Front. Med.Frontiers in MedicineFront. Med.2296-858XFrontiers Media S.A.10.3389/fmed.2020.558696MedicinePerspectivePressure Injury Prevention in COVID-19 Patients With Acute Respiratory Distress SyndromeTeamVictoria12*TeamLydia34JonesAngela2TeedeHelena2WellerCarolina D.11Monash Nursing and Midwifery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia2Monash Partners Academic Health Science Centre, Clayton, VIC, Australia3Monash Health, Clayton, VIC, Australia4School of Nursing and Midwifery, Deakin University, Melbourne, VIC, Australia
Edited by: Ata Murat Kaynar, University of Pittsburgh, United States
Reviewed by: Eizo Watanabe, Chiba University, Japan; Reed F. Johnson, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), United States
*Correspondence: Victoria Team victoria.team@monash.edu
This article was submitted to Intensive Care Medicine and Anesthesiology, a section of the journal Frontiers in Medicine
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in China in December 2019 and became a pandemic in a short period of time. While most infected people might have mild symptoms, older people and people with chronic illnesses may develop acute respiratory distress syndrome (ARDS). Patients with ARDS with worsening hypoxemia require prone positioning to improve the respiratory mechanics and oxygenation. Intubated patients may stay in a prone position up to 12–16 h, increasing the risk of pressure injury (PI). Frequent skin inspections and PI risk assessment in COVID-19 patients will be challenging due to hospital infection control measures aimed to reduce the risk for health professionals. In this perspective article, we summarize the best practice recommendations for prevention of PI in SARS-CoV-2-infected ARDS patients in prone positioning. Prior to positioning patients in prone position, the main recommendations are to (1) conduct a skin assessment, (2) use pressure redistribution devices, (3) select an appropriate mattress or an overlay, (4) ensure that the endotracheal tube securing device is removed and the endotracheal tube is secured with tapes, (5) use a liquid film-forming protective dressing, and (6) lubricate the eyes and tape them closed. Once a patient is in prone position, it is recommended to (1) use the swimmer's position, (2) reposition the patient every 2 h, and (3) keep the skin clean. When the patient is repositioned to supine position, healthcare professionals are advised to (1) assess the pressure points and (2) promote early mobilization.
acute respiratory distress syndromeCOVID-19guidelinesintensive carepressure injurypressure pointsprone positioningventilationMedical Research Future FundDepartment of Health and Ageing, Australian Government10.13039/501100001027
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in China in December 2019 and rapidly became a pandemic (1, 2). While most infected people have mild symptoms, older people and people with chronic illnesses may become critically ill and develop viral pneumonia and acute respiratory distress syndrome (ARDS) (3–5), requiring admission to an intensive care unit (ICU) (6). The pathophysiology of SARS-CoV-2 ARDS differs from that of the typical ARDS (7). The pathophysiological mechanism of COVID-19-related ARDS is pulmonary micro-thrombosis (8). The results of lung and skin biopsy of critically ill SARS-CoV-2-infected patients demonstrated generalized thrombotic microvascular injury (7). SARS-CoV-2 infection results in cytokine storm and a local and systemic inflammatory response syndrome leading to macro- and microthrombosis (8, 9). The three factors of Virchow's triad—reduced blood flow, endothelial injury, and hypercoagulability—increase the risk of thrombosis in severe COVID-19 patients (8).
Most ICU-admitted COVID-19 patients need non-invasive ventilation, a non-rebreathing mask, and prone positioning to increase oxygen delivery (10) as well as high-flow nasal oxygen through specialized nasal cannula in negative-pressure rooms (11). Up to 5% of COVID-19 patients with ARDS may require endotracheal intubation (12, 13). In general, patients with ARDS of any etiology with worsening hypoxemia (PaO2:FiO2 < 100–150 mmHg, FiO2 ≥ 0.6, PEEP ≥ 10 cm of water, and tidal volume of 6 ml/kg of predicted body weight) require prone positioning to improve the respiratory mechanics, improve oxygenation, and offload the weight of the heart (14, 15). When applied early (usually 12 to 24 h after the initiation of mechanical ventilation) with other lung-protective strategies and adopted for a prolonged period, the prone position is associated with reduced mortality, particularly in patients with severe hypoxemia (16–18).
