Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2021.699000 Marine Science Original Research Distribution Patterns of Floating Microplastics in Open and Coastal Waters of the Eastern Mediterranean Sea (Ionian, Aegean, and Levantine Seas) Adamopoulou Argyro 1 Zeri Christina 1 * Garaventa Francesca 2 Gambardella Chiara 2 Ioakeimidis Christos 3 Pitta Elli 1 1Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece 2National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy 3UN Environment Programme/Mediterranean Action Plan (UNEP/MAP), Athens, Greece

Edited by: Michael Arthur St. John, Technical University of Denmark, Denmark

Reviewed by: Tania Martellini, University of Florence, Italy; Conrad Sparks, Cape Peninsula University of Technology, South Africa

*Correspondence: Christina Zeri, chris@hcmr.gr

This article was submitted to Marine Pollution, a section of the journal Frontiers in Marine Science

09 09 2021 2021 8 699000 22 04 2021 10 08 2021 Copyright © 2021 Adamopoulou, Zeri, Garaventa, Gambardella, Ioakeimidis and Pitta. 2021 Adamopoulou, Zeri, Garaventa, Gambardella, Ioakeimidis and Pitta

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Microplastic pollution is a pervasive anthropogenic phenomenon at the ocean surface. Numerous studies have been performed worldwide; nevertheless, the distribution patterns, morphological properties, and sources of origin in the Eastern Mediterranean Sea are still poorly explored. The purpose of this study is to investigate the distribution patterns of surface floating microplastics (MPs) in the Ionian, Aegean, and Levantine Seas in relation to their sources and sea surface circulation. In total, eighty-four samples were collected using manta nets from 2014 to 2020, covering open waters, coastal waters, and enclosed gulfs (Corfu and Saronikos). MPs concentration measurements revealed high variability ranging from 0.012 to 1.62 items m–2 and did not present maximum concentrations close to MPs hotspot areas. The presence of sea surface slicks, as recorded visually during our samplings, seems to play a key role on the distribution pattern of MPs, and highest concentrations were recorded in samples affected by these formations. The dominant MPs shape type identified were fragments (50–60%), whilst filaments (1–23%), films (3–26%), and foams (0–34%) varied among the studied areas. The majority of MPs in open waters had sizes ≤2 mm peaking between 0.6 and 1.4 mm. Spectroscopic analysis of MPs revealed the presence of 11 polymer types in both open sea and gulfs; the most abundant type was polyethylene (PE), followed by polypropylene (PP), and polystyrene (PS). The relative abundance of polymer types was more diverse in Saronikos Gulf, compared to the open sea due to the proximity to major urban and industrial sources. Our findings suggest that the vicinity to coastal population centers determined the properties, size and polymer types of MPs and highlight that MPs concentrations are affected significantly by local oceanographic conditions, such as surface slicks.

plastics marine litter seasurface windrows surface slicks sources OpenSpecy FT-IR

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      During the last decades, dispersion of plastics in the oceans has become a global pollution problem that poses a great threat to the marine ecosystem. The extensive production of short use-cycle plastic products leads to considerable waste generation, and subsequent leakages to the environment. It is estimated that over 269,000 tons of plastic debris float on the surface of the oceans (Eriksen et al., 2014). Despite being durable and long-lasting materials, plastics deposited in the environment are subject to weathering processes, such as UV-photooxidation and hydrolysis, causing degradation, and eventually fragmentation to smaller particles, called microplastics (MPs) (Thompson et al., 2004; Ioakeimidis et al., 2016).

      Microplastics are defined as plastic pieces smaller than 5 mm, classified as primary and secondary. Primary MPs are small plastic particles consisting of raw industrial plastic pellets and processed particles added intentionally in health-care and cleaning products (cosmetics, detergents, etc.). Secondary MPs are particles derived either from larger plastics’ fragmentation or from materials’ wearing off during use (GESAMP, 2016; Veiga et al., 2016). MPs formation takes place at beaches and land, and reach the sea through rivers, road run off, city storm water, and wastewater treatment plants (Moore et al., 2011; Cheung et al., 2016; Kalogerakis et al., 2017). MPs could be found both in populated and remote places, and they are ubiquitous in the marine environment, from the ocean surface to the deep sea sediments (Van Cauwenberghe et al., 2013; Bergmann et al., 2015; Lusher et al., 2015; Courtene-Jones et al., 2017; Morgana et al., 2018). At sea, MPs are redistributed under the influence of physical factors and despite the well-known accumulation in the oceanic gyres, concentrations of MPs along the surface ocean exhibit increased variation in space and time. In addition, environmental fate, vertical transport, and biological effects, may be affected by microbial colonization on MPs and biofilm formation (Kaiser et al., 2017; Kooi et al., 2017). Biofilm may lead to an increase in the density of MPs and a decrease in their buoyancy with a strong impact on both sedimentation potential and upward transport (Rummel et al., 2017; Nguyen et al., 2020). Furthermore, despite that the understanding of MPs trophic transfer in marine ecosystems is increasing, several aspects remain unknown, primarily including the role of the microbial biofilm living on MPs surface (the so-called “plastisphere;” Zettler et al., 2013) on trophic transfer and its effects on marine organisms’ health. MPs are known to absorb harmful contaminants (Karapanagioti et al., 2011; Koelmans et al., 2016; Torres et al., 2021) whilst records on the ingestion of MPs by marine biota are increasing exponentially (Galloway, 2015; Wright et al., 2017; Digka et al., 2018). More recently, the role of MPs has also been investigated in relation to the carbon cycle (Galgani et al., 2018, 2020; Romera-Castillo et al., 2018; Taipale et al., 2019). Our understanding of the factors affecting the MPs variation at sea and their harmful effects in organisms, is still limited. Consequently, there is insufficient capacity for designing and implementing successful mitigation and regulatory policies (Thompson, 2015; Galgani et al., 2021).

      In the Mediterranean Sea, the estimated average plastic concentration from both model and field data is comparable to the oceanic gyres (Lebreton et al., 2012; Eriksen et al., 2014; Cózar et al., 2015). This observation potentially results from several factors including the high population concentration (∼150 million), the increased tourism activity in the Mediterranean area (1/3 of the world’s tourism), the expanded shipping activity (15% of the global shipping; UNEP/MAP, 2017), in combination with the enclosed character of the basin. The distribution of floating MPs in the Mediterranean Sea, has been mainly investigated in the northwestern and central part of the basin (Collignon et al., 2012, 2014; Fossi et al., 2012, 2016; De Lucia et al., 2014; Cózar et al., 2015; Pedrotti et al., 2016; Suaria et al., 2016; Zeri et al., 2018). Even though there are some studies in the open and coastal waters in the eastern Mediterranean Sea (Cózar et al., 2015; Gündoğdu and Çevik, 2017; Güven et al., 2017; van der Hal al., 2017), there is still lack of information for the floating MPs distribution. In the present work, we aim to fill in the gap on the magnitude of MP pollution in the Eastern Mediterranean Sea, by providing data on concentrations and properties of floating MPs at the sea surface of the Ionian, Aegean, and Levantine Seas in addition to two enclosed gulfs, Corfu and Saronikos. We further discuss the factors affecting the observed distribution patterns and properties considering the vicinity to MPs sources and oceanographic variables.

