., 2013), and China (Hu et al., 2014)
      CMY-2 and CMY-10 China (Hu et al., 2014), Canada (Leung et al., 2012), and Greece (Pournaras et al., 2010b)
      ADC-68 Not found
      D IMP types Malaysia (Hamzan et al., 2015), Taiwan (Tseng et al., 2015), China (Chen et al., 2015), Thailand (Rimrang et al., 2012), Ireland (Morris et al., 2016), Greece (Lascols et al., 2013), Spain (Lascols et al., 2013), Italy (Lascols et al., 2013), Turkey (Lascols et al., 2013), Austria (Zarfel et al., 2011), the USA (Limbago et al., 2011; Rojas et al., 2013), and Mexico (Gales et al., 2012)
      VIM types Greece (Pournaras et al., 2010b), Ireland (Morris et al., 2016), Spain (Pena et al., 2014), Australia (Lascols et al., 2013), Croatia (Zujic Atalic et al., 2014), the Czech Republic (Hrabak et al., 2013b), Hungary (Melegh et al., 2014), Italy (Giani et al., 2013), Norway (Naseer et al., 2012), Austria (Zarfel et al., 2011), Finland (Osterblad et al., 2012), Germany (Steinmann et al., 2011), France (Birgy et al., 2011), China (Liu et al., 2015), India (Castanheira et al., 2011), Philippines (Lascols et al., 2013), Iran (Rajabnia et al., 2015), Taiwan (Tseng et al., 2015), Colombia (Rojas et al., 2013), Mexico (Gales et al., 2012), and Algeria (Rodriguez-Martinez et al., 2010)
      GIM-1, KHM-1, and SPM-1 Not found
      Molecular and Genetic Context

      The blaKPC in K. pneumoniae has been reported on numerous plasmid types, such as IncF, IncI2, IncX, IncA/C, IncR, and ColE1 (Garcia-Fernandez et al., 2012; Chen et al., 2014e; Pitout et al., 2015), but the predominant plasmid type is IncF with FIIK replicons (Pitout et al., 2015). IncF often contains several additional genes responsible for resistance to other antibiotics, including aminoglycosides, tetracyclines, quinolones, trimethoprim, and sulfonamides (Pitout et al., 2015). Many blaKPC genes are associated with a promiscuous transposon-related structure Tn4401, which is approximately 10 kb in size and consists of a transposase gene, a resolvase gene, the blaKPC gene, and two insertion sequences, ISKpn6 and ISKpn7 (Figure 2A; Naas et al., 2008). This transposon has jumped to numerous plasmids that are commonly conjugative (Chen et al., 2014e). In China, a novel genetic environment was detected (Shen et al., 2009). It contains an integration structure consisting of a Tn3-based transposon and partial Tn4401 segment, with the gene order Tn3-transposase, Tn3-resolvase, ISKpn8, the blaKPC-2 gene, and the ISKpn6-like element (Shen et al., 2009). This genetic structure is the chimera form of several transposon-associated elements. This transposon was also identified in many other countries (Chen et al., 2014e), and several variants with various fragment insertions between the ISKpn8 and blaKPC gene have been found among Enterobacteriaceae in China (Shen et al., 2009; Li et al., 2011; Qi et al., 2011). Tn4401 has five isoforms which differ by deletions (68–255 bp) just upstream of the blaKPC gene [(a) deletion of 99 bp; (b) no deletion; (c) deletion of 215 bp; (d) deletion of 68 bp; (e) deletion of 255 bp; Chen et al., 2014e]. Notably, in many cases, different Tn4401 isoforms was associated with different blaKPC-harboring plasmids. Tn4401a was frequently found in the blaKPC-3-harboring IncFIIK2 plasmids (Leavitt et al., 2010; Garcia-Fernandez et al., 2012; Chen et al., 2014d), and Tn4401b and Tn4401d were often associated with the IncN and IncFIA plasmids, respectively (Chen et al., 2013a, 2014c,e). Up to now, more than 30 blaKPC-harboring plasmids obtained from K. pneumoniae have been sequenced (Gootz et al., 2009; Shen et al., 2009; Jiang et al., 2010; Leavitt et al., 2010; Almeida et al., 2012; Chen et al., 2013a,b, 2014b,c,e). One of common features shared by these sequenced plasmids is the presence of the tra operon, which encodes the plasmid conjugation machinery proteins that induce the spread of plasmids (Chen et al., 2014e). These genes may be important for the successful dissemination of blaKPC-harboring plasmids. The IncFII plasmids are one of predominant blaKPC-harboring plasmids. pKpQIL, which is an IncFIIK2 plasmid harboring Tn4401a, was initially identified in Israel in 2006 (Leavitt et al., 2010), and then this plasmid and its variants are believed to have spread to Italy, Poland, the UK, Colombia, the Czech Republic, the USA, and other countries (Baraniak et al., 2011; Garcia-Fernandez et al., 2012; Hidalgo-Grass et al., 2012; Warburg et al., 2012; Hrabak et al., 2013b; Chen et al., 2014d,e), suggesting the wide dissemination of this plasmid. The blaKPC gene has also been identified in other non-Tn4401 mobile elements that mostly have partial ISKpn6 genes (Shen et al., 2009; Gomez et al., 2011). Based on the insertion sequence upstream of the blaKPC gene, they can be divided into three groups: group I, no insertion (Shen et al., 2009; Liu et al., 2012; Chen et al., 2014g); group II, insertion of truncated blaTEM (Gomez et al., 2011); group III, insertion of Tn5563/IS6100 (Wolter et al., 2009). These non-Tn4401 genetic elements harboring blaKPC sometimes have an IS26 transposon (Liu et al., 2012; Chen et al., 2014g).

      Structural features of representative genetic environments of blaKPC-2, blaNDM-1, and blaOXA-48 genes. (A) The blaKPC-2-containing Tn4401 transposon from the plasmid pNYC (GenBank accession no. EU176011) is shown in horizontal arrows. Two inverted repeat sequences (IRL and IRR) of Tn4401 are depicted in triangles at either end. Tn4401 has five isoforms which differ by deletions (68–255 bp) just upstream of the blaKPC gene [(a) deletion of 99 bp; (b) no deletion; (c) deletion of 215 bp; (d) deletion of 68 bp; (e) deletion of 255 bp]. (B) The blaNDM-1 genetic context of pNDM_MGR194 (GenBank accession no. KF220657) is shown in horizontal arrows. (C) The blaOXA-48-containing Tn1999 transposon from the plasmid pOXA-48 (GenBank accession no. JN626286) is shown in horizontal arrows.

      Carbapenemase genes often spread worldwide through clonal expansion in several successful pathogenic strains (Chen et al., 2014e). For example, the dissemination of KPC-producing K. pneumoniae in most countries including the USA and European countries is largely caused by expansion of a single dominant strain, ST258 (Giani et al., 2013; Chen et al., 2014e; Bowers et al., 2015). This strain is a prototype of a high-risk clone of K. pneumoniae. Recent data from Israel showed that the KPC-producing K. pneumoniae ST258 clone remains the predominant clone, representing 80% of the KPC-producing K. pneumoniae population (Adler et al., 2015). ST258 may be a hybrid clone that was created by a large recombination event between ST11 and ST442 (Pitout et al., 2015). It is unknown why the ST258 lineage is the most prevalent clone of KPC-producing Klebsiella species. The ST258 clone is highly susceptible to serum killing in animal models and lacks well-known K. pneumoniae virulence factors, such as aerobactin genes, K1, K2, and K5 capsular antigen genes, and the regulator of the mucoid phenotype gene rmpA (Tzouvelekis et al., 2013; Pitout et al., 2015). Two recent reports revealed that the ST258 strains consist of two distinct genetic clades and genetic differentiation between the two clades (-1 and cps-2) results from an approximately 215-kb region of divergence that includes cps genes involved in capsule polysaccharide synthesis (Chen et al., 2014e; Deleo et al., 2014). Multiplex PCR for the identification of two capsular types in K. pneumoniae ST258 strains revealed a significant association between the cps type and KPC variant: the cps-1 clade is largely associated with KPC-2, while the cps-2 clade is primarily associated with KPC-3 (Chen et al., 2014a). Because the capsule polysaccharide can help K. pneumoniae to evade phagocytosis, the global success of this strain may involve the capsule polysaccharide biosynthesis regions cps-1 and cps-2. A recent report revealed a relationship between the integrative conjugative element ICEKp258.2 and the global success of the ST258 clone (Adler et al., 2014). ICEKp258.2 contains two specific gene clusters, a type IV pilus gene cluster (i.e., pilV) associated with the uptake and exchange of plasmids and adherence to living and non-living surfaces, and a gene cluster of a type III restriction-modification system determining host specificity in the exchange of certain compatible plasmids or mobile elements (Adler et al., 2014). Because these genes associated with the restriction of plasmids and specific mobile elements were present only in ST258 and genetically related sequence types, this difference may explain the divergence of ST258 predominantly harboring KPC and ST11, another high-risk clone that lacks ICEKp258.2, harboring a broad range of plasmids and carbapenemases, including KPC, NDM, OXA-48, VIM, and IMP (Chen et al., 2014f; Pitout et al., 2015). Although the ICEKp258.2 of ST258 strains may contribute to global success, the precise reason for the predominance of the ST258 strain in KPC-producing K. pneumoniae is still not entirely understood. Recently, an outbreak of non-ST258 KPC-producing K. pneumoniae clones has been reported in the USA and Europe (Ruiz-Garbajosa et al., 2013; Bonura et al., 2015; Garbari et al., 2015).

      The habitat of K. pneumoniae is not limited to humans but extends to the ecological environment, such as soil, water, and sewage, and K. pneumoniae can survive in extreme environments for long periods of time (Pitout et al., 2015). Therefore, K. pneumoniae producing KPCs were detected in various nosocomial environments, such as gowns and gloves (Rock et al., 2014) and wastewater (Chagas et al., 2011; Galler et al., 2014). The frequency of KPC-producing K. pneumoniae contamination of gowns and gloves of healthcare workers is similar to that of contamination with methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus (Rock et al., 2014), indicating fast transmission of KPC-producing Klebsiella species in a nosocomial environment. A long-term observation in a hospital with low-frequency outbreaks of KPC-producing K. pneumoniae suggested the possible role of a persisting environmental reservoir of resistant strains in the maintenance of this long-term outbreak (Tofteland et al., 2013). After discharge from the hospital, long-term (>3 years) carriage of KPC-producing K. pneumoniae is also possible (Lübbert et al., 2014), and lateral gene transfer of KPC among Enterobacteriaceae colonizing the human intestine appears frequent, for example from K. pneumoniae to E. coli (Richter et al., 2011; Gona et al., 2014). Therefore, reservoirs in healthcare workers, patients, or the hospital environment may be a principle mode of spread in nosocomial outbreaks.

      Treatment Options

      Carbapenemase-producing K. pneumoniae strains are currently one of the most important nosocomial pathogens. Hospital outbreaks of KPC-producing K. pneumoniae mainly affect severely ill patients and are associated with an increased risk of death (Ducomble et al., 2015; Tumbarello et al., 2015). KPC-producing K. pneumoniae bloodstream infections in intensive care unit (ICU) have also been associated with increased mortality (Chang et al., 2015).

      Because carbapenemase-producing K. pneumoniae are mostly resistant to several important antibiotic classes (β-lactam drugs, fluoroquinolones, and aminoglycosides), antibiotics, such as polymyxin B, colistin (polymyxin E), fosfomycin, tigecycline, and sometimes selected aminoglycosides, are the last-resort agents. KPC-producing K. pneumoniae are usually resistant to all β-lactam antibiotics, but temocillin can be active against some KPC-producing K. pneumoniae, particularly in the case of lower urinary tract infections (Adams-Haduch et al., 2009). To maximize bacterial killing and minimize bacterial resistance, combined therapy is sometimes recommended. Combination therapy including a carbapenem, such as a combination of tigecycline, colistin, and meropenem, was strongly effective in the treatment of KPC-producing K. pneumoniae, including colistin-resistant isolates (Tumbarello et al., 2012, 2015; Giamarellou et al., 2013; Hong et al., 2013; Daikos et al., 2014). The synergistic combination of colistin and rifampin was also effective in the treatment of colistin-resistant KPC-producing K. pneumoniae by slowing the selection of heteroresistant subpopulations during colistin therapy (Tascini et al., 2013). However, several reports have shown that combination therapy was not superior to monotherapy (de Oliveira et al., 2015; Toledo et al., 2015). Thus, extensive studies will be required to assess the effectiveness of combination therapy. A triple combination of colistin-doripenem-ertapenem was effective only in isolates with high levels of OmpK35 and OmpK36 porin expression (Hong et al., 2013). The expression level of OmpK36 was also involved in the rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing K. pneumoniae populations (Adams-Sapper et al., 2015). Therefore, molecular characterization of the KPC-producing K. pneumoniae strain, such as the determination of the expression level of OmpK35 and OmpK36, can be used to identify effective combination regimens. However, as a minor effect of OmpK35 and OmpK36 on carbapenem resistance of K. pneumoniae was also reported (Zhang et al., 2014), more extensive studies on the role of these proteins on K. pneumoniae carbapenem resistance are also required.

      Colistin (polymyxin E), an agent discovered more than 60 years ago, is a key component of the combination of antimicrobial regimens used for the treatment of severe KPC-producing K. pneumoniae infections (Cannatelli et al., 2014b). Since the global spread of KPC-producing K. pneumoniae, the emergence of colistin resistance in KPC-producing K. pneumoniae have been reported in many countries, including Italy (Cannatelli et al., 2014b; Giani et al., 2015), the USA (Bogdanovich et al., 2011), Greece (Kontopoulou et al., 2010), Hungary (Toth et al., 2010), and Turkey (Labarca et al., 2014). The increasing prevalence of colistin-resistant K. pneumoniae producing KPC poses a threat to public health because colistin resistance increases the mortality due to KPC-producing K. pneumoniae bloodstream infections and reduces therapeutic options. A multicenter case-control-control study in Italy showed that the rate of colistin resistance among KPC-producing K. pneumoniae blood isolates increased more than threefold during the 4.5-years study period, and the 30-days mortality due to colistin-resistant KPC-producing K. pneumoniae bloodstream infections was approximately 51% (Giacobbe et al., 2015). Data collected from 21 hospital laboratories in Italy between 2013 and 2014 also showed that 43% of carbapenemase-producing K. pneumoniae were resistant to colistin, 6% were resistant to tigecycline, 16% were resistant to gentamicin, 82% were resistant to trimethoprim-sulfamethoxazole, and 1% were resistant to all four antibiotics, and colistin-resistant isolates were detected in all participating hospital laboratories (Monaco et al., 2014). The progressive increase of colistin resistance was also reported elsewhere (Pena et al., 2014; Bonura et al., 2015; Parisi et al., 2015). These results indicate that the strict rules for colistin use are required to diminish the spread of colistin resistance in the endemic regions of KPC-producing K. pneumoniae.

      Molecular and biochemical studies have shown that insertional inactivation of the mgrB gene, encoding a negative-feedback regulator of the PhoQ–PhoP signaling system, can be responsible for colistin resistance in KPC-producing K. pneumoniae, due to the resulting up-regulation of the Pmr lipopolysaccharide modification system (Cannatelli et al., 2013, 2014b). A recent study analyzing a series of colistin-resistant K. pneumoniae isolates of worldwide origin identified a single amino acid change (T157P) in the PmrB protein as being responsible for the overexpression of pmrCAB and pmrHFIJKLM operons involved in lipopolysaccharide modification, leading to colistin resistance (Jayol et al., 2014). The relationship between colistin resistance and inactivation of the mgrB gene was further supported by analysis of clinical colistin-resistant K. pneumoniae isolates producing KPC (Bonura et al., 2015; Giani et al., 2015). The emergence of colistin resistance was also associated with low-dosage colistin treatment (Cannatelli et al., 2014a). A recent report showed that the plasmid carrying the mcr-1 gene, which encodes a phosphoethanolamine transferase enzyme catalyzing the addition of phosphoethanolamine to lipid A, is a major contributor to colistin resistance in Gram-negative bacteria and is spread through horizontal gene transfer (Liu et al., 2016). This mcr-1-harboring plasmid was also detected in E. coli isolates collected from 78 (15%) of 523 samples of raw meat, 166 (21%) of 804 animals, and 16 (1%) of 1322 samples from inpatients with infection, indicating the emergence of this plasmid-mediated colistin resistance mechanism (Liu et al., 2016).

      Fosfomycin is a broad-spectrum antibiotic that inhibits bacterial cell wall biogenesis by inactivating the enzyme UDP-N-acetylglucosamine-3-enolpyruvyltransferase, also known as MurA (Brown et al., 1995). Fosfomycin has been used to treat KPC-producing K. pneumoniae, but recently, a high fosfomycin resistance rate was observed is in countries with higher usage (Giske, 2015). Only 43.4% of KPC-producing K. pneumoniae strains retained susceptibility to fosfomycin in a Chinese university hospital (Li et al., 2012) and a similar fosfomycin susceptibility rate (39.2%) was observed in KPC-producing K. pneumoniae collected from 12 hospitals in China (Jiang et al., 2015). Like colistin, fosfomycin resistance seems to be associated with the plasmid containing the fosA3 gene which encodes glutathione S-transferase to modify fosfomycin and was characterized first in CTX-M-producing E. coli in Japan (Wachino et al., 2010). In China, the fosA3-harboring plasmid was attributed to 55.6% of fosfomycin-resistant KPC-producing K. pneumoniae strains (Jiang et al., 2015). Although the fosA3 gene is mainly associated with the blaCTX-M gene, the fosA3 gene has also been characterized in atypical blaKPC-harboring plasmids (Jiang et al., 2015; Li et al., 2015). In pFOS18 (Jiang et al., 2015) and pKP1034 (Xiang et al., 2015), the fosA3 and blaKPC-2 genes were located on different transposon systems, whereas in pHS102707 belonging to the IncP1 group (Li et al., 2015), two genes were co-located in the same Tn1721-Tn3-like transposon.

      Tigecycline, a derivative of minocycline, is the first member of the glycylcycline class that acts as a protein synthesis inhibitor by blocking the interaction of aminoacyl-tRNA with the A site of the ribosome (Rose and Rybak, 2006). Due to the increased clinical use of tigecycline for treatment of KPC-producing K. pneumoniae, increased tigecycline resistance was reported (Zagorianou et al., 2012; Papadimitriou-Olivgeris et al., 2014; Weterings et al., 2015). In the Netherlands, all KPC-producing K. pneumoniae isolates exhibited reduced susceptibility to tigecycline (Weterings et al., 2015). Another report showed that during ICU stay, 17.9% (39/257) of patients became colonized by tigecycline-resistant KPC-producing K. pneumoniae during their stay (Papadimitriou-Olivgeris et al., 2014). In a Greek tertiary hospital during 2004 to 2010, 11.3% (34/301) of KPC-producing isolates were resistant to tigecycline (Zagorianou et al., 2012). Overproduction of efflux pumps such as AcrAB and overexpression of RamA, a positive regulator of the AcrAB efflux system, seem to be major factors for decreased sensitivity of K. pneumoniae strains to tigecycline (Ruzin et al., 2005; Rosenblum et al., 2011; Sun et al., 2013). A recent report in China showed that the OqxAB efflux pump was also contributed to tigecycline resistance in K. pneumoniae isolates (Zhong et al., 2014).

      Because KPC-producing K. pneumoniae sometimes remains susceptible to several aminoglycosides such as gentamicin (Tzouvelekis et al., 2014), aminoglycosides can be used alone or in combination therapy to treat KPC-producing K. pneumoniae infections. Actually, gentamicin monotherapy or in combination with tigecycline was recently reported to reduce the mortality from sepsis caused by K. pneumoniae ST512 clone producing KPC-3, SHV-11, or TEM-1 (Gonzalez-Padilla et al., 2015). New weapons are always indispensable for combating KPC-producing K. pneumoniae infections (Lee et al., 2007, 2015a). The effectiveness of some antibiotics in development was also estimated against KPC-producing K. pneumoniae. Potent inhibitors of serine β-lactamases, such as avibactam and MK7655, were effective against KPC-producing K. pneumoniae infections (Temkin et al., 2014). Combination therapy with avibactam and ceftazidime exhibited significant synergetic effects against organisms with combinations of extended-spectrum β-lactamases (ESBLs), AmpCs, and KPC-2 (Wang et al., 2014e). Plazomicin (a novel aminoglycoside) also exhibited significant activity against KPC-producing K. pneumoniae (Temkin et al., 2014). The novel polymyxin derivatives with lower nephrotoxicity are under development (Vaara, 2010). A recent report suggested that synthetic peptides with antimicrobial and antibiofilm activities are a promising strategy in the treatment of infections caused by KPC-producing K. pneumoniae (Ribeiro et al., 2015). The in vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline was tested against carbapenemase-producing Enterobacteriaceae (CPE) strains. When plazomicin was combined with meropenem, colistin or fosfomycin, synergy was observed against CPE isolates (Rodriguez-Avial et al., 2015).

      Detection Methods

      Because a delay in the appropriate antibiotic therapy for severe infections of KPC-producing K. pneumoniae is strongly associated with unfavorable prognosis and increased mortality rates (Karaiskos and Giamarellou, 2014), rapid detection of CR strains is essential for the effective management of these infections (Lee et al., 2005b, 2006b, 2016). Various methods for the identification of KPCs have been developed, including multiplex PCR assay (Spanu et al., 2012; Adler et al., 2014), real-time PCR assay (Wang et al., 2012; Lee et al., 2015c), DNA microarray (Peter et al., 2012; Braun et al., 2014), Raman spectroscopic analysis (Willemse-Erix et al., 2012), single-colony whole-genome sequencing (Koser et al., 2014), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS; Carvalhaes et al., 2014), loop-mediated isothermal amplification (LAMP) method (Nakano et al., 2015), chromogenic medium (Vrioni et al., 2012), and a new phenotypic test, called the carbapenem inactivation method (CIM; van der Zwaluw et al., 2015). False positive results can occur when the modified Hodge test is used to detect carbapenemases in carbapenemase-negative K. pneumoniae clinical isolates (Wang et al., 2011). Therefore, to improve the efficiency in the phenotypic detection of KPC-producing K. pneumoniae isolates, the modified Hodge test can be combined with an EDTA disk test (Yan et al., 2014) or a disk test using boronic acid compounds (Pournaras et al., 2010a). These methods enhanced the sensitivity and specificity of KPC detection in K. pneumoniae isolates. In a new developed phenotypic test, called the CIM, a susceptibility-testing disk containing carbapenem was immersed in the suspension made by suspending an inoculation loop of bacterial culture (van der Zwaluw et al., 2015). After incubation, the disk was placed on an agar plate inoculated with a susceptible E. coli indicator strain. If the bacterial isolate produces carbapenemase, the susceptibility-testing disk will allow the growth of the susceptible indicator strain. This method showed high concordance with results obtained by PCR (van der Zwaluw et al., 2015). Nevertheless, these culture-based phenotypic tests are time-consuming and cannot easily detect ESBLs and carbapenemases produced by Enterobacteriaceae, owing to varied levels of enzyme expression and the poor specificity of some antibiotic combinations (Okeke et al., 2011; Swayne et al., 2013). To overcome these limitations of phenotypic methods, various molecular-based diagnostic methods have been developed. Especially, the direct detection of the carbapenemase gene using multiplex PCR, real-time PCR, and DNA microarray method can increase the speed and accuracy of detecting CR strains (Okeke et al., 2011; Solanki et al., 2014). Because of the high genetic diversity of genes coding for carbapenemase, the precise design of primers or probes is necessary for correctly amplifying or detecting only expected carbapenemase genes. Therefore, already developed methods for bla gene detection are restricted to the detection of only limited types of bla genes (Lee et al., 2015b). However, the large-scaleblaFinder was recently developed on the basis of multiplex PCR, and this large-scale detection method can detect almost all bla genes, including KPCs, NDMs, OXA-48-likes, present in bacterial pathogens (Lee et al., 2015b). Recently, mass spectrometry-based methods, such as MALDI-TOF MS and ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS), have been shown to be capable of characterizing carbapenemase-producing bacteria (Carricajo et al., 2014; Carvalhaes et al., 2014). These methods are fast and accurate to routinely identify bacterial isolates with great specificity and sensitivity (Hrabak et al., 2011; Patel, 2013; Carvalhaes et al., 2014; Lasserre et al., 2015), but these systems do not accurately provide the carbapenem minimum inhibitory concentrations (MICs) for carbapenemase-producing K. pneumoniae (Patel, 2013). Several experiments showed that this method is more rapid and accurate for detection of carbapenemase activity in Gram-negative bacteria than some methods including the modified Hodge test (Lee et al., 2013b; Chong et al., 2015). The LAMP method has emerged as a powerful gene amplification assay for the rapid identification of microbial infections (Notomi et al., 2000). This method employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. The assay amplifies the DNA under isothermal conditions (63–65°C) with high degrees of specificity, efficiency, and speed (Reddy et al., 2010). The cycling reaction continues with accumulation of 109 copies of target in less than an hour. The assay can be conducted in a water bath or heating block instead of the thermal cycling using a PCR machine (Notomi et al., 2000). The LAMP assay can be applied for detection of KPC producers in the clinical laboratory (Nakano et al., 2015) and has greater sensitivity, specificity, and rapidity compared to the phenotypic methods and PCR for the detection of KPC-producing K. pneumoniae (Solanki et al., 2013).