Prone positioning was reported in the management of ARDS in critically ill patients with severe acute respiratory syndrome (SARS) (19) and Middle East respiratory syndrome (MERS) (20) coronavirus infections and is used to manage ARDS in COVID-19 patients (12). Initially, it was found to be effective in one small-scale study of 52 critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China (21), with further anecdotal evidence from day-to-day clinical practice in ICU. A recent small-scale study (22) on the use of prone positioning in non-intubated patients with COVID-19 and hypoxemic acute respiratory failure in Turkey, managed outside the ICU, reported that oxygenation increased in only a quarter of patients and was not sustained in half of those after resupination. Self-proning of COVID-19 patients is increasingly used in several countries and has become a standard treatment in the management of ARDS patients with hypoxia (23). With some precautions, prone positioning is used in the management of COVID-19-related ARDS in pregnant women (24). A case report from Japan suggests that, although prone positioning may mitigate hypoxemia, its role in reducing mortality in COVID-19 patients with ARDS is unclear, particularly in patients with a secondary superinfection (25), which is often associated with sepsis, shock, and multiple organ failure (26).
The intubated patients may remain in a prone position up to 16 h per day, alternating with 8 h in supine position (27). Prone positioning increases the risk of developing hospital-acquired pressure injury (HAPI) (16, 28), and this risk is higher when compared to the supine position (29). A Wuhan study reported that the mean hospital stay of COVID-19 patients with pneumonia was 22 days (5); prolonged ICU admission (30) and increased hospital stay (31) are independent risk factors for the development of HAPI.
While the studies reporting HAPI incidence in COVID-19 ARDS patients have not yet been published, individual case reports have reported that patients cared in prone position are at risk of developing multiple severe device-related PI on their face, requiring a consultation and an intervention by plastic surgeons (32). Furthermore, diarrhea is a common gastrointestinal feature in COVID-19 patients (33, 34), and in addition to other risk factors, such as immobility and reduced perfusion, diarrhea may contribute to the development of incontinence-associated dermatitis and a pressure injury in the sacral area (35). This risk is even higher in older patients with COVID-19 ARDS and requires immediate attention (36).
Repositioning and pressure relief are important strategies to reduce the risk (37). However, clinical experience reports the need to involve up to seven people to reposition the intubated patient. Frequent skin inspections and risk assessment in COVID-19 patients could be challenging due to hospital infection control measures aimed to reduce the risk for health professionals working in ICU (11, 38).
In general, there is a global health professional knowledge deficit on PI prevention, with early detection (39–45) and standard preventive interventions recommended in clinical practice guidelines not fully implemented (46) in the context of COVID-19 clinical care. Health professionals may lack awareness of pressure points typical for patients in prone position and may have misconceptions related to the specific equipment required for prone positioning (47). In this perspective article, we summarize the best recommendations for the prevention of PI in SARS-CoV-2-infected ARDS patients in prone position.
Prone Position: Pressure Injury Prevention
The latest version of Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline, International Version (37) acknowledges evidence derived from one low-quality study (29), indicating that prone positioning is associated with a higher incidence of HAPI compared with supine positioning. The reported incidence of HAPI is said to be 5 to 15% as derived from low- and moderate-quality studies (48–50). The main recommendation is to avoid the extended use of prone positioning unless required for the management of a medical condition ((37), p. 126). However, COVID-19 ARDS management requires prone positioning for extended periods of time, and therefore, using appropriate support surfaces and pillows and patient repositioning as soon as feasible are key preventive strategies recommended by the guidelines (37). Facial pillows and chest padding can be used to redistribute pressure. The main pressure points in the prone position are the forehead, chin, cheeks, shoulder (anterior), elbow, chest (breasts), genitalia (particularly male), anterior pelvic bones (iliac crests and ischium), knees (patella), dorsal feet and toes, and nose (if positioned incorrectly), which should be inspected as soon as feasible ((37), p. 139), especially if supplies of personal protective equipment are limited.
According to the guidelines ((37), p. 126), the implementation strategies for HAPI prevention in the prone position include the following:
Use of pressure redistribution support surface or positioning devices to offload pressure points on the face and the body,
Checking for uneven pressure redistribution, focusing on main pressure points unique to prone position, and positioning of medical devices,
Use of additional PI preventive strategies, including prophylactic silicone dressings over the bony prominences and under medical devices,
Assessing the face and body areas in the main pressure points at each rotation.