      Materials and Methods Study Area

      The investigated study area covered parts of the Eastern Mediterranean Sea: the Aegean Sea, the Eastern part of the Ionian Sea and parts in the Levantine Sea within the Greek territory. In addition, two gulfs were studied: Corfu Gulf in the Ionian Sea and Saronikos Gulf in the Aegean Sea (Figure 1). Surface waters originating from the Levantine and Cilician basins enter the eastern Aegean Sea from the eastern Cretan Straits and Rhodes passage and travel northward along the eastern coasts, until they meet lighter waters of Black Sea origin in the North Aegean. These relatively light surface waters are progressively mixed with saline ones following a cyclonic circulation along the eastern coasts of the Greek peninsula. Sea surface circulation in the Ionian Sea shows considerable seasonal and interannual variability with reversals of surface circulation from cyclonic to anticyclonic and vice versa. Within this pattern exist several cyclonic and anticyclonic mesoscale and/or sub-mesoscale features (Poulain et al., 2012).

      Map of sampling positions in the Ionian, Aegean, and Levantine Seas for each of the seven campaigns from April 2014 to February 2020. In red circles the two enclosed gulfs sampled (A). Sampling positions in Corfu Gulf (B) and Saronikos Gulf (C). Black arrows denote surface currents.

      Corfu Gulf is situated in the North Ionian Sea and is a secluded elongated bay formed between the coast of Corfu and the Greek mainland. The gulf is burdened by dense and frequent movement of vessels and ships, including recreational and fishing boats; the town of Corfu (28,185 inhabitants) which is an international touristic destination and the port of Igoumenitsa (25,814 inhabitants) on the mainland. Kalamas River (length 115 km; water flux 74 m–3 s–1) drains mountainous and agricultural land and outflows in the gulf by the port of Igoumenitsa. The Saronikos Gulf is situated in the central Aegean Sea and is the marine gateway of the Athens greater metropolitan area (∼3.8 million inhabitants), including the port of Piraeus and increased navigation activities. Several point and non-point pollution sources are concentrated in the inner part of the gulf. A small urban river, Kifissos River (length 25 km), ends up close to the port of Piraeus; the river does not have a stable flow and is subject to flooding events, depending mainly on the annual precipitation. Approximately 70% of its catchment is currently a built-up urban area characterized by mixed land uses, such as operating and abandoned factories, small and medium enterprises, warehouses, illegal areas for fly tipping of solid waste etc. Another important pollution source is the outflow of the treated sewage of Athens/Piraeus (∼800,000 km–3 per day). Several other point sources are spread along the coasts and include marinas, touristic facilities, fish farms, and the treated effluents of smaller towns and settlements.

      Sampling of Microplastics

      A total of eighty-four samples of sea surface water were collected for MPs investigation during 11 sampling campaigns from 2014 to 2020 (Figure 1). In most cases sampling sites were visited once. Only for two cases, two samplings were conducted in autumn and spring at same locations. In particular, the North Ionian Sea and Corfu Gulf were visited in October 2014 and in April 2015 and the inner Saronikos Gulf in March 2019 and October 2019. Five of the samplings were conducted with research vessels (R/V Filia and R/V Aegeao); two with sailboats; one with a fishing boat and one of the samplings in the inner Saronikos Gulf with an inflatable boat. The start and end sampling positions were obtained either from the vessel’s or from a portable Global Positioning System (GPS). Details on samples position and wind conditions are given in Supplementary Table 1. Sea surface MPs were collected using manta nets. Manta net dimensions were: W60 × H24 cm rectangular frame opening; net 3 m length and mesh size of 330 μm with the exception of the Greenpeace campaign which were: W84 × H15 cm rectangular frame opening; net 4 m length mesh size 335 μm. For samplings conducted after 2017 the manta net was equipped with a flow meter (HydroBios). In all cases the manta net was towed from the side of the vessel and beyond the vessel’s wake. The duration of the manta net tows varied from 15 to 30 min, depending on the size of the net used, assuring collection of a representative sample. The vessel speed was always kept <2 knots. At the end of each tow, the net was washed in order to gather all particles in the cod end. In order to avoid sample contamination on board, immediately after sampling, the cod net was transferred into a glass jar and kept frozen until analysis in the laboratory.

      Wind Correction

      Sampling of MPs with manta net trawls is subject to limitations related to the sea state during the time of sampling. Wave-induced turbulent mixing causes the downward flux of plastic particles deeper than the height of the manta net frame. For this reason, it is recommended that net tows are carried out under light wind conditions <10 knots (<3 B) (GESAMP., 2019). Wind speed was recorded by a portable anemometer or by ship’s instruments and was <10 knots during most of our samplings, except nine tows conducted with sailing boats under wind force up to 14 knots (Supplementary Table 1). For these cases, we have applied a correction factor on the MPs field data following the model described by Kukulka et al. (2012) and Reisser et al. (2015). Wind stress (τ) and water friction velocities (uw) were calculated from measured wind velocity onboard, while the significant wave height (Hs) was based on typical wave heights experienced at corresponding Beaufort numbers (for 3 B: Hs 0.6–1 m; for 4 B: Hs 1–2 m) and further refined using photographs of the sea state during our samplings. The use of photographs was considered helpful as sometimes wave propagation may lag wind or vice versa.

      Microplastics Separation and Counting

      Analysis was conducted in line with the GESAMP. (2019) guidelines. After thawing, the samples were sieved through a stack of metallic sieves (1 mm and 300 μm), to facilitate the separation of organic material, especially in organic rich samples. In case of presence of large natural organic items (seaweed, branches, and leaves) these were thoroughly washed with deionized water above the stack of sieves to collect all MPs adhered onto them. Then the two fractions were dried at 40°C. MPs were visually identified under a stereomicroscope. For samples holding a significant amount of natural organic matter (gels), a step of H2O2 digestion at 60°C was performed, until the digestion was complete, and no natural organic material was visible. The digests were filtered through Glass Microfibre Filters GF/C filters and then examined under a stereomicroscope for MPs presence. The counting of MPs, identification of shape type (fragment, filament, film, foam, and pellet) and size was performed using the OLYMPUS SZX10, SZX stereomicroscopes, equipped with a digital camera (Luminera; Nikon, and DSL3) and the INFINITY ANALYZE software. Image analysis was used in order to measure the longest dimension (mm) of MPs. To avoid lab contamination the filtering equipment was placed in a plastic hood (Sigma-Aldrich Pyramid) while for the 2019–2020 samples all processing was conducted under a laminar flow bench (HN14). Furthermore, fiber free (tyvek) lab coats were used and airborne contamination was estimated by using blank filters at all stages of the analyses. Particles present in samples with features similar to those collected on the blanks were excluded from the MPs analysis. MPs concentration was expressed per m2 and per m3 when a flowmeter was used.

