Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2023.1284750 Marine Science Original Research Impact of circumpolar deep water on organic carbon isotopes and ice-rafted debris in West Antarctic: a case study in the Amundsen Sea Lei Ziyan 1 2 3 Ge Qian 1 2 * Chen Dong 1 2 Zhang Yongcong 1 2 Han Xibin 1 2 1 Key Laboratory of Submarine Geosciences, Ministry of Natural Resources, Hangzhou, China 2 Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China 3 Department of Oceanography and Coastal Science, Louisiana State University, Baton Rouge, LA, United States

Edited by: Zhifang Xiong, Ministry of Natural Resources, China

Reviewed by: Grant Bigg, The University of Sheffield, United Kingdom

Thomas Algeo, University of Cincinnati, United States

*Correspondence: Qian Ge, qge@sio.org.cn

08 01 2024 2023 10 1284750 30 08 2023 15 12 2023 Copyright © 2024 Lei, Ge, Chen, Zhang and Han 2024 Lei, Ge, Chen, Zhang and Han

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

This research delves into the interaction between carbon isotopes, ice-rafted debris (IRD), and Circumpolar Deep Water (CDW) in the Amundsen Sea, West Antarctic. Utilizing sediment core ANT36-A11-04, we traced the source of the organic matter though an analysis of the total organic carbon (TOC), stable carbon isotopes (δ13Corg), and nitrogen content. We identified six environmental events in this region since the Mid-Holocene, which were discerned through a comparative analysis of the δ13Corg, TOC, and IRD content. These events were closely linked to variations in the intensity of the CDW. Notably, the synchronous occurrence of a negative shift in the δ13Corg value and increases in TOC and IRD highlight the significant impact of CDW intrusion, underlining the pivotal role of the CDW in the regional environmental evolution. Specifically, intensified upwelling of the CDW was correlated with increased heat and nutrients, enhanced glacier melting, phytoplankton blooms, higher TOC content, augmented deposition of IRD, and finally resulted in a negative shift in the δ13Corg value. We present a comprehensive picture of the local environmental evolution in the Amundsen Sea, characterized as a marine-glacial-biological coupling model, thereby contributing to a broader understanding of Antarctic environmental dynamics.

paleoenvironment evolution pattern organic matter geochemistry sediment section-in-acceptance Marine Biogeochemistry

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Highlights

      The organic matter source of the sediments in Core ANT36-A11-04 was analyzed.

      The 6000-yr paleoenvironmental evolution was reconstructed via indicators.

      Six events were identified via indexes and corresponding records.

      Circumpolar Deep Water plays a key role in environmental evolution.

      Introduction

      The Antarctic environment is experiencing significant transformations. Recent satellite data reveal that over the last two decades, the West Antarctic Ice Sheet (WAIS) has been diminishing at an alarming rate of 100–200 Gt per year. This decline contributes to a rise in sea level of approximately 0.25–0.26 mm per year (Joughin and Alley, 2011). Notably, the Amundsen Sea region exhibits pronounced changes, with the Pine Island and Thwaites ice shelves experiencing the most substantial mass losses. These shelves, as floating extensions of the ice sheet, play a crucial role in buttressing the ice sheet. Their melting leads to accelerated flow of the upstream glaciers into the ocean, significantly impacting global sea levels (Gudmundsson et al., 2019; Naughten et al., 2023). The vulnerability of the WAIS to warm, moist oceanic air and sub-shelf currents is a key factor driving these changes (Jenkins et al., 2010; Nicolas and Bromwich, 2011). In the Amundsen Sea, the melting of the ice shelf is predominantly influenced by the upwelling of the Circumpolar Deep Water (CDW). This warmer water not only transports heat and nutrients but also plays a vital role in shaping the regional sea ice dynamics and ecosystems (Nakayama et al., 2014; Nakayama et al., 2018; van Manen et al., 2022).

      Research on the CDW in the Amundsen Sea has predominantly concentrated on modeling the intrusion of the CDW and examining variations in the temperature and salinity within the water column (Thoma et al., 2008; Nakayama et al., 2013; Mallett et al., 2018). However, there is a notable gap in research on the historical evolution of the CDW and its correlations with various indicators in sediment and ice-rafted debris (IRD). We aim to shed light on the paleoenvironmental shifts in the Amundsen Sea and to investigate how organic components and IRD respond to the influence of the CDW. This approach enables us to unravel the underlying mechanisms driving environmental changes in this region.

      Materials and methods

      Sediment samples were collected from push core ANT36-A11-04, which was obtained during the 36th Chinese National Antarctic Research Expedition (2019–2020). The sampling site, situated at a depth of 500 meters in the Amundsen Sea, West Antarctic (117.835°W, 72.028°S) is depicted in Figure 1 . Following the collection, these samples were meticulously preserved at 4˚C in a freezer, pending analysis. The processing in the laboratory adhered strictly to the Specifications for oceanographic survey - Part 8: marine geology and geophysics survey (Liu et al., 2007). The core was 38 cm long and characterized by a dark grayish-brown hue. It was sectioned at 1-cm intervals, resulting in the attainment and analysis of 36 distinct samples.

      Map of the currents and station. The map on the right side is an overall map of the Antarctic. The red rectangle is the study area in the Amundsen Sea, the yellow star denotes Antarctic Peninsula, the purple star denotes the Bellingshausen Sea, and the red star denotes the Ross Sea. The map on the left side is a detailed map of the study area. The arrows represent the currents. The purple arrow is the costal current, green arrow is melting water, the brown arrow is the Circumpolar Deep Water, and the deep blue arrow is the Antarctic Circumpolar Current. The two grey shaded areas are the two biggest ice shelves in this region.

      Antarctica shelf sediments typically lack calcareous foraminifera, which are commonly used in radiocarbon dating due to their well-established reservoir adjustments (Smith et al., 2014). Consequently, dating the acid insoluble organic (AIO) fraction becomes necessary. However, bulk AIO dates often face contamination risks from ancient organic matter eroded from the Antarctica continent (Licht et al., 1996; Anderson and Andrews et al., 1999; Ohkouchi and Eglinton, 2006) or the redistribution of older shelf sediments (Domack et al., 1999), potentially leading to anomalously older radiocarbon ages. Despite these challenges, several studies have effectively employed AIO fraction dates to establish deglacial chronologies for the Antarctica shelf (Domack et al., 1999; Licht and Andrews, 2002; Mosola and Anderson, 2006; Heroy and Anderson, 2007; Hillenbrand et al., 2010; Smith et al., 2011; Licht and Hemming, 2017).

      For core ANT36-A11-04, we implemented a rigorous dating methodology, integrating sedimentological and geochemical data to identify optimal horizons for accurate 14C dating. Notable shifts in these data, potentially indicative of significant environmental changes (Figure 2), guided the selection of six samples for accelerator mass spectrometry (AMS) 14C dating at Beta Laboratories, USA ( Table 1 ), complemented by 210Pb dating methods ( Figure 3 ). Age corrections were made using the Calib 8.2 program (Stuiver and Reimer, 1993). It was assumed that the regional marine offset (ΔR) was 900 ± 100, which is consistent with the global marine reservoir effect and previous studies conducted in the Amundsen Sea Embayment (Lowe and Anderson, 2002; Hillenbrand et al., 2010).

      Comparison of grain size and geochemistry for the sediments in core ANT36-A11-04. The red solid line denotes the total organic carbon (TOC), the green dot line denotes the > 150 μm particle content, and the blue dash line denotes the δ13Corg.

      Dating results and sedimentation rate for sediment in core ANT36-A11-04 or financial relationships that could be construed as a potential conflict of interest.

      Depth (cm) AMS 14C (cal yr B.P.) Calibrated Age (a) Old Carbonate Age (a) Calendar Age (cal yr B.P) Sedimentation rate (cm/kyr)
      2–3 5100 ± 30 4096 4096 0 6.66
      12–13 6730 ± 30 6047 4096 1951
      17–18 8310 ± 30 7693 4096 3597 3.04
      22–23 9450 ± 30 8979 4096 4883 3.04
      32–33 10230 ± 50 9951 4096 5855 10.29
      37–38 10400 ± 30 10245 4096 6149 17.01

      210Pbex profile of sediment in core ANT36-A11-04.

      Grain size analysis was conducted using a Malvern 2000 laser particle size analyzer at the Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang Province, China, following the Specifications for oceanographic survey - Part 8: marine geology and geophysics survey (Liu et al., 2007).

      The organic carbon and nitrogen contents and isotope compositions were also analyzed at the Second Institute of Oceanography. Freeze-dried samples were milled to a size of less than 120 μm. Excess 1 M hydrochloric acid was added to the samples, which were then left to react for 24 hours to remove the carbonate. After neutralizing the samples with deionized water, the samples were lyophilized. For the δ13Corg and organic carbon content analyses, 1–4 mg of the treated samples were wrapped in tin cups, while the nitrogen content analysis required a ten-fold increase in the sample weight. Isotope ratio mass spectrometry (Thermo Delta Plus AD, Germany) was used to conduct the δ13Corg analysis of the sediments, and the results were calibrated against standards USGS-24, GBW4407, and IAEA-N-1. The δ13Corg data have an accuracy of ±0.2‰ in reference to the Pee Dee Belemnite (PDB) international standard. The organic carbon and nitrogen contents were analyzed using an Elementar Vario (Germany), with an analytical accuracy of ±0.01%.

      Results Chronology

      Figure 3 shows that there is a distinct exponential decrease in the excess 210Pb activity from the surface to a depth of 10 cm in the sediment from core ANT36-A11-04. It stabilizes at background levels below this depth. This trend suggests that the uppermost layer is indicative of recent sedimentation. Via age calibration using the Calib 8.2 software, we estimate that the calendar age of the sediment at depths of 2–3 cm is approximately 4096 years before present (B.P.). In light of the 210Pb activity profile, this age is interpreted as the old carbon age for this region. As a result, all of the AMS 14C dating results were corrected by subtracting the age of the top of the core (4096 cal yr B.P.) Through linear interpolation and extrapolation of these corrected ages, we estimate that the calendar age at the base of the sediment is 6149 cal yr B.P. The sedimentation rates ( Table 1 ) range from 3.0 cm/kyr to 17.0 cm/kyr. The limited quantity of sediment in the lowermost layers (36 cm to 38 cm) precluded the acquisition of data on the organic carbon, nitrogen, and carbon isotopes, but grain size analysis was conducted. Consequently, in the subsequent analyses, the age of the 35-cm layer, approximately 6031 cal yr B.P., is uniformly adopted as the representative age of the bottom layer.

      Organic carbon content, nitrogen content, and organic carbon isotopes

      In core ANT36-A11-04, the total organic carbon (TOC) content varied notably, ranging from 0.26% to 0.66%, with an average of 0.38% ( Figure 4 ). The TOC content peaked between 6000 and 5200 cal yr B.P., reached the highest level, and subsequently remained a lower range of 0.26–0.45% after 5200 cal yr B.P. Regarding the total nitrogen (TN) content, it oscillated between 0.02% to 0.06%. A distinct shift occurred around 4000 cal yr B.P., that is, from 6000 to 4000 cal yr B.P., the TN content varied between 0.04% and 0.06%, with an average of 0.05%. After 4000 cal yr B.P., it ranged from 0.02% to 0.04%, with an average of 0.03%. The carbon to nitrogen ratio (C/N) also fluctuated, ranging from 6.6 to 17.9, with an overall average of 10.78. The δ13Corg value underwent significant variation, ranging from –30.75‰ to –26.33‰, with an average of –28.07‰. The lowest and highest δ13Corg values occurred at 177 cal yr B.P. and 5369 cal yr B.P., respectively.

      Vertical variations in TOC, TN, C/N, and δ13C for the sediments in core ANT36-A11-04.

      Grain size

      Figure 5 depicts the changes in the grain size and compositional characteristics of the sediments in core ANT36-A11-04. The sediment composition varied. Silt was predominant (average of 41.2%), followed by sand (38.7%) and clay (19.9%). The grain size composition characteristics can be categorized into two distinct stages. From 3600 cal yr B.P. onwards, the mean grain size (Mz), skewness, kurtosis, and sand content generally remained below the average values, with a notable exception around 1500 cal yr B.P. when they exceeded the average values. Conversely, during this stage, the silt and clay contents exhibited inverse trends. The sorting coefficient, skewness, and kurtosis exhibited minimal variation, suggesting a more uniform grain size distribution. In contrast, from 6149 to 3600 cal yr B.P, the Mz, skewness, kurtosis, and sand content consistently exceeded the average values, while the silt and clay contents were lower. During this period, the average skewness was 0.56, indicative of right-skewness, and the average kurtosis was 2.32. This earlier phase was characterized by higher levels of skewness, kurtosis, and sand-grade components, implying that the provenance of the sand-grade components was distinct from that in the later stage.

      Grain size characteristics of sediments in core ANT36-A11-04. The colorful shaded area represents that this layer is beyond the average value. The grey shaded area denotes that the data within these depths are distinct from the data for the other depths.

      Discussion TOC and δ<sup>13</sup>C<sub>org</sub> profiles: indicators of paleoenvironmental conditions

      The Antarctic environment imparts distinct characteristics to the stable carbon isotope compositions of marine organic materials, markedly differing from those at lower latitudes. The notably low (depleted) δ13Corg values of Antarctic plankton have been attributed to several factors: the low water temperature and resultant high CO2 availability (Rau et al., 1989), the specific species composition of the plankton, and the upwelling of deep water (Lupton and Craig, 1981; Spezie, 1999). In Antarctic waters, the surface-water CO2 concentrations can be up to 2.5 times higher than those in equatorial waters, primarily due to the lower temperatures. This increase in the CO2 concentration, coupled with the temperature decrease, likely contributes to the reduction in the δ13Corg values at higher latitudes. Additionally, the upwelling of deep waters, which are enriched in dissolved CO2 with low δ13C values due to the remineralization of organic matter, further influences this biological processing in the surface water. Consequently, δ13Corg is a potential indicator of environmental change and is a focal point in this study.

      The study area is predominantly influenced by the colonial haptophyte Phaeocystis antarctica, known for its specific organic carbon isotope ratio (δ13Corg). This ratio typically ranges between –28.34‰ and –29.86‰ (Delmont et al., 2014; Ducklow et al., 2015), which is very consistent with our data (i.e., –30.75‰ to –26.33‰, average of –28.07‰). These findings suggest that marine phytoplankton made a significant contribution to the organic carbon in the sediment in core ANT36-A11-04. To ascertain the organic carbon source, we used a δ13Corg value of –31.5‰ for West Antarctic phytoplankton as the marine endmember, and a value of –23.6‰ for East Antarctic terrestrial mosses, lichens, and freshwater lake algae as the terrestrial endmember (Shultz and Calder, 1976; Minoura et al., 1997). Our analysis revealed that the organic carbon in the core predominantly originated from marine sources ( Figure 6 ). Furthermore, due to the fact that terrestrial plants are composed of nitrogen-poor lignin and cellulose, while marine organisms are contain nitrogen-rich proteins marine and terrestrial sources of organic matter have distinct C/N values. Terrestrial plants typically have C/N values of > 20 (Albuquerque and Mozeto, 1997), whereas that of high-latitude marine phytoplankton ranges from 6.3 to 12.5 (Stein and Fahl, 2000). As depicted in Figure 6 , C/N values of > 20 suggest a terrestrial plant origin, while values of 6.3–12.5 indicate a contribution from marine phytoplankton. The average C/N value of 10.8 for the core suggests a primarily marine phytoplankton source. However, the variation in the C/N values from 6.6 to 17.8 implies possible terrestrial inputs or the influences of early diagenesis or grain size effects, as evidenced by the correlation between the C/N ratio and Mz of 0.42, p = 0.03. Consequently, marine sources were the dominant contributors to the core’s organic carbon content.

      Organic matter source discriminant diagram for core ANT36-A11-04. (A) δ13Corg value and endmember value of the sediments in core ANT36-A11-04 (Shultz and Calder, 1976; Minoura et al., 1997). The region delineated by the blue arrow, marking the range of 6.3 to 12.4, suggests a marine origin for the organic matter. A C/N ratio of greater than 20 indicates that the organic matter has a terrestrial origin. (B) C/N value and end-member value of the organic matter in ANT36-A11-04 (Albuquerque and Mozeto, 1997; Stein and Fahl, 2000). The values close to the blue area signify a marine source for the organic matter, while proximity to the green area indicates a terrestrial source.

      The TOC content is intricately linked to primary productivity in the marine environment. Enhanced primary productivity is often correlated with an increase in the TOC content (Island, 2001; Khim et al., 2004; Mendonça et al., 2017). In high-latitude regions, the primary productivity exhibits notable seasonal and spatial variations and is primarily governed by light availability and climatic fluctuations. Consequently, the TOC content is a potential indicator of environmental change, reflecting alterations in the underlying productivity dynamics.

      Tracing paleoenvironmental dynamics and underlying mechanisms in the Amundsen Sea since the mid-Holocene

      Previous studies in the Ross Sea (Yongbin et al., 2021) and the Amundsen Sea (Hillenbrand et al., 2009) have established that the IRD variation was closely linked to environmental changes, making IRD a key indicator of glacial activity in the West Antarctic region. In high-latitude regions, the > 150 μm grain-size fraction in sediments is commonly used as a proxy for IRD. Our analysis of core ANT36-A11-04 ( Figure 7 ) indicates that the 67–707 μm grain size interval was the most sensitive to environmental changes, with a pronounced peak at 177 μm. Thus, the > 150 μm fraction was selected as the IRD proxy in this study.

      Grain size-standard deviation diagram of sediment in core ANT36-A11-04.

      Through integration of multiple proxies, including the Cd/P ratio (indicative of CDW intensity) (Xu et al., 2021), δ13Corg of organic matter and TOC content for core ANT36-A11-04, and the > 150 μm grain size (IRD proxy), we reconstructed the paleoenvironmental history of the Amundsen Sea. Spanning over 6,000 years, the core recorded six distinct environmental events (I–VI; Figure 8 ). Generally, the TOC and IRD trends corresponded with the variations in the intensity of the CDW. During 6000–3000 cal yr B.P, the TOC, IRD, and CDW decreased from the highest points to the average states. This pattern suggests a strong interconnection between the TOC, IRD, and CDW, that is, both the TOC and IRD decreased as the intensity of the CDW decreased, underscoring the influence of the CDW on these parameters. Additionally, there were noticeable peaks in both the TOC and IRD during the six periods studied. This trend was inversely reflected in the δ13Corg record, suggesting that the δ13Corg variations were associated with the TOC and IRD variations, and the CDW was also a potential influencing factor.

      The response relationship between δ13Corg and the environment and its potential mechanism. The yellow solid line denotes the TOC content in core ANT36-A11-04, the red dashed line indicates the > 150 μm fraction content in the core, the green solid line denotes the Cd/P ratio within the penguin ornithogenic sediments from the Ross Sea, which indicates the intensity of the CDW (Xu et al., 2021), and the blue solid line denotes the δ13Corg of the organic matter within the core sediments.

      Our environmental evolution model ( Figure 9 ) proposes that the upwelling of the relatively warm CDW contributed to accelerated glacier melting, enhancing sea ice melting and the subsequent release of IRD. The melting of sea ice facilitated a rapid exchange between the ocean and the atmosphere, leading to a marked negative shift in the δ13Corg value of the marine plankton (Rau et al., 1989; Yager et al., 2016). Additionally, the influx of heat and nutrients associated with the CDW likely stimulated phytoplankton blooms, contributing to an increase in the TOC.

      Environmental evolution pattern. The Circumpolar Deep Water (CDW) (depicted in red) intruded beneath the ice shelf (depicted as a blue opaque polyhedron with cracking details). The upwelling CDW is shown as upwelling water (indicated by the dark blue arrow), which carries both nutrients (shown as small green spheres) and heat (shown as red spheres) toward the sea surface. This upwelling fostered the proliferation of phytoplankton (illustrated as larger green spheres) near the floating sea ice. Additionally, this process contributed to the melting of the ice shelf and sea ice, leading to the release of ice-rafted debris (yellow and brown particles), which then became incorporated into the ocean sediments.

      During event I (5800–5500 cal yr B.P), as illustrated in Figure 8 , there was a concurrent peak in the TOC, and the > 150 μm particle size content coincided with a low δ13Corg value. This pattern is indicative of an increased supply of IRD, potentially linked to intensified sea ice melting (Sakamoto et al., 2005). This period corresponded with a documented reduction in the sea ice content in the Weddell Sea, as evidenced by the abundance of foraminifera F. curta (Mezgec et al., 2017). A subsequent decline in the Cd/P ratio pointed to weakening of the intensity of the CDW, which likely led to diminished heat transfer to the sea surface. This reduction in heat transfer could have resulted in decreased ice shelf melting or augmented sea ice coverage (Thoma et al., 2008; Guo et al., 2019). Consequently, this led to a decrease in the supply of IRD and lower availability of light and nutrients, which in turn resulted in a decrease in the TOC. The observed decrease in the δ13Corg value was influenced by multiple factors (Rau et al., 1989; Goericke and Fry, 1994; Annett et al., 2007). When phytoplankton absorb carbon from the inorganic carbon pool, they are more inclined to absorb lighter isotopes at higher inorganic carbon concentrations (Mook et al., 1974). These factors were linked to the changes in the CDW, as a decline in the intensity of the CDW resulted in decreased heat and nutrient transport to the sea surface (Fei et al., 2019; Xu et al., 2021).

      The subsequent events, II (5100–4600 cal yr B.P), III (3900–3200 cal yr B.P), IV (2600–2000 cal yr B.P), V (1800–1300 cal yr B.P), and VI (1100–500 cal yr B.P), exhibited similar patterns. The IRD and TOC exhibited opposite patterns compared to that of the δ13Corg. The presence of an IRD deposition pattern was evident in the sediment in core ANT36-A11-04, which is consistent with the ice retreat-associated IRD input events in the Ross Sea and the Amundsen Sea (Hillenbrand et al., 2009; Yongbin et al., 2021). This pattern can be attributed to the influence of the upwelling of warm CDW on the ice shelves in the Amundsen Sea sector. As the grounding line of the ice shelves retreated, significant amounts of land-derived detritus were unloaded, leading to IRD deposition events and the formation of glacial debris deposits on the continental shelf (Anderson et al., 2014). When the heat flux decreased and the sea ice coverage expanded, the melting of icebergs slowed, resulting in decreased IRD deposition, reduced primary production, and a lower TOC.

      Our analysis of the sediment in core ANT36-A11-04 suggests that the CDW profoundly impacted the local environmental changes, including the sea ice dynamics, blooming of phytoplankton, and IRD deposition ( Figure 9 ). The core record illustrates that the close association between the CDW, δ13Corg, and IRD values suggests that the CDW played a critical role in the regional environmental evolution process. The reduction in the intensity of the CDW resulted in a decreased water temperature, reduced ice shelf melting, diminished IRD input, and a reduced production rate of organically derived phytoplankton. In summary, the existence of this coupled model emphasizes the importance of the CDW in the environmental changes in the Amundsen Sea region.

      Conclusions

      Over the past decade, many researchers have found that the atmosphere and ocean currents in West Antarctic played a key role in the environmental evolution in this region. In particular, the CDW deeply influenced the glaciers and ecosystem. To determine the relationship between the CDW and the environmental changes, several analyses were performed in this study. The three main conclusions are presented below.

      By examining the sediment of core ANT36-A11-04 and integrating prior research findings, it was found that the primary source of the organic matter in the sediment was largely oceanic.

      The > 150 μm grain size component in core ANT36-A11-04 was utilized as an alternative indicator of IRD, in combination with other indicators such as δ13Corg, TOC, and proxy for the CDW. Through these indicators, six environmental events were identified, each with corresponding records in the Antarctic region.

      By comparing multiple indicators, it was observed that there was a clear response relationship between the δ13Corg, IRD, and CDW, indicating that the CDW played a critical role in the regional environmental evolution. The upwelling of the relatively warm CDW led to accelerated glacier melting and increased heat flux, which also enhanced the melting of sea ice. This process resulted in the release and deposition of IRD carried by glacial and sea ice. Furthermore, the heat and nutrients transported by the upwelling water stimulated the proliferation of marine plankton. Additionally, the melting of sea ice enhanced the rapid exchange between the ocean and the atmosphere, ultimately causing a noticeable negative shift in the δ13Corg value of the marine plankton.

      Data availability statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Author contributions

      ZL: Software, Visualization, Writing – original draft, Writing – review & editing. QG: Funding acquisition, Methodology, Resources, Supervision, Writing – review & editing. DC: Investigation, Validation, Writing – review & editing. YZ: Investigation, Resources, Software, Writing – review & editing. XH: Investigation, Methodology, Resources, Writing – review & editing.

      Funding

      The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was funded by the Impact and Response of Antarctic Seas to Climate Change (IRASCC). This project provided us with cruise and funding for sampling and analysis.

      Acknowledgments

      Supported by the crew and researchers of the 36th Chinese Antarctic Research Expedition, and it was reviewed by reviewers and editors. We thank them for their patience and time.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2023.1284750/full#supplementary-material

      References Albuquerque A. L. S. Mozeto A. A. (1997). C: N: P ratios and stable carbon isotope compositions as indicators of organic matter sources in a riverine wetland system (Moji-guaçu River, São Paulo-Brazil). Wetlands 17, 19. doi: 10.1007/BF03160713 Anderson J. B. Conway H. Bart P. J. Witus A. E. Greenwood S. L. McKay R. M. . (2014). Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 3154. doi: 10.1016/j.quascirev.2013.08.020 Annett A. L. Carson D. S. Ganeshram R. S. Fallick A. E. (2007). “Ecological influences on δ13C of particulate matter in seasonally ice-covered Ryder Bay.” Antarctica–Online Proceedings of the 10th ISAES X edited by Cooper A. K. Raymond C. R. . USGS Open-File Report 1047 (2007). Delmont T. O. Hammar K. M. Ducklow H. W. Yager P. L. Post A. F. (2014). Phaeocystis Antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front. Microbiol. 5. doi: 10.3389/fmicb.2014.00646 Domack E. W. Jacobson E. A. Shipp S. Anderson J. B. (1999). Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2—Sedimentologic and stratigraphic signature. GSA Bull. 111, 15171536. doi: 10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2 Ducklow H. W. Wilson S. E. Post A. F. Stammerjohn S. E. Erickson M. Lee S. . (2015). Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic PeninsulaAntarctic particle flux. Elem. Sci. Anthr 3, 000046. doi: 10.12952/journal.elementa.000046 Fei X. Zhang Z. Cheng Z. Santosh M. (2019). Factors controlling the crystal morphology and chemistry of garnet in skarn deposits: A case study from the Cuihongshan polymetallic deposit, Lesser Xing’an Range, NE China. Am. Mineral. 104, 14551468. doi: 10.2138/am-2019-6968 Goericke R. Fry B. (1994). Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Glob. Biogeochem. Cycles 8, 8590. doi: 10.1029/93GB03272 Gudmundsson G. H. Paolo F. S. Adusumilli S. Fricker H. A. (2019). Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 1390313909. doi: 10.1029/2019GL085027 Guo G. Shi J. Gao L. Tamura T. Williams G. D. (2019). Reduced sea ice production due to upwelled oceanic heat flux in Prydz Bay, East Antarctica. Geophys. Res. Lett. 46, 47824789. doi: 10.1029/2018GL081463 Heroy D. C. Anderson J. B. (2007). Radiocarbon constraints on Antarctic Peninsula ice sheet retreat following the Last Glacial Maximum (LGM). Quat. Sci. Rev. 26, 32863297. doi: 10.1016/j.quascirev.2007.07.012 Hillenbrand C.-D. Kuhn G. Frederichs T. (2009). Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse? Quat. Sci. Rev. 28, 11471159. doi: 10.1016/j.quascirev.2008.12.010 Hillenbrand C.-D. Smith J. A. Kuhn G. Esper O. Gersonde R. Larter R. D. . (2010). Age assignment of a diatomaceous ooze deposited in the western Amundsen Sea Embayment after the Last Glacial Maximum. J. Quat. Sci. 25, 280295. doi: 10.1002/jqs.1308 Island G. (2001). South Shetland islands. Antarct. Sci. 7, 99113. Jenkins A. Dutrieux P. Jacobs S. S. McPhail S. D. Perrett J. R. Webb A. T. . (2010). Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 3, 468472. doi: 10.1038/ngeo890 Joughin I. Alley R. B. (2011). Stability of the West Antarctic ice sheet in a warming world. Nat. Geosci. 4, 506513. doi: 10.1038/ngeo1194 Anderson J. Andrew J. (1999). Radiocarbon constraints on ice sheet advance and retreat in the Weddell Sea, Antarctica. Geology 27 (2), 179182. doi: 10.1130/0091-7613(1999)027<0179:RCOISA>2.3.CO;2 Khim B.-K. Yoon H.-I. Kang C.-Y. Zhao J. (2004). Holocene variations of organic carbon contents in lake Langer of king George island, South Shetland islands, West Antarctica. Ocean Polar Res. 26, 507514. doi: 10.4217/OPR.2004.26.3.507 Licht K. J. Andrews J. T. (2002). The 14C record of late pleistocene ice advance and retreat in the central ross sea, Antarctica. Arct. Antarct. Alp. Res. 34, 324333. doi: 10.1080/15230430.2002.12003501 Licht K. J. Hemming S. R. (2017). Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications. Quat. Sci. Rev. 164, 124. doi: 10.1016/j.quascirev.2017.03.009 Licht K.J. Jennings A.E. Andrews J.T. Williams K.M. (1996). Chronology of late Wisconsin ice retreat from the western Ross Sea Antarctica. Geology 24, 223226. Liu S. LI J. Fang X. Zhang H. Yu Y. Cao P. . (2007). National Standards of People's Republic of China: Specifications for oceanographic survey - Part 8: Marine geology and geophysics survey. Beijing, China, China Standards Press for China National Standardization Administration, 139pp. doi: 10.25607/OBP-151 Lowe A. L. Anderson J. B. (2002). Reconstruction of the West Antarctic ice sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent retreat history. Quat. Sci. Rev. 21, 18791897. doi: 10.1016/S0277-3791(02)00006-9 Lupton J.E. Craig H. (1981). A major helium-3 source at 15°S on the East Pacific Rise. Science 214, 1318. doi: 10.1126/science.214.4516.13 Mallett H. K. Boehme L. Fedak M. Heywood K. J. Stevens D. P. Roquet F. (2018). Variation in the distribution and properties of Circumpolar Deep Water in the eastern Amundsen Sea, on seasonal timescales, using seal-borne tags. Geophys. Res. Lett. 45, 49824990. doi: 10.1029/2018GL077430 Mendonça R. Müller R. A. Clow D. Verpoorter C. Raymond P. Tranvik L. J. . (2017). Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694. doi: 10.1038/s41467-017-01789-6 Mezgec K. Stenni B. Crosta X. Masson-Delmotte V. Baroni C. Braida M. . (2017). Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat Commun 8, 1334. doi: 10.1038/s41467-017-01455-x Minoura K. Hoshino K. Nakamura T. Wada E. (1997). Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material. Palaeogeogr. Palaeoclimatol. Palaeoecol. 135, 4150. doi: 10.1016/S0031-0182(97)00026-6 Mook W. G. Bommerson J. C. Staverman W. H. (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169176. doi: 10.1016/0012-821X(74)90078-8 Mosola A. B. Anderson J. B. (2006). Expansion and rapid retreat of the West Antarctic Ice Sheet in eastern Ross Sea: possible consequence of over-extended ice streams? Quat. Sci. Rev. 25, 21772196. doi: 10.1016/j.quascirev.2005.12.013 Nakayama Y. Menemenlis D. Zhang H. Schodlok M. Rignot E. (2018). Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403. doi: 10.1038/s41467-018-05813-1 Nakayama Y. Schröder M. Hellmer H. H. (2013). From circumpolar deep water to the glacial meltwater plume on the eastern Amundsen Shelf. Deep Sea Res. Part Oceanogr. Res. Pap. 77, 5062. doi: 10.1016/j.dsr.2013.04.001 Nakayama Y. Timmermann R. Schröder M. Hellmer H. H. (2014). On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf. Ocean Model. 84, 2634. doi: 10.1016/j.ocemod.2014.09.007 Naughten K. A. Holland P. R. De Rydt J. (2023). Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century. Nat. Clim. Change 13, 12221228. doi: 10.1038/s41558-023-01818-x Nicolas J. P. Bromwich D. H. (2011). Climate of West Antarctica and influence of marine air intrusions. J. Clim. 24, 4967. doi: 10.1175/2010JCLI3522.1 Ohkouchi N. Eglinton T. I. (2006). Radiocarbon constraint on relict organic carbon contributions to Ross Sea sediments. Geochem. Geophys. Geosyst. 7, Q04012. doi: 10.1029/2005GC001097 Rau G. H. Takahashi T. Marais D. J. D. (1989). Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341, 516518. doi: 10.1038/341516a0 Sakamoto T. Ikehara M. Aoki K. Iijima K. Kimura N. Nakatsuka T. . (2005). Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 52, 22752301. doi: 10.1016/j.dsr2.2005.08.007 Shultz D. J. Calder J. A. (1976). Organic carbon 13C12C variations in estuarine sediments. Geochim. Cosmochim. Acta 40, 381385. doi: 10.1016/0016-7037(76)90002-8 Smith J. A. Hillenbrand C.-D. Kuhn G. Klages J. P. Graham A. G. C. Larter R. D. . (2014). New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum. Glob. Planet. Change 122, 224237. doi: 10.1016/j.gloplacha.2014.07.015 Smith J. A. Hillenbrand C.-D. Kuhn G. Larter R. D. Graham A. G. Ehrmann W. . (2011). Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea embayment. Quat. Sci. Rev. 30, 488505. doi: 10.1016/j.quascirev.2010.11.020 Spezie G. (1999). Oceanography of the ross sea: Antarctica (Springer). Stein R. Fahl K. (2000). Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways, and sinks. Geo-Mar. Lett. 20, 2736. doi: 10.1007/s003670000028 Stuiver M. Reimer P. J. (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230. doi: 10.1017/S0033822200013904 Thoma M. Jenkins A. Holland D. Jacobs S. (2008). Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35. doi: 10.1029/2008GL034939 van Manen M. Aoki S. Brussaard C. P. D. Conway T. M. Eich C. Gerringa L. J. A. . (2022). The role of the Dotson Ice Shelf and Circumpolar Deep Water as driver and source of dissolved and particulate iron and manganese in the Amundsen Sea polynya, Southern Ocean. Mar. Chem. 246, 104161. doi: 10.1016/j.marchem.2022.104161 Xu Q. B. Yang L. J. Gao Y. S. Sun L. G. Xie Z. Q. (2021). 6,000-year reconstruction of modified circumpolar deep water intrusion and its effects on sea ice and penguin in the ross sea. Geophys. Res. Lett. 48, e2021GL094545. doi: 10.1029/2021GL094545 Yager P. Sherrell R. Stammerjohn S. Ducklow H. Schofield O. Ingall E. . (2016). A carbon budget for the Amundsen Sea Polynya, Antarctica: Estimating net community production and export in a highly productive polar ecosystem. Elem. Sci. Anthr. 4, 140. doi: 10.12952/journal.elementa.000140 Yongbin L. Rujian W. Li W. U. Wenshen X. (2021). Glacial dynamics evolutions revealed by ice-rafted detritus record from the Ross Sea sector of the Southern Ocean since Late Pleistocene. Quat. Sci. 41, 662677. doi: 10.11928/j.issn.1001-7410.2021.03.04
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hpbdkn.com.cn
      fdyrty.com.cn
      isfswj.com.cn
      www.jlchain.com.cn
      halujie.org.cn
      keaibo.com.cn
      simibaby.com.cn
      uqsboc.com.cn
      www.wcnzne.com.cn
      www.uipc.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p