      Colistin has often been used as a therapeutic option for the treatment of CR K. pneumoniae infections. However, the imprudent use of colistin has caused rapid spread of colistin resistance in K. pneumoniae producing carbapenemases, particularly the KPC-type carbapenemases (Monaco et al., 2014; Giacobbe et al., 2015). This situation demonstrates the need for the development of accurate and reliable methods for detecting colistin resistance. Recently, several methods for the identification of colistin resistance were reported, including various routine colistin MIC testing methods, such as BMD, BMD-P80, AD, Etest, MTS, and Vitek2 (Dafopoulou et al., 2015; Humphries, 2015); capillary electrophoresis method according to characteristic surface properties of bacteria (Sautrey et al., 2015); and the micromax assay based on evaluation of the efficacy of antibiotics that affect cell wall integrity (Tamayo et al., 2013). Because a recent report showed that the mcr-1 gene, involved in the modification of lipid A, is a major contributor to colistin resistance in Gram-negative bacteria (Liu et al., 2016), detection of this gene may be important in the detection of colistin resistance.

      Class B Carbapenemases Epidemiology

      Class B β-lactamases are metallo-β-lactamases that require zinc or another heavy metal for catalysis. Class B β-lactamases have a broad substrate spectrum and can catalyze the hydrolysis of virtually all β-lactam antibiotics including carbapenems except for monobactams (Jeon et al., 2015). Class B carbapenemases were mostly identified in Enterobacteriaceae and include VIMs, IMPs, and the emerging NDM group (Jeon et al., 2015). Among them, NDM (New Delhi metallo-β-lactamase) is one of the most clinically significant carbapenemases. NDM-1 was first detected in 2008 in K. pneumoniae and E. coli in a patient returning to Sweden from India and has since spread worldwide (Yong et al., 2009; Jeon et al., 2015). Thus far, 15 NDM variants have been assigned (Jeon et al., 2015), and most of them originated from Asia (Nordmann and Poirel, 2014). NDMs shares very little identity with other metallo-β-lactamases (Nordmann and Poirel, 2014).

      Since 2008, K. pneumoniae producing NDMs rapidly spread in many countries (Berrazeg et al., 2014; Figure 3). NDM-producing K. pneumoniae are considered to be endemic in the Indian subcontinent, including India, Pakistan, and Bangladesh (Nordmann et al., 2011b; Nordmann and Poirel, 2014). The sporadic spread has been reported in the USA (Rasheed et al., 2013; Centers for Disease Control and Prevention, 2014; Doi et al., 2014), Canada (Mulvey et al., 2011; Borgia et al., 2012; Lowe et al., 2013), Colombia (Escobar Perez et al., 2013; Ocampo et al., 2015), Spain (Oteo et al., 2013b; Seara et al., 2015), France (Arpin et al., 2012; Robert et al., 2014), Switzerland (Poirel et al., 2011g; Spyropoulou et al., 2016), Italy (Gaibani et al., 2011), the UK (Kumarasamy et al., 2010; Giske et al., 2012), Greece (Voulgari et al., 2014; Spyropoulou et al., 2016), Turkey (Poirel et al., 2014; Kilic and Baysallar, 2015), Morocco (Poirel et al., 2011b; Barguigua et al., 2013), South Africa (Brink et al., 2012; de Jager et al., 2015), Singapore (Chen et al., 2012; Balm et al., 2013; Ling et al., 2015), Saudi Arabia (Shibl et al., 2013; Zowawi et al., 2014), Oman (Poirel et al., 2011a; Zowawi et al., 2014), United Arab Emirates (Sonnevend et al., 2013; Dash et al., 2014), Kuwait (Jamal et al., 2012, 2013; Sonnevend et al., 2015b), China (Qin et al., 2014; Jin et al., 2015; Liu et al., 2015), Japan (Yamamoto et al., 2013; Nakano et al., 2014), Taiwan (Chiu et al., 2013; Tseng et al., 2015), South Korea (Kim et al., 2012; Cho et al., 2015), and Australia (Shoma et al., 2014; Wailan et al., 2015). In India, NDM-1 was the most common carbapenemase type detected and accounted for 75.22% of the carbapenemase-producing isolates (Kazi et al., 2015). In Singapore and the United Arab Emirates, NDM-1 also was the most common carbapenemase type observed (44.4 and 100%, respectively; Dash et al., 2014; Ling et al., 2015). The endemic spread of NDM-producing K. pneumoniae has also been reported in the UK, which has close relationships with India and Pakistan (Nordmann and Poirel, 2014). In China, NDM-1 has been found mostly in Acinetobacter spp., but data obtained from patients between June 2011 and July 2012 showed that 33.3% of the CRE isolates, including K. pneumoniae, had NDM-1, suggesting the possible transmission of blaNDM-1-containing sequences from Acinetobacter spp. to Enterobacteriaceae (Qin et al., 2014). These findings reveal the emergence and active transmission of NDM-1-producing K. pneumoniae in China. Comparative analyses of the conserved NDM-1-encoding region among different plasmids from K. pneumoniae and E. coli suggested that the transposable elements and two unknown inverted repeat-associated elements flanking the NDM-1-encoding region aided the spreading of this resistance determinant (Chen et al., 2012). Recently, in China, eight K. pneumoniae isolates producing NDM-1 were identified in the neonatal ward of a teaching hospital (Zhang et al., 2015), and four diverse types (NDM-1, KPC-2, VIM-2, and IMP-4) of carbapenemase of K. pneumoniae clones were identified in a single hospital in China (Liu et al., 2015).

      Epidemiological features of NDM-producing K. pneumoniae. (1) India; (2) Pakistan; (3) Bangladesh; (4) Canada; (5) USA; (6) Colombia; (7) Spain; (8) France; (9) UK; (10) Italy; (11) Switzerland; (12) Greece; (13) Turkey; (14) Saudi Arabia; (15) Oman; (16) United Arab Emirates; (17) Kuwait; (18) Morocco; (19) South Africa; (20) China; (21) South Korea; (22) Japan; (23) Taiwan; (24) Singapore; (25) Australia; (26) Mexico; (27) Guatemala; (28) Brazil; (29) Ireland; (30) Germany; (31) Netherlands; (32) Czech Republic; (33) Poland; (34) Hungary; (35) Romania; (36) Croatia; (37) Norway; (38) Sweden; (39) Finland; (40) Russia; (41) Algeria; (42) Tunisia; (43) Libya; (44) Egypt; (45) Kenya; (46) Madagascar; (47) Mauritius; (48) Israel; (49) Iraq; (50) Iran; (51) Yemen; (52) Sri Lanka; (53) Nepal; (54) Thailand; (55) Vietnam; (56) Malaysia, (57) New Zealand.

      The Balkan states (Livermore et al., 2011; Voulgari et al., 2014), the Arabian Peninsula (Nordmann and Poirel, 2014), and North African countries (Dortet et al., 2014c), have also been recently considered as an additional reservoir of NDM producers. In the Arabian Peninsula, NDM-1 was the most frequently encountered carbapenemase (46.5%) followed by OXA-48-like carbapenemases (32.5%; Sonnevend et al., 2015b). In Greece, among 132 non-repetitive CRE isolates between 2010 and 2013, 78 K. pneumoniae isolates with the blaNDM-1 gene were identified (Voulgari et al., 2014). In the USA, KPC-producing K. pneumoniae have been responsible for much of the increase in carbapenemase-producing bacteria detection, but recent increases in NDM-producing K. pneumoniae have the potential to add to this burden (Rasheed et al., 2013; Centers for Disease Control and Prevention, 2014).

      The movement of patients between countries may be a trigger for the international spread of carbapenemase-producing K. pneumoniae (Berrazeg et al., 2014). Carbapenemase-producing Gram-negative bacteria including K. pneumoniae, obtained from patients that had recently traveled outside Canada between 2010 and 2013, were found to be NDM-producing K. pneumoniae, belonging to various sequence types (ST15, ST16, ST147, ST258, ST340, ST512, and ST972) with different plasmids (IncF, IncA/C, and IncL/M), and were imported from India to Canada (Peirano et al., 2014). Therefore, more careful attention is required when treating patients with a recent history of foreign hospitalization in countries where carbapenemase-producing bacteria are prevalent. The international transportations of patients between countries recently resulted in the detection of NDM-producing K. pneumoniae in Mexico (Barrios et al., 2014), Guatemala (Pasteran et al., 2012), Brazil (Quiles et al., 2015), the Netherlands (Bathoorn et al., 2015), Ireland (McDermott et al., 2012), Poland (Baraniak et al., 2016), Czech Republic (Studentova et al., 2015), Croatia (Kocsis et al., 2016), Russia (Ageevets et al., 2014), Tunisia (Ben Nasr et al., 2013), Romania (Lixandru et al., 2015), Egypt (Bathoorn et al., 2013), Kenya (Poirel et al., 2011f), Madagascar (Chereau et al., 2015), Iraq (Poirel et al., 2011e), Yemen (Gharout-Sait et al., 2014), Iran (Shahcheraghi et al., 2013), Mauritius (Poirel et al., 2012b), Sri Lanka (Dortet et al., 2013), Thailand (Rimrang et al., 2012), Nepal (Tada et al., 2013), Vietnam (Hoang et al., 2013), Malaysia (Al-Marzooq et al., 2015), and New Zealand (Williamson et al., 2012).

      The global dissemination of NDM-producing K. pneumoniae also has a serious impact on neonatal mortality rates, particularly in low-income countries where the burden of neonatal sepsis is high (Zaidi et al., 2005). Colonization of NDM-producing K. pneumoniae isolates in pregnant women in the community in Madagascar highlighted the potential for mother-to-child transmission (Chereau et al., 2015). In India, analysis of Enterobacteriaceae, including K. pneumoniae, isolated from the blood of septicaemic neonates, indicted that 14% of the isolates possessed blaNDM-1, and there was a significantly higher incidence of sepsis caused by NDM-1-harboring isolates (Datta et al., 2014). In China, an outbreak of blaNDM-1-producing K. pneumoniae ST20 and ST17 isolates was identified in a neonatal unit (Jin et al., 2015). In Turkey, the spread of NDM-1-producing K. pneumoniae in a neonatal ICU was reported (Poirel et al., 2014). In Colombia, NDM-1-producing K. pneumoniae strains were identified from an outbreak that affected six neonatal patients (Escobar Perez et al., 2013).

      As with KPC, coexistence of NDMs and other carbapenemases in K. pneumoniae has also been reported worldwide, in Brazil (NDM-1/KPC-2; Pereira et al., 2015), Malaysia (NDM-1/OXA-232; Al-Marzooq et al., 2015), South Korea (NDM-5/OXA-181; Cho et al., 2015), China (NDM-1/IMP-4; Chen et al., 2015), India (NDM-1/OXA-232; Al-Marzooq et al., 2015), Turkey (NDM-1/OXA-48; Kilic and Baysallar, 2015), Pakistan (NDM-1/KPC-2; Sattar et al., 2014), Switzerland (NDM-1/OXA-48; Seiffert et al., 2014), United Arab Emirates (NDM-1/OXA-48-like; Dash et al., 2014), Australia (NDM-1/OXA-48; Sidjabat et al., 2015), Morocco (NDM-1/OXA-48; Barguigua et al., 2013), Singapore (NDM-1/OXA-181 and NDM-5/OXA-181; Balm et al., 2013), and the USA (NDM-1/OXA-232; Doi et al., 2014).

      Besides NDM-type carbapenemases, the IMP and VIM groups have also been detected worldwide in K. pneumoniae, but other carbapenemases, such as GIM-1, KHM-1, and SPM-1, have been not found in K. pneumoniae (Table 1). Since IMP and VIP were first detected in Serratia marcescens in 1991 and in Pseudomonas aeruginosa in 1996, respectively (Osano et al., 1994; Lauretti et al., 1999), IMP- and VIM-producing K. pneumoniae have spread in Europe and Asia, but were rarely reported in other regions, such as America and Africa (Table 1). Although in this review we have focused only on carbapenemase-producing K. pneumoniae, the VIM group is one of the most commonly reported carbapenemases worldwide if we consider all bacteria species (the VIM groups have been mainly identified in P. aeruginosa; Poirel et al., 2007).

      Molecular and Genetic Context

      The blaNDM gene is frequently observed in the transposon Tn125 (with two flanking ISAba125 elements) within NDM-producing species of the genus Acinetobacter (Partridge and Iredell, 2012; Wailan et al., 2015). The blaNDM gene was hypothesized to originate in the genus Acinetobacter (Toleman et al., 2012). In Enterobacteriaceae, the ISAba125 elements of the Tn125 structure carrying blaNDM are frequently truncated (Tn125) at various lengths and the Tn125 structure frequently has different IS elements (Figure 2B; Partridge and Iredell, 2012; Wailan et al., 2015). The blaNDM genes in K. pneumoniae have been reported on numerous broad-host-range plasmid types, including IncA/C (Hudson et al., 2014), IncF (Hishinuma et al., 2013), IncR (Studentova et al., 2015), IncH (Villa et al., 2012), IncN (Chen et al., 2014a), IncL/M (Peirano et al., 2014), and IncX types (Wang et al., 2014d). The predominant plasmid type responsible for spreading blaNDM-1 is the IncA/C type plasmids (Poirel et al., 2011d; Pitout et al., 2015). Many IncA/C plasmids with blaNDM-1 also carry various antibiotic resistance genes including 16S rRNA methylases (RmtA and RmtC), associated with aminoglycoside resistance; CMY-type β-lactamases, associated with broad-spectrum cephalosporin resistance; and QnrA, associated with quinolone resistance (Pitout et al., 2015). Consequently, many NDM-producing K. pneumoniae were susceptible only to colistin, fosfomycin, and tigecycline (Nordmann and Poirel, 2014). A novel NDM-1 variant (NDM-9) located on a novel IncH variant plasmid was recently identified in a clinical K. pneumoniae isolate in China (Wang et al., 2014c). Because the blaNDM genes are located in numerous broad-host-range plasmids, the spread of NDM-1 is facilitated by horizontal gene transfer between bacteria. In China, CRE 21 strains harboring the blaNDM-1 gene were found to consist of multiple Enterobacteriaceae species including nine Enterobacter cloacae, three E. coli, three Citrobacter freundii, two K. pneumoniae, two K. oxytoca, and two Morganella morganii strains (Wang et al., 2015).

      Unlike KPC, the blaNDM genes were detected in various K. pneumoniae clones. ST11, a major high-risk sequence type of KPC-producing K. pneumoniae in Asia, has also been associated with blaNDM-1 in K. pneumoniae identified in many countries, such as the USA (Rasheed et al., 2013), Greece (Voulgari et al., 2014), Australia (Shoma et al., 2014), Switzerland (Seiffert et al., 2014), the Czech Republic (Studentova et al., 2015), Spain (Oteo et al., 2013b), and Thailand (Netikul et al., 2014). The recent outbreak of NDM-producing K. pneumoniae ST11 in Poland was caused by a clone similar to an isolate identified in the Czech Republic in 2013 (Baraniak et al., 2016), indicating the local spread of this clone. ST11 has also been associated with OXA-48-like enzymes from isolates found in Argentina, Turkey, and Spain (Lascols et al., 2013; Oteo et al., 2013b). ST14, ST147, and ST340 have sometimes been associated with blaNDM in K. pneumoniae in many countries (Peirano et al., 2011, 2014; Poirel et al., 2011d; Giske et al., 2012; Osterblad et al., 2012; Lascols et al., 2013; Gharout-Sait et al., 2014; Lee et al., 2014; Shoma et al., 2014; Wang et al., 2014d; Izdebski et al., 2015; Sonnevend et al., 2015b). Over 50% of NDM-producing K. pneumoniae isolates from India belonged to either ST11 or ST147 (Lascols et al., 2013). The analysis of clinical isolates of NDM-1-producing K. pneumoniae from India, the UK, and Sweden, showed that the most frequently detected sequence types were ST14, ST11, ST149, ST231, and ST147 (Giske et al., 2012). Although ST258 is a high-risk KPC-producing K. pneumoniae clone, ST258 harboring blaNDM has never been reported, to the best of our knowledge. This phenomenon may result from the integrative conjugative element ICEKp258.2, present only in ST258 and genetically related sequence types (Adler et al., 2014). This genetic locus contains a type IV pilus gene cluster and a type III restriction-modification system. Because these genes are associated with the restriction of plasmids and specific mobile elements, most ST258 may predominantly harbor plasmids with the blaKPC gene. Therefore, PCR for this unique region (ICEKp258.2) can provide a reliable tool for the rapid detection of the ST258 clone.

      High-resolution genomic analysis of multidrug-resistant hospital outbreaks of K. pneumoniae through whole-genome sequencing revealed the emergence of a capsule switching NDM-1 bearing K. pneumoniae ST15 strain, suggesting that further studies should concentrate on the diversity and spread of this specific clone (Chung The et al., 2015). ST15 harboring blaNDM-1 has often been reported in many countries, including Spain (Ruiz-Garbajosa et al., 2013), Croatia (Kocsis et al., 2016), Thailand (Netikul et al., 2014), Canada (Peirano et al., 2014), China (Hu et al., 2013), France (Arpin et al., 2012), and Morocco (Poirel et al., 2011b). In Bulgaria, this clone was responsible for the clonal dissemination of KPC-2-producing K. pneumoniae (Markovska et al., 2015). Another whole-genome sequencing analysis of CR K. pneumoniae strains, which were isolated from 26 individuals involved in infections in a Nepali neonatal unit, showed that three temporally separated cases were caused by a single NDM-producing K. pneumoniae strain with four conserved plasmids including a plasmid carrying blaNDM-1 (Stoesser et al., 2014). The plasmids contained a large number of antimicrobial resistance and plasmid maintenance genes, which may explain their persistence (Stoesser et al., 2014). These reports suggest that whole-genome sequencing analysis play an important role in the elucidation of the factors that allow emergence and persistence of resistance.

      Treatment Options

      New-Delhi metallo-β-lactamase-producing K. pneumoniae are usually resistant to most β-lactam antibiotics but remain susceptible to aztreonam (Nordmann et al., 2012a). As with the case of KPC-producing K. pneumoniae, the effect of combination therapy was tested in the treatment of NDM-producing K. pneumoniae infections. When double- and triple-antibiotic combinations of aztreonam, ciprofloxacin, colistin, daptomycin, fosfomycin, meropenem, rifampin, telavancin, tigecycline, and vancomycin were used in patients infected with two NDM-producing K. pneumoniae strains susceptible to colistin, the combination of rifampin-meropenem-colistin was the most effective regimen against these strains (Tangden et al., 2014). The in vitro synergetic effect of the combination therapy of colistin and fosfomycin against NDM-producing K. pneumoniae has also been reported (Bercot et al., 2011). The combination of polymyxin B and chloramphenicol used against NDM-producing K. pneumoniae substantially enhanced bacterial killing and suppressed the emergence of polymyxin resistance (Abdul Rahim et al., 2015). Combination therapy including aztreonam and avibactam (a novel inhibitor of serine β-lactamases under development) was effective in the treatment of metallo-β-lactamase-producing bacterial infections (Wang et al., 2014e).

      In the case of NDM-1-producing Enterobacteriaceae infections, carbapenems have been suggested to still represent a viable treatment option (Wiskirchen et al., 2014b). Despite unfavorable in vitro MICs of NDM-producing K. pneumoniae, recent in vivo studies have demonstrated the efficacy of carbapenems against NDM-1-producing isolates in immunocompetent-mouse and neutropenic-mouse thigh infection models (Wiskirchen et al., 2013, 2014b; MacVane et al., 2014). Although high-dose, prolonged infusions of ertapenem or doripenem induced reduction in bacterial density, bacterial density was also reduced in standard infusions of ertapenem at 1 g every 24 h or of doripenem at 500 mg every 8 h (Wiskirchen et al., 2013, 2014b). Notably, these efficacies were observed only against NDM-1-producing K. pneumoniae (Wiskirchen et al., 2013, 2014b). In addition to carbapenems, this discordance between in vitro and in vivo activities against NDM-1-producing K. pneumoniae was also observed in human simulated regimens of ceftazidime at 2 g every 8 h or ceftazidime/avibactam at 2,000/500 mg every 8 h (MacVane et al., 2014). Despite experiments in immunocompetent-mouse and neutropenic-mouse thigh infection models, these results show that standard infusions of ertapenem and doripenem could reduce bacterial density. Therefore, further experiments in human are required to determine whether carbapenems are sometimes a viable treatment option for NDM-1-producing K. pneumoniae infections.

      The copy number of blaNDM-1 was assessed using Southern blotting and quantitative PCR under different conditions. The blaNDM-1 sequence was maintained under antibiotic selection; however, removal of the antibiotic selection led to the emergence of susceptible bacterial populations with a reduced copy number or even the complete loss of the blaNDM-1 gene (Huang et al., 2013). The dynamic nature of the copy number of blaNDM-1 provides a strong argument for the prudent use of clinically important antibiotics to reduce the development and dissemination of antibiotic resistance among pathogenic bacteria (Huang et al., 2013).

      Detection Methods

      Because NDM-producing K. pneumoniae infections are also associated with significant in-hospital mortality (de Jager et al., 2015), the rapid and accurate detection of NDM-producing K. pneumoniae is becoming a major issue in limiting the spread of CR bacteria. Several methods recently developed to detect NDM-producing K. pneumoniae include Xpert® Carba-R based on real time PCR (Anandan et al., 2015), the Carba NP test based on the color change of a pH indicator (Nordmann et al., 2012b), and its derivatives (Pires et al., 2013; Dortet et al., 2014b), and a method based on MALDI-TOF (Hrabak et al., 2013a). Xpert® Carba-R based on real time PCR effectively identified various carbapenemases of KPC, NDM, IMP, and VIM, with 100% sensitivity and 77% specificity (Anandan et al., 2015). However, this method failed to detect OXA-48-like carbapenemases, in contrast to multiplex PCR (Anandan et al., 2015).