      FT-IR Analysis

      For the characterization of the MPs polymer type, ATR-FTIR spectroscopy was used [Agilent Cary 630; Perkin Elmer Spectrum Two with (UATR) accessory with a 9-bounce diamond top-plate]. Spectral range was 4,000–650 cm–1 with a resolution of 4 cm–1 and 32 scans s–1. The threshold for spectra similarity was set to 80%. Polymer identification was based on a combination of instruments’ built-in and in-house libraries. ATR-FTIR analysis was done in 12% of the total particles counted. Cross-reference of spectra retrieved from the ATR-FTIR instrument was performed with the open source database Open Specy (www.openspecy.org; Cowger et al., 2021). The Open Specy tool includes 636 spectra of 276 materials from three libraries of pure polymers, and materials relevant to microparticles and fibers found in the environment (Primpke et al., 2018; Chabuka and Kalivas, 2020; Suja Sukumaran, Thermo Fisher Scientific).

      Statistical Analysis

      Differences in MPs concentrations were examined by the Mann–Whitney U test and the non-parametric Kruskal–Wallis test post hoc pairwise, since data did not meet the assumptions of normality as shown by the Shapiro–Wilk test and homogeneity of variance as shown by the Levene’s test. Level of significance was set to <0.05. All statistical analyses were performed using IBM SPSS statistics 25.

      Results

      A total of 23,800 microparticles were counted. Mesoplastics (>5 mm) caught in the manta net corresponded to ∼5% of total particles and were not included in the present analysis. In the subset of 2,971 items, subjected to FTIR analysis 2.7% were identified as natural materials, and 0.7% were suspect to laboratory contamination (e.g., filter material). These percentages are considered low, and so all microparticles counted were considered as MPs.

      Distribution of MPs

      Results on MPs concentrations per sampling area are presented in Figure 2A and Supplementary Table 1. Concentrations showed increased variability ranging from 0.012 to 1.62 items m–2 (average ± SD: 0.26 ± 0.36; 1.18 ± 1.27 items m–3; median: 0.12; 0.72 items m–3), while most of the data (80%) fall below 0.3 items m–2. The statistical analysis showed a significant variation between the sampling areas (overall P = 0.007). Data from the Levantine Sea were very limited, so this area was not included in this analysis. Furthermore, the post hoc pairwise analysis revealed that the difference occurs only for the Corfu Gulf and the Saronikos Gulf (P = 0.010) data sets. It is understood that MPs distribution follows overall similar patterns, with some differentiations in the two enclosed gulfs (Figure 2A). In order to map the spatial distribution of MPs in the studied areas, we grouped the MPs concentrations in five classes as depicted in Figure 2B. Areas visited more than once (N. Ionian Sea, Corfu Gulf, Saronikos Gulf), show increased spatiotemporal variability of MPs, while the highest concentrations were recorded in the N. Ionian Sea and the Corfu Gulf. Few elevated concentrations were recorded in between the islands of the Aegean Sea and in the Levantine Sea. The lowest concentrations of MPs in our dataset appeared systematically along the west–east transect in the central Aegean Sea. To investigate any potential relationship between MPs concentrations and surface currents velocities, we retrieved surface current velocity data from Copernicus - Marine environment monitoring service, during the same dates of our samplings and at the closest position (Lat, Lon). The comparison of MPs concentrations in our samples with corresponding current velocities did not show any systematic pattern and no relationship could be established (Supplementary Figure 1). This can be attributed to several reasons such as (i) the fact that velocity data correspond to average daily values integrated over the grid and not to exact conditions at the time and place of the samplings, and (ii) other factors, besides surface currents, affecting the transport of plastics on the sea surface, i.e., wave action, beaching, and the shape of the particles.

      Dot-plot diagram of microplastics (MPs) concentrations (items m–2) in the five sampled areas. Concentrations of samples collected inside and outside the slicks are separated by the horizontal line at 0.8 items m–2 (A). Map showing floating MPs concentration classes for all sampling positions (B). Colors in figures correspond to 5 MPs concentration classes (items m–2) as follows: 1: white < 0.1; 2: 0.1 ≤ blue < 0.3; 3: 0.3 ≤ green < 0.5; 4: 0.5 ≤ orange < 0.8; and 5: red ≥ 0.8 items m–2.

      At three of the investigated areas, two repetitive samplings were conducted: in the N. Ionian Sea and Corfu Gulf in October 2014 and April 2015 and in the inner Saronikos Gulf in March 2019 and October 2019. In all cases, MPs concentrations where found higher during the first sampling occasions (October 2014, March 2019), which coincided with rain events either during the same day or 10 days before samplings took place1 (Table 1). These differences are statistically significant for the N. Ionian Sea and Corfu Gulf data (Mann–Whitney U test, P = 0.009), while the test was not possible for the inner Saronikos Gulf data due to the limited number of samples. In the two gulfs (Saronikos Gulf and Corfu Gulf) where the sampling transects were conducted in very short distances from land and from the mouth of the rivers (<2 km), the differences observed could be an indication of direct MPs inputs from land during rain events. For the sampling transects, however, in the N. Ionian Sea with distances from land farther offshore (>2.5 km), land runoff of MPs might not be the only factor which affects the seasonal variation observed. In the N. Ionian Sea as well as in the Corfu Gulf, during October 2014, formations of long stripes with mirror-like appearance of the sea surface water (slicks) were visible and occasionally accumulation of flotsam was apparent (windrows; Figures 3A,B). In many cases, the manta net trawls coincided and/or crossed the slicks and this information was recorded. Data obtained inside and outside the slicks are indicated (Figure 2A). Elevated concentrations of MPs were consistently found inside the slicks (>0.8 items m–2), almost one order of magnitude higher than outside the slicks (P = 0.005); all samples were collected under calm conditions. The appearance of slicks on the sea surface is a clear indication of the action of specific sub-mesoscale physical structures such as Langmuir circulation and river fronts related to wind-wave forcing or alongshore currents (van Sebille et al., 2020). Although, we do not know the exact mechanism causing the slicks formation and whether it is related to the storm event of the preceding days and/or the river outflow for the case of Corfu Gulf, our data show that slicks have a strong influence on MPs concentrations. Additionally, MPs concentrations > 0.8 items m–2 were recorded in two sampling locations, one in Corfu Gulf close to the Kalamas river mouth in April 2015 and associated with windrow formation in (Figure 3C) and a second sample collected in the Saronikos Gulf in November 2015 (Figure 2A). The latter was collected at the western part of the gulf away from pollution point sources and coincided with the presence of an oil slick. Although our samplings were not designed in relation to the slicks, these results highlight that information on local oceanographic conditions during samplings is needed for the interpretation of MPs distribution on the sea surface.

      Microplastics (MPs) concentrations (items m–2) in the areas with repetitive samplings and rain (mm) during 10 days before samplings.

      Rain* (mm) Area MPs (items m–2)
      October 14 n = 13 179.2 N. Ionian Sea 0.56 ± 0.52
      Corfu Gulf 0.98 ± 0.58
      April 15 n = 13 0.4 N. Ionian Sea 0.22 ± 0.16
      Corfu Gulf 0.28 ± 0.32
      March 19 n = 5 29.6 Inner Saronikos Gulf 0.11 ± 0.06
      October 19 n = 3 6.4 0.06 ± 0.05

      *10 days before sampling.

      Slick appearance of the sea surface on 9/10/2014 in the N. Ionian Sea (sample 10-1M) with apparent floating macroplastics (A); on 14/10 2014 in Corfu Gulf (sample 10-13M) (B); on 25/4 2015 in Corfu Gulf with apparent formation of windrow (sample 4-15M) (C); gelatinous zooplankton in sample 10-1M (D); fish eggs in sample 10-7M (E).