A recent review (51) of PI prevention in non-COVID-19 patients, placed in prone position, reported that the main preventive strategies include (1) conducting a skin assessment before proning and following repositioning to the supine position, (2) keeping the skin clean and moisturized, (3) repositioning to offload pressure points on the face and the body, (4) use of positioning devices, and (5) application of dressings, such as hydrocolloids, transparent film, and silicone, to decrease facial skin breakdown (51). Practical suggestions provided by Wounds International (52) include the need to (1) protect bony prominences on the front of the body prior to prone positioning, (2) lubricate the eyes and tape them closed, (3) select an appropriate mattress or an overlay, (4) ensure that the endotracheal tube securing devices are removed—the endotracheal tube should be secured with tapes with the help of a respiratory therapist, (5) ensure the use of liquid film-forming dressing such as SKIN-PREP to decrease trauma on removal, and (6) place the patient's face in swimmer's position when prone, i.e., turn the face to the side toward a flexed arm and put the other arm behind the patient. The swimmer's position allows movement of the head and the endotracheal tube (and a nasogastric tube) at the same time, which should be done every 2 h.
We have summarized the main points of PI prevention in patients in prone position in the infographic (Figure 1).
COVID-19. Pressure Injury prevention in ARDS patients in prone position. Infographic.
Finally, considering the pathophysiology of SARS-CoV-2 in relation to severe thrombosis (7, 8), patient repositioning as well as early mobilization should be prioritized. Specific guidelines with detailed instructions on how to prepare patients in prone position for care and how to reposition in the supine position are available for intensive care units (15, 53).
The patient's position and the duration in prone position need to be well-documented. Repositioning of unconscious patients into a prone position should be conducted by a team of at least four health professionals, following individual hospital policies, standard safety practices (37), and COVID-19 occupational safety guidelines. PI management relies on team work (37), and the assistance of other team members may be required (54), which should be arranged according to the risk mitigation strategies for health professionals (55).
The main routes of occupational SARS-Cov-2 transmission for health professionals include droplets, airborne transmission, especially during invasive respiratory procedures, and contact transmission (26). In addition to standard measures, health professionals should apply contact and droplet precautions and airborne precautions for aerosol-generating procedures to mitigate the risk of SARS-Cov-2 transmission (56). The main risk mitigation strategies for health professionals (Table 1) include the need to be trained in fastidiously applying, wearing, and removing personal protective equipment, which prevents droplets, contact, and airborne transmission; to perform aerosol-generating procedures in a well-ventilated environment, preferably in a negative-pressure room; to allocate a team of healthcare workers to care exclusively for suspected/confirmed cases; and to limit the number of healthcare workers present in the room to the absolute minimum required for the patient's care and support (56).
• use a medical mask • wear eye or facial protection (goggles or face shield) • wear a clean, non-sterile, long-sleeved gown • use gloves • remove and dispose of all personal protective equipment appropriately • maintain hand hygiene • use a new set of personal protective equipment when care is given to a different patient • refrain from touching face with potentially contaminated gloved or bare hands
Equipment-related precautions
• use either single-use and disposable or dedicated equipment (e.g., thermometers, stethoscopes, and blood pressure cuffs) • if shared among patients, clean and disinfect equipment between use for each individual patient (e.g., ethyl alcohol 70%) • use designated portable X-ray or other diagnostic equipment
Engineering and environment-related precautions
• place patients in adequately ventilated single rooms (60 L/s per patient) • group patients together when single rooms are not available • ensure patients' beds are placed at least 1 meter apart regardless of the suspected COVID-19 diagnosis • clean and disinfect surfaces with which the patient is in contact
Patient transporting precautions
• avoid moving and transporting patients unless medically necessary • use predetermined transport routes to minimize exposure for staff, other patients and visitors, and have the patient wear a medical mask • ensure that health care workers transporting patients wear appropriate personal protective equipment and perform hand hygiene • notify the area receiving the patient of any necessary precautions as early as possible prior to their arrival
Administrative measures
• where possible, designate a team of health care workers to care exclusively for suspected/confirmed cases to reduce the risk of COVID-19 transmission • limit the number of staff, family members, and visitors who are in contact with suspected/confirmed COVID-19 patients • maintain a record of all people entering a patient's room
Airborne precautions for aerosol-generating procedures
Personal protective measures
• use a particulate respirator approved by country-specific occupational safety and health standard • perform the seal check, if you use a disposable particulate respirator • note that facial hair may prevent a proper respirator fit • use eye protection (i.e., goggles or a face shield) • wear a clean, non-sterile, long-sleeved gown and gloves • wear a waterproof apron, if a gown is not fluid-resistant
Engineering and environment-related precautions
• perform procedures in an adequately ventilated room (“natural ventilation with air flow of minimum 160 L/s per patient or in negative pressure rooms with at least 12 air changes per hour and controlled direction of airflow when using mechanical ventilation”)
Administrative measures
• limit the number of health professionals present in the room to the absolute minimum required for the patient's care and support
These precautions were adapted from the World Health Organization Infection prevention and control during health care when COVID-19 is suspected. Interim guidance. 19 March 2020.