      The Carba NP test using chromogenic medium is based on the color change of a pH indicator (Nordmann et al., 2012b). The enzymatic hydrolysis of the β-lactam ring of a carbapenem (usually imipenem) causes the acidification of an indicator solution (phenol red for the Carba NP test) that changes its color due to pH modification (Garcia-Fernandez et al., 2016). This method could rapidly detect KPC, IMP, VIM, NDM, and OXA-48-like producers with sensitivity and specificity of 97.9 and 100%, respectively, directly from spiked blood cultures (Dortet et al., 2014a). Comparative evaluation of the Carba NP test with other detection methods was tested in many reports (Vasoo et al., 2013; Huang et al., 2014; Yusuf et al., 2014; Gallagher et al., 2015; Lifshitz et al., 2016). When the Carba NP test and the modified Hodge test were compared, the Carba NP test was more specific (100% versus 80%) and faster (Vasoo et al., 2013; Huang et al., 2014; Yusuf et al., 2014). When it was compared the performance of the Carba NP test and the commercially available imipenem hydrolysis-based rapid test (the Rosco Rapid CARB screen kit) for detecting CPE and P. aeruginosa, the Carba NP test showed superior specificity and sensitivity (Huang et al., 2014; Yusuf et al., 2014; Gallagher et al., 2015). A novel simplified protocol of the Carba NP test designed for carbapenemase detection direct from bacterial cultures (instead of bacterial extracts) showed enhanced detection of carbapenemase producers (Pasteran et al., 2015).

      However, several reports showed that false-negative results in the Carba NP test were associated with mucoid strains or linked to enzymes with low carbapenemase activity, particularly OXA-48-like (Tijet et al., 2013; Osterblad et al., 2014). To overcome these problems, several derivatives of the Carba NP test were developed, such as the Rapidec Carba NP test (bioMérieux; Poirel and Nordmann, 2015), the CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. (Dortet et al., 2014b), the Rapid CARB Screen (Rosco Diagnostica; Dortet et al., 2015), the Blue-Carba test using bromothymol blue as a pH indicator solution (Garcia-Fernandez et al., 2016), a modified Carba NP test (Bakour et al., 2015a), and the BYG Carba test based on an electro-active polymer biosensing technology (Bogaerts et al., 2016). Many studies evaluated the performance of the Rapidec Carba NP test (bioMérieux), which was introduced into the market for the detection of carbapenemase production (Dortet et al., 2015; Hombach et al., 2015; Kabir et al., 2016; Lifshitz et al., 2016). These report showed that this method was user-friendly and had a high overall performance, making it an attractive option for clinical laboratories (Kabir et al., 2016). Recently, performance evaluation of two biochemical rapid tests commercialized (the Rapidec Carba NP test and the Rapid CARB Screen) was reported and compared with the home-made Carba NP test (Dortet et al., 2015). The Rapidec CARBA NP test possesses the best performance for rapid and efficient detection of CPE (Dortet et al., 2015). The BYG Carba test based on a new and original electrochemical method detects the variations of conductivity of a polyaniline (an electro-sensing polymer)-coated electrode which is highly sensitive to the modifications of pH and of redox activity occurring during the imipenem enzymatic hydrolysis reaction (Bogaerts et al., 2016). In comparison with PCR results, the BYG Carba test displayed sensitivity of 95% and specificity of 100% versus 89% and 100%, respectively, for the Carba NP test (Bogaerts et al., 2016). The development of these detection methods based on inexpensive and affordable techniques can limit the spread of CR bacteria.

      Class D Carbapenemases Epidemiology

      Class D β-lactamases were referred to as oxacillinases (OXAs) because they commonly hydrolyze isoxazolylpenicillins (oxacillin, cloxacillin, and dicloxacillin) much faster than benzylpenicillin (Jeon et al., 2015). Of over 400 Class D β-lactamases, only some variants actually possess carbapenemase activity. Based on their amino acid sequence, class D carbapenemases were recently reclassified into 12 subgroups: OXA-23, OXA-24/40, OXA-48, OXA-51, OXA-58, OXA-134a, OXA-143, OXA-211, OXA-213, OXA-214, OXA-229, and OXA-235 (Jeon et al., 2015). Among them, only several subgroups such as OXA-23, OXA-48, OXA-51, and OXA-58 are reported in K. pneumoniae (Evans and Amyes, 2014). OXA-48 is the most efficient class D carbapenemase for imipenem and is one of the most prevalent class D carbapenemases (Jeon et al., 2015). The OXA-48 was first identified in K. pneumoniae in Turkey in 2003 (Poirel et al., 2004), and thus far, 10 variants of the blaOXA-48 gene have been identified (Jeon et al., 2015). Turkey may be one of the main reservoirs of OXA-48-producing K. pneumoniae (Nordmann and Poirel, 2014). Since 2003, the endemic spread of these bacteria has been reported in countries such as Turkey, Morocco, Libya, Egypt, Tunisia, and India (Nordmann and Poirel, 2014; Figure 4). The sporadic spread has been reported in France (Liapis et al., 2014; Semin-Pelletier et al., 2015), Spain (Oteo et al., 2013b; Pena et al., 2014), Italy (Giani et al., 2013, 2014), Belgium (Cuzon et al., 2008; Huang et al., 2013), the Netherlands (Kalpoe et al., 2011; Dautzenberg et al., 2014), the UK (Dimou et al., 2012; Thomas et al., 2013), Germany (Pfeifer et al., 2012; Kola et al., 2015), Switzerland (Potron et al., 2012; Seiffert et al., 2014), Argentina (Poirel et al., 2011c; Lascols et al., 2013), Lebanon (Beyrouthy et al., 2014), Israel (Adler et al., 2013, 2015), Kuwait (Poirel et al., 2012a; Zowawi et al., 2014), Saudi Arabia (Shibl et al., 2013; Liu et al., 2015), and Japan (Nagano et al., 2013; Hashimoto et al., 2014). The prevalence of OXA-48 carbapenemases among carbapenemase-producing K. pneumoniae in Spain and France was particularly high (74 and 78%, respectively; Robert et al., 2014; Palacios-Baena et al., 2016). In Africa, OXA-48-producing K. pneumoniae have been mainly reported in the northern countries, such as Morocco, Libya, Egypt, Tunisia, and Algeria (Figure 4). In the Arabian Peninsula, the prevalence of OXA-48-like carbapenemases among carbapenemase-producing K. pneumoniae was also high (32.5–56%; Zowawi et al., 2014; Sonnevend et al., 2015b). Among CRE isolates in Lebanon, 88% produced OXA-48 carbapenemase (Beyrouthy et al., 2014). In Saudi Arabia, 78% of carbapenemase-producing K. pneumoniae isolates harbored blaOXA-48, and three strains of 47 blaOXA-48-positive K. pneumoniae isolates were resistant to colistin, suggesting that colistin resistance is emerging in Saudi Arabia (Shibl et al., 2013).

      Epidemiological features of OXA-48-like-producing K. pneumoniae. (1) Turkey; (2) Morocco; (3) Tunisia; (4) Libya; (5) Egypt; (6) India; (7) Argentina; (8) Spain; (9) France; (10) Germany; (11) Switzerland; (12) Belgium; (13) Netherlands; (14) UK; (15) Italy; (16) Israel; (17) Saudi Arabia; (18) Kuwait; (19) Lebanon; (20) Japan; (21) Canada; (22) USA; (23) Ireland; (24) Poland; (25) Finland; (26) Hungary; (27) Romania; (28) Bulgaria; (29) Greece; (30) Russia; (31) Algeria; (32) Senegal; (33) South Africa; (34) United Arab Emirates; (35) Oman; (36) Iran; (37) Sri Lanka; (38) Thailand; (39) Singapore; (40) South Korea; (41) Taiwan; (42) Australia; (43) New Zealand.

      In France, examination of the epidemiologic features of an outbreak of OXA-48-producing K. pneumoniae in an ICU revealed that the outbreak was caused by environmental persistence of OXA-48-producing K. pneumoniae over 20 months (Pantel et al., 2016). This report emphasizes the importance of early environmental screening to interrupt the transmission of carbapenemase-producing K. pneumoniae (Pantel et al., 2016). Similarly, a large outbreak of OXA-48 carbapenemase-producing K. pneumoniae in a French university hospital was recently attributed to the late implementation of successive cohort units and a high level of staff movement between the infectious diseases and internal medicine ward (Semin-Pelletier et al., 2015). These results suggest that practical guidelines are required to help hospitals confronting uncontrolled outbreaks. Because the gut of colonized patients is the main source of CPE, accurate and stringent hygiene of endoscopic instruments is also important. A recent report partially attributed an outbreak of OXA-48-producing K. pneumoniae in a German University hospital to complex instruments such as the duodenoscope (Kola et al., 2015). Strict hygiene regulations for various nosocomial environments, including endoscopic instruments as well as gowns and gloves, are required.

      OXA-48-producing K. pneumoniae was recently also detected in Canada (Ellis et al., 2013), the USA (Mathers et al., 2013), Ireland (Wrenn et al., 2014), Poland (Izdebski et al., 2015), Hungary (Janvari et al., 2014), Greece (Voulgari et al., 2013), Romania (Lixandru et al., 2015), Bulgaria (Markovska et al., 2015), Finland (Osterblad et al., 2012), Russia (Fursova et al., 2015), Algeria (Cuzon et al., 2015), United Arab Emirates (Ahn et al., 2015), Iran (Azimi et al., 2014), South Africa (Brink et al., 2013), Senegal (Moquet et al., 2011), Taiwan (Ma et al., 2015), Singapore (Ling et al., 2015), South Korea (Jeong et al., 2015), and Australia (Espedido et al., 2013; Figure 4). In North America, the frequency of OXA-48-like enzymes among carbapenemase-producing K. pneumoniae isolates was very low (11%; Lascols et al., 2013). A recent report in Romania showed that among 65 carbapenemase-producing K. pneumoniae, the most frequently identified gene was the blaOXA-48 gene (78%), 12% were positive for blaNDM-1 gene, 6% had the blaKPC-2 gene (Lixandru et al., 2015). The recent spread of OXA-48 and OXA-244 carbapenemase genes in Russia was reported among Proteus mirabilis, E. aerogenes, and E. cloacae as well as K. pneumoniae (Fursova et al., 2015). In South Africa, the emergence of a colistin-resistant OXA-181-producing K. pneumoniae isolate was also reported (Brink et al., 2013), and in the Netherlands, an OXA-48-producing K. pneumoniae was reported to infect two patients (Kalpoe et al., 2011), and a hospital-wide outbreak was successfully controlled (Dautzenberg et al., 2014).

      OXA-181, a derivative of OXA48 with the substitution of a single amino acid, was first identified in India in Potron et al. (2011), and then has been spread to many different countries, such as the UK (Dimou et al., 2012), Romania (Székely et al., 2013), Canada (Peirano et al., 2014), Oman (Potron et al., 2011), Singapore (Balm et al., 2013), Sri Lanka (Hall et al., 2014), South Korea (Cho et al., 2015), Australia (Sidjabat et al., 2015), Japan (Kayama et al., 2015), and New Zealand (Williamson et al., 2011). However, in many cases, the infections have been associated with India (Potron et al., 2011; Williamson et al., 2011; Dimou et al., 2012; Hall et al., 2014; Peirano et al., 2014). Other OXA-48-derivatives, such as OXA-204 (Potron et al., 2013), OXA-232 (Potron et al., 2013), and OXA-163 (Poirel et al., 2011b), were recently identified in Tunisia, France, and Argentina, respectively, and OXA-244 and OXA-245 were first reported in Spain (Oteo et al., 2013a). All of these countries are regions with a high prevalence of OXA-48-producing K. pneumoniae (Figure 4). In addition, OXA-232-producing K. pneumoniae has been reported in various countries, such as the USA (Doi et al., 2014), Singapore (Teo et al., 2013), India (Al-Marzooq et al., 2015), and South Korea (Jeong et al., 2015). These results indicate that besides OXA-48, its many derivatives also spread worldwide. OXA-163, which differs from OXA-48 by a four amino acid deletion and a single amino acid substitution, has lower carbapenemase activity than OXA-48, but this enzyme exhibits extended activity against expanded-spectrum cephalosporins, and its activity is partially inhibited by clavulanic acid, a β-lactamase inhibitor (Poirel et al., 2011c). OXA-247, a derivative of OXA-163 with a single amino acid substitution, was recently reported in Argentina (Gomez et al., 2013), where OXA-163-producing K. pneumoniae were often reported (Lascols et al., 2013).

      The coexistence of OXA-48-like and other carbapenemases in K. pneumoniae was also frequently reported worldwide, such as in Turkey (OXA-48/NDM-1; Kilic and Baysallar, 2015), Switzerland (OXA-48/NDM-1; Seiffert et al., 2014), United Arab Emirates (OXA-48-like/NDM-1; Dash et al., 2014), Australia (OXA-48/ NDM-1; Sidjabat et al., 2015), Morocco (OXA-48/NDM-1; Barguigua et al., 2013), India (OXA-181/VIM-5; Castanheira et al., 2011), Singapore (OXA-181/NDM-1 and OXA-181/NDM-5; Balm et al., 2013), the USA (OXA-232/NDM-1; Doi et al., 2014), and India (OXA-232/NDM-1; Al-Marzooq et al., 2015).

      Other class D carbapenemases, such as OXA-23, OXA-24/40, OXA-51, OXA-58, OXA-134a, OXA-143, OXA-211, OXA-213, OXA-214, OXA-229, and OXA-235, were mainly identified in Acinetobacter species such as A. baumannii but not in K. pneumoniae (Table 1; Evans and Amyes, 2014).

      Molecular and Genetic Context

      Unlike KPCs and NDMs, one highly transferable IncL group plasmid (pOXA-48a) was mainly responsible for the spread of the blaOXA-48 gene in K. pneumoniae (Figure 2C; Pitout et al., 2015). The molecular epidemiology of OXA-48 in European and North African countries showed that in 92.5% of the isolates, the blaOXA-48 gene was located on this self-conjugative IncL/M type plasmid (Potron et al., 2013). The blaOXA-48 gene was found only in the IncL group of IncL/M type plasmids (Carattoli et al., 2015). In contrast to the IncA/C plasmids of NDM-1, the pOXA-48a plasmid contains blaOXA-48, a unique antibiotic resistance gene (Pitout et al., 2015). The conjugation rate of the pOXA-48a plasmid was very high (1 × 10-1); therefore, this self-conjugative plasmid can conjugate at a very high frequency to Enterobacteriaceae (Potron et al., 2014). Inactivation of the tir gene, which is known to encode a transfer inhibition protein, was recently reported to be responsible for a 50- to 100-fold increase in the efficiency of transfer of the pOXA-48a plasmid (Potron et al., 2014), explaining the spread of the pOXA-48a plasmid with blaOXA-48. Recently, the blaOXA-48-like gene has also been reported on other plasmids and genetic elements, such as IncA/C types (Ma et al., 2015), IncH types (Wang et al., 2014c), and Tn1999 (Poirel et al., 2012a). In comparison to the pOXA-48a plasmid, the transmission frequency of the Tn1999 composite transposon was very low (<1.0 × 10-7; Aubert et al., 2006).

      OXA-48 has most often been found in K. pneumoniae, but OXA-48 was also found in various Enterobacteriaceae, because of the high conjugation rate of the pOXA-48a (Potron et al., 2014). Molecular and epidemiological analyses in a German hospital showed the horizontal gene transfer of the OXA-48-containing plasmid from K. pneumoniae to E. coli (Gottig et al., 2015). Besides E. coli, OXA-48 has also been identified in K. oxytoca, Enterobacter spp., Providencia rettgeri, C. freundii, and S. marcescens (Poirel et al., 2012c; Berger et al., 2013). The blaOXA-48 gene was identified in all Enterobacteriaceae isolates from the index case in Spain, indicating the capacity of OXA-48 carbapenemase to spread among Enterobacteriaceae by the horizontal gene transfer (Arana et al., 2015).

      Similar to NDM, the blaOXA-48-like genes were detected in various K. pneumoniae clones. ST11 has often been associated with blaOXA-48-like in K. pneumoniae isolated in many countries, such as Spain (Oteo et al., 2013a,b, 2015; Ruiz-Garbajosa et al., 2013; Branas et al., 2015), Taiwan (Ma et al., 2015), Libya (Lafeuille et al., 2013), Turkey (Lascols et al., 2013), Argentina (Lascols et al., 2013), and Greece (Voulgari et al., 2013). In Spain, a large outbreak was initiated in 2013 by a OXA-48-producing K. pneumoniae ST11 clone, and this strain was detected in 44 patients (Branas et al., 2015). The ST11 isolates carried various carbapenemases, including NDM-1, VIM-1, OXA-48, KPC-2, and OXA-245 (Lascols et al., 2013; Oteo et al., 2013b, 2015). In addition, ST14, ST15, ST101, ST147, and ST405 harboring blaOXA-48-like have often been reported in many countries, such as the USA (Lascols et al., 2013), Spain (Oteo et al., 2013b, 2015; Ruiz-Garbajosa et al., 2013; Arana et al., 2015; Cubero et al., 2015), the Czech Republic (Hrabak et al., 2015), Libya (Lafeuille et al., 2013), India (Lascols et al., 2013), Germany (Gottig et al., 2015), Finland (Osterblad et al., 2012), France (Liapis et al., 2014), and Japan (Hashimoto et al., 2014). Recent results from 83 hospitals in Spain showed that OXA-48 (71.5%) and VIM-1 (25.3%) were the most frequently detected carbapenemases, and the most prevalent sequence types were ST11 and ST405 for K. pneumoniae (Oteo et al., 2015). However, the molecular epidemiology of OXA-48-producing enterobacterial isolates collected from European and north-African countries between 2001 and 2011 indicated that ST101 was the most commonly observed sequence type in K. pneumoniae isolates, accounting for 17 out of 67 isolates (25.4%), followed by ST395 and ST15 (each seven isolates, 10.5%; Potron et al., 2013). Two outbreaks of OXA-48-producing K. pneumoniae ST101 clones were reported in Spain (Pitart et al., 2011; Cubero et al., 2015). OXA-48-producing K. pneumoniae appear to vary geographically. As with NDM, to the best of our knowledge, ST258 harboring blaOXA-48-like has never been reported.

      Treatment Options

      OXA-48-like-producing K. pneumoniae are usually resistant to most β-lactam antibiotics, but OXA-48-producing K. pneumoniae without ESBLs remain susceptible to the expanded-spectrum cephalosporins (Nordmann et al., 2012a; Munoz-Price et al., 2013). In addition, OXA-48-like-producing K. pneumoniae sometimes remains susceptible to several aminoglycosides such as gentamicin (Tzouvelekis et al., 2014). Unlike for NDMs (Wiskirchen et al., 2013, 2014b; MacVane et al., 2014), carbapenems may not be a reliable treatment option for OXA-48 producer infection (Wiskirchen et al., 2014a). Combination therapy with sulbactam, meropenem, and colistin was more effective in isolates producing NDM carbapenemase than those producing OXA-48-like carbapenemases, suggesting that the identification of the carbapenemase type helps determine the combination most likely to clear the infection (Laishram et al., 2015). The combination of fosfomycin with imipenem, meropenem, and tigecycline was also synergistic against OXA 48-positive K. pneumoniae strains in vitro with the ratios of 42, 33, and 33%, respectively (Evren et al., 2013). Similarly, the in vitro assays indicate that imipenem-containing combinations were effective against serine-β-lactamase producers (KPC, OXA-48), while no synergy was observed for all NDM-1 producers (Poirel et al., 2016). However, because carbapenems were effective against NDM-1-producing isolates in vivo (Wiskirchen et al., 2013, 2014a; MacVane et al., 2014), the effect of carbapenem combination therapy on carbapenemase-producing isolates should be determined in vivo, particularly in the case of NDM-1-producing bacteria.

      Despite the effectiveness of combination therapies, the prognosis for bloodstream infections caused by OXA-48-producing Enterobacteriaceae remains poor, and the 30-days mortality reached 50% (Navarro-San Francisco et al., 2013). A similar result was reported in OXA-48-producing K. pneumoniae infections in a tertiary hospital in Spain (Pano-Pardo et al., 2013). Although OXA-48-producing K. pneumoniae were susceptible to several antibiotics, including amikacin (97.2% susceptible), colistin (90.1%), tigecycline (73%), and fosfomycin (66.2%), in-hospital mortality among patients with OXA-48-producing K. pneumoniae infections was 43.5% (Pano-Pardo et al., 2013). Therefore, to prevent delay in diagnosis and initiation of optimal antimicrobial therapy, rapid identification of OXA-48-producing isolates is required.

      Detection Methods

      As with KPCs and NDMs, various detection methods were developed to identify OXA-48-like carbapenemases (Tsakris et al., 2010; Giske et al., 2011; Girlich et al., 2013; Naas et al., 2013; Lee et al., 2015c). Accurate differentiation of the various carbapenemase types, such as KPC-type, NDM-type, and OXA-48-type enzymes, is crucial for controlling the spread of carbapenem resistance among Enterobacteriaceae (Nordmann et al., 2012a). Many phenotypic detection methods to allow differentiation between class A and class B carbapenemases were developed using boronic acid derivatives and EDTA or dipicolinic acid (Tsakris et al., 2010; Giske et al., 2011). Recently, a specific phenotypic method to differentiate a single OXA-48 producer from those producing other carbapenemase types (e.g., KPC-types, NDM-types) was also developed (Tsakris et al., 2015). This method was based on an imipenem disk and two blank disks adjacent to the imipenem disk, loaded with the tested strain and impregnated with EDTA and EDTA plus phenyl boronic acid, respectively (Tsakris et al., 2015). This novel method exhibited 96.3% sensitivity and 97.7% specificity (Tsakris et al., 2015). ChromID OXA-48, based on chromogenic media, have been commercialized for the direct isolation of CPE from clinical samples (Girlich et al., 2013), with an estimated 91% sensitivity and 100% specificity (Girlich et al., 2013).

      Emerging Class C Carbapenemases

      Class C β-lactamases confer resistance to penicillins, cephalosporins, and cephamycins (cefoxitin and cefotetan) and are not significantly inhibited by clinically applied β-lactamase inhibitors such as clavulanic acid (Jeon et al., 2015). Although four class C carbapenemases (ACT-1, CMY-2, CMY-10, and ADC-68) have been reported, ACT-1 and CMY-2 exhibit reduced susceptibility to carbapenems, particularly ertapenem, only when combined with permeability defects, due to their low catalytic efficiencies (Kcat/Km) for imipenem (0.007 and 0.04 M-1⋅S-1, respectively; Mammeri et al., 2010). CMY-10 with the catalytic efficiency of 0.14 M-1⋅S-1 for imipenem was the first reported carbapenemase among plasmidic class C β-lactamases (Kim et al., 2006), and this enzyme was also a class C extended-spectrum β-lactamase with extended substrate specificity for extended-spectrum cephalosporins (Lee et al., 2009, 2012a; Jeon et al., 2015). Among the chromosomal class C β-lactamases, ADC-68 identified in A. baumannii was the first reported enzyme possessing both class C extended-spectrum β-lactamase and carbapenemase activities (Jeon et al., 2014, 2015), and its catalytic efficiency for imipenem is 0.17 M-1 S-1. CMY-10-producing K. pneumoniae was identified only in South Korea (Lee et al., 2005a, 2006a) and ADC-68-producing K. pneumoniae was never reported.

      Many reports showed that carbapenem resistance can be triggered by the loss of two major porins, OmpK35 and OmpK36, in combination with ESBLs or Ambler class C AmpC cephalosporinases, and the production of carbapenemase (Wang et al., 2009; Shin et al., 2012; Tsai et al., 2013). A recently genetically engineered mutant of K. pneumoniae showed that several carbapenems (imipenem, meropenem, and doripenem) remain effective against these carbapenemase-independent CR strains (Tsai et al., 2013). Therefore, laboratory testing for susceptibility to imipenem, meropenem, and doripenem can improve the accuracy of identification of these isolates (Tsai et al., 2013).