      Microplastics Properties

      All counted MPs were classified in five different shape types (fragments, filaments, films, foams, and pellets) as shown in Figure 4. Fragments had the highest percentage contribution exceeding 60% in all regions except Saronikos Gulf where they contributed by 50%. Filaments contribution was highest in the Aegean Sea (23%) while in the other areas fluctuated between 1 and 7%. Films had the highest share (26%) in the Levantine Sea followed by 7% in the Saronikos Gulf and 3.4% in the Aegean Sea. About one third (34%) of the MPs found in the Saronikos Gulf were foams, while in other areas foams were almost not recorded. Pellets were found only in the Saronikos Gulf by 1.3% (Figure 4). Data shows that fragments were the most common shape type caught by manta nets while filaments and films varied largely. In the enclosed Saronikos Gulf the variety in the shape types of MPs was highest.

      Relative abundance of MPs shape types at the studied areas.

      Measurements of the longest dimension of MPs by image analysis were conducted in a subset of particles (4,125 corresponding to the 17.3% of the total). Average length of MPs was 1.71 ± 1.07 mm. The frequency diagrams of Figures 5A,B show the size distribution of the MPs collected in the three areas (Ionian, Aegean, and Levantine; denoted as “open waters”) separately from those collected in the inner Saronikos Gulf, close to input sources. About 70% of MPs from open waters have lengths ≤2 mm, peaking between 0.8 and 1.4 mm. In the Saronikos Gulf the contribution of ≤2 mm MPs, is only 56%, and the histogram shape suggests that MPs are more or less evenly distributed within the measured size range. It should be noted that these data are operationally defined by the manta net mesh size 330 μm, and in particular for small sized particles <1 mm which may pass the net opening based on their shortest dimension.

      Histograms of the relative frequency of the MPs length (mm) for MPs collected in the Ionian, Aegean and Levantine Sea (Open Sea) (A) and in the inner Saronikos Gulf (B).

      Spectroscopic analysis with ATR-FTIR revealed that the majority of particles were made of synthetic polymers. Nevertheless, it was not possible to identify (ND) about 288 particles, either because their material was not included in our databases or because of their small size, as particles within the size range 300–500 μm fall within the limits of detection of ATR-FTIR instruments. In all these cases however, it was possible to obtain a spectrum. These ND spectra were further analyzed against the Open Specy database, in order to check whether comparison with vast types of materials could possibly refine our results. Out of the 288 ND spectra re-analyzed, 68 had spectral similarity (>76%) to natural materials, and 220 to synthetic polymers (142 with spectral similarity >80% and 78 in between 76 and 80%). The natural materials identified had the following characterizations in the Open Specy databases: leaf plant, algae fucus serratus, cellulose, chitin, animal fur, fiber linen, and broodcomb. Apart from elucidating the nature of the ND particles, the OpenSpecy databases were used also for cross-referencing of our polymer spectra. We chose to check all spectra characterized as general polymer types (e.g., thermoplastic polymers-TPE) and materials (e.g., adhesive tape, bag), as well as a subset of well defined polymers [e.g., High Density PolyEthylene (HDPE), PolyVinyl chloride (PVC)]; in total 61 spectra. Results from this exercise are given in Table 2 (Supplementary Table 2 in detail). Overall, there was a 100% agreement between our instruments’ and OpenSpecy libraries for well defined polymers HDPE, LDPE, Ethylene-Vinyl-Acetate (EVA), PP, PS while a more specific polymer characterization was achieved for the spectra of general polymer types and materials. Polyvinyl-alcohol (PVA) was the only polymer that presented dissimilarities between the two ways of characterization. In almost all cases spectra characterized as PVA by the instrument’s library matched with natural materials when compared to the OpenSpecy libraries (Supplementary Table 2). Final polymer characterization of the MPs was conducted by refining our results based on the Open Specy re-analysis (excluding re-analysis results on PVA, which were considered as such). The percentage contribution of the different polymer types is presented for the open waters and the enclosed gulfs separately (Figure 6). In total, eleven different polymer types were identified, seven of them were common for all the areas (open waters, Corfu Gulf, and Saronikos Gulf) namely; Polyethylene (PE; including high and low density), Polypropylene (PP), Nylon-Polyamide (Nylon-PA), Polystyrene (PS, including expanded polystyrene EPS), Polyurethane (PU), Polyvinyl-chloride (PVC), and PVA. For the latter, the high degree of uncertainty, based on spectra re-analysis, should be noted. The other non-common polymers found are Antifouling paints (AF-paints), Ethylene Propylenediene monomer (EPDM), EVA, Polyester-tetraphthalate (PET/Polyester), wax materials. The relative contribution of the various polymer types in open waters and Corfu Gulf appear similar to each other in contrast to the Saronikos Gulf. There is a clear dominance of PE and PP particles in open waters (79%) and Corfu Gulf (91%). In Saronikos Gulf, PE and PP hold a lower share (47%) and an elevated contribution of PS (18%) and AF-paints (20%) is observed (Figure 6). Saronikos Gulf is the only area were AF-paints as well as EPDM (2%), a polymer with industrial and building insulation uses, were found.

      Cross-referencing of spectra identified by our instruments’ and in-house libraries against the OpenSpecy libraries.

      Polymer characterization Number of spectra
      ATR-FTIR libraries OpenSpecy libraries
      EVA EVA 1
      HDPE HDPE 3
      LDPE LDPE 4
      Nylon Nylon 6.6 1
      PP PP 1
      PS PS 2
      PVC HDPE 2
      PVA PVA 1
      PVA Polyacrylamide 1
      PVA Natural 26
      SPE HDPE 6
      TPE PE 2
      TPE Styrene ethylene butylene 1
      TPE EPDM 1
      TPE PP 2
      Adhesive tape PU 1
      Bag Polyester fiber 3
      Carnauba wax Honeycomb, PVA 3

      Relative abundance of polymer types of MPs collected in the Ionian, Aegean and Levantine Sea (Open Sea), Corfu Gulf and inner Saronikos Gulf.