Discussion
Prone positioning may be effective in the management of SARS-CoV-2 ARDS (10), although this position is associated with an increased risk of HAPI (28). HAPI is a well-known indicator of the quality of care in acute settings (57). Patient influx coupled with a shortage of nursing staff and related caregiver fatigue may influence the quality of care. Preventable PI in acute care can interfere with the patients' recovery, can increase hospital stay, and may contribute to death from PI complications, such us osteomyelitis and sepsis (58). Stages III and IV PI are frequently colonized with methicillin-resistant Staphylococcus aureus (59) and multi-resistant Gram-negative bacilli (60), which increase the risk of bacteremia (58) and associated mortality (61). We have discussed the main recommendations for PI prevention in COVID-related ARDS patients in prone position from the latest version of Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline, International Version (37) and included practical suggestions from the field. In summary, they include specific recommendations for the preparatory stage, care in prone position, and care after repositioning in supine position.
Prior to positioning patients in prone position, the main recommendations are to (1) conduct a skin assessment, (2) use pressure redistribution devices to offload pressure from bony prominences, (3) select an appropriate mattress or an overlay, (4) ensure that the endotracheal tube securing device is removed and that the endotracheal tube is secured with tapes, (5) use a liquid film-forming protective dressing, and (6) lubricate the eyes and tape them closed.
Once the patient is prone, it is recommended to (1) use the “swimmer's position,” i.e., turn the face on the side toward a flexed arm and put the other arm behind the patient, (2) reposition the patient every 2 h, i.e., turn the patient's face to the left and lift the left arm if their face was positioned to the right and their right hand was extended, and (3) keep the skin clean.
When the patient is repositioned to supine position, health care professionals are advised to (1) assess the pressure points and (2) promote early mobilization.
The management of PIs is costly to health systems (62–67). Studies show that PI prevention is more cost-effective than treatment (68). Prevention of HAPI in COVID-19 patients would help to avoid additional financial burden to an increasingly drained health system (69–71), particularly in countries significantly impacted by the COVID-19 outbreak (72). In order to preserve healthcare resources and to ensure adequate hospital capacity for the management of COVID-19 patients, many countries have deferred elective surgeries (73–77) and extended elective surgery waiting time. When the restrictions on elective surgeries are lifted, a sizable proportion of hospital beds might be occupied by COVID-19 patients requiring HAPI care if the preventive practices were suboptimal, given that patients with HAPIs have longer adjusted length of hospital stay (63). In addition to health system costs, there are extreme human costs associated with PI development (66), which further strengthens the importance of prevention of HAPIs in COVID-19 patients. Finally, the predicted second wave of COVID-19 cases (78), the lack of evidence on acquired immunity after COVID-19, and the risk of potential re-infection (79) in the absence of a COVID-19 vaccine (80) may result in increased hospital admissions, highlighting the need to speed up quality improvement in this field.
Data Availability Statement
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.
Author Contributions
VT and LT conducted the literature search and drafted the manuscript with support and guidance from CW, AJ, and HT. VT designed the infographic. All the authors critically reviewed and contributed to the individual parts of the manuscript and approved the final version.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The authors acknowledge the preprint of this article deposited in the OSF Preprints repository (78). All infographic images were licensed under the Creative Commons licenses. Walking is licensed under CC0 1.0, https://creativecommons.org/licenses/cc0/1.0/. Osha-facemask-blue.svg by j4p4n is licensed under CC0 1.0, http://creativecommons.org/publicdomain/zero/1.0/deed.en. SARS-CoV-2 (Wikimedia colors).svg by Geraki is licensed under CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0. Intensive Care—The Noun Project.svg by undefined is licensed under CC0 1.0, http://creativecommons.org/publicdomain/zero/1.0/deed.en. Prone position1.gif by Saltanat Ebli is licensed under CCO 1.0, https://creativecommons.org/publicdomain/zero/1.0/deed.en. Patient lies with stomach on the bed. Abdomen can be raised off the bed by Saltanat Ebli, CCO 1.0, https://creativecommons.org/publicdomain/zero/1.0/deed.en. 符号; creator: not available, CCO 1.0, https://creativecommons.org/publicdomain/zero/1.0/deed.en. Therapy; creator: not available, CCO 1.0, https://creativecommons.org/publicdomain/zero/1.0/deed.en.
ReferencesWangCHorbyPWHaydenFGGaoGF. A novel coronavirus outbreak of global health concern. Lancet. (2020) 395:470–3. 10.1016/S0140-6736(20)30185-931986257WuZMcGooganJM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. (2020) 323:1239–42. 10.1001/jama.2020.264832091533GuanW-JNiZ-YHuYLiangW-HOuC-QHeJ-X. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. (2020) 382:1708–20. 10.1056/NEJMoa2002032WangDHuBHuCZhuFLiuXZhangJ. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. (2020) 323:1061–9. 10.1001/jama.2020.158532031570LiuXZhouHZhouYWuXZhaoYLuY. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. J Infect. (2020) 81:e95–7. 10.1016/j.jinf.2020.04.00832305490GrasselliGPesentiACecconiM. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. (2020) 323:1545–6. 10.1001/jama.2020.403132167538MagroCMulveyJJBerlinDNuovoGSalvatoreSHarpJ. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. (2020) 220:1–13. 10.1016/j.trsl.2020.04.00732299776JolyBSSiguretVVeyradierA. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. (2020) 46:1603–6. 10.1007/s00134-020-06088-132415314MehtaPMcAuleyDFBrownMSanchezETattersallRSMansonJJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. (2020) 395:1033. 10.1016/S0140-6736(20)30628-032192578DondorpAMHayatMAryalDBeaneASchultzMJ. Respiratory support in novel coronavirus disease (COVID-19) patients, with a focus on resource-limited settings. Am J Trop Med Hyg. (2020) 102:1191–7. 10.4269/ajtmh.20-028332319424OdorPMNeunMBampoeSClarkSHeatonDHoogenboomEM. Anaesthesia and COVID-19: infection control. Br J Anaesth. (2020) 125:16–24. 10.1016/j.bja.2020.03.025PhuaJWengLLingLEgiMLimC-MDivatiaJV. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. (2020) 8:P506–17. 10.1016/S2213-2600(20)30161-232272080MengLQiuHWanLAiYXueZGuoQ. Intubation and ventilation amid the COVID-19 outbreak: Wuhan's experience. Anesthesiology. (2020) 132:1317–32. 10.1097/ALN.000000000000329632195705GattinoniLTacconePCarlessoEMariniJJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Resp Crit Care Med. (2013) 188:1286–93. 10.1164/rccm.201308-1532CI24134414BurrellAMcLeanLJonesADiCoccoKLuffT. Prone Positioning for Hypoxic Respiratory Failure in ICU. Guideline. Melbourne, VIC: Alfred Health (2018).MunshiLDel SorboLAdhikariNKJHodgsonCLWunschHMeadeMO. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thoracic Soc. (2017) 14:S280–8. 10.1513/AnnalsATS.201704-343OT29068269BloomfieldRNobleDWSudlowA. Prone position for acute respiratory failure in adults. Cochrane Database Syst Rev. (2015) 2015:CD008095. 10.1002/14651858.CD008095.pub226561745SudSFriedrichJOTacconePPolliFAdhikariNKJLatiniR. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. (2010) 36:585–99. 10.1007/s00134-009-1748-120130832JoyntGMEditorialA. Severe Acute Respiratory Syndrome (SARS). Mech Ventilat. (2008) 61–6. 10.1016/B978-0-7216-0186-1.50011-9Al-DorziHMAlsolamySArabiYM. Critically ill patients with Middle East respiratory syndrome coronavirus infection. Crit Care. (2016) 20:65. 10.1186/s13054-016-1234-4YangXYuYXuJShuHXiaJaLiuH. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. (2020) 8:475–81. 10.1016/S2213-2600(20)30079-532105632ElharrarXTriguiYDolsA-MTouchonFMartinezSPrud'hommeE. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. (2020) 323:2336–8. 10.1001/jama.2020.825532412581CaputoNDStrayerRJLevitanR. Early self-proning in awake, non-intubated patients in the emergency department: a single ed's experience during the COVID-19 pandemic. Acad Emerg Med. (2020) 27:375–8. 10.1111/acem.1399432320506TolcherMCMcKinneyJREppesCSMuigaiDShamshirsazAGuntupalliKK. Prone positioning for pregnant women with hypoxemia due to coronavirus disease 2019 (COVID-19). Obstetr Gynecol. (2020) 136:259–61. 10.1097/AOG.000000000000401232516274MiyamotoKYonemitsuTTanakaRNakashimaTShibataMFunahashiR. Protracted course of coronavirus disease with severe acute respiratory distress syndrome: a case report. Acute Med Surg. (2020) 7:e521. 10.1002/ams2.52132566237BouadmaLLescureF-XLucetJ-CYazdanpanahYTimsitJ-F. Severe SARS-CoV-2 infections: practical considerations and management strategy for intensivists. Intensive Care Med. (2020) 46:579–82. 10.1007/s00134-020-05967-x32103284ScholtenELBeitlerJRPriskGKMalhotraA. Treatment of ARDS with prone positioning. Chest. (2017) 151:215–24. 10.1016/j.chest.2016.06.03227400909GuérinC. Prone positioning acute respiratory distress syndrome patients. Ann Transl Med. (2017) 5:289. 10.21037/atm.2017.06.6328828364GirardRBaboiLAyzacLRichardJ-CGuérinCProseva trial group. The impact of patient positioning on pressure ulcers in patients with severe ARDS: results from a multicentre randomised controlled trial on prone positioning. Intens Care Med. (2014) 40:397–403. 10.1007/s00134-013-3188-124352484CoxJ. Pressure injury risk factors in adult critical care patients: a review of the literature. Ostomy Wound Manag. (2017) 63:30–43.29166261RondinelliJZunigaSKipnisPKawarLNLiuVEscobarGJ. Hospital-acquired pressure injury: risk-adjusted comparisons in an integrated healthcare delivery system. Nurs Res. (2018) 67:16–25. 10.1097/NNR.0000000000000258ZingarelliEMGhiglioneMPesceMOrejuelaIScarroneSPanizzaR. Facial pressure ulcers in a COVID-19 50-year-old female intubated patient. Indian J Plastic Surg. (2020) 53:144–6. 10.1055/s-0040-171040332367931LinLJiangXZhangZHuangSZhangZFangZ. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. (2020) 69:997–1001. 10.1136/gutjnl-2020-32101332241899JinXLianJ-SHuJ-HGaoJZhengLZhangY-M. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. (2020) 69:1002–9. 10.1136/gutjnl-2020-32092632213556TangJLiBGongJLiWYangJ. Challenges in the management of critical ill COVID-19 patients with pressure ulcer. Int Wound J. (2020) 17:1523–4. 10.1111/iwj.1339932383319Garnier-CrussardAForestierEGilbertTKrolak-SalmonP. Novel coronavirus (COVID-19) epidemic: what are the risks for older patients?J Am Geriatr Soc. (2020) 68:939–40. 10.1111/jgs.1640732162679European Pressure Ulcer Advisory Panel (EPUAP), National Pressure Injury Advisory Panel (NPIAP), Pan Pacific Pressure Injury Alliance (PPPIA). Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. The International Guideline. 3d ed. EPUAP, NPIAP and PPPIA (2019). Available online at: http://www.internationalguideline.com/static/pdfs/Quick_Reference_Guide-10Mar2019.pdfCheungJC-HHoLTChengJVChamEYKLamKN. Staff safety during emergency airway management for COVID-19 in Hong Kong. Lancet Respir Med. (2020) 8:e19. 10.1016/S2213-2600(20)30084-932105633KhojastehfarSNajafi GhezeljehTHaghaniS. Knowledge and attitude of intensive care nurses regarding the prevention of pressure ulcer. Iran J Nurs. (2019) 31:5–17. 10.29252/ijn.31.116.5DalvandSEbadiAGheshlaghRG. Nurses' knowledge on pressure injury prevention: a systematic review and meta-analysis based on the Pressure Ulcer Knowledge Assessment Tool. Clin Cosmet Investig Dermatol. (2018) 11:613–20. 10.2147/CCID.S18638130538522De MeyerDVerhaegheSVan HeckeABeeckmanD. Knowledge of nurses and nursing assistants about pressure ulcer prevention: A survey in 16 Belgian hospitals using the PUKAT 2.0 tool. J Tissue Viabil. (2019) 28:59–69. 10.1016/j.jtv.2019.03.00230935739FulbrookPLawrencePMilesS. Australian nurses' knowledge of pressure injury prevention and management: a cross-sectional survey. J Wound Ostomy Continence Nurs. (2019) 46:106–12. 10.1097/WON.000000000000050830801563MillerDMNeelonLKish-SmithKWhitneyLBurantCJ. Pressure injury knowledge in critical care nurses. J Wound Ostomy Continence Nurs. (2017) 44:455–7. 10.1097/WON.000000000000035028650412CharalambousCKoulouriARoupaZVasilopoulosAKyriakouMVasiliouM. Knowledge and attitudes of nurses in a major public hospital in Cyprus towards pressure ulcer prevention. J Tissue Viabil. (2019) 28:40–5. 10.1016/j.jtv.2018.10.00530466893EbiWEHirkoGFMijenaDA. Nurses' knowledge to pressure ulcer prevention in public hospitals in Wollega: a cross-sectional study design. BMC Nurs. (2019) 18:20. 10.1186/s12912-019-0346-y31139012HoviattalabKHashemizadehHD'CruzGHalfensRJDassenT. Nursing practice in the prevention of pressure ulcers: an observational study of G erman H ospitals. J Clin Nurs. (2015) 24:1513–24. 10.1111/jocn.1272325363665LawACForbathNO'DonoghueSStevensJPWalkeyAJ. Hospital-level availability of prone positioning in Massachusetts ICUs. Am J Respir Crit Care Med. (2020) 201:1006–8. 10.1164/rccm.201910-2097LE31899648GrisellMPlaceHM. Face tissue pressure in prone positioning: a comparison of three face pillows while in the prone position for spinal surgery. Spine. (2008) 33:2938–41. 10.1097/BRS.0b013e31818b902919092629RomeroCMCornejoRAGálvezLRLlanosOPTobarEABerasaínMA. Extended prone position ventilation in severe acute respiratory distress syndrome: a pilot feasibility study. J Crit Care. (2009) 24:81–8. 10.1016/j.jcrc.2008.02.00519272543WuTWangS-TLinP-CLiuC-LChaoY-FC. Effects of using a high-density foam pad versus a viscoelastic polymer pad on the incidence of pressure ulcer development during spinal surgery. Biol Res Nurs. (2010) 13:419–24. 10.1177/109980041039277221196422MooreZPattonDAvsarPMcEvoyNLCurleyGBudriA. Prevention of pressure ulcers among individuals cared for in the prone position: lessons for the COVID-19 emergency. J Wound Care. (2020) 29:312–20. 10.12968/jowc.2020.29.6.31232530776BlackJ. COVID-19 and Tips for Safe Skin and Proning: What Should Skin Care Involve for Patients in the Prone Position?Wounds International TV. Available online at: https://woundsinternationaltv.com/editors-chioce/covid-19-and-tips-for-safe-skin-and-proning/?_cldee=Y2Fyb2xpbmEud2VsbGVyQG1vbmFzaC5lZHU%3d&recipientid=contact-02554ddf6fd8e911a812000d3a7ed483-61c7c45c041942b98c48dc9b35475faa&esid=f125779b-b4ac-ea11-a812-000d3a7ed30d (2020).SchubEPilgrimJ. Patient Positioning (Critical Care Patients): Prone. Nursing Practice and Skill. Glendale, CA: Cinahl Information Systems (2018).LazzeriMLanzaABelliniRBellofioreACecchettoSColomboA. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR). Monaldi Arch Chest Dis. (2020) 90:163–8. 10.4081/monaldi.2020.128532236089World Health Organization. Health Workers Exposure Risk Assessment and manAgement in the Context of COVID-19 Virus. Interim Guidance March 4, 2020. WHO/2019-nCov/HCW_risk_assessment/2020.1 (2020). Available online at: https://apps.who.int/iris/handle/10665/331340. WHOWorld Health Organization. Infection Prevention and Control During Health Care When COVID-19 Is Suspected Interim Guidance 19 March, 2020. WHO/2019-nCoV/IPC/2020.3 (2020). Available online at: https://www.who.int/publications/i/item/10665-331495WellerCDGershenzonEREvansSMTeamVMcNeilJJ. Pressure injury identification, measurement, coding, and reporting: key challenges and opportunities. Int Wound J. (2018) 15:417–23. 10.1111/iwj.1287929266876EspejoEAndrésMBorralloR-MPadillaEGarcia-RestoyEBellaF. Bacteremia associated with pressure ulcers: a prospective cohort study. Eur J Clin Microbiol Infect Dis. (2018) 37:969–75. 10.1007/s10096-018-3216-829479635GurusamyKSKotiRToonCDWilsonPDavidsonBR. Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) in non surgical wounds. Cochrane Database Syst Rev. (2013) 2013:Cd010427. 10.1002/14651858.CD009726.pub2BragaIABritoCSFilhoADFilhoPPGRibasRM. Pressure ulcer as a reservoir of multiresistant Gram-negative bacilli: risk factors for colonization and development of bacteremia. Braz J Infect Dis. (2017) 21:171–5. 10.1016/j.bjid.2016.11.00727932288OrtwineJKBhavanK. Morbidity, mortality, and management of methicillin-resistant S. aureus bacteremia in the USA: update on antibacterial choices and understanding. Hosp Pract. (2018) 46:64–72. 10.1080/21548331.2018.143512829400119PadulaWVDelarmenteBA. The national cost of hospital-acquired pressure injuries in the United States. Int Wound J. (2019) 16:634–40. 10.1111/iwj.1307130693644DreyfusJGayleJTruemanPDelhougneGSiddiquiA. Assessment of risk factors associated with hospital-acquired pressure injuries and impact on health care utilization and cost outcomes in US hospitals. Am J Med Qual. (2017) 33:348–58. 10.1177/1062860617746741NguyenK-HChaboyerWWhittyJA. Pressure injury in Australian public hospitals: a cost-of-illness study. Aust Health Rev. (2015) 39:329–36. 10.1071/AH1408825725696NussbaumSRCarterMJFifeCEDaVanzoJHaughtRNusgartM. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health. (2018) 21:27–32. 10.1016/j.jval.2017.07.00729304937OlssonMJärbrinkKDivakarUBajpaiRUptonZSchmidtchenA. The humanistic and economic burden of chronic wounds: a systematic review. Wound Repair Regener. (2019) 27:114–25. 10.1111/wrr.1268330362646ZareiEMadarshahianENikkhahAKhodakarimS. Incidence of pressure ulcers in intensive care units and direct costs of treatment: evidence from Iran. J Tissue Viabil. (2019) 28:70–4. 10.1016/j.jtv.2019.02.00130795879PadulaWVPronovostPJMakicMBFWaldHLMoranDMishraMK. Value of hospital resources for effective pressure injury prevention: a cost-effectiveness analysis. BMJ Qual Saf. (2019) 28:132. 10.1136/bmjqs-2017-00750530097490BartschSMFergusonMCMcKinnellJAO'SheaKJWedlockPTSiegmundSS. The potential health care costs and resource use associated with COVID-19 in the United States. Health Affairs. (2020) 39:927–35. 10.1377/hlthaff.2020.0042632324428ColendaCCApplegateWBReiflerBVBlazerDGII. COVID-19: financial stress test for academic medical centers. Acad Med. (2020) 95:1143–5. 10.1097/ACM.000000000000341832287082RemuzziARemuzziG. COVID-19 and Italy: what next?Lancet. (2020) 395:1225–28. 10.1016/S0140-6736(20)30627-932178769McKibbinWJFernandoR. The global macroeconomic impacts of COVID-19: seven scenarios. In: CAMA Working Paper No. 19/2020 (2020). Available online at: https://ssrn.com/abstract=3547729JeanWCIronsideNTSackKDFelbaumDRSyedHR. The impact of COVID-19 on neurosurgeons and the strategy for triaging non-emergent operations: a global neurosurgery study. Acta Neurochir. (2020) 162:1229–40. 10.1007/s00701-020-04342-532314059TopfMCShensonJAHolsingerFCWaldSHCianfichiLJRosenthalEL. A framework for prioritizing head and neck surgery during the COVID-19 pandemic. Head Neck. (2020) 42:1159–67. 10.1002/hed.2618432298036ZoiaCBongettaDVeiceschiPCenzatoMDi MecoFLocatelliD. Neurosurgery during the COVID-19 pandemic: update from Lombardy, northern Italy. Acta Neurochir. (2020) 162:1221–2. 10.1007/s00701-020-04305-w32222820ZamanSMacIsaacAIJenningsGLRSchlaichMInglisSCArnoldR. Cardiovascular disease and COVID-19: Australian/New Zealand consensus statement. Med J Aust. (2020) 1. 10.5694/mja2.5071432734645TuechJJGangloffADi FioreFMichelPBrigandCSlimK. Strategy for the practice of digestive and oncological surgery during the Covid-19 epidemic. J Visceral Surg. (2020) 157:S7–12. 10.1016/j.jviscsurg.2020.03.008XuSLiY. Beware of the second wave of COVID-19. Lancet. (2020) 395:1321–2. 10.1016/S0140-6736(20)30845-X32277876World Health Organization. “Immunity Passports” in the Context of COVID-19. Scientific Brief 24 April, 2020 (2020). Available online at: https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19PeeplesL. News feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc Natl Acad Sci USA. (2020) 117:8218. 10.1073/pnas.200545611732229574
Funding. The preparation of this article was supported by the Australian Government Department of Health Medical Research Future Fund.
‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放
ENTER NUMBET 0016www.gnsuzu.com.cn www.ep8news.com.cn hbyttsc.com.cn pbmdcb.com.cn plxmn.com.cn odchsl.com.cn www.qschain.com.cn www.ujijia.com.cn www.rhchain.com.cn www.wtattoo.com.cn