      Conclusion

      We analyzed the epidemiology of K. pneumoniae producing true carbapenemases (Ambler molecular class A, B, D, and several carbapenemases of class C) responsible for non-susceptibility to carbapenems without additional permeability defects. Many types of CR K. pneumoniae have been identified worldwide (Figures 1, 3, and 4). During the past 3 years, many countries have reported the arrival of carbapenemases previously unreported in those countries. For example, although K. pneumoniae producing KPC- and NDM-type carbapenemases have been extensively reported in the USA, a K. pneumoniae producing OXA-48-type carbapenemases was recently detected in the USA (Mathers et al., 2013). Since a first report of NDM-1 in 2008, this carbapenemase has rapidly spread worldwide, and NDM-producing K. pneumoniae still continues to be found in new countries, implying that NDM-producing K. pneumoniae is still spreading quickly. Despite the global dissemination of KPC, NDM, and OXA-48, the prevalence of carbapenemases varies geographically. The frequency of KPC- and NDM-producing strains was significantly higher in the USA, Canada, Greece, Taiwan, Colombia, and China, whereas OXA-48-producing strains were rarely found in those countries (Figures 1, 3, and 4). In Argentina, despite the extensive spread of KPC- and OXA-48-producing strains, no NDM-producing K. pneumoniae has been reported. Although NDM- and OXA-48-producing K. pneumoniae significantly spread in Turkey, KPC-producing strains have rarely been reported there. In Brazil, KPC-producing K. pneumoniae has been mainly reported. In the Arabian Peninsula, OXA-48 and NDM producers are common, whereas KPC-type, VIM-type, or IMP-type producers are rare. In India, Spain, France, Italy, and the UK, all three types of carbapenemases have been frequently reported (Figures 1, 3, and 4).

      ST258 is an important strain responsible for the extensive global spread of KPC-producing K. pneumoniae. Although the precise reason for the predominance of the ST258 strain in KPC-producing K. pneumoniae is not fully understood, recent molecular studies unveiled the genetic characteristics of this strain. The ST258 strains consists of two distinct genetic clades (cps-1 and cps-2) derived from genetic differentiation in genes involved in capsule polysaccharide biosynthesis. In addition, the integrative conjugative element ICEKp258.2, present only in ST258 and genetically related sequence types, may be linked to the global success of the ST258 clone. ICEKp258.2 contains a type IV pilus gene cluster and a type III restriction-modification system. The type IV pilus gene cluster ICEKp258.2, particularly pilV, may contribute to the global success of ST258 clone. The type III restriction-modification system associated with the restriction of plasmids and specific mobile elements may explain the differences observed between ST258 predominantly harboring KPC and ST11, another high-risk clone that lacks ICEKp258.2, harboring various carbapenemases, such as NDM-1, OXA-48, KPC-2, VIM-1, and OXA-245. IncF with FIIK replicons, a plasmid most commonly identified in ST258 with blaKPC, often contains several genes associated with resistance to other antibiotics, such as aminoglycosides, tetracyclines, quinolones, trimethoprim, and sulfonamides. The features of this plasmid may also play an important role in the current global success of ST258.

      The rapid global spread of NDM-type carbapenemases may be partly attributed to the dissemination of various epidemic broad-host-range plasmids bearing the blaNDM genes. NDM-type carbapenemases were found in various plasmids such as IncA/C, IncF, IncR, IncH, IncN, IncL/M, and IncX types. The IncA/C type plasmids, most common plasmids associated with spread of the blaNDM genes, often have various antibiotic resistance genes, such as 16S rRNA methylases associated with aminoglycoside resistance, CMY-type β-lactamases associated with broad-spectrum cephalosporin resistance, and QnrA associated with quinolone resistance. These features may be linked to the current global success of NDM-producing K. pneumoniae.

      The current spread of OXA-48-producing bacteria is attributed to the pOX-48a plasmid, which belongs to the IncL group of IncL/M type plasmids. Although the pOXA-48a plasmid contains blaOXA-48, a unique antibiotic resistance gene, the conjugation rate of the pOXA-48a plasmid was very high, which may be responsible for its global spread in K. pneumoniae. The high pOXA-48a conjugation rate was recently attributed to mutations in the tir gene known to encode a transfer inhibition protein, which may lead to a 50- to 100-fold increase in the efficiency of transfer of the pOXA-48a plasmid. Furthermore, the pOXA-48a plasmid is self-conjugative. Therefore, these specific features of the pOXA-48a plasmid may explain the global dissemination of OXA-48-type carbapenemases.

      ST11, ST14, ST101, ST147, and ST258 are major carbapenemase-producing K. pneumoniae clones. ST258 was mainly found in KPC-producing K. pneumoniae, whereas other clones were found in various carbapenemase-producing K. pneumoniae regardless of carbapenemase types. Well-designed epidemiological and molecular studies will be required to understand the dynamics of transmission, risk factors, and reservoirs of these K. pneumoniae clones. This will provide information essential for preventing infections and the spread of these risky sequence types.

      Most currently available antibiotics may be not sufficiently effective for the treatment of all types of carbapenemase producers in monotherapy. Combination therapy of carbapenems with polymyxin B, colistin, rifampin, fosfomycin, or tigecycline has been reported to effectively treat carbapenemase-producing K. pneumoniae. Despite these data supporting the use of combination therapy for treatment of severe carbapenemase-producing K. pneumoniae infections, current clinical evidence for treatment guidelines are limited and more accurate randomized controlled in vivo studies are required. Moreover, considerable caution is required when applying these therapies. For example, temocillin can actively treat against some KPC-producing K. pneumoniae, particularly lower urinary tract infections, and NDM-producing K. pneumoniae is often susceptible to aztreonam. OXA-48-producing K. pneumoniae remain susceptible to the expanded-spectrum cephalosporins in approximately 20% of cases without ESBLs. In the case of NDM-1-producing K. pneumoniae, carbapenems were recently reported to represent a viable treatment option for infections caused by these bacteria, despite unfavorable in vitro MICs. Because these results imply that carbapenems can sometimes be a viable treatment option for infection with carbapenemase producers, more extensive studies on the effect of carbapenem monotherapy will be required in the case of NDM-producing K. pneumoniae infections.

      The accurate and rapid detection of the genotype of carbapenemases can minimize the delay to appropriate prescription of antibiotics. Many detection kits based on various phenotypic or molecular techniques, such as multiplex PCR assay, real-time PCR assay, DNA microarray, Raman spectroscopic analysis, single-colony whole-genome sequencing, MALDI-TOF MS, loop-mediated isothermal amplification method, chromogenic medium, and new phenotypic test methods, have been developed. Through the imprudent use of colistin which is a key component used for the treatment of severe carbapenemase-producing K. pneumoniae infections, the rapid spread of colistin resistance was recently reported in K. pneumoniae producing carbapenemases, particularly KPC-type carbapenemases. This situation strongly demonstrates the need for the development of novel accurate and reliable methods for detecting resistance to clinically important antimicrobial agents, such as colistin. Hospital interventions can effectively reduce the spread of carbapenemase-producing K. pneumoniae. Standard infection control guidelines should be implemented upon the detection of carbapenemase-producing K. pneumoniae, and carbapenemase-producing K. pneumoniae positive patients should be individually isolated and treated according to strict standard guidelines.

      Author Contributions

      C-RL, JL, and SL contributed to the conception and the design of the review and C-RL, JL, KP, YK, BJ, and SL researched and wrote the review.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This review was supported by the National Research Lab Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2011-0027928); the Cooperative Research Program for Agriculture Science & Technology Development (No. PJ01103103) of Rural Development Administration in South Korea; and the National Research Foundation of the Ministry of Education, South Korea (NRF-2015R1C1A1A02037470).

      References Abdul Rahim N. Cheah S. E. Johnson M. D. Yu H. Sidjabat H. E. Boyce J. (2015). Synergistic killing of NDM-producing MDR Klebsiella pneumoniae by two ‘old’ antibiotics-polymyxin B and chloramphenicol. J. Antimicrob. Chemother. 70 25892597. 10.1093/jac/dkv135 Adams-Haduch J. M. Potoski B. A. Sidjabat H. E. Paterson D. L. Doi Y. (2009). Activity of temocillin against KPC-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob. Agents Chemother. 53 27002701. 10.1128/AAC.00290-09 Adams-Sapper S. Nolen S. Donzelli G. F. Lal M. Chen K. Justo da Silva L. H. (2015). Rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 59 32813289. 10.1128/AAC.05100-14 Adler A. Hussein O. Ben-David D. Masarwa S. Navon-Venezia S. Schwaber M. J. (2015). Persistence of Klebsiella pneumoniae ST258 as the predominant clone of carbapenemase-producing Enterobacteriaceae in post-acute-care hospitals in Israel, 2008-13. J. Antimicrob. Chemother. 70 8992. 10.1093/jac/dku333 Adler A. Khabra E. Chmelnitsky I. Giakkoupi P. Vatopoulos A. Mathers A. J. (2014). Development and validation of a multiplex PCR assay for identification of the epidemic ST-258/512 KPC-producing Klebsiella pneumoniae clone. Diagn. Microbiol. Infect. Dis. 78 1215. 10.1016/j.diagmicrobio.2013.10.003 Adler A. Solter E. Masarwa S. Miller-Roll T. Abu-Libdeh B. Khammash H. (2013). Epidemiological and microbiological characteristics of an outbreak caused by OXA-48-producing Enterobacteriaceae in a neonatal intensive care unit in Jerusalem. Israel J. Clin. Microbiol. 51 29262930. 10.1128/JCM.01049-13 Ageevets V. A. Partina I. V. Lisitsyna E. S. Ilina E. N. Lobzin Y. V. Shlyapnikov S. A. (2014). Emergence of carbapenemase-producing Gram-negative bacteria in Saint Petersburg. Russ. Int. J. Antimicrob. Agents 44 152155. 10.1016/j.ijantimicag.2014.05.004 Ahn C. Butt A. A. Rivera J. I. Yaqoob M. Hag S. Khalil A. (2015). OXA-48-producing Enterobacteriaceae causing bacteremia, United Arab Emirates. Int. J. Infect. Dis. 30 3637. 10.1016/j.ijid.2014.11.008 Al-Marzooq F. Ngeow Y. F. Tay S. T. (2015). Emergence of Klebsiella pneumoniae producing dual carbapenemases (NDM-1 and OXA-232) and 16S rRNA methylase (armA) isolated from a Malaysian patient returning from India. Int. J. Antimicrob. Agents 45 445446. 10.1016/j.ijantimicag.2014.12.013 Almeida A. C. de Sa Cavalcanti F. L. Vilela M. A. Gales A. C. de Morais M. A. Jr. (2012). Escherichia coli ST502 and Klebsiella pneumoniae ST11 sharing an IncW plasmid harbouring the blaKPC-2 gene in an intensive care unit patient. Int. J. Antimicrob. Agents 40 374376. 10.1016/j.ijantimicag.2012.05.022 Anandan S. Damodaran S. Gopi R. Bakthavatchalam Y. D. Veeraraghavan B. (2015). Rapid screening for carbapenem resistant organisms: current results and future approaches. J. Clin. Diagn. Res. 9 DM01DM03. 10.7860/JCDR/2015/14246.6530 Arana D. M. Saez D. Garcia-Hierro P. Bautista V. Fernandez-Romero S. Angel de la Cal M. (2015). Concurrent interspecies and clonal dissemination of OXA-48 carbapenemase. Clin. Microbiol. Infect. 21 148.e141148.e144. 10.1016/j.cmi.2014.07.008 Arpin C. Noury P. Boraud D. Coulange L. Manetti A. Andre C. (2012). NDM-1-producing Klebsiella pneumoniae resistant to colistin in a French community patient without history of foreign travel. Antimicrob. Agents Chemother. 56 34323434. 10.1128/AAC.00230-12 Aubert D. Naas T. Heritier C. Poirel L. Nordmann P. (2006). Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of b-lactam resistance genes. J. Bacteriol. 188 65066514. 10.1128/JB.00375-06 Azimi L. Nordmann P. Lari A. R. Bonnin R. A. (2014). First report of OXA-48-producing Klebsiella pneumoniae strains in Iran. GMS Hyg. Infect. Control. 9:Doc07. 10.3205/dgkh000227 Bae I. K. Lee Y. N. Jeong S. H. Hong S. G. Lee J. H. Lee S. H. (2007). Genetic and biochemical characterization of GES-5, an extended-spectrum class A b-lactamase from Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 58 465468. 10.1016/j.diagmicrobio.2007.02.013 Bakour S. Garcia V. Loucif L. Brunel J. M. Gharout-Sait A. Touati A. (2015a). Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii using a modified Carba NP test. New Microbes New Infect. 7 8993. 10.1016/j.nmni.2015.07.001 Bakour S. Sahli F. Touati A. Rolain J. M. (2015b). Emergence of KPC-producing Klebsiella pneumoniae ST512 isolated from cerebrospinal fluid of a child in Algeria. New Microbes New Infect. 3 3436. 10.1016/j.nmni.2014.09.001 Balm M. N. La M. V. Krishnan P. Jureen R. Lin R. T. Teo J. W. (2013). Emergence of Klebsiella pneumoniae co-producing NDM-type and OXA-181 carbapenemases. Clin. Microbiol. Infect. 19 E421E423. 10.1111/1469-0691.12247 Baraniak A. Grabowska A. Izdebski R. Fiett J. Herda M. Bojarska K. (2011). Molecular characteristics of KPC-producing Enterobacteriaceae at the early stage of their dissemination in Poland, 2008-2009. Antimicrob. Agents Chemother. 55 54935499. 10.1128/AAC.05118-11 Baraniak A. Izdebski R. Fiett J. Gawryszewska I. Bojarska K. Herda M. (2016). NDM-producing Enterobacteriaceae in Poland, 2012-14: inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J. Antimicrob. Chemother. 7 8591. 10.1093/jac/dkv282 Barguigua A. El Otmani F. El Yaagoubi F. L. Talmi M. Zerouali K. Timinouni M. (2013). First report of a Klebsiella pneumoniae strain coproducing NDM-1, VIM-1 and OXA-48 carbapenemases isolated in Morocco. APMIS 121 675677. 10.1111/apm.12034 Barrios H. Silva-Sanchez J. Reyna-Flores F. Sanchez-Perez A. Sanchez-Francia D. Aguirre-Torres J. A. (2014). Detection of a NDM-1-producing Klebsiella pneumoniae (ST22) clinical isolate at a pediatric hospital in Mexico. Pediatr. Infect. Dis. J. 33:335. 10.1097/INF.0000000000000173 Bathoorn E. Friedrich A. W. Zhou K. Arends J. P. Borst D. M. Grundmann H. (2013). Latent introduction to the Netherlands of multiple antibiotic resistance including NDM-1 after hospitalisation in Egypt, August 2013. Euro. Surveill. 18:20610. 10.2807/1560-7917.ES2013.18.42.20610 Bathoorn E. Rossen J. W. Lokate M. Friedrich A. W. Hammerum A. M. (2015). Isolation of an NDM-5-producing ST16 Klebsiella pneumoniae from a Dutch patient without travel history abroad, August 2015. Euro Surveill. 20:30040. 10.2807/1560-7917.ES.2015.20.41.30040 Bedenic B. Mazzariol A. Plecko V. Bosnjak Z. Barl P. Vranes J. (2012). First report of KPC-producing Klebsiella pneumoniae in Croatia. J. Chemother. 24 237239. 10.1179/1973947812Y.0000000017 Ben Nasr A. Decre D. Compain F. Genel N. Barguellil F. Arlet G. (2013). Emergence of NDM-1 in association with OXA-48 in Klebsiella pneumoniae from Tunisia. Antimicrob. Agents Chemother. 57 40894090. 10.1128/AAC.00536-13 Bercot B. Poirel L. Dortet L. Nordmann P. (2011). In vitro evaluation of antibiotic synergy for NDM-1-producing Enterobacteriaceae. J. Antimicrob. Chemother. 66 22952297. 10.1093/jac/dkr296 Berger S. Alauzet C. Aissa N. Henard S. Rabaud C. Bonnet R. (2013). Characterization of a new blaOXA-48-carrying plasmid in Enterobacteriaceae. Antimicrob. Agents Chemother. 57 40644067. 10.1128/AAC.02550-12 Berrazeg M. Diene S. Medjahed L. Parola P. Drissi M. Raoult D. (2014). New Delhi Metallo-b-lactamase around the world: an eReview using Google Maps. Euro. Surveill. 19:20809. 10.2807/1560-7917.ES2014.19.20.20809 Beyrouthy R. Robin F. Dabboussi F. Mallat H. Hamze M. Bonnet R. (2014). Carbapenemase and virulence factors of Enterobacteriaceae in North Lebanon between 2008 and 2012: evolution via endemic spread of OXA-48. J. Antimicrob. Chemother. 69 26992705. 10.1093/jac/dku181 Birgy A. Doit C. Mariani-Kurkdjian P. Genel N. Faye A. Arlet G. (2011). Early detection of colonization by VIM-1-producing Klebsiella pneumoniae and NDM-1-producing Escherichia coli in two children returning to France. J. Clin. Microbiol. 49 30853087. 10.1128/JCM.00540-11 Bogaerts P. Montesinos I. Rodriguez-Villalobos H. Blairon L. Deplano A. Glupczynski Y. (2010). Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing KPC-2 carbapenemase in Belgium. J. Antimicrob. Chemother. 65 361362. 10.1093/jac/dkp453 Bogaerts P. Yunus S. Massart M. Huang T. D. Glupczynski Y. (2016). Evaluation of the BYG Carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing enterobacteriaceae. J. Clin. Microbiol. 54 349358. 10.1128/JCM.02404-15 Bogdanovich T. Adams-Haduch J. M. Tian G. B. Nguyen M. H. Kwak E. J. Muto C. A. (2011). Colistin-resistant, Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae belonging to the international epidemic clone ST258. Clin. Infect. Dis. 53 373376. 10.1093/cid/cir401 Bonura C. Giuffre M. Aleo A. Fasciana T. Di Bernardo F. Stampone T. (2015). An Update of the evolving epidemic of blaKPC carrying Klebsiella pneumoniae in Sicily, Italy, 2014: emergence of multiple Non-ST258 Clones. PLoS ONE 10:e0132936. 10.1371/journal.pone.0132936 Borgia S. Lastovetska O. Richardson D. Eshaghi A. Xiong J. Chung C. (2012). Outbreak of carbapenem-resistant enterobacteriaceae containing blaNDM-1, Ontario, Canada. Clin. Infect. Dis. 55 e10917. 10.1093/cid/cis737 Bowers J. R. Kitchel B. Driebe E. M. MacCannell D. R. Roe C. Lemmer D. (2015). Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae Pandemic. PLoS ONE 10:e0133727. 10.1371/journal.pone.0133727 Branas P. Villa J. Viedma E. Mingorance J. Orellana M. A. Chaves F. (2015). Molecular epidemiology of carbapenemase-producing Klebsiella pneumoniae in a hospital in madrid: successful establishment of an OXA-48 ST11 clone. Int. J. Antimicrob. Agents 46 111116. 10.1016/j.ijantimicag.2015.02.019 Braun S. D. Monecke S. Thurmer A. Ruppelt A. Makarewicz O. Pletz M. (2014). Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS ONE 9:e102232. 10.1371/journal.pone.0102232 Brink A. J. Coetzee J. Clay C. G. Sithole S. Richards G. A. Poirel L. (2012). Emergence of New Delhi metallo-b-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa. J. Clin. Microbiol. 50 525527. 10.1128/JCM.05956-11 Brink A. J. Coetzee J. Corcoran C. Clay C. G. Hari-Makkan D. Jacobson R. K. (2013). Emergence of OXA-48 and OXA-181 carbapenemases among Enterobacteriaceae in South Africa and evidence of in vivo selection of colistin resistance as a consequence of selective decontamination of the gastrointestinal tract. J. Clin. Microbiol. 51 369372. 10.1128/JCM.02234-12 Brown E. D. Vivas E. I. Walsh C. T. Kolter R. (1995). MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 177 41944197. Cannatelli A. D’Andrea M. M. Giani T. Di Pilato V. Arena F. Ambretti S. (2013). In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob. Agents Chemother. 57 55215526. 10.1128/AAC.01480-13 Cannatelli A. Di Pilato V. Giani T. Arena F. Ambretti S. Gaibani P. (2014a). In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob. Agents Chemother. 58 43994403. 10.1128/AAC.02555-14 Cannatelli A. Giani T. D’Andrea M. M. Di Pilato V. Arena F. Conte V. (2014b). MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob. Agents Chemother. 58 56965703. 10.1128/AAC.03110-14 Carattoli A. Seiffert S. N. Schwendener S. Perreten V. Endimiani A. (2015). Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS ONE 10:e0123063. 10.1371/journal.pone.0123063 Carbonne A. Thiolet J. M. Fournier S. Fortineau N. Kassis-Chikhani N. Boytchev I. (2010). Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Euro. Surveill 15 19734. Carricajo A. Verhoeven P. O. Guezzou S. Fonsale N. Aubert G. (2014). Detection of carbapenemase-producing bacteria by using an ultra-performance liquid chromatography-tandem mass spectrometry method. Antimicrob. Agents Chemother. 58 12311234. 10.1128/AAC.01540-13 Carvalhaes C. G. Cayo R. Visconde M. F. Barone T. Frigatto E. A. Okamoto D. (2014). Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision. J. Antimicrob. Chemother. 69 21322136. 10.1093/jac/dku094 Castanheira M. Deshpande L. M. Mathai D. Bell J. M. Jones R. N. Mendes R. E. (2011). Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob. Agents Chemother. 55 12741278. 10.1128/AAC.01497-10 Centers for Disease Control and Prevention (2014). Notes from the Field: New Delhi metallo-β-lactamase-producing Escherichia coli associated with endoscopic retrograde cholangiopancreatography - Illinois, 2013. MMWR Morb. Mortal. Wkly. Rep. 62:1051. Chagas T. P. Seki L. M. da Silva D. M. Asensi M. D. (2011). Occurrence of KPC-2-producing Klebsiella pneumoniae strains in hospital wastewater. J. Hosp. Infect. 77:281. 10.1016/j.jhin.2010.10.008 Chang Y. Y. Chuang Y. C. Siu L. K. Wu T. L. Lin J. C. Lu P. L. (2015). Clinical features of patients with carbapenem nonsusceptible Klebsiella pneumoniae and Escherichia coli in intensive care units: a nationwide multicenter study in Taiwan. J. Microbiol. Immunol. Infect. 48 219225. 10.1016/j.jmii.2014.05.010 Chen C. J. Wu T. L. Lu P. L. Chen Y. T. Fung C. P. Chuang Y. C. (2014a). Closely related NDM-1-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. PLoS ONE 9:e104899. 10.1371/journal.pone.0104899 Chen L. Chavda K. D. Al Laham N. Melano R. G. Jacobs M. R. Bonomo R. A. (2013a). Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob. Agents Chemother. 57 50195025. 10.1128/AAC.01397-13 Chen L. Chavda K. D. Findlay J. Peirano G. Hopkins K. Pitout J. D. (2014b). Multiplex PCR for identification of two capsular types in epidemic KPC-producing Klebsiella pneumoniae sequence type 258 strains. Antimicrob. Agents Chemother. 58 41964199. 10.1128/AAC.02673-14 Chen L. Chavda K. D. Fraimow H. S. Mediavilla J. R. Melano R. G. Jacobs M. R. (2013b). Complete nucleotide sequences of blaKPC-4- and blaKPC-5-harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob. Agents Chemother. 57 269276. 10.1128/AAC.01648-12 Chen L. Chavda K. D. Melano R. G. Hong T. Rojtman A. D. Jacobs M. R. (2014c). Molecular survey of the dissemination of two blaKPC-harboring IncFIA plasmids in New Jersey and New York hospitals. Antimicrob. Agents Chemother. 58 22892294. 10.1128/AAC.02749-13 Chen L. Chavda K. D. Melano R. G. Jacobs M. R. Koll B. Hong T. (2014d). Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New York Hospitals. Antimicrob. Agents Chemother. 58 28712877. 10.1128/AAC.00120-14 Chen L. Mathema B. Chavda K. D. DeLeo F. R. Bonomo R. A. Kreiswirth B. N. (2014e). Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 22 686696. 10.1016/j.tim.2014.09.003 Chen L. Mathema B. Pitout J. D. DeLeo F. R. Kreiswirth B. N. (2014f). Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. MBio. 5 e135514. 10.1128/mBio.01355-14 Chen Y. T. Lin A. C. Siu L. K. Koh T. H. (2012). Sequence of closely related plasmids encoding blaNDM-1 in two unrelated Klebsiella pneumoniae isolates in Singapore. PLoS ONE 7:e48737. 10.1371/journal.pone.0048737 Chen Y. T. Lin J. C. Fung C. P. Lu P. L. Chuang Y. C. Wu T. L. (2014g). KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J. Antimicrob. Chemother. 69 628631. 10.1093/jac/dkt409 Chen Z. Wang Y. Tian L. Zhu X. Li L. Zhang B. (2015). First report in China of Enterobacteriaceae clinical isolates coharboring blaNDM-1 and blaIMP-4 drug resistance genes. Microb. Drug Resist. 21 167170. 10.1089/mdr.2014.0087 Chereau F. Herindrainy P. Garin B. Huynh B. T. Randrianirina F. Padget M. (2015). Colonization of extended-spectrum-β-lactamase- and NDM-1-producing Enterobacteriaceae among pregnant women in the community in a low-income country: a potential reservoir for transmission of multiresistant Enterobacteriaceae to neonates. Antimicrob. Agents Chemother. 59 36523655. 10.1128/AAC.00029-15 Chiang T. T. Yang Y. S. Yeh K. M. Chiu S. K. Wang N. C. Lin T. Y. (2016). Quantification and comparison of virulence and characteristics of different variants of carbapenemase-producing Klebsiella pneumoniae clinical isolates from Taiwan and the United States. J. Microbiol. Immunol. Infect. 49 8390. 10.1016/j.jmii.2015.08.011 Chiu S. K. Wu T. L. Chuang Y. C. Lin J. C. Fung C. P. Lu P. L. (2013). National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS ONE 8:e69428. 10.1371/journal.pone.0069428 Cho S. Y. Huh H. J. Baek J. Y. Chung N. Y. Ryu J. G. Ki C. S. (2015). Klebsiella pneumoniae co-producing NDM-5 and OXA-181 carbapenemases, South Korea. Emerg. Infect. Dis. 21 10881089. 10.3201/eid2106.150048 Chong P. M. McCorrister S. J. Unger M. S. Boyd D. A. Mulvey M. R. Westmacott G. R. (2015). MALDI-TOF MS detection of carbapenemase activity in clinical isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii compared against the Carba-NP assay. J. Microbiol. Methods 111 2123. 10.1016/j.mimet.2015.01.024 Chung The H. Karkey A. Pham Thanh D. Boinett C. J. Cain A. K. Ellington M. (2015). A high-resolution genomic analysis of multidrug-resistant hospital outbreaks of Klebsiella pneumoniae. EMBO Mol. Med. 7 227239. 10.15252/emmm.201404767 Cubero M. Cuervo G. Dominguez M. A. Tubau F. Marti S. Sevillano E. (2015). Carbapenem-resistant and carbapenem-susceptible isogenic isolates of Klebsiella pneumoniae ST101 causing infection in a tertiary hospital. BMC Microbiol. 15:177. 10.1186/s12866-015-0510-9 Cuzon G. Bentchouala C. Vogel A. Hery M. Lezzar A. Smati F. (2015). First outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Constantine, Algeria. Int. J. Antimicrob. Agents 46 725727. 10.1016/j.ijantimicag.2015.08.005 Cuzon G. Naas T. Bogaerts P. Glupczynski Y. Huang T. D. Nordmann P. (2008). Plasmid-encoded carbapenem-hydrolyzing β-lactamase OXA-48 in an imipenem-susceptible Klebsiella pneumoniae strain from Belgium. Antimicrob. Agents Chemother. 52 34633464. 10.1128/AAC.00543-08 Dafopoulou K. Zarkotou O. Dimitroulia E. Hadjichristodoulou C. Gennimata V. Pournaras S. (2015). Comparative evaluation of colistin susceptibility testing methods among carbapenem-nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii clinical isolates. Antimicrob. Agents Chemother. 59 46254630. 10.1128/AAC.00868-15 Daikos G. L. Tsaousi S. Tzouvelekis L. S. Anyfantis I. Psichogiou M. Argyropoulou A. (2014). Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob. Agents Chemother. 58 23222328. 10.1128/AAC.02166-13 Dash N. Panigrahi D. Zarouni M. A. Darwish D. Ghazawi A. Sonnevend A. (2014). High incidence of New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae isolates in Sharjah, United Arab Emirates. Microb. Drug Resist. 20 5256. 10.1089/mdr.2013.0040 Datta S. Roy S. Chatterjee S. Saha A. Sen B. Pal T. (2014). A five-year experience of carbapenem resistance in Enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS ONE 9:e112101. 10.1371/journal.pone.0112101 Dautzenberg M. J. Ossewaarde J. M. de Kraker M. E. van der Zee A. van Burgh S. de Greeff S. C. (2014). Successful control of a hospital-wide outbreak of OXA-48 producing Enterobacteriaceae in the Netherlands, 2009 to 2011. Euro. Surveill. 19:20723. 10.2807/1560-7917.ES2014.19.9.20723 de Jager P. Chirwa T. Naidoo S. Perovic O. Thomas J. (2015). Nosocomial outbreak of New Delhi Metallo-β-Lactamase-1-Producing Gram-Negative BACTERIA in South Africa: a case-control study. PLoS ONE 10:e0123337. 10.1371/journal.pone.0123337 Deleo F. R. Chen L. Porcella S. F. Martens C. A. Kobayashi S. D. Porter A. R. (2014). Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc. Natl. Acad. Sci. U.S.A. 111 49884993. 10.1073/pnas.1321364111 de Oliveira M. S. de Assis D. B. Freire M. P. Boas do Prado G. V. Machado A. S. Abdala E. (2015). Treatment of KPC-producing Enterobacteriaceae: suboptimal efficacy of polymyxins. Clin. Microbiol. Infect. 21 179.e1179.e7. 10.1016/j.cmi.2014.07.010 Deshpande L. M. Rhomberg P. R. Sader H. S. Jones R. N. (2006). Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States medical centers: report from the MYSTIC Program (1999-2005). Diagn. Microbiol. Infect. Dis. 56 367372. 10.1016/j.diagmicrobio.2006.07.004 Dimou V. Dhanji H. Pike R. Livermore D. M. Woodford N. (2012). Characterization of Enterobacteriaceae producing OXA-48-like carbapenemases in the UK. J. Antimicrob. Chemother. 67 16601665. 10.1093/jac/dks124 Doi Y. O’Hara J. A. Lando J. F. Querry A. M. Townsend B. M. Pasculle A. W. (2014). Co-production of NDM-1 and OXA-232 by Klebsiella pneumoniae. Emerg. Infect. Dis. 20 163165. 10.3201/eid2001.130904 Dong D. Liu W. Li H. Wang Y. Li X. Zou D. (2015). Survey and rapid detection of Klebsiella pneumoniae in clinical samples targeting the rcsA gene in Beijing, China. Front. Microbiol. 6:519. 10.3389/fmicb.2015.00519 Dortet L. Agathine A. Naas T. Cuzon G. Poirel L. Nordmann P. (2015). Evaluation of the RAPIDECR CARBA NP, the Rapid CARB ScreenR and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 70 30143022. 10.1093/jac/dkv213 Dortet L. Brechard L. Grenet K. Nguessan M. S. Nordmann P. (2013). Sri Lanka, another country from the Indian subcontinent with NDM-1-producing Enterobacteriaceae. J. Antimicrob. Chemother. 68 21722173. 10.1093/jac/dkt145 Dortet L. Brechard L. Poirel L. Nordmann P. (2014a). Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin. Microbiol. Infect. 20 340344. 10.1111/1469-0691.12318 Dortet L. Poirel L. Errera C. Nordmann P. (2014b). CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J. Clin. Microbiol. 52 23592364. 10.1128/JCM.00594-14 Dortet L. Poirel L. Nordmann P. (2014c). Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res. Int. 2014 249856. 10.1155/2014/249856 Ducomble T. Faucheux S. Helbig U. Kaisers U. X. Konig B. Knaust A. (2015). Large hospital outbreak of KPC-2-producing Klebsiella pneumoniae: investigating mortality and the impact of screening for KPC-2 with polymerase chain reaction. J. Hosp. Infect. 89 179185. 10.1016/j.jhin.2014.11.012 Ellis C. Chung C. Tijet N. Patel S. N. Desjardins M. Melano R. G. (2013). OXA-48-like carbapenemase-producing Enterobacteriaceae in Ottawa. Canada. Diagn. Microbiol. Infect. Dis. 76 399400. 10.1016/j.diagmicrobio.2013.04.017 Escobar Perez J. A. Olarte Escobar N. M. Castro-Cardozo B. Valderrama Marquez I. A. Garzon Aguilar M. I. Martinez de la Barrera L. (2013). Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob. Agents Chemother. 57 19571960. 10.1128/AAC.01447-12 Espedido B. A. Steen J. A. Ziochos H. Grimmond S. M. Cooper M. A. Gosbell I. B. (2013). Whole genome sequence analysis of the first Australian OXA-48-producing outbreak-associated Klebsiella pneumoniae isolates: the resistome and in vivo evolution. PLoS ONE 8:e59920. 10.1371/journal.pone.0059920 Evans B. A. Amyes S. G. (2014). OXA β-lactamases. Clin. Microbiol. Rev. 27 241263. 10.1128/CMR.00117-13 Evren E. Azap O. K. Colakoǧlu S. Arslan H. (2013). In vitro activity of fosfomycin in combination with imipenem, meropenem, colistin and tigecycline against OXA 48-positive Klebsiella pneumoniae strains. Diagn. Microbiol. Infect. Dis. 76 335338. 10.1016/j.diagmicrobio.2013.04.004 Fehlberg L. C. Carvalho A. M. Campana E. H. Gontijo-Filho P. P. Gales A. C. (2012). Emergence of Klebsiella pneumoniae-producing KPC-2 carbapenemase in Paraiba, Northeastern Brazil. Braz. J. Infect. Dis. 16 577580. 10.1016/j.bjid.2012.07.001 Fursova N. K. Astashkin E. I. Knyazeva A. I. Kartsev N. N. Leonova E. S. Ershova O. N. (2015). The spread of blaOXA-48 and blaOXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia. Ann. Clin. Microbiol. Antimicrob. 14:46. 10.1186/s12941-015-0108-y Gaibani P. Ambretti S. Berlingeri A. Cordovana M. Farruggia P. Panico M. (2011). Outbreak of NDM-1-producing Enterobacteriaceae in northern Italy, July to August 2011. Euro. Surveill. 16:20027. Gales A. C. Castanheira M. Jones R. N. Sader H. S. (2012). Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010). Diagn. Microbiol. Infect. Dis. 73 354360. 10.1016/j.diagmicrobio.2012.04.007 Gallagher L. C. Roundtree S. S. Lancaster D. P. Rudin S. D. Bard J. D. Roberts A. L. (2015). Performance of the CLSI Carba NP and the rosco carb screen assays Using North American Carbapenemase-Producing Enterobacteriaceae and Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 53 33703373. 10.1128/JCM.01547-15 Galler H. Feierl G. Petternel C. Reinthaler F. F. Haas D. Grisold A. J. (2014). KPC-2 and OXA-48 carbapenemase-harbouring Enterobacteriaceae detected in an Austrian wastewater treatment plant. Clin. Microbiol. Infect. 20 O132O134. 10.1111/1469-0691.12336 Garbari L. Busetti M. Dolzani L. Petix V. Knezevich A. Bressan R. (2015). pKBuS13, a KPC-2-encoding plasmid from Klebsiella pneumoniae sequence type 833 carrying Tn4401b inserted into an Xer site-specific recombination locus. Antimicrob. Agents Chemother. 59 52265231. 10.1128/AAC.04543-14 Garcia-Fernandez A. Villa L. Carta C. Venditti C. Giordano A. Venditti M. (2012). Klebsiella pneumoniae ST258 producing KPC-3 identified in italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob. Agents Chemother. 56 21432145. 10.1128/AAC.05308-11 Garcia-Fernandez S. Morosini M. I. Gijon D. Beatobe L. Ruiz-Garbajosa P. Dominguez L. (2016). Detection of carbapenemase production in a collection of Enterobacteriaceae with characterized resistance mechanisms from clinical and environmental origins by use of both Carba NP and Blue-Carba Tests. J. Clin. Microbiol. 54 464466. 10.1128/JCM.02580-15 Garza-Ramos U. Barrios H. Reyna-Flores F. Sanchez-Perez A. Tamayo-Legorreta E. Ibarra-Pacheco A. (2014). Characteristics of KPC-2-producing Klebsiella pneumoniae (ST258) clinical isolates from outbreaks in 2 Mexican medical centers. Diagn. Microbiol. Infect. Dis. 79 483485. 10.1016/j.diagmicrobio.2014.05.010 Gharout-Sait A. Alsharapy S. A. Brasme L. Touati A. Kermas R. Bakour S. (2014). Enterobacteriaceae isolates carrying the New Delhi metallo-β-lactamase gene in Yemen. J. Med. Microbiol. 63 (Pt 8), 13161323. 10.1099/jmm.0.073767-0 Giacobbe D. R. Del Bono V. Trecarichi E. M. De Rosa F. G. Giannella M. Bassetti M. (2015). Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin. Microbiol. Infect. 21 1106.e11106.e8. 10.1016/j.cmi.2015.08.001 Giakkoupi P. Pappa O. Polemis M. Vatopoulos A. C. Miriagou V. Zioga A. (2009). Emerging Klebsiella pneumoniae isolates coproducing KPC-2 and VIM-1 carbapenemases. Antimicrob. Agents Chemother. 53 40484050. 10.1128/AAC.00690-09 Giamarellou H. Galani L. Baziaka F. Karaiskos I. (2013). Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrug-resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 57 23882390. 10.1128/AAC.02399-12 Giani T. Arena F. Vaggelli G. Conte V. Chiarelli A. Henrici De Angelis L. (2015). Large nosocomial outbreak of colistin-resistant, carbapenemase-producing Klebsiella pneumoniae traced to clonal expansion of an mgrB deletion mutant. J. Clin. Microbiol. 53 33413344. 10.1128/JCM.01017-15 Giani T. Conte V. Mandala S. D’Andrea M. M. Luzzaro F. Conaldi P. G. (2014). Cross-infection of solid organ transplant recipients by a multidrug-resistant Klebsiella pneumoniae isolate producing the OXA-48 carbapenemase, likely derived from a multiorgan donor. J. Clin. Microbiol. 52 27022705. 10.1128/JCM.00511-14 Giani T. D’Andrea M. M. Pecile P. Borgianni L. Nicoletti P. Tonelli F. (2009). Emergence in Italy of Klebsiella pneumoniae sequence type 258 producing KPC-3 carbapenemase. J. Clin. Microbiol. 47 37933794. 10.1128/JCM.01773-09 Giani T. Pini B. Arena F. Conte V. Bracco S. Migliavacca R. (2013). Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro. Surveill. 18:20489. Girlich D. Anglade C. Zambardi G. Nordmann P. (2013). Comparative evaluation of a novel chromogenic medium (chromID OXA-48) for detection of OXA-48 producing Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 77 296300. 10.1016/j.diagmicrobio.2013.08.015 Giske C. G. (2015). Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin. Microbiol. Infect. 21 899905. 10.1016/j.cmi.2015.05.022 Giske C. G. Froding I. Hasan C. M. Turlej-Rogacka A. Toleman M. Livermore D. (2012). Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of blaNDM-1 in India, Sweden, and the United Kingdom. Antimicrob. Agents Chemother. 56 27352738. 10.1128/AAC.06142-11 Giske C. G. Gezelius L. Samuelsen O. Warner M. Sundsfjord A. Woodford N. (2011). A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin. Microbiol. Infect. 17 552556. 10.1111/j.1469-0691.2010.03294.x Goldfarb D. Harvey S. B. Jessamine K. Jessamine P. Toye B. Desjardins M. (2009). Detection of plasmid-mediated KPC-producing Klebsiella pneumoniae in Ottawa, Canada: evidence of intrahospital transmission. J. Clin. Microbiol. 47 19201922. 10.1128/JCM.00098-09 Gomez S. Pasteran F. Faccone D. Bettiol M. Veliz O. De Belder D. (2013). Intrapatient emergence of OXA-247: a novel carbapenemase found in a patient previously infected with OXA-163-producing Klebsiella pneumoniae. Clin. Microbiol. Infect. 19 E233E235. 10.1111/1469-0691.12142 Gomez S. A. Pasteran F. G. Faccone D. Tijet N. Rapoport M. Lucero C. (2011). Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clin. Microbiol. Infect. 17 15201524. 10.1111/j.1469-0691.2011.03600.x Gona F. Barbera F. Pasquariello A. C. Grossi P. Gridelli B. Mezzatesta M. L. (2014). In vivo multiclonal transfer of blaKPC-3 from Klebsiella pneumoniae to Escherichia coli in surgery patients. Clin. Microbiol. Infect. 20 O633O635. 10.1111/1469-0691.12577 Gonzalez-Padilla M. Torre-Cisneros J. Rivera-Espinar F. Pontes-Moreno A. Lopez-Cerero L. Pascual A. (2015). Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant Klebsiella pneumoniae. J. Antimicrob. Chemother. 70 905913. 10.1093/jac/dku432 Gootz T. D. Lescoe M. K. Dib-Hajj F. Dougherty B. A. He W. Della-Latta P. (2009). Genetic organization of transposase regions surrounding blaKPC carbapenemase genes on plasmids from Klebsiella strains isolated in a New York City hospital. Antimicrob. Agents Chemother. 53 19982004. 10.1128/AAC.01355-08 Gottig S. Gruber T. M. Stecher B. Wichelhaus T. A. Kempf V. A. (2015). In vivo horizontal gene transfer of the carbapenemase OXA-48 during a nosocomial outbreak. Clin. Infect. Dis. 60 18081815. 10.1093/cid/civ191 Gregory C. J. Llata E. Stine N. Gould C. Santiago L. M. Vazquez G. J. (2010). Outbreak of carbapenem-resistant Klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant. Infect. Control Hosp. Epidemiol. 31 476484. 10.1086/651670 Hall J. M. Corea E. Sanjeewani H. D. Inglis T. J. (2014). Molecular mechanisms of β-lactam resistance in carbapenemase-producing Klebsiella pneumoniae from Sri Lanka. J. Med. Microbiol. 63(Pt 8), 10871092. 10.1099/jmm.0.076760-0 Hamzan N. I. Yean C. Y. Rahman R. A. Hasan H. Rahman Z. A. (2015). Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Emerg. Health Threats J. 8 26011. 10.3402/ehtj.v8.26011 Hashimoto A. Nagamatsu M. Ohmagari N. Hayakawa K. Kato Y. Kirikae T. (2014). Isolation of OXA-48 carbapenemase-producing Klebsiella pneumoniae ST101 from an overseas traveler returning to Japan. Jpn. J. Infect. Dis. 67 120121. 10.7883/yoken.67.120 Hidalgo-Grass C. Warburg G. Temper V. Benenson S. Moses A. E. Block C. (2012). KPC-9, a novel carbapenemase from clinical specimens in Israel. Antimicrob. Agents Chemother. 56 60576059. 10.1128/AAC.01156-12 Hishinuma A. Yoshida A. Suzuki H. Okuzumi K. Ishida T. (2013). Complete sequencing of an IncFII NDM-1 plasmid in Klebsiella pneumoniae shows structural features shared with other multidrug resistance plasmids. J. Antimicrob. Chemother. 68 24152417. 10.1093/jac/dkt190 Hoang T. H. Wertheim H. Minh N. B. Duong T. N. Anh D. D. Phuong T. T. (2013). Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains containing New Delhi metallo-β-lactamase isolated from two patients in Vietnam. J. Clin. Microbiol. 51 373374. 10.1128/JCM.02322-12 Hombach M. von Gunten B. Castelberg C. Bloemberg G. V. (2015). Evaluation of the rapidec carba NP Test for detection of carbapenemases in Enterobacteriaceae. J. Clin. Microbiol. 53 38283833. 10.1128/JCM.02327-15 Hong J. H. Clancy C. J. Cheng S. Shields R. K. Chen L. Doi Y. (2013). Characterization of porin expression in Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae identifies isolates most susceptible to the combination of colistin and carbapenems. Antimicrob. Agents Chemother. 57 21472153. 10.1128/AAC.02411-12 Hrabak J. Chudackova E. Walkova R. (2013a). Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin. Microbiol. Rev. 26 103114. 10.1128/CMR.00058-12 Hrabak J. Papagiannitsis C. C. Studentova V. Jakubu V. Fridrichova M. Zemlickova H. (2013b). Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Euro. Surveill. 18:20626. 10.2807/1560-7917.ES2013.18.45.20626 Hrabak J. Studentova V. Jakubu V. Adamkova V. Dvorakova L. Balejova M. (2015). Prevalence study on carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolates in Czech hospitals–results from Czech Part of European Survey on Carbapenemase–Producing Enterobacteriaceae (EuSCAPE). Epidemiol. Mikrobiol. Imunol. 64 8791. Hrabak J. Walkova R. Studentova V. Chudackova E. Bergerova T. (2011). Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 49 32223227. 10.1128/JCM.00984-11 Hu L. Zhong Q. Shang Y. Wang H. Ning C. Li Y. (2014). The prevalence of carbapenemase genes and plasmid-mediated quinolone resistance determinants in carbapenem-resistant Enterobacteriaceae from five teaching hospitals in central China. Epidemiol. Infect. 142 19721977. 10.1017/S0950268813002975 Hu L. Zhong Q. Tu J. Xu Y. Qin Z. Parsons C. (2013). Emergence of blaNDM-1 among Klebsiella pneumoniae ST15 and novel ST1031 clinical isolates in China. Diagn. Microbiol. Infect. Dis. 75 373376. 10.1016/j.diagmicrobio.2013.01.006 Huang T. D. Berhin C. Bogaerts P. Glupczynski Y. (2014). Comparative evaluation of two chromogenic tests for rapid detection of carbapenemase in Enterobacteriaceae and in Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 52 30603063. 10.1128/JCM.00643-14 Huang T. W. Chen T. L. Chen Y. T. Lauderdale T. L. Liao T. L. Lee Y. T. (2013). Copy number change of the NDM-1 sequence in a multidrug-resistant Klebsiella pneumoniae clinical isolate. PLoS ONE 8:e62774. 10.1371/journal.pone.0062774 Hudson C. M. Bent Z. W. Meagher R. J. Williams K. P. (2014). Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS ONE 9:e99209. 10.1371/journal.pone.0099209 Humphries R. M. (2015). Susceptibility testing of the polymyxins: where are we now? Pharmacotherapy 35 2227. 10.1002/phar.1505 Izdebski R. Bojarska K. Baraniak A. Literacka E. Herda M. Zabicka D. (2015). NDM-1- or OXA-48-producing Enterobacteriaceae colonising Polish tourists following a terrorist attack in Tunis, March 2015. Euro. Surveill. 20:20489. 10.2807/1560-7917.ES2015.20.23.21150 Jamal W. Rotimi V. O. Albert M. J. Khodakhast F. Nordmann P. Poirel L. (2013). High prevalence of VIM-4 and NDM-1 metallo-β-lactamase among carbapenem-resistant Enterobacteriaceae. J. Med. Microbiol. 62 12391244. 10.1099/jmm.0.059915-0 Jamal W. Rotimi V. O. Albert M. J. Khodakhast F. Udo E. E. Poirel L. (2012). Emergence of nosocomial New Delhi metallo-β-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae in patients admitted to a tertiary care hospital in Kuwait. Int. J. Antimicrob. Agents 39 183184. 10.1016/j.ijantimicag.2011.10.002 Janvari L. Damjanova I. Lazar A. Racz K. Kocsis B. Urban E. (2014). Emergence of OXA-162-producing Klebsiella pneumoniae in Hungary. Scand. J. Infect. Dis. 46 320324. 10.3109/00365548.2013.879993 Jayol A. Poirel L. Brink A. Villegas M. V. Yilmaz M. Nordmann P. (2014). Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob. Agents Chemother. 58 47624766. 10.1128/AAC.00084-14 Jeon J. H. Hong M. K. Lee J. H. Lee J. J. Park K. S. Karim A. M. (2014). Structure of ADC-68, a novel carbapenem-hydrolyzing class C extended-spectrum b-lactamase isolated from Acinetobacter baumannii. Acta Crystallogr. D Biol. Crystallogr. 70 29242936. 10.1107/S1399004714019543 Jeon J. H. Lee J. H. Lee J. J. Park K. S. Karim A. M. Lee C. R. (2015). Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int. J. Mol. Sci. 16 96549692. 10.3390/ijms16059654 Jeong S. H. Bae I. K. Kim D. Hong S. G. Song J. S. Lee J. H. (2005). First outbreak of Klebsiella pneumoniae clinical isolates producing GES-5 and SHV-12 extended-spectrum β-lactamases in Korea. Antimicrob. Agents Chemother. 49 48094810. 10.1128/AAC.49.11.4809-4810.2005 Jeong S. H. Lee K. M. Lee J. Bae I. K. Kim J. S. Kim H. S. (2015). Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn. Microbiol. Infect. Dis. 82 7072. 10.1016/j.diagmicrobio.2015.02.001 Jiang Y. Shen P. Wei Z. Liu L. He F. Shi K. (2015). Dissemination of a clone carrying a fosA3-harbouring plasmid mediates high fosfomycin resistance rate of KPC-producing Klebsiella pneumoniae in China. Int. J. Antimicrob. Agents 45 6670. 10.1016/j.ijantimicag.2014.08.010 Jiang Y. Yu D. Wei Z. Shen P. Zhou Z. Yu Y. (2010). Complete nucleotide sequence of Klebsiella pneumoniae multidrug resistance plasmid pKP048, carrying blaKPC-2, blaDHA-1, qnrB4, and armA. Antimicrob. Agents Chemother. 54 39673969. 10.1128/AAC.00137-10 Jin Y. Shao C. Li J. Fan H. Bai Y. Wang Y. (2015). Outbreak of multidrug resistant NDM-1-producing Klebsiella pneumoniae from a neonatal unit in Shandong Province, China. PLoS ONE 10:e0119571. 10.1371/journal.pone.0119571 Kabir M. H. Meunier D. Hopkins K. L. Giske C. G. Woodford N. (2016). A two-centre evaluation of RAPIDECR CARBA NP for carbapenemase detection in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter spp. J. Antimicrob. Chemother. 71 12131216. 10.1093/jac/dkv468 Kaiser R. M. Castanheira M. Jones R. N. Tenover F. Lynfield R. (2013). Trends in Klebsiella pneumoniae carbapenemase-positive K. pneumoniae in US hospitals: report from the 2007-2009 SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis. 76 356360. 10.1016/j.diagmicrobio.2013.03.032 Kalpoe J. S. Al Naiemi N. Poirel L. Nordmann P. (2011). Detection of an ambler class D OXA-48-type β-lactamase in a Klebsiella pneumoniae strain in the netherlands. J. Med. Microbiol. 60 677678. 10.1099/jmm.0.028308-0 Kanerva M. Skogberg K. Ryynanen K. Pahkamaki A. Jalava J. Ollgren J. (2015). Coincidental detection of the first outbreak of carbapenemase-producing Klebsiella pneumoniae colonisation in a primary care hospital, Finland, 2013. Euro. Surveill. 20:21172. 10.2807/1560-7917.ES2015.20.26.21172 Karaiskos I. Giamarellou H. (2014). Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Exp. Opin. Pharmacother. 15 13511370. 10.1517/14656566.2014.914172 Kayama S. Koba Y. Shigemoto N. Kuwahara R. Kakuhama T. Kimura K. (2015). Imipenem-susceptible, meropenem-resistant Klebsiella pneumoniae producing OXA-181 in Japan. Antimicrob. Agents Chemother. 59 13791380. 10.1128/AAC.04330-14 Kazi M. Drego L. Nikam C. Ajbani K. Soman R. Shetty A. (2015). Molecular characterization of carbapenem-resistant Enterobacteriaceae at a tertiary care laboratory in Mumbai. Eur. J. Clin. Microbiol. Infect. Dis. 34 467472. 10.1007/s10096-014-2249-x Kilic A. Baysallar M. (2015). The First Klebsiella pneumoniae isolate Co-Producing OXA-48 and NDM-1 in Turkey. Ann. Lab. Med. 35 382383. 10.3343/alm.2015.35.3.382 Kim J. Y. Jung H. I. An Y. J. Lee J. H. Kim S. J. Jeong S. H. (2006). Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. Mol. Microbiol. 60 907916. 10.1111/j.1365-2958.2006.05146.x Kim M. N. Yong D. An D. Chung H. S. Woo J. H. Lee K. (2012). Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J. Clin. Microbiol. 50 14331436. 10.1128/JCM.06855-11 Kocsis E. Guzvinec M. Butic I. Kresic S. Crnek S. S. Tambic A. (2016). bla Carriage on IncR Plasmid in Enterobacteriaceae Strains. Microb. Drug Resist. 22 123128. 10.1089/mdr.2015.0083 Kola A. Piening B. Pape U. F. Veltzke-Schlieker W. Kaase M. Geffers C. (2015). An outbreak of carbapenem-resistant OXA-48 - producing Klebsiella pneumoniae associated to duodenoscopy. Antimicrob. Resist. Infect. Control. 4:8. 10.1186/s13756-015-0049-4 Kontopoulou K. Protonotariou E. Vasilakos K. Kriti M. Koteli A. Antoniadou E. (2010). Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin. J. Hosp. Infect. 76 7073. 10.1016/j.jhin.2010.03.021 Koser C. U. Fraser L. J. Ioannou A. Becq J. Ellington M. J. Holden M. T. (2014). Rapid single-colony whole-genome sequencing of bacterial pathogens. J. Antimicrob. Chemother. 69 12751281. 10.1093/jac/dkt494 Kumarasamy K. K. Toleman M. A. Walsh T. R. Bagaria J. Butt F. Balakrishnan R. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10 597602. 10.1016/S1473-3099(10)70143-2 Labarca J. Poirel L. Ozdamar M. Turkoglu S. Hakko E. Nordmann P. (2014). KPC-producing Klebsiella pneumoniae, finally targeting Turkey. New Microbes New Infect. 2 5051. 10.1002/nmi2.42 Lafeuille E. Decre D. Mahjoub-Messai F. Bidet P. Arlet G. Bingen E. (2013). OXA-48 carbapenemase-producing Klebsiella pneumoniae isolated from Libyan patients. Microb. Drug Resist. 19 491497. 10.1089/mdr.2012.0219 Laishram S. Anandan S. Devi B. Y. Elakkiya M. Priyanka B. Bhuvaneshwari T. (2015). Determination of synergy between sulbactam, meropenem and colistin in carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii isolates and correlation with the molecular mechanism of resistance. J. Chemother 10.1179/1973947815Y.0000000079 [Epub ahead of print]. Lascols C. Peirano G. Hackel M. Laupland K. B. Pitout J. D. (2013). Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob. Agents Chemother. 57 130136. 10.1128/AAC.01686-12 Lasserre C. De Saint Martin L. Cuzon G. Bogaerts P. Lamar E. Glupczynski Y. (2015). Efficient detection of carbapenemase activity in enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J. Clin. Microbiol. 53 21632171. 10.1128/JCM.03467-14 Lauretti L. Riccio M. L. Mazzariol A. Cornaglia G. Amicosante G. Fontana R. (1999). Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43 15841590. Leavitt A. Chmelnitsky I. Carmeli Y. Navon-Venezia S. (2010). Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob. Agents Chemother. 54 44934496. 10.1128/AAC.00175-10 Leavitt A. Navon-Venezia S. Chmelnitsky I. Schwaber M. J. Carmeli Y. (2007). Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob. Agents Chemother. 51 30263029. 10.1128/AAC.00299-07 Lee C. R. Cho I. H. Jeong B. C. Lee S. H. (2013a). Strategies to minimize antibiotic resistance. Int. J. Environ. Res. Public Health 10 42744305. 10.3390/ijerph10094274 Lee C. S. Vasoo S. Hu F. Patel R. Doi Y. (2014). Klebsiella pneumoniae ST147 coproducing NDM-7 carbapenemase and RmtF 16S rRNA methyltransferase in Minnesota. J. Clin. Microbiol. 52 41094110. 10.1128/JCM.01404-14 Lee J. H. Bae I. K. Lee S. H. (2012a). New definitions of extended-spectrum β-lactamase conferring worldwide emerging antibiotic resistance. Med. Res. Rev. 32 216232. 10.1002/med.20210 Lee J. H. Jeong S. H. Cha S. S. Lee S. H. (2007). A lack of drugs for antibiotic-resistant Gram-negative bacteria. Nat. Rev. Drug Discov. 6 938939. 10.1038/nrd2201-c1 Lee J. H. Jeong S. H. Cha S. S. Lee S. H. (2009). New disturbing trend in antimicrobial resistance of gram-negative pathogens. PLoS Pathog. 5:e1000221. 10.1371/journal.ppat.1000221 Lee J. H. Lee J. J. Park K. S. Lee S. H. (2015a). Urgent need for b-lactam-β-lactamase inhibitors. Lancet Infect. Dis. 15 876877. 10.1016/S1473-3099(15)00143-7 Lee J. H. Park A. M. Karim C. R. Lee C. R. Lee S. H. (2016). How to minimise antibiotic resistance. Lancet Infect. Dis 16 1718. 10.1016/S1473-3099(15)00467-3 Lee J. J. Lee J. H. Kwon D. B. Jeon J. H. Park K. S. Lee C. R. (2015b). Fast and accurate large-scale detection of β-lactamase genes conferring antibiotic resistance. Antimicrob. Agents Chemother. 59 59675975. 10.1128/AAC.04634-14 Lee K. Hong S. G. Park Y. J. Lee H. S. Song W. Jeong J. (2005a). Evaluation of phenotypic screening methods for detecting plasmid-mediated AmpC β-lactamases-producing isolates of Escherichia coli and Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 53 319323. 10.1016/j.diagmicrobio.2005.07.004 Lee K. Lee M. Shin J. H. Lee M. H. Kang S. H. Park A. J. (2006a). Prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. Microb. Drug Resist. 12 4449. 10.1089/mdr.2006.12.44 Lee N. Y. Wu J. J. Lin S. H. Ko W. C. Tsai L. H. Yan J. J. (2012b). Characterization of carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream isolates at a Taiwanese hospital: clinical impacts of lowered breakpoints for carbapenems. Eur. J. Clin. Microbiol. Infect. Dis. 31 19411950. 10.1007/s10096-011-1525-2 Lee S. H. Jeong S. H. Cha S. S. (2005b). Minimising antibiotic resistance. Lancet Infect. Dis. 5 668670. 10.1016/S1473-3099(05)70247-4 Lee S. H. Jeong S. H. Cha S. S. (2006b). Screening for carbapenem-resistant Gram-negative bacteria. Lancet Infect. Dis. 6 682684. 10.1016/S1473-3099(06)70607-7 Lee T. D. Adie K. McNabb A. Purych D. Mannan K. Azana R. (2015c). Rapid Detection of KPC, NDM, and OXA-48-Like carbapenemases by Real-Time PCR from rectal swab surveillance samples. J. Clin. Microbiol. 53 27312733. 10.1128/JCM.01237-15 Lee W. Chung H. S. Lee Y. Yong D. Jeong S. H. Lee K. (2013b). Comparison of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry assay with conventional methods for detection of IMP-6, VIM-2, NDM-1, SIM-1, KPC-1, OXA-23, and OXA-51 carbapenemase-producing Acinetobacter spp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 77 227230. 10.1016/j.diagmicrobio.2013.07.005 Lefebvre B. Levesque S. Bourgault A. M. Mulvey M. R. Mataseje L. Boyd D. (2015). Carbapenem non-susceptible enterobacteriaceae in Quebec, Canada: results of a laboratory surveillance program (2010-2012). PLoS ONE 10:e0125076. 10.1371/journal.pone.0125076 Leung V. Loo V. G. Frenette C. Domingo M. C. Bourgault A. M. Mulvey M. R. (2012). First Canadian outbreak of Enterobacteriaceae-expressing Klebsiella pneumoniae carbapenemase type 3. Can. J. Infect. Dis. Med. Microbiol. 23 117120. Li G. Wei Q. Wang Y. Du X. Zhao Y. Jiang X. (2011). Novel genetic environment of the plasmid-mediated KPC-3 gene detected in Escherichia coli and Citrobacter freundii isolates from China. Eur. J. Clin. Microbiol. Infect. Dis. 30 575580. 10.1007/s10096-010-1124-7 Li G. Zhang Y. Bi D. Shen P. Ai F. Liu H. (2015). First report of a clinical, multidrug-resistant Enterobacteriaceae isolate coharboring fosfomycin resistance gene fosA3 and carbapenemase gene blaKPC-2 on the same transposon, Tn1721. Antimicrob. Agents Chemother. 59 338343. 10.1128/AAC.03061-14 Li H. Zhang J. Liu Y. Zheng R. Chen H. Wang X. (2014). Molecular characteristics of carbapenemase-producing Enterobacteriaceae in China from 2008 to 2011: predominance of KPC-2 enzyme. Diagn. Microbiol. Infect. Dis. 78 6365. 10.1016/j.diagmicrobio.2013.10.002 Li J. J. Sheng Z. K. Deng M. Bi S. Hu F. S. Miao H. F. (2012). Epidemic of Klebsiella pneumoniae ST11 clone coproducing KPC-2 and 16S rRNA methylase RmtB in a Chinese University Hospital. BMC Infect. Dis. 12:373. 10.1186/1471-2334-12-373 Liapis E. Pantel A. Robert J. Nicolas-Chanoine M. H. Cavalie L. van der Mee-Marquet N. (2014). Molecular epidemiology of OXA-48-producing Klebsiella pneumoniae in France. Clin. Microbiol. Infect. 20 O1121O1123. 10.1111/1469-0691.12727 Lifshitz Z. Adler A. Carmeli Y. (2016). Comparative study of a novel biochemical assay, the rapidec carba NP Test, for detecting carbapenemase-producing Enterobacteriaceae. J. Clin. Microbiol. 54 453456. 10.1128/JCM.02626-15 Limbago B. M. Rasheed J. K. Anderson K. F. Zhu W. Kitchel B. Watz N. (2011). IMP-producing carbapenem-resistant Klebsiella pneumoniae in the United States. J. Clin. Microbiol. 49 42394245. 10.1128/JCM.05297-11 Ling M. L. Tee Y. M. Tan S. G. Amin I. M. How K. B. Tan K. Y. (2015). Risk factors for acquisition of carbapenem resistant Enterobacteriaceae in an acute tertiary care hospital in Singapore. Antimicrob. Resist. Infect. Control. 4:26. 10.1186/s13756-015-0066-3 Liu P. Li P. Jiang X. Bi D. Xie Y. Tai C. (2012). Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J. Bacteriol. 194 18411842. 10.1128/JB.00043-12 Liu Y. Wan L. G. Deng Q. Cao X. W. Yu Y. Xu Q. F. (2015). First description of NDM-1-, KPC-2-, VIM-2- and IMP-4-producing Klebsiella pneumoniae strains in a single Chinese teaching hospital. Epidemiol. Infect. 143 376384. 10.1017/S0950268814000995 Liu Y. Y. Wang Y. Walsh T. R. Yi L. X. Zhang R. Spencer J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16 161168. 10.1016/S1473-3099(15)00424-7 Livermore D. M. Walsh T. R. Toleman M. Woodford N. (2011). Balkan NDM-1: escape or transplant? Lancet Infect. Dis. 11:164. 10.1016/S1473-3099(11)70048-2 Lixandru B. E. Cotar A. I. Straut M. Usein C. R. Cristea D. Ciontea S. (2015). Carbapenemase-Producing Klebsiella pneumoniae in Romania: a Six-Month survey. PLoS ONE 10:e0143214. 10.1371/journal.pone.0143214 Lowe C. F. Kus J. V. Salt N. Callery S. Louie L. Khan M. A. (2013). Nosocomial transmission of New Delhi metallo-b-lactamase-1-producing Klebsiella pneumoniae in Toronto, Canada. Infect. Control Hosp. Epidemiol. 34 4955. 10.1086/668778 Lübbert C. Lippmann N. Busch T. Kaisers U. X. Ducomble T. Eckmanns T. (2014). Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae after a large single-center outbreak in Germany. Am. J. Infect. Control 42 376380. 10.1016/j.ajic.2013.12.001 Ma L. Wang J. T. Wu T. L. Siu L. K. Chuang Y. C. Lin J. C. (2015). Emergence of OXA-48-producing Klebsiella pneumoniae in Taiwan. PLoS ONE 10:e0139152. 10.1371/journal.pone.0139152 MacVane S. H. Crandon J. L. Nichols W. W. Nicolau D. P. (2014). Unexpected in vivo activity of ceftazidime alone and in combination with avibactam against New Delhi metallo-β-lactamase-producing Enterobacteriaceae in a murine thigh infection model. Antimicrob. Agents Chemother. 58 70077009. 10.1128/AAC.02662-14 Mammeri H. Guillon H. Eb F. Nordmann P. (2010). Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC b-lactamases. Antimicrob. Agents Chemother. 54 45564560. 10.1128/AAC.01762-09 Markovska R. Stoeva T. Schneider I. Boyanova L. Popova V. Dacheva D. (2015). Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria. APMIS 123 887894. 10.1111/apm.12433 Marquez C. Ingold A. Echeverria N. Acevedo A. Vignoli R. Garcia-Fulgueiras V. (2014). Emergence of KPC-producing Klebsiella pneumoniae in Uruguay: infection control and molecular characterization. New Microbes New Infect. 2 5863. 10.1002/nmi2.40 Mathers A. J. Hazen K. C. Carroll J. Yeh A. J. Cox H. L. Bonomo R. A. (2013). First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the “menace” arrives in the new world. J. Clin. Microbiol. 51 680683. 10.1128/JCM.02580-12 McDermott H. Morris D. McArdle E. O’Mahony G. Kelly S. Cormican M. (2012). Isolation of NDM-1-producing Klebsiella pnemoniae in Ireland, July 2011. Euro. Surveill 17 20087. Melegh S. Kovacs K. Gam T. Nyul A. Patko B. Toth A. (2014). Emergence of VIM-4 metallo-b-lactamase-producing Klebsiella pneumoniae ST15 clone in the Clinical Centre University of Pecs, Hungary. Clin. Microbiol. Infect. 20 O27O29. 10.1111/1469-0691.12293 Metwally L. Gomaa N. Attallah M. Kamel N. (2013). High prevalence of Klebsiella pneumoniae carbapenemase-mediated resistance in K. pneumoniae isolates from Egypt. East Mediterr. Health J. 19 947952. Monaco M. Giani T. Raffone M. Arena F. Garcia-Fernandez A. Pollini S. (2014). Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro. Surveill. 19:20939. 10.2807/1560-7917.ES2014.19.42.20939 Moquet O. Bouchiat C. Kinana A. Seck A. Arouna O. Bercion R. (2011). Class D OXA-48 carbapenemase in multidrug-resistant enterobacteria, Senegal. Emerg. Infect. Dis. 17 143144. 10.3201/eid1701.100244 Morris D. Boyle F. Morris C. Condon I. Delannoy-Vieillard A. S. Power L. (2012). Inter-hospital outbreak of Klebsiella pneumoniae producing KPC-2 carbapenemase in Ireland. J. Antimicrob. Chemother. 67 23672372. 10.1093/jac/dks239 Morris D. O’Connor M. Izdebski R. Corcoran M. Ludden C. E. Mc G. E. (2016). Dissemination of clonally related multidrug-resistant Klebsiella pneumoniae in Ireland. Epidemiol. Infect. 144 443448. 10.1017/S0950268815001041 Mulvey M. R. Grant J. M. Plewes K. Roscoe D. Boyd D. A. (2011). New Delhi metallo-β-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg. Infect. Dis. 17 103106. 10.3201/eid1701.101358 Munoz-Price L. S. Poirel L. Bonomo R. A. Schwaber M. J. Daikos G. L. Cormican M. (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13 785796. 10.1016/S1473-3099(13)70190-7 Naas T. Cotellon G. Ergani A. Nordmann P. (2013). Real-time PCR for detection of blaOXA-48 genes from stools. J. Antimicrob. Chemother. 68 101104. 10.1093/jac/dks340 Naas T. Cuzon G. Villegas M. V. Lartigue M. F. Quinn J. P. Nordmann P. (2008). Genetic structures at the origin of acquisition of the β-lactamase bla KPC gene. Antimicrob. Agents Chemother. 52 12571263. 10.1128/AAC.01451-07 Naas T. Nordmann P. Vedel G. Poyart C. (2005). Plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob. Agents Chemother. 49 44234424. 10.1128/AAC.49.10.4423-4424.2005 Nagano N. Endoh Y. Nagano Y. Toyama M. Matsui M. Shibayama K. (2013). First report of OXA-48 carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Japan from a patient returned from Southeast Asia. Jpn. J. Infect. Dis. 66 7981. 10.7883/yoken.66.79 Nakano R. Nakano A. Hikosaka K. Kawakami S. Matsunaga N. Asahara M. (2014). First report of metallo-β-lactamase NDM-5-producing Escherichia coli in Japan. Antimicrob. Agents Chemother. 58 76117612. 10.1128/AAC.04265-14 Nakano R. Nakano A. Ishii Y. Ubagai T. Kikuchi-Ueda T. Kikuchi H. (2015). Rapid detection of the Klebsiella pneumoniae carbapenemase (KPC) gene by loop-mediated isothermal amplification (LAMP). J. Infect. Chemother. 21 202206. 10.1016/j.jiac.2014.11.010 Naseer U. Eriksen B. O. Sundsfjord A. Samuelsen O. (2012). Fecal colonization of VIM-1-producing Klebsiella pneumoniae and in vivo transfer of multidrug-resistant IncN plasmid in a renal transplant patient. Diagn. Microbiol. Infect. Dis. 72 363366. 10.1016/j.diagmicrobio.2011.12.010 Nathan C. Cars O. (2014). Antibiotic resistance–problems, progress, and prospects. N. Engl. J. Med. 371 17611763. 10.1056/NEJMp1408040 Navarro-San Francisco C. Mora-Rillo M. Romero-Gómez M. P. Moreno-Ramos F. Rico-Nieto A. Ruiz-Carrascoso G. (2013). Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: a major clinical challenge. Clin. Microbiol. Infect. 19 E72E79. 10.1111/1469-0691.12091 Netikul T. Sidjabat H. E. Paterson D. L. Kamolvit W. Tantisiriwat W. Steen J. A. (2014). Characterization of an IncN2-type blaNDM-1-carrying plasmid in Escherichia coli ST131 and Klebsiella pneumoniae ST11 and ST15 isolates in Thailand. J. Antimicrob. Chemother. 69 31613163. 10.1093/jac/dku275 Nobari S. Shahcheraghi F. Rahmati Ghezelgeh F. Valizadeh B. (2014). Molecular characterization of carbapenem-resistant strains of Klebsiella pneumoniae isolated from Iranian patients: first identification of blaKPC gene in Iran. Microb. Drug Resist. 20 285293. 10.1089/mdr.2013.0074 Nordmann P. Cuzon G. Naas T. (2009). The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 9 228236. 10.1016/S1473-3099(09)70054-4 Nordmann P. Dortet L. Poirel L. (2012a). Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18 263272. 10.1016/j.molmed.2012.03.003 Nordmann P. Naas T. Poirel L. (2011a). Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17 17911798. 10.3201/eid1710.110655 Nordmann P. Poirel L. (2014). The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 20 821830. 10.1111/1469-0691.12719 Nordmann P. Poirel L. Dortet L. (2012b). Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 18 15031507. 10.3201/eid1809.120355 Nordmann P. Poirel L. Walsh T. R. Livermore D. M. (2011b). The emerging NDM carbapenemases. Trends Microbiol. 19 588595. 10.1016/j.tim.2011.09.005 Notomi T. Okayama H. Masubuchi H. Yonekawa T. Watanabe K. Amino N. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E63. 10.1093/nar/28.12.e63 Ocampo A. M. Chen L. Cienfuegos A. V. Roncancio G. Chavda K. D. Kreiswirth B. N. (2015). High frequency of non-CG258 clones of carbapenem-resistant Klebsiella pneumoniae with distinct clinical characteristics: a two-year surveillance in five Colombian tertiary care hospitals. Antimicrob. Agents Chemother. 60 332342. 10.1128/AAC.01775-15 Okeke I. N. Peeling R. W. Goossens H. Auckenthaler R. Olmsted S. S. de Lavison J. F. (2011). Diagnostics as essential tools for containing antibacterial resistance. Drug Resist. Updat. 14 95106. 10.1016/j.drup.2011.02.002 Osano E. Arakawa Y. Wacharotayankun R. Ohta M. Horii T. Ito H. (1994). Molecular characterization of an enterobacterial metallo β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob. Agents Chemother. 38 7178. 10.1128/AAC.38.1.71 Osterblad M. Hakanen A. J. Jalava J. (2014). Evaluation of the Carba NP test for carbapenemase detection. Antimicrob. Agents Chemother. 58 75537556. 10.1128/AAC.02761-13 Osterblad M. Kirveskari J. Hakanen A. J. Tissari P. Vaara M. Jalava J. (2012). Carbapenemase-producing Enterobacteriaceae in Finland: the first years (2008–2011). J. Antimicrob. Chemother. 67 28602864. 10.1093/jac/dks299 Oteo J. Hernandez J. M. Espasa M. Fleites A. Saez D. Bautista V. (2013a). Emergence of OXA-48-producing Klebsiella pneumoniae and the novel carbapenemases OXA-244 and OXA-245 in Spain. J. Antimicrob. Chemother. 68 317321. 10.1093/jac/dks383 Oteo J. Saez D. Bautista V. Fernandez-Romero S. Hernandez-Molina J. M. Perez-Vazquez M. (2013b). Carbapenemase-producing enterobacteriaceae in Spain in 2012. Antimicrob. Agents Chemother. 57 63446347. 10.1128/AAC.01513-13 Oteo J. Ortega A. Bartolome R. Bou G. Conejo C. Fernandez-Martinez M. (2015). Prospective multicenter study of carbapenemase-producing Enterobacteriaceae from 83 hospitals in Spain reveals high in vitro susceptibility to colistin and meropenem. Antimicrob. Agents Chemother. 59 34063412. 10.1128/AAC.00086-15 Palacios-Baena Z. R. Oteo J. Conejo C. Larrosa M. N. Bou G. Fernandez-Martinez M. (2016). Comprehensive clinical and epidemiological assessment of colonisation and infection due to carbapenemase-producing Enterobacteriaceae in Spain. J. Infect. 72 152160. 10.1016/j.jinf.2015.10.008 Pano-Pardo J. R. Ruiz-Carrascoso G. Navarro-San Francisco C. Gomez-Gil R. Mora-Rillo M. Romero-Gomez M. P. (2013). Infections caused by OXA-48-producing Klebsiella pneumoniae in a tertiary hospital in Spain in the setting of a prolonged, hospital-wide outbreak. J. Antimicrob. Chemother. 68 8996. 10.1093/jac/dks364 Pantel A. Richaud-Morel B. Cazaban M. Bouziges N. Sotto A. Lavigne J. P. (2016). Environmental persistence of OXA-48-producing Klebsiella pneumoniae in a French intensive care unit. Am. J. Infect. Control 44 366368. 10.1016/j.ajic.2015.09.021 Papadimitriou-Olivgeris M. Christofidou M. Fligou F. Bartzavali C. Vrettos T. Filos K. S. (2014). The role of colonization pressure in the dissemination of colistin or tigecycline resistant KPC-producing Klebsiella pneumoniae in critically ill patients. Infection 42 883890. 10.1007/s15010-014-0653-x Parisi S. G. Bartolini A. Santacatterina E. Castellani E. Ghirardo R. Berto A. (2015). Prevalence of Klebsiella pneumoniae strains producing carbapenemases and increase of resistance to colistin in an Italian teaching hospital from January 2012 To December 2014. BMC Infect. Dis. 15:244. 10.1186/s12879-015-0996-7 Park M. J. Kim T. K. Song W. Kim J. S. Kim H. S. Lee J. (2013). An Increase in the clinical isolation of acquired AmpC β-lactamase-producing Klebsiella pneumoniae in Korea from 2007 to 2010. Ann. Lab. Med. 33 353355. 10.3343/alm.2013.33.5.353 Partridge S. R. Ginn A. N. Wiklendt A. M. Ellem J. Wong J. S. Ingram P. (2015). Emergence of blaKPC carbapenemase genes in Australia. Int. J. Antimicrob. Agents 45 130136. 10.1016/j.ijantimicag.2014.10.006 Partridge S. R. Iredell J. R. (2012). Genetic contexts of blaNDM-1. Antimicrob. Agents Chemother. 56 60656067. 10.1128/AAC.00117-12 author reply 6071 Pasteran F. Albornoz E. Faccone D. Gomez S. Valenzuela C. Morales M. (2012). Emergence of NDM-1-producing Klebsiella pneumoniae in Guatemala. J. Antimicrob. Chemother. 67 17951797. 10.1093/jac/dks101 Pasteran F. Tijet N. Melano R. G. Corso A. (2015). Simplified protocol for carba NP Test for enhanced detection of carbapenemase producers directly from bacterial cultures. J. Clin. Microbiol. 53 39083911. 10.1128/JCM.02032-15 Pasteran F. G. Otaegui L. Guerriero L. Radice G. Maggiora R. Rapoport M. (2008). Klebsiella pneumoniae carbapenemase-2, buenos aires, argentina. Emerg. Infect. Dis. 14 11781180. 10.3201/eid1407.070826 Patel R. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin. Infect. Dis. 57 564572. 10.1093/cid/cit247 Peirano G. Ahmed-Bentley J. Fuller J. Rubin J. E. Pitout J. D. (2014). Travel-related carbapenemase-producing Gram-negative bacteria in Alberta, Canada: the first 3 years. J. Clin. Microbiol. 52 15751581. 10.1128/JCM.00162-14 Peirano G. Pillai D. R. Pitondo-Silva A. Richardson D. Pitout J. D. (2011). The characteristics of NDM-producing Klebsiella pneumoniae from Canada. Diagn. Microbiol. Infect. Dis. 71 106109. 10.1016/j.diagmicrobio.2011.06.013 Peirano G. Seki L. M. Val Passos V. L. Pinto M. C. Guerra L. R. Asensi M. D. (2009). Carbapenem-hydrolysing β-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro. Braz. J. Antimicrob. Chemother. 63 265268. 10.1093/jac/dkn484 Pena I. Picazo J. J. Rodriguez-Avial C. Rodriguez-Avial I. (2014). Carbapenemase-producing Enterobacteriaceae in a tertiary hospital in Madrid, Spain: high percentage of colistin resistance among VIM-1-producing Klebsiella pneumoniae ST11 isolates. Int. J. Antimicrob. Agents 43 460464. 10.1016/j.ijantimicag.2014.01.021 Pereira P. S. Borghi M. Albano R. M. Lopes J. C. Silveira M. C. Marques E. A. (2015). Coproduction of NDM-1 and KPC-2 in Enterobacter hormaechei from Brazil. Microb. Drug Resist. 21 234236. 10.1089/mdr.2014.0171 Perilli M. Bottoni C. Grimaldi A. Segatore B. Celenza G. Mariani M. (2013). Carbapenem-resistant Klebsiella pneumoniae harbouring blaKPC-3 and blaVIM-2 from central Italy. Diagn. Microbiol. Infect. Dis. 75 218221. 10.1016/j.diagmicrobio.2012.10.008 Pesesky M. W. Hussain T. Wallace M. Wang B. Andleeb S. Burnham C. A. (2015). KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. Emerg. Infect. Dis. 21 10341037. 10.3201/eid2106.141504 Peter H. Berggrav K. Thomas P. Pfeifer Y. Witte W. Templeton K. (2012). Direct detection and genotyping of Klebsiella pneumoniae carbapenemases from urine by use of a new DNA microarray test. J. Clin. Microbiol. 50 39903998. 10.1128/JCM.00990-12 Pfeifer Y. Schlatterer K. Engelmann E. Schiller R. A. Frangenberg H. R. Stiewe D. (2012). Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob. Agents Chemother. 56 21252128. 10.1128/AAC.05315-11 Picao R. C. Santos A. F. Nicoletti A. G. Furtado G. H. Gales A. C. (2010). Detection of GES-5-producing Klebsiella pneumoniae in Brazil. J. Antimicrob. Chemother. 65 796797. 10.1093/jac/dkq024 Pires J. Novais A. Peixe L. (2013). Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J. Clin. Microbiol. 51 42814283. 10.1128/JCM.01634-13 Pitart C. Sole M. Roca I. Fabrega A. Vila J. Marco F. (2011). First outbreak of a plasmid-mediated carbapenem-hydrolyzing OXA-48 β-lactamase in Klebsiella pneumoniae in Spain. Antimicrob. Agents Chemother. 55 43984401. 10.1128/AAC.00329-11 Pitout J. D. Nordmann P. Poirel L. (2015). Carbapenemase-Producing Klebsiella pneumoniae, a Key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 59 58735884. 10.1128/AAC.01019-15 Poirel L. Al Maskari Z. Al Rashdi F. Bernabeu S. Nordmann P. (2011a). NDM-1-producing Klebsiella pneumoniae isolated in the Sultanate of Oman. J. Antimicrob. Chemother. 66 304306. 10.1093/jac/dkq428 Poirel L. Benouda A. Hays C. Nordmann P. (2011b). Emergence of NDM-1-producing Klebsiella pneumoniae in Morocco. J. Antimicrob. Chemother. 66 27812783. 10.1093/jac/dkr384 Poirel L. Castanheira M. Carrer A. Rodriguez C. P. Jones R. N. Smayevsky J. (2011c). OXA-163, an OXA-48-related class D β-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 55 25462551. 10.1128/AAC.00022-11 Poirel L. Dortet L. Bernabeu S. Nordmann P. (2011d). Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55 54035407. 10.1128/AAC.00585-11 Poirel L. Fortineau N. Nordmann P. (2011e). International transfer of NDM-1-producing Klebsiella pneumoniae from Iraq to France. Antimicrob. Agents Chemother. 55 18211822. 10.1128/AAC.01761-10 Poirel L. Revathi G. Bernabeu S. Nordmann P. (2011f). Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob. Agents Chemother. 55 934936. 10.1128/AAC.01247-10 Poirel L. Schrenzel J. Cherkaoui A. Bernabeu S. Renzi G. Nordmann P. (2011g). Molecular analysis of NDM-1-producing enterobacterial isolates from Geneva, Switzerland. J. Antimicrob. Chemother. 66 17301733. 10.1093/jac/dkr174 Poirel L. Carbonnelle E. Bernabeu S. Gutmann L. Rotimi V. Nordmann P. (2012a). Importation of OXA-48-producing Klebsiella pneumoniae from Kuwait. J. Antimicrob. Chemother. 67 20512052. 10.1093/jac/dks167 Poirel L. Lascols C. Bernabeu S. Nordmann P. (2012b). NDM-1-producing Klebsiella pneumoniae in mauritius. Antimicrob. Agents Chemother. 56 598599. 10.1128/AAC.05639-11 Poirel L. Potron A. Nordmann P. (2012c). OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother. 67 15971606. 10.1093/jac/dks121 Poirel L. Heritier C. Podglajen I. Sougakoff W. Gutmann L. Nordmann P. (2003). Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV β-lactamase that compromises the efficacy of imipenem. Antimicrob. Agents Chemother. 47 755758. 10.1128/AAC.47.2.755-758.2003 Poirel L. Heritier C. Tolun V. Nordmann P. (2004). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48 1522. 10.1128/AAC.48.1.15-22.2004 Poirel L. Kieffer N. Nordmann P. (2016). In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 71 156161. 10.1093/jac/dkv294 Poirel L. Nordmann P. (2015). Rapidec carba NP Test for rapid detection of carbapenemase producers. J. Clin. Microbiol. 53 30033008. 10.1128/JCM.00977-15 Poirel L. Pitout J. D. Nordmann P. (2007). Carbapenemases: molecular diversity and clinical consequences. Future Microbiol. 2 501512. 10.2217/17460913.2.5.501 Poirel L. Yilmaz M. Istanbullu A. Arslan F. Mert A. Bernabeu S. (2014). Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit in Istanbul, Turkey. Antimicrob. Agents Chemother. 58 29292933. 10.1128/AAC.02047-13 Potron A. Nordmann P. Lafeuille E. Al Maskari Z. Al Rashdi F. Poirel L. (2011). Characterization of OXA-181, a carbapenem-hydrolyzing class D β-lactamase from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55 48964899. 10.1128/AAC.00481-11 Potron A. Poirel L. Nordmann P. (2014). Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob. Agents Chemother. 58 467471. 10.1128/AAC.01344-13 Potron A. Poirel L. Rondinaud E. Nordmann P. (2013). Intercontinental spread of OXA-48 β-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro. Surveill. 18:20549. 10.2807/1560-7917.ES2013.18.31.20549 Potron A. Schrenzel J. Poirel L. Renzi G. Cherkaoui A. Nordmann P. (2012). Emergence of OXA-48-producing Enterobacteriaceae in Switzerland. Int. J. Antimicrob. Agents 40 563564. 10.1016/j.ijantimicag.2012.07.003 Pournaras S. Poulou A. Tsakris A. (2010a). Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. J. Antimicrob. Chemother. 65 13191321. 10.1093/jac/dkq124 Pournaras S. Poulou A. Voulgari E. Vrioni G. Kristo I. Tsakris A. (2010b). Detection of the new metallo-β-lactamase VIM-19 along with KPC-2, CMY-2 and CTX-M-15 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 65 16041607. 10.1093/jac/dkq190 Qi Y. Wei Z. Ji S. Du X. Shen P. Yu Y. (2011). ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 66 307312. 10.1093/jac/dkq431 Qin S. Fu Y. Zhang Q. Qi H. Wen J. G. Xu H. (2014). High incidence and endemic spread of NDM-1-positive Enterobacteriaceae in Henan Province, China. Antimicrob. Agents Chemother. 58 42754282. 10.1128/AAC.02813-13 Quiles M. G. Rocchetti T. T. Fehlberg L. C. Kusano E. J. Chebabo A. Pereira R. M. (2015). Unusual association of NDM-1 with KPC-2 and armA among Brazilian Enterobacteriaceae isolates. Braz. J. Med. Biol. Res. 48 174177. 10.1590/1414-431X20144154 Quinones D. Hart M. Espinosa F. Garcia S. Carmona Y. Ghosh S. (2014). Emergence of Klebsiella pneumoniae clinical isolates producing KPC-2 carbapenemase in Cuba. New Microbes New Infect. 2 123126. 10.1002/nmi2.54 Rajabnia R. Asgharpour F. Ferdosi Shahandashti E. Moulana Z. (2015). Nosocomial emerging of (VIM1) carbapenemase-producing isolates of in North of Iran. Iran J. Microbiol. 7 8893. Rasheed J. K. Kitchel B. Zhu W. Anderson K. F. Clark N. C. Ferraro M. J. (2013). New Delhi metallo-β-lactamase-producing Enterobacteriaceae, United States. Emerg. Infect. Dis. 19 870878. 10.3201/eid1906.121515 Reddy A. K. Balne P. K. Reddy R. K. Mathai A. Kaur I. (2010). Development and evaluation of loop-mediated isothermal amplification assay for rapid and inexpensive detection of cytomegalovirus DNA in vitreous specimens from suspected cases of viral retinitis. J. Clin. Microbiol. 48 20502052. 10.1128/JCM.02248-09 Ribeiro S. M. de la Fuente-Nunez C. Baquir B. Faria-Junior C. Franco O. L. Hancock R. E. (2015). Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to b-lactam antibiotics. Antimicrob. Agents Chemother. 59 39063912. 10.1128/AAC.00092-15 Richter S. N. Frasson I. Bergo C. Parisi S. Cavallaro A. Palù G. (2011). Transfer of KPC-2 Carbapenemase from Klebsiella pneumoniae to Escherichia coli in a patient: first case in Europe. J. Clin. Microbiol. 49 20402042. 10.1128/JCM.00133-11 Richter S. N. Frasson I. Franchin E. Bergo C. Lavezzo E. Barzon L. (2012). KPC-mediated resistance in Klebsiella pneumoniae in two hospitals in Padua, Italy, June 2009-December 2011: massive spreading of a KPC-3-encoding plasmid and involvement of non-intensive care units. Gut Pathog. 4:7. 10.1186/1757-4749-4-7 Rimrang B. Chanawong A. Lulitanond A. Wilailuckana C. Charoensri N. Sribenjalux P. (2012). Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J. Antimicrob. Chemother. 67 26262630. 10.1093/jac/dks267 Robert J. Pantel A. Merens A. Lavigne J. P. Nicolas-Chanoine M. H. Group O. N. S. C. R. S. (2014). Incidence rates of carbapenemase-producing Enterobacteriaceae clinical isolates in France: a prospective nationwide study in 2011-12. J. Antimicrob. Chemother. 69 27062712. 10.1093/jac/dku208 Robustillo Rodela A. Diaz-Agero Perez C. Sanchez Sagrado T. Ruiz-Garbajosa P. Pita Lopez M. J. Monge V. (2012). Emergence and outbreak of carbapenemase-producing KPC-3 Klebsiella pneumoniae in Spain, September 2009 to February 2010: control measures. Euro. Surveill. 17:20086. Roche C. Cotter M. O Connell N. Crowley B. (2009). First identification of class A carbapenemase-producing Klebsiella pneumoniae in the Republic of Ireland. Euro. Surveill. 14:19163. Rock C. Thom K. A. Masnick M. Johnson J. K. Harris A. D. Morgan D. J. (2014). Frequency of Klebsiella pneumoniae carbapenemase (KPC)-producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infect. Control Hosp. Epidemiol. 35 426429. 10.1086/675598 Rodriguez-Avial I. Pena I. Picazo J. J. Rodriguez-Avial C. Culebras E. (2015). In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int. J. Antimicrob. Agents 46 616621. 10.1016/j.ijantimicag.2015.07.021 Rodriguez-Martinez J. M. Nordmann P. Fortineau N. Poirel L. (2010). VIM-19, a metallo-β-lactamase with increased carbapenemase activity from Escherichia coli and Klebsiella pneumoniae. Antimicrob. Agents Chemother. 54 471476. 10.1128/AAC.00458-09 Rojas L. J. Mojica M. F. Blanco V. M. Correa A. Montealegre M. C. De La Cadena E. (2013). Emergence of Klebsiella pneumoniae Coharboring KPC and VIM Carbapenemases in Colombia. Antimicrob. Agents Chemother. 57 11011102. 10.1128/AAC.01666-12 Rose W. E. Rybak M. J. (2006). Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy 26 10991110. 10.1592/phco.26.8.1099 Rosenblum R. Khan E. Gonzalez G. Hasan R. Schneiders T. (2011). Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 38 3945. 10.1016/j.ijantimicag.2011.02.012 Ruiz-Garbajosa P. Curiao T. Tato M. Gijon D. Pintado V. Valverde A. (2013). Multiclonal dispersal of KPC genes following the emergence of non-ST258 KPC-producing Klebsiella pneumoniae clones in Madrid, Spain. J. Antimicrob. Chemother. 68 24872492. 10.1093/jac/dkt237 Ruzin A. Visalli M. A. Keeney D. Bradford P. A. (2005). Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 49 10171022. 10.1128/AAC.49.3.1017-1022.2005 Saito R. Takahashi R. Sawabe E. Koyano S. Takahashi Y. Shima M. (2014). First report of KPC-2 Carbapenemase-producing Klebsiella pneumoniae in Japan. Antimicrob. Agents Chemother. 58 29612963. 10.1128/AAC.02072-13 Samuelsen O. Naseer U. Tofteland S. Skutlaberg D. H. Onken A. Hjetland R. (2009). Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J. Antimicrob. Chemother. 63 654658. 10.1093/jac/dkp018 Sattar H. Toleman M. Nahid F. Zahra R. (2014). Co-existence of blaNDM-1 and blaKPC-2 in clinical isolates of Klebsiella pneumoniae from Pakistan. J. Chemother. 10.1179/1973947814Y.0000000223 [Epub ahead of print] Sautrey G. Duval R. E. Chevalley A. Fontanay S. Clarot I. (2015). Capillary electrophoresis for fast detection of heterogeneous population in colistin-resistant Gram-negative bacteria. Electrophoresis 36 26302633. 10.1002/elps.201500064 Seara N. Oteo J. Carrillo R. Perez-Blanco V. Mingorance J. Gomez-Gil R. (2015). Interhospital spread of NDM-7-producing Klebsiella pneumoniae belonging to ST437 in Spain. Int. J. Antimicrob. Agents 46 169173. 10.1016/j.ijantimicag.2015.04.001 Seiffert S. N. Marschall J. Perreten V. Carattoli A. Furrer H. Endimiani A. (2014). Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int. J. Antimicrob. Agents 44 260262. 10.1016/j.ijantimicag.2014.05.008 Semin-Pelletier B. Cazet L. Bourigault C. Juvin M. E. Boutoille D. Raffi F. (2015). Challenges of controlling a large outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in a French university hospital. J. Hosp. Infect. 89 248253. 10.1016/j.jhin.2014.11.018 Shahcheraghi F. Nobari S. Rahmati Ghezelgeh F. Nasiri S. Owlia P. Nikbin V. S. (2013). First report of New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb. Drug Resist. 19 3036. 10.1089/mdr.2012.0078 Shanmugam P. Meenakshisundaram J. Jayaraman P. (2013). blaKPC gene detection in clinical isolates of carbapenem resistant enterobacteriaceae in a tertiary care hospital. J. Clin. Diagn. Res. 7 27362738. 10.7860/JCDR/2013/7759.3747 Shen P. Wei Z. Jiang Y. Du X. Ji S. Yu Y. (2009). Novel genetic environment of the carbapenem-hydrolyzing β-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob. Agents Chemother. 53 43334338. 10.1128/AAC.00260-09 Shibl A. Al-Agamy M. Memish Z. Senok A. Khader S. A. Assiri A. (2013). The emergence of OXA-48- and NDM-1-positive Klebsiella pneumoniae in Riyadh, Saudi Arabia. Int. J. Infect. Dis. 17:e11303. 10.1016/j.ijid.2013.06.016 Shin S. Y. Bae I. K. Kim J. Jeong S. H. Yong D. Kim J. M. (2012). Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J. Med. Microbiol. 61 239245. 10.1099/jmm.0.037036-0 Shoma S. Kamruzzaman M. Ginn A. N. Iredell J. R. Partridge S. R. (2014). Characterization of multidrug-resistant Klebsiella pneumoniae from Australia carrying blaNDM-1. Diagn. Microbiol. Infect. Dis. 78 9397. 10.1016/j.diagmicrobio.2013.08.001 Sidjabat H. E. Townell N. Nimmo G. R. George N. M. Robson J. Vohra R. (2015). Dominance of IMP-4-producing enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrob. Agents Chemother. 59 40594066. 10.1128/AAC.04378-14 Solanki R. Vanjari L. Ede N. Gungi A. Soory A. Vemu L. (2013). Evaluation of LAMP assay using phenotypic tests and conventional PCR for detection of blaNDM-1 and blaKPC genes among carbapenem-resistant clinical Gram-negative isolates. J. Med. Microbiol. 62 15401544. 10.1099/jmm.0.059907-0 Solanki R. Vanjari L. Subramanian S. B A. E N. Lakshmi V. (2014). Comparative evaluation of multiplex PCR and routine laboratory phenotypic methods for detection of carbapenemases among gram negative bacilli. J. Clin. Diagn. Res 8 DC23DC26. 10.7860/JCDR/2014/10794.5322 Sonnevend A. Al Baloushi A. Ghazawi A. Hashmey R. Girgis S. Hamadeh M. B. (2013). Emergence and spread of NDM-1 producer Enterobacteriaceae with contribution of IncX3 plasmids in the United Arab Emirates. J. Med. Microbiol. 62 10441050. 10.1099/jmm.0.059014-0 Sonnevend A. Ghazawi A. Darwish D. AlDeesi Z. Kadhum A. F. Pal T. (2015a). Characterization of KPC-type carbapenemase-producing Klebsiella pneumoniae strains isolated in the Arabian Peninsula. J. Antimicrob. Chemother. 70 15921593. 10.1093/jac/dku576 Sonnevend A. Ghazawi A. A. Hashmey R. Jamal W. Rotimi V. O. Shibl A. M. (2015b). Characterization of carbapenem-resistant enterobacteriaceae with high rate of autochthonous transmission in the Arabian Peninsula. PLoS ONE 10:e0131372. 10.1371/journal.pone.0131372 Spanu T. Fiori B. D’Inzeo T. Canu G. Campoli S. Giani T. (2012). Evaluation of the new NucliSENS EasyQ KPC test for rapid detection of Klebsiella pneumoniae carbapenemase genes (blaKPC). J. Clin. Microbiol. 50 27832785. 10.1128/JCM.00284-12 Spyropoulou A. Bartzavali C. Vamvakopoulou S. Marangos M. Anastassiou E. D. Spiliopoulou I. (2016). The first NDM Metallo-β-lactamase producing Klebsiella pneumoniae isolate in a University Hospital of Southwestern Greece. J. Chemother. 10.1179/1973947815Y.0000000003 [Epub ahead of print]. Steinmann J. Kaase M. Gatermann S. Popp W. Steinmann E. Damman M. (2011). Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro. Surveill. 16:19944. Stoesser N. Giess A. Batty E. M. Sheppard A. E. Walker A. S. Wilson D. J. (2014). Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob. Agents Chemother. 58 73477357. 10.1128/AAC.03900-14 Studentova V. Dobiasova H. Hedlova D. Dolejska M. Papagiannitsis C. C. Hrabak J. (2015). Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 59 13251328. 10.1128/AAC.04095-14 Sun Y. Cai Y. Liu X. Bai N. Liang B. Wang R. (2013). The emergence of clinical resistance to tigecycline. Int. J. Antimicrob. Agents 41 110116. 10.1016/j.ijantimicag.2012.09.005 Swayne R. Ellington M. J. Curran M. D. Woodford N. Aliyu S. H. (2013). Utility of a novel multiplex TaqMan PCR assay for metallo-β-lactamase genes plus other TaqMan assays in detecting genes encoding serine carbapenemases and clinically significant extended-spectrum β-lactamases. Int. J. Antimicrob. Agents 42 352356. 10.1016/j.ijantimicag.2013.06.018 Székely E. Damjanova I. Jánvári L. Vas K. E. Molnár S. Bilca D. V. (2013). First description of blaNDM-1, blaOXA-48, blaOXA-181 producing Enterobacteriaceae strains in Romania. Int. J. Med. Microbiol. 303 697700. 10.1016/j.ijmm.2013.10.001 Tada T. Miyoshi-Akiyama T. Dahal R. K. Mishra S. K. Ohara H. Shimada K. (2013). Dissemination of multidrug-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (NDM-1 and OXA-72) and 16S rRNA methylases (ArmA, RmtC and RmtF) in Nepal. Int. J. Antimicrob. Agents 42 372374. 10.1016/j.ijantimicag.2013.06.014 Tamayo M. Santiso R. Otero F. Bou G. Lepe J. A. McConnell M. J. (2013). Rapid determination of colistin resistance in clinical strains of Acinetobacter baumannii by use of the micromax assay. J. Clin. Microbiol. 51 36753682. 10.1128/JCM.01787-13 Tangden T. Giske C. G. (2015). Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J. Intern. Med. 277 501512. 10.1111/joim.12342 Tangden T. Hickman R. A. Forsberg P. Lagerback P. Giske C. G. Cars O. (2014). Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob. Agents Chemother. 58 17571762. 10.1128/AAC.00741-13 Tascini C. Tagliaferri E. Giani T. Leonildi A. Flammini S. Casini B. (2013). Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 57 39903993. 10.1128/AAC.00179-13 Temkin E. Adler A. Lerner A. Carmeli Y. (2014). Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann. N. Y. Acad. Sci. 1323 2242. 10.1111/nyas.12537 Teo J. W. P. Kurup A. Lin R. T. P. Hsien K. T. (2013). Emergence of clinical Klebsiella pneumoniae producing OXA-232 carbapenemase in Singapore. New Microbes New Infect. 1 1315. 10.1002/2052-2975.4 Thomas C. P. Moore L. S. Elamin N. Doumith M. Zhang J. Maharjan S. (2013). Early (2008–2010) hospital outbreak of Klebsiella pneumoniae producing OXA-48 carbapenemase in the UK. Int. J. Antimicrob. Agents 42 531536. 10.1016/j.ijantimicag.2013.08.020 Tijet N. Boyd D. Patel S. N. Mulvey M. R. Melano R. G. (2013). Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57 45784580. 10.1128/AAC.00878-13 Tofteland S. Naseer U. Lislevand J. H. Sundsfjord A. Samuelsen O. (2013). A long-term low-frequency hospital outbreak of KPC-producing Klebsiella pneumoniae involving Intergenus plasmid diffusion and a persisting environmental reservoir. PLoS ONE 8:e59015. 10.1371/journal.pone.0059015 Toledo P. V. Aranha Junior A. A. Arend L. N. Ribeiro V. Zavascki A. P. Tuon F. F. (2015). Activity of antimicrobial combinations against KPC-2-producing Klebsiella pneumoniae in a rat model and time-kill assay. Antimicrob. Agents Chemother. 59 43014304. 10.1128/AAC.00323-15 Toleman M. A. Spencer J. Jones L. Walsh T. R. (2012). blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56 27732776. 10.1128/AAC.06297-11 Tollentino F. M. Polotto M. Nogueira M. L. Lincopan N. Neves P. Mamizuka E. M. (2011). High prevalence of blaCTX-M extended spectrum β-lactamase genes in Klebsiella pneumoniae isolates from a tertiary care hospital: first report of blaSHV-12, blaSHV-31 blaSHV-38 and blaCTX-M-15 in Brazil. Microb. Drug Resist. 17 716. 10.1089/mdr.2010.0055 Toth A. Damjanova I. Puskas E. Janvari L. Farkas M. Dobak A. (2010). Emergence of a colistin-resistant KPC-2-producing Klebsiella pneumoniae ST258 clone in Hungary. Eur. J. Clin. Microbiol. Infect. Dis. 29 765769. 10.1007/s10096-010-0921-3 Tsai Y. K. Liou C. H. Fung C. P. Lin J. C. Siu L. K. (2013). Single or in combination antimicrobial resistance mechanisms of Klebsiella pneumoniae contribute to varied susceptibility to different carbapenems. PLoS ONE 8:e79640. 10.1371/journal.pone.0079640 Tsakris A. Kristo I. Poulou A. Markou F. Ikonomidis A. Pournaras S. (2008). First occurrence of KPC-2-possessing Klebsiella pneumoniae in a Greek hospital and recommendation for detection with boronic acid disc tests. J. Antimicrob. Chemother. 62 12571260. 10.1093/jac/dkn364 Tsakris A. Poulou A. Bogaerts P. Dimitroulia E. Pournaras S. Glupczynski Y. (2015). Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J. Clin. Microbiol. 53 12451251. 10.1128/JCM.03318-14 Tsakris A. Poulou A. Pournaras S. Voulgari E. Vrioni G. Themeli-Digalaki K. (2010). A simple phenotypic method for the differentiation of metallo-β-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J. Antimicrob. Chemother. 65 16641671. 10.1093/jac/dkq210 Tseng I. L. Liu Y. M. Wang S. J. Yeh H. Y. Hsieh C. L. Lu H. L. (2015). Emergence of carbapenemase producing Klebsiella pneumoniae and spread of KPC-2 and KPC-17 in Taiwan: a nationwide study from 2011 to 2013. PLoS ONE 10:e0138471. 10.1371/journal.pone.0138471 Tumbarello M. Trecarichi E. M. De Rosa F. G. Giannella M. Giacobbe D. R. Bassetti M. (2015). Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 70 21332143. 10.1093/jac/dkv086 Tumbarello M. Viale P. Viscoli C. Trecarichi E. M. Tumietto F. Marchese A. (2012). Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin. Infect. Dis. 55 943950. 10.1093/cid/cis588 Tzouvelekis L. S. Markogiannakis A. Piperaki E. Souli M. Daikos G. L. (2014). Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect. 20 862872. 10.1111/1469-0691.12697 Tzouvelekis L. S. Miriagou V. Kotsakis S. D. Spyridopoulou K. Athanasiou E. Karagouni E. (2013). KPC-producing, multidrug-resistant Klebsiella pneumoniae sequence type 258 as a typical opportunistic pathogen. Antimicrob. Agents Chemother. 57 51445146. 10.1128/AAC.01052-13 Vaara M. (2010). Polymyxins and their novel derivatives. Curr. Opin. Microbiol. 13 574581. 10.1016/j.mib.2010.09.002 van der Zwaluw K. de Haan A. Pluister G. N. Bootsma H. J. de Neeling A. J. Schouls L. M. (2015). The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS ONE 10:e0123690. 10.1371/journal.pone.0123690 Vasoo S. Cunningham S. A. Kohner P. C. Simner P. J. Mandrekar J. N. Lolans K. (2013). Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J. Clin. Microbiol. 51 30973101. 10.1128/JCM.00965-13 Villa L. Poirel L. Nordmann P. Carta C. Carattoli A. (2012). Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. J. Antimicrob. Chemother. 67 16451650. 10.1093/jac/dks114 Villegas M. V. Lolans K. Correa A. Suarez C. J. Lopez J. A. Vallejo M. (2006). First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob. Agents Chemother. 50 28802882. 10.1128/AAC.00186-06 Virgincar N. Iyer S. Stacey A. Maharjan S. Pike R. Perry C. (2011). Klebsiella pneumoniae producing KPC carbapenemase in a district general hospital in the UK. J. Hosp. Infect. 78 293296. 10.1016/j.jhin.2011.03.016 Voulgari E. Gartzonika C. Vrioni G. Politi L. Priavali E. Levidiotou-Stefanou S. (2014). The balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J. Antimicrob. Chemother. 69 20912097. 10.1093/jac/dku105 Voulgari E. Zarkotou O. Ranellou K. Karageorgopoulos D. E. Vrioni G. Mamali V. (2013). Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J. Antimicrob. Chemother. 68 8488. 10.1093/jac/dks356 Vourli S. Giakkoupi P. Miriagou V. Tzelepi E. Vatopoulos A. C. Tzouvelekis L. S. (2004). Novel GES/IBC extended-spectrum β-lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol. Lett. 234 209213. 10.1016/j.femsle.2004.03.028 Vrioni G. Daniil I. Voulgari E. Ranellou K. Koumaki V. Ghirardi S. (2012). Comparative evaluation of a prototype chromogenic medium (ChromID CARBA) for detecting carbapenemase-producing Enterobacteriaceae in surveillance rectal swabs. J. Clin. Microbiol. 50 18411846. 10.1128/JCM.06848-11 Wachino J. Yamane K. Suzuki S. Kimura K. Arakawa Y. (2010). Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob. Agents Chemother. 54 30613064. 10.1128/AAC.01834-09 Wailan A. M. Paterson D. L. Kennedy K. Ingram P. R. Bursle E. Sidjabat H. E. (2015). Genomic characteristics of NDM-producing Enterobacteriaceae in Australia and their blaNDM genetic contexts. Antimicrob. Agents Chemother. 60 136141. 10.1128/AAC.01243-15 Wang D. Chen J. Yang L. Mou Y. Yang Y. (2014a). Phenotypic and enzymatic comparative analysis of the KPC variants, KPC-2 and its recently discovered variant KPC-15. PLoS ONE 9:e111491. 10.1371/journal.pone.0111491 Wang D. Hou W. Chen J. Mou Y. Yang L. Yang L. (2014b). Characterization of the blaKPC-2 and blaKPC-3 genes and the novel blaKPC-15 gene in Klebsiella pneumoniae. J. Med. Microbiol. 63 981987. 10.1099/jmm.0.073841-0 Wang L. Gu H. Lu X. (2012). A rapid low-cost real-time PCR for the detection of Klebsiella pneumoniae carbapenemase genes. Ann. Clin. Microbiol. Antimicrob. 11:9. 10.1186/1476-0711-11-9 Wang P. Chen S. Guo Y. Xiong Z. Hu F. Zhu D. (2011). Occurrence of false positive results for the detection of carbapenemases in carbapenemase-negative Escherichia coli and Klebsiella pneumoniae isolates. PLoS ONE 6:e26356. 10.1371/journal.pone.0026356 Wang X. D. Cai J. C. Zhou H. W. Zhang R. Chen G. X. (2009). Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated β-lactamase production and OmpK36 porin deficiency. J. Med. Microbiol. 58(Pt 9), 11961202. 10.1099/jmm.0.008094-0 Wang X. Chen G. Wu X. Wang L. Cai J. Chan E. W. (2015). Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the blaNDM-1 element and clonal spread of progenitor resistant strains. Front. Microbiol. 6:595. 10.3389/fmicb.2015.00595 Wang X. Li H. Zhao C. Chen H. Liu J. Wang Z. (2014c). Novel NDM-9 metallo-β-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. Int. J. Antimicrob. Agents 44 9091. 10.1016/j.ijantimicag.2014.04.010 Wang X. Xu X. Li Z. Chen H. Wang Q. Yang P. (2014d). An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microb. Drug Resist. 20 144149. 10.1089/mdr.2013.0100 Wang X. Zhang F. Zhao C. Wang Z. Nichols W. W. Testa R. (2014e). In vitro activities of ceftazidime-avibactam and aztreonam-avibactam against 372 Gram-negative bacilli collected in 2011 and 2012 from 11 teaching hospitals in China. Antimicrob. Agents Chemother. 58 17741778. 10.1128/AAC.02123-13 Warburg G. Hidalgo-Grass C. Partridge S. R. Tolmasky M. E. Temper V. Moses A. E. (2012). A carbapenem-resistant Klebsiella pneumoniae epidemic clone in Jerusalem: sequence type 512 carrying a plasmid encoding aac(6’)-Ib. J. Antimicrob. Chemother. 67 898901. 10.1093/jac/dkr552 Wendt C. Schutt S. Dalpke A. H. Konrad M. Mieth M. Trierweiler-Hauke B. (2010). First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur. J. Clin. Microbiol. Infect. Dis. 29 563570. 10.1007/s10096-010-0896-0 Weterings V. Zhou K. Rossen J. W. van Stenis D. Thewessen E. Kluytmans J. (2015). An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur. J. Clin. Microbiol. Infect. Dis. 34 16471655. 10.1007/s10096-015-2401-2 Willemse-Erix D. Bakker-Schut T. Slagboom-Bax F. Jachtenberg J. W. Lemmens-den Toom N. Papagiannitsis C. C. (2012). Rapid typing of extended-spectrum β-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolates by use of SpectraCell RA. J. Clin. Microbiol. 50 13701375. 10.1128/JCM.05423-11 Williamson D. A. Heffernan H. Sidjabat H. Roberts S. A. Paterson D. Smith L. M. (2011). Intercontinental transfer of OXA-181-producing Klebsiella pneumoniae into New Zealand. J. Antimicrob. Chemother. 66 28882890. 10.1093/jac/dkr396 Williamson D. A. Sidjabat H. E. Freeman J. T. Roberts S. A. Silvey A. Woodhouse R. (2012). Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int. J. Antimicrob. Agents 39 529533. 10.1016/j.ijantimicag.2012.02.017 Wiskirchen D. E. Nordmann P. Crandon J. L. Nicolau D. P. (2013). Efficacy of humanized carbapenem exposures against New Delhi metallo-β-lactamase (NDM-1)-producing enterobacteriaceae in a murine infection model. Antimicrob. Agents Chemother. 57 39363940. 10.1128/AAC.00708-13 Wiskirchen D. E. Nordmann P. Crandon J. L. Nicolau D. P. (2014a). Efficacy of humanized carbapenem and ceftazidime regimens against Enterobacteriaceae producing OXA-48 carbapenemase in a murine infection model. Antimicrob. Agents Chemother. 58 16781683. 10.1128/AAC.01947-13 Wiskirchen D. E. Nordmann P. Crandon J. L. Nicolau D. P. (2014b). In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 58 16711677. 10.1128/AAC.01946-13 Wolter D. J. Kurpiel P. M. Woodford N. Palepou M. F. Goering R. V. Hanson N. D. (2009). Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob. Agents Chemother. 53 557562. 10.1128/AAC.00734-08 Woodford N. Tierno P. M. Jr. Young K. Tysall L. Palepou M. F. I. Ward E. (2004). Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class a β-Lactamase, KPC-3, in a New York medical center. Antimicrob. Agents Chemother. 48 47934799. 10.1128/AAC.48.12.4793-4799.2004 Woodford N. Zhang J. Warner M. Kaufmann M. E. Matos J. Macdonald A. (2008). Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J. Antimicrob. Chemother. 62 12611264. 10.1093/jac/dkn396 Wrenn C. O’Brien D. Keating D. Roche C. Rose L. Ronayne A. (2014). Investigation of the first outbreak of OXA-48-producing Klebsiella pneumoniae in Ireland. J. Hosp. Infect. 87 4146. 10.1016/j.jhin.2014.03.001 Xiang D. R. Li J. J. Sheng Z. K. Yu H. Y. Deng M. Bi S. (2015). Complete sequence of a novel IncR-F33:A-:B- Plasmid, pKP1034, Harboring fosA3 blaKPC-2 blaCTX-M-65 blaSHV-12 and rmtB from an epidemic Klebsiella pneumoniae Sequence Type 11 Strain in China. Antimicrob. Agents Chemother. 60 13431348. 10.1128/AAC.01488-15 Yamamoto T. Takano T. Fusegawa T. Shibuya T. Hung W. C. Higuchi W. (2013). Electron microscopic structures, serum resistance, and plasmid restructuring of New Delhi metallo-β-lactamase-1 (NDM-1)-producing ST42 Klebsiella pneumoniae emerging in Japan. J. Infect. Chemother. 19 118127. 10.1007/s10156-012-0470-z Yan Y. Yang H. Pan L. Sun K. Fan H. Lu Y. (2014). Improving the efficiency of the modified Hodge test in KPC-producing Klebsiella pneumoniae isolates by incorporating an EDTA disk. Curr. Microbiol. 69 4752. 10.1007/s00284-014-0552-5 Yang J. Ye L. Guo L. Zhao Q. Chen R. Luo Y. (2013). A nosocomial outbreak of KPC-2-producing Klebsiella pneumoniae in a Chinese hospital: dissemination of ST11 and emergence of ST37, ST392 and ST395. Clin. Microbiol. Infect. 19 E509E515. 10.1111/1469-0691.12275 Yigit H. Queenan A. M. Anderson G. J. Domenech-Sanchez A. Biddle J. W. Steward C. D. (2001). Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45 11511161. 10.1128/AAC.45.4.1151-1161.2001 Yong D. Toleman M. A. Giske C. G. Cho H. S. Sundman K. Lee K. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53 50465054. 10.1128/AAC.00774-09 Yoo J. S. Kim H. M. Yoo J. I. Yang J. W. Kim H. S. Chung G. T. (2013). Detection of clonal KPC-2-producing Klebsiella pneumoniae ST258 in Korea during nationwide surveillance in 2011. J. Med. Microbiol. 62 13381342. 10.1099/jmm.0.059428-0 Yu W. L. Lee M. F. Tang H. J. Chang M. C. Walther-Rasmussen J. Chuang Y. C. (2015). Emergence of KPC new variants (KPC-16 and KPC-17) and ongoing outbreak in southern Taiwan. Clin. Microbiol. Infect. 21 375.e5375.e8. 10.1016/j.cmi.2014.11.030 Yusuf E. Van Der Meeren S. Schallier A. Pierard D. (2014). Comparison of the Carba NP test with the Rapid CARB screen Kit for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 33 22372240. 10.1007/s10096-014-2199-3 Zagorianou A. Sianou E. Iosifidis E. Dimou V. Protonotariou E. Miyakis S. (2012). Microbiological and molecular characteristics of carbapenemase-producing Klebsiella pneumoniae endemic in a tertiary Greek hospital during 2004-2010. Euro. Surveill. 17:20088. Zaidi A. K. Huskins W. C. Thaver D. Bhutta Z. A. Abbas Z. Goldmann D. A. (2005). Hospital-acquired neonatal infections in developing countries. Lancet 365 11751188. 10.1016/S0140-6736(05)71881-X Zarfel G. Hoenigl M. Wurstl B. Leitner E. Salzer H. J. Valentin T. (2011). Emergence of carbapenem-resistant Enterobacteriaceae in Austria, 2001-2010. Clin. Microbiol. Infect. 17 E5E8. 10.1111/j.1469-0691.2011.03659.x Zhang X. Li X. Wang M. Yue H. Li P. Liu Y. (2015). Outbreak of NDM-1-producing Klebsiella pneumoniae causing neonatal infection in a teaching hospital in mainland China. Antimicrob. Agents Chemother. 59 43494351. 10.1128/AAC.03868-14 Zhang Y. Jiang X. Wang Y. Li G. Tian Y. Liu H. (2014). Contribution of β-lactamases and porin proteins OmpK35 and OmpK36 to carbapenem resistance in clinical isolates of KPC-2-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 58 12141217. 10.1128/AAC.02045-12 Zhong X. Xu H. Chen D. Zhou H. Hu X. Cheng G. (2014). First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS ONE 9:e115185. 10.1371/journal.pone.0115185 Zowawi H. M. Forde B. M. Alfaresi M. Alzarouni A. Farahat Y. Chong T. M. (2015). Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae. Sci. Rep. 5:15082. 10.1038/srep15082 Zowawi H. M. Sartor A. L. Balkhy H. H. Walsh T. R. Al Johani S. M. AlJindan R. Y. (2014). Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf cooperation council: dominance of OXA-48 and NDM producers. Antimicrob. Agents Chemother. 58 30853090. 10.1128/AAC.02050-13 Zujic Atalic V. Bedenic B. Kocsis E. Mazzariol A. Sardelic S. Barisic M. (2014). Diversity of carbapenemases in clinical isolates of Enterobacteriaceae in Croatia–the results of a multicentre study. Clin. Microbiol. Infect. 20 O894O903. 10.1111/1469-0691.12635
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jqrzg.com.cn
      www.foncti.org.cn
      luhuaji.org.cn
      www.krdxnp.com.cn
      www.fzzuro.com.cn
      pinlaser.com.cn
      tzddn.net.cn
      rschain.com.cn
      www.mnsfbd.com.cn
      www.nmgqzgwy.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p