      Discussion

      The Mediterranean Sea is characterized as a hot spot area for plastic pollution and floating plastic concentrations are found comparable to those of the oceanic gyres (Eriksen et al., 2014; Cózar et al., 2015). Despite this statement, increased variability in MPs has been recorded with concentrations differing 2–3 orders of magnitude from place to place and at different time instances (Suaria et al., 2016; Fossi et al., 2017; van der Hal et al., 2017; Baini et al., 2018). This can be attributed to the permanent, quasi-permanent mesoscale circulation features, seasonal structures, and significant temporal changes in the surface currents that characterize this basin (Poulain et al., 2012). Concentrations of MPs reported in the present study (0.012–1.62 items m–2) capture this variability and are in line with other case studies reported at the Mediterranean Sea (Table 3). Models on plastics distribution in the oceans relate inputs from large rivers, navigation routes, and coastal population centers to surface currents circulation (Lebreton et al., 2012; Eriksen et al., 2014; van Sebille et al., 2015). Relevant studies for the Mediterranean Sea provide justification for the increased spatiotemporal variability observed and define that elevated plastic concentrations are expected close to input sources (river mouths, large cities) and along a 50 km strip parallel to land (Zambianchi et al., 2017; Liubartseva et al., 2018; Mansui et al., 2020). Liubartseva et al. (2018), in particular consider the stokes drift, as well as the beaching and sedimentation effects, to conclude that any long-term accumulation of plastics at the sea surface would be unlikely in the Mediterranean, mainly due to the beaching effect on long and complex coastlines. This is particularly true for the Aegean Sea, which is characterized as a “least polluted” area, especially the central Aegean Sea where simulated plastic concentrations appear less than 2 g km–2 (Liubartseva et al., 2018). Seasonal simulations show a patchy distribution during winter (December–April) with relatively elevated concentrations in the N. Aegean and S. Aegean Seas and a cleansing action during summer (Politikos et al., 2017; Mansui et al., 2020). For the Levantine Sea, models agree on the formation of a coastal accumulation strip along the southern coasts of Turkey throughout the year, coinciding with the Asian Minor Current (AMC) and least polluted waters south of Crete island (Liubartseva et al., 2018; Mansui et al., 2020). For the eastern Ionian Sea, model simulations of floating litter transport conclude that moderate amounts of litter are consistently found around Corfu island, transported by the northward coastal current of the eastern Ionian Sea (Politikos et al., 2020). In accordance to model simulations, our results show the lowest concentrations of MPs in the Aegean Sea (0.15 ± 0.17 items m–2), particularly in the Central Aegean transect (Figure 2B), while higher concentrations were recorded (0.27 ± 0.08 items m–2) in the Levantine waters especially at the edge of the AMC which transports MPs from the Cilician basin as described above (Figure 2B). Our data set presents the highest MPs concentration in the areas of Corfu Gulf (0.63 ± 0.60 items m–2) and in the N. Ionian Sea (0.38 ± 0.40 items m–2) while, contrary to what one would have expected not in the highly populated Saronikos Gulf. The elevated MPs concentrations observed in these two areas may be related to the presence of sea surface slicks during October 2014. In fact, van Sebille et al. (2020) in their extensive review on the physical processes controlling the transport of plastic particles in the ocean, explain how the appearance of slicks denotes the presence of sub-mesoscale (<10 km) convergence zones due to specific physical structures (i.e., sub-mesoscale eddies, Langmuir circulation). Along these convergence zones floating objects (flotsam) i.e., seaweed, wood, oil, and plastics, show strong concentration factors (D’Asaro et al., 2018) sometimes forming visible windrows. Apart from visible objects, these formations favor also the accumulation of MPs, organic matter, planktonic organisms, fish eggs, and small fish. Pictures of the samples collected inside the slicks provide evidence of the proliferation of larvae and eggs (Figures 3D,E). Gove et al. (2019) investigating MPs occurrence and ingestion by larval fish inside and outside surface slicks around Hawaii islands showed that MPs concentrations were 126-fold higher inside than outside the slicks, while ingestion by larval fish was found 2.3-fold higher inside the slicks. The authors found surface slicks to be a conducive nursery habitat for small fish. In our study, MPs concentrations were found to be significantly higher (1.08 ± 0.46 items m–2) when crossing or inside the slicks than those in the waters outside the slicks (0.21 ± 0.14 items m–2), this regardless the studied areas. Surprisingly, surface slicks concentrations resulted to be equal to those reported recently for the N. Pacific gyre (average 1.08 items m–2 for size range 0.5–5 mm; Lebreton et al., 2018). The high accumulation of MPs in such sensitive habitats becomes a matter of ecological relevance due to the increased possibility for interactions (and ingestion) between organisms and MPs. It is important to specify that the sampling design of this study was not arranged according to the presence of slicks, i.e., concentrations may have been even higher if trawls were conducted 100% inside the slicks, suggesting that this finding is worthy for further investigation. The importance of windrows in understanding marine litter and MPs pollution and the need for targeted windrow research has been acknowledged very recently by Cózar et al. (2021), in their relative perspective article.

      Sea surface MPs concentrations (items m–2) reported for the Mediterranean Sea, using surface manta nets.

      Area Net mesh (μm) MPs (items m–2) Sources
      Mediterranean Sea 200 0.24 Cózar et al., 2015
      Mediterranean Sea 330 0.14 ± 0.025 Ruiz-Orejón et al., 2016
      W. Mediterranean Sea 333 0.12 ± 0.13 Pedrotti et al., 2016
      W. Mediterranean Sea 330 0.10 ± 0.09 de Haan et al., 2019
      W. Mediterranean Sea 780/330 0.11 Schmidt et al., 2017
      W. Mediterranean Sea 330 0.082 ± 0.079 Fossi et al., 2017
      W. Mediterranean and Adriatic Seas 200 0.4 ± 0.7 Suaria et al., 2016
      Adriatic Sea 330 0.3 ± 0.5 Zeri et al., 2018
      E. Mediterranean Sea 333 0.14 ± 0.12 Güven et al., 2017
      E. Mediterranean Sea 333 0.38 Gündoğdu and Çevik, 2017
      E. Mediterranean Sea 333 1.5 van der Hal et al., 2017
      E. Mediterranean Sea 330 0.26 ± 0.36 (0.012–1.62) Present study

      It is documented that MPs show different buoyancy characteristics depending on their density, but also on their shape type, size, and biofouling degree (Kooi et al., 2016, 2017; Kaiser et al., 2017). In fact, small sized and elongated particles tend to float deeper in the water column due to increased water friction forces (Reisser et al., 2015; Kooi et al., 2016). This pattern can be further enhanced under the action of convergence and downwelling cells such as those described previously. Relatively large particles tend to stay at the surface and accumulate, while very small and elongated ones are more effectively transported below the surface. In addition, the predominance of fragments on the sea surface compared to small sized and elongated particles may be explained by the interactions between MP and biofilm and its effect on their buoyancy. In fact, biofouling should remove small fragments faster than large ones as a result of their higher surface area to volume ratios (Cózar et al., 2014); because the buoyancy of an item is a function of its volume, while its susceptibility to fouling is dependent largely on its surface area (Ryan, 2015). Given that the manta net is a neustonic sampling device, the buoyancy patterns described above, may explain the high contribution of fragments (more than 50%) in all the collected samples, and in most other places worldwide. Moreover, the minimal contribution of filaments in the N. Ionian Sea and the Corfu Gulf could be related to the sorting action of the convergence and downwelling structures that occurred there which further enhanced the downwelling of less buoyant shapes such as filaments. MPs floating in the Ionian, Aegean and Levantine Seas occur mostly in sizes smaller than 2 mm peaking at the size range 0.8–1.4 mm, that is in accordance with other surveys using manta nets (330 μm; Cózar et al., 2014, 2015; Isobe et al., 2015; Maes et al., 2017). The similarities in the size distribution of MPs caught in the manta nets in various marine regions reflect that the MPs assortment has undergone substantial mixing during long residence time at sea.

      Global Plastics production in 2019 reached 368 Mt, out of which 58 Mt correspond to European production.2 About 40% of all polymers produced are used in packaging, with polyolefin polymers PE and PP having the highest demand, followed by PVC, PET, PS and EPS, and PA (European market demand: 9, 7, 5, and 2%, respectively). In the oceans’ surface waters, this may be modified according to the buoyancy characteristics of each of the polymers. In fact, the relative contributions of light polymers such as PE and PP is further enhanced due to their low densities (0.86–0.96 g cm–3), lower than the surrounding seawater (1.28 g cm–3), while denser materials tend to escape from the surface layer. In line with the above, the chemical composition of sea surface MPs in the Ionian, Aegean and Levantine Seas is dominated by PE and PP polymers by 80%. Other polymers present are PA-Nylon, PET and PVA. Polyamides such as Nylon are used in fiber manufacturing while PET is used for packaging and for textile manufacturing in the form of fibers (polyester type fibers). Although other studies have reported the presence of PVA in environmental samples (Ng and Obbard, 2006; Claessens et al., 2011; Chae et al., 2015; Suaria et al., 2016; Zeri et al., 2018), its considerable proportion is quite surprising as it is not one of the commonly used materials. PVA is a hydrolizable, glue-like adhesive polymer, used also as a coating for other materials such as cloth and paper and more recently for 3D printing. The cross-referencing of our spectra with a larger data base revealed that PVA is one of the most questionable materials, as 26 out of 28 spectra presented high similarities to various natural materials, glue like natural resins (wax, brood comb), chitin, algae, linen, wool (animal fur), rather than the polymer spectra. A recent study on fibers distribution in the oceans (Suaria et al., 2020) highlighted that natural fibers are dominant in surface oceanic waters (0–5 m) (cellulosic 79.5% and of animal origin 12.3%) in comparison with those of synthetic origin (8.6%). Here we should mention that at least one of the OpenSpecy libraries (Primpke et al., 2018) used for the cross-referencing of the spectra is common to that used by Suaria et al. (2020). The spectral similarity by more than 70% with either PVA or natural materials, depending on the library used, indicates the presence of common functional groups among all these materials. Our findings suggest that checking against a greater data base of spectra for environmental particles is considered useful in refining the results obtained only from polymers data bases (Cowger et al., 2021). At the same time, the question is raised whether the obtained spectra indicate deviations from the pure PVA spectrum, related to its fast degradation/hydrolysis in the environment (Min et al., 2020) or are indicative of natural materials with functional groups similar to PVA. Furthermore, the use of PVA in paper and textile coatings further complicates the issue. Experimental work with known materials and combination of libraries including degraded polymers could be useful in clarifying the questions raised above.

      Many studies have shown a direct relationship between MPs elevated concentrations and input sources such as large urban centers or river mouths (Frias et al., 2014; Zhao et al., 2014, 2015; Gewert et al., 2017; Sun et al., 2019) and have highlighted the importance of flood events for the washout and transport of MPs in coastal areas (Moore et al., 2002; Veerasingam et al., 2016; Gündoğdu and Çevik, 2017). In our study, for the case of Corfu Gulf, we cannot ascertain if the elevated MPs concentrations recorded reflect direct inputs of MPs from the Kalamas river, or rather the subsequent concentration effect caused by the formation of sea surface slicks. On the other hand, although Saronikos Gulf has been identified by models as a hot spot area, due to the high plastic inputs from Athens metropolitan area (Liubartseva et al., 2018), our field data, do not capture constant elevated MPs concentrations there (0.16 ± 0.22 items m–2), even in the inner part of the Gulf and after the heavy rain event (Table 1). It is possible, that local conditions may favor fast dispersion or beaching of plastic particles. While some authors have reported that large sized MPs, meso- and macro- plastics become less abundant close to the shores than in offshore waters (Pedrotti et al., 2016; Zeri et al., 2018), others have shown the opposite. In particular, close to river mouths and urban centers the relative abundance of large sized MPs has been linked to shorter residence time in the marine environment (Morét-Ferguson et al., 2010; Schmidt et al., 2017). Isobe et al. (2014) combined modeled and field data and demonstrated that meso-plastics are selectively drifted close to the shores, independently from the presence river mouths. Based on these outcomes, it is understood that the size distribution of plastic particles close to the coastline is controlled by both the vicinity to sources (short residence time) and the prevailing dispersion-concentration modes (Doyle et al., 2011; Frere et al., 2017). Recent data on MPs in Kifissos river water further upstream confirm the high level of large MPs and mesoplastics, mostly PE films (Zeri et al., 2021). In addition, the small beach by the river mouth has been characterized as a hot-spot area for beach litter (>10,000 items/100 m) with ∼50% of items corresponding to small sized plastic and polystyrene fragments (Greek Marine Strategy Framework Directive monitoring program, HCMR unpublished data). These local conditions may explain the observed MPs distribution and properties in the inner Saronikos Gulf. In fact, as already described, in this area, several known input sources of MPs coexist (Kifissos River mouth, WWTP, ports and marinas, anchorage points). Apart from the typical contribution of PE and PP, a considerable presence of foam particles in the inner Saronikos Gulf was confirmed by their chemical signature, PS/EPS being 18%. In Greece, the market demand for plastics in 2018–2019 was ∼1 Mt per year; while recycling and energy recovery rates in the country are of the lowest in Europe (70% of waste is landfilled) (see text footnote 2). The EU Directives on the banning plastic bags (EU/720/2015) and single use items (EU/904/2019) came into force only very recently (in 2019 and 2020 respectively). This situation has favored plastic leakage in the environment and is reflected in the MPs chemical composition in the inner Saronikos Gulf where a higher diversity of polymer types has been recorded. In fact, different types of polymers indicative of specific economic sectors such as industry, construction, maritime, were found in this area (EVA, PU, EPDM, and AF-paints). AF-paint particles are usually painted metal chips not expected to stay afloat for long periods, and their presence in the inner Saronikos samples is a strong indication of the direct inputs of MPs from the anchorage points, ports operations and increased marine traffic.3 Lastly, the presence of WWTP outflow in the analyzed samples were not evidenced, this is probably related to the fact that sewage enters the gulf via a diffusive pipe situated at 65 m depth. In addition, MPs mostly found in sewage correspond to small sized filaments (Talvitie et al., 2015), which are unlikely to be caught by surface manta nets.

      The results presented in this work highlight that local oceanographic conditions, such as slicks, significantly affect MPs concentrations, posing risks in these sensitive habitats. Our study suggests that MPs sources from coastal population centers were not detectable based on MPs concentrations, but rather on properties such as size and polymer type. Elevated MPs concentrations were not found close to the major MPs sources at the Athens metropolitan area. The assortment of MPs there, consisted of large sized MPs and more variable polymer types, holding rather “local” features and differentiated from the well mixed MPs assortment found in open waters and less impacted areas. To our knowledge, this is the first study presenting field data of floating MPs concentrations in relation to the presence of sea surface slicks in the Mediterranean Sea, and provides evidence that slicks act as strong MPs concentration factors. It is anticipated that the outcomes of the present study will provide insights toward a better interpretation of floating MPs data from systematic monitoring activities.

      Data Availability Statement

      The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

      Author Contributions

      AA processed the samples, analyzed the data, and wrote and reviewed the manuscript. CZ conceived the study, collected the samples, and wrote and reviewed the manuscript. FG processed the samples and reviewed the manuscript. CG collected and processed the samples and reviewed the manuscript. CI collected the samples and reviewed the manuscript. EP processed spectroscopic data and reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Funding

      AA received a grant from the Hellenic Foundation for Research and Innovation (H.F.R.I) (contract number 14508). The work has been supported by the following projects and initiatives: CLAIM Project: H2020-BG-2016–2017 (Grant Number 774586), “Cleaning Litter by Developing and Applying Innovative Methods in European Seas;” DeFishGear project: str/00010, IPA-Adriatic, Cross Border Cooperation 2007–2013, “Derelict Fishing Gear Derelict Fishing Gear Management System in the Adriatic Region;” MARRE project: RESEARCH–CREATE–INNOVATE (project code: T1EDK-02966) co-financed by the European Regional Development Fund and Greek National Funds; MERMAID project (ERANET 12SEAS-12-C1), “Marine Environmental Targets Linked to Regional Management Schemes Based on Indicators Developed for the Mediterranean;” and National Monitoring Programme for the Implementation of the EU Marine Strategy Framework Directive in Greece (MIS 5010880, Ministry for the Environment and Energy.

      We wish to thank Greenpeace Greece for the sampling onboard Rainbow Warrior III during the 2017 campaign “Less Plastic more Mediterranean.” We wish to pay tribute to Frank Jubelin (1952–2020) and his welcoming Ange-de-Mer vessel. He was an Aegean Sea lover and he provided valuable support and selfless contribution in conducting numerous surveys in the Aegean Sea. The missions with Franck at sea will stay forever in our heart and mind. He will be greatly missed.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2021.699000/full#supplementary-material

      References Baini M. Fossi M. C. Galli M. Caliani I. Campani T. Finoia M. G. (2018). Abundance and characterization of microplastics in the coastal waters of Tuscany (Italy): the application of the MSFD monitoring protocol in the Mediterranean Sea. Mar. Pollut. Bull. 133 543552. 10.1016/j.marpolbul.2018.06.016 30041348 Bergmann M. Gutow L. Klages M. (2015). Marine Anthropogenic Litter. Germany: Springer Open. 10.1007/978-3-319-16510-3 Chabuka B. K. Kalivas J. H. (2020). Application of a hybrid fusion classification process for identification of microplastics based on fourier transform infrared spectroscopy. Appl. Spectros. 74, 11671183. 10.1177/0003702820923993 32297518 Chae D.-H. Kim I.-S. Kim S.-K. Song Y. K. Shim W. J. (2015). Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region. Arch. Environ. Contam. Toxicol. 69 26978. 10.1007/s00244-015-0173-4 26135299 Cheung P. K. Cheung L. T. O. Fok L. (2016). Seasonal variation in the abundance of marine plastic debris in the estuary of a subtropical macro-scale drainage basin in South China. Sci. Total Environ. 562 658665. 10.1016/j.scitotenv.2016.04.048 27110978 Claessens M. De Meester S. Van Landuyt L. De Clerck K. Janssen C. R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62 21992204. 10.1016/j.marpolbul.2011.06.030 21802098 Collignon A. Hecq J. Galgani F. Voisin P. Collard F. Goffart A. (2012). Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64 861864. 10.1016/j.marpolbul.2012.01.011 22325448 Collignon A. Hecq J. H. Galgani F. Collard F. Goffart A. (2014). Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Mar. Pollut. Bull. 79 293298. 10.1016/j.marpolbul.2013.11.023 24360334 Courtene-Jones W. Quinn B. Gary S. F. Mogg A. O. M. Narayanaswamy B. E. (2017). Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Pollut. 23 271280. 10.1016/j.envpol.2017.08.026 28806692 Cowger W. Steinmetz Z. Gray A. Munno K. Lynch J. Hapich H. (2021). Microplastic spectral classification needs an open source community: open Specy to the Rescue! Analytical Chemistry 93 75437548. 10.1021/acs.analchem.1c00123 34009953 Cózar A. Aliani S. Basurko O. C. Arias M. Isobe A. Topouzelis K. (2021). Marine Litter Windrows: a Strategic Target to Understand and Manage the Ocean Plastic Pollution. Front. Mar. Sci. 8:571796. 10.3389/fmars.2021.571796 Cózar A. Echevarría F. González-Gordillo J. I Irigoien X. Ubeda B. Hernández-León S. (2014). Plastic debris in the open ocean. Proc. Natl. Acad. Sci. 111 1023910244. 10.1073/pnas.1314705111 24982135 Cózar A. Sanz-Martín M. Martí E. González-Gordillo J. I Ubeda B. Gálvez J. Á, et al. (2015). Plastic accumulation in the Mediterranean Sea. PLoS One 10:0121762. D’Asaro E. A. Shcherbina A. Y. Klymak J. M. Molemaker J. Novelli G. Guigand C. M. (2018). Ocean convergence and the dispersion of flotsam. PNAS 115 11621167. 10.1073/pnas.1718453115 29339497 de Haan W. P. Sanchez-Vidal A. Canals M. (2019). Floating microplastics and aggregate formation in the Western Mediterranean Sea. Mar. Pollut. Bull. 140, 523535. 10.1016/j.marpolbul.2019.01.053 30803674 De Lucia G. A. Caliani I. Marra S. Camedda A. Coppa S. Alcaro L. (2014). Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). Mar. Environ. Res. 100 1016. 10.1016/j.marenvres.2014.03.017 24776304 Digka N. Tsangaris C. Torre M. Anastasopoulou Aik Zeri C. (2018). Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 135 3040. 10.1016/j.marpolbul.2018.06.063 30301041 Doyle M. J. Watson W. Bowlin N. M. Sheavly S. B. (2011). Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71 4152. 10.1016/j.marenvres.2010.10.001 21093039 Eriksen M. Lebreton L. C. M. Carson H. S. Thiel M. Moore C. J. (2014). Plastic Pollution in the World’s Oceans: more than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One 9:e111913. 10.1371/journal.pone.0111913 25494041 Fossi M. C. Marsili L. Baini M. Giannetti M. Coppola D. Guerranti C. (2016). Fin whales and microplastics: the Mediterranean Sea and the sea of Cortez scenarios. Environ. Pollut. 209 6878. 10.1016/j.envpol.2015.11.022 26637933 Fossi M. C. Panti C. Guerranti C. Coppola D. Giannetti M. Marsili L. (2012). Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 64 23742379. 10.1016/j.marpolbul.2012.08.013 22964427 Fossi M. C. Romeo T. Baini M. Panti C. Marsili L. Campan T. (2017). Plastic Debris Occurrence, Convergence Areas and Fin Whales Feeding Ground in the Mediterranean Marine Protected Area Pelagos Sanctuary: a Modeling Approach. Front. Mar. Sci. 4:167. 10.3389/fmars.2017.00167 Frere L. Paul-Pont I. Rinnert E. Petton S. Jaffré J. Bihannic I. (2017). Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: a case study of the Bay of Brest (Brittany, France). Environ. Pollut. 225 211222. 10.1016/j.envpol.2017.03.023 28371735 Frias J. P. G. L. Otero V. Sobral P. (2014). Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95 8995. 10.1016/j.marenvres.2014.01.001 24461782 Galgani F. Brien A. S. O. Weis J. Ioakeimidis C. Schuyler Q. Makarenko I. (2021). Are litter, plastic and microplastic quantities increasing in the ocean? Microplast. Nanoplast. 1 14. 10.1186/s43591-020-00002-8 Galgani L. Engel A. Rossi C. Donati A. Loiselle S. A. (2018). Polystyrene microplastics increase microbial release of marine Chromophoric Dissolved Organic Matter in microcosm experiments. Sci. Rep. 8:14635. 10.1038/s41598-018-32805-4 30279474 Galgani L. Tsapakis M. Pitta P. Tsiola A. Tzempelikou E. Kalantzi I. (2020). Microplastics increase the marine production of particulate forms of organic matter. Environ. Res. Lett. 14 124085. 10.1088/1748-9326/ab59ca Galloway T. S. (2015). “Micro- and nano-plastics and human health” in Marine Anthropogenic Litter. eds Bergmann M. Gutow L. Klages M. (Germany: Springer International Publishing). 34 3366. 10.1007/978-3-319-16510-3_13 GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment. GESAMP Rep. Stud. Ser. 93:220. GESAMP. (2019). Guidelines on the monitoring and assessment of plastic litter and microplastics in the ocean. GESAMP Rep. Stud. Ser. 99:130. Gewert B. Ogonowski M. Barth A. MacLeod M. (2017). Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea. Mar. pollut. Bull. 120 292302. 10.1016/j.marpolbul.2017.04.062 28527744 Gove J. M. Whitney J. L. McManusc M. A. Lecky J. Carvalho F. C. Lynch J. M. (2019). Prey-size plastics are invading larval fish nurseries. PNAS 116:48. 10.1073/pnas.1907496116 31712423 Gündoğdu S. Çevik C. (2017). Micro- and mesoplastics in Northeast Levantine coast of Turkey: the preliminary results from surface samples Mar. Pollut. Bull. 118 341347. 10.1016/j.marpolbul.2017.03.002 28302357 Güven O. Gökdağ K. Jovanović B. Kıdeyş A. E. (2017). Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut. 223 286294. 10.1016/j.envpol.2017.01.025 28117186 Ioakeimidis C. Fotopoulou K. N. Karapanagioti H. K. Geraga M. Zeri C. Papathanassiou E. (2016). The degradation potential of PET bottles in the marine environment: an ATR-FTIR based approach. Sci. Rep. 6 18. 10.1038/srep23501 27000994 Isobe A. Kubo K. Tamura Y. Nakashima E. Fujii N. (2014). Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 89 324330. 10.1016/j.marpolbul.2014.09.041 25287228 Isobe A. Uchida K. Tokai T. Iwasaki S. (2015). East Asian seas: a hot spot of pelagic microplastics. Mar. Pollut. Bull. 101, 618623. 10.1016/j.marpolbul.2015.10.042 26522164 Kaiser D. Kowalski N. Waniek J. J. (2017). Effects of biofouling on the sinking behavior of Microplastics. Environ. Res. Lett. 12:124003. 10.1088/1748-9326/aa8e8b Kalogerakis N. Karkanorachaki K. Kalogerakis G. C. Triantafyllidi E. I. Gotsis A. D. Partsinevelos P. (2017). Microplastics Generation: onset of Fragmentation of Polyethylene Films in Marine Environment Mesocosms. Front. Mar. Sci. 4:84. 10.3389/fmars.2017.00084 Karapanagioti H. K. Endo S. Ogata Y. Takada H. (2011). Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece. Mar. Pollut. Bull. 62 312317. 10.1016/j.marpolbul.2010.10.009 21092999 Koelmans A. A. Bakir A. Burton G. A. Janssen C. R. (2016). Microplastic as a vector forchemicals in the aquatic environment: critical review and model-supported reinterpretation ofempirical studies. Environ. Sci. Technol. 50 33153326. 10.1021/acs.est.5b06069 26946978 Kooi M. Nes E. H. V. Scheffer M. Koelmans A. A. (2017). Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51 79637971. 10.1021/acs.est.6b04702 28613852 Kooi M. Reisser J. Slat B. Ferrari F. F. Schmid M. S. Cunsolo S. (2016). The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 6:33882. 10.1038/srep33882 27721460 Kukulka T. Proskurowski G. Morét-Ferguson S. Meyer D. W. Law K. L. (2012). The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 39, 16. 10.1029/2012GL051116 Lebreton L. Slat B. Ferrari F. Sainte-Rose B. Aitken J. Marthouse R. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8:4666. 10.1038/s41598-018-22939-w 29568057 Lebreton L. C. M. Greer S. D. Borrero J. (2012). Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 64 653661. 10.1016/j.marpolbul.2011.10.027 22264500 Liubartseva S. Coppini G. Lecci R. Clementi E. (2018). Tracking plastics in the Mediterranean: 2D Lagrangian model. Mar. Pollut. Bull. 129 151162. 10.1016/j.marpolbul.2018.02.019 29680533 Lusher A. L. Tirelli V. O’Connor I. Officer R. (2015). Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci. Rep. 5:14947. 10.1038/srep14947 26446348 Maes T. Van der Meulen M. D. Devriese L. I. Leslie H. A. Huvet A. Frère L. (2017). Microplastics Baseline Surveys at the Water Surface and in Sediments of the North-East Atlantic. Front. Mar. Sci. 4:135. 10.3389/fmars.2017.00135 Mansui J. Darmon G. Ballerini T. van Canneyt O. Ourmieres Y. Miaud C. (2020). Predicting marine litter accumulation patterns in the Mediterranean basin: spatio-temporal variability and comparison with empirical data. Prog. Oceanogr. 182:102268. 10.1016/j.pocean.2020.102268 Min K. Cuif? J. D. Mathers R. T. (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat. Commun. 11:727. 10.1038/s41467-020-14538-z 32024839 Moore C. J. Lattin G. L. Zellers A. F. (2011). Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. J. Integr. Coast. Zone Manag. 11 6573. 10.5894/rgci194 Moore C. J. Moore S. L. Weisberg S. B. Lattin G. L. Zellers A. F. (2002). A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters. Mar. Pollut. Bull. 44 10351038. 10.1016/s0025-326x(02)00150-9 Morét-Ferguson S. Law K. L. Proskurowski G. Murphy E. K. Peacock E. E. Reddy C. M. (2010). The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60 18731878. 10.1016/j.marpolbul.2010.07.020 20709339 Morgana S. Ghigliotti L. Estévez-Calvar N. Stifanese R. Wieckzorek A. Doyle T. (2018). Microplastics in the Arctic: a case study with sub-surface water and fish samples off Northeast Greenland. Environ. Pollut. 242 10781086. 10.1016/j.envpol.2018.08.001 30096546 Ng K. L. Obbard J. P. (2006). Prevalence of microplastics in Singapore’s coastal marineenvironment. Mar. Pollut. Bull. 52 761767. 10.1016/j.marpolbul.2005.11.017 16388828 Nguyen T. H. Tang F. H. M. Maggi F. (2020). Sinking of microbial-associated microplastics in natural waters. PLoS One 15:e0228209. 10.1371/journal.pone.0228209 32012181 Pedrotti M. L. Petit S. Elineau A. Bruzaud S. Crebassa J.-C. Dumontet B. (2016). Changes in the floating plastic pollution of the Mediterranean Sea in relation to the distance to land. PLoS One 11:e0161581. 10.1371/journal.pone.0161581 27556233 Politikos D. V. Ioakeimidis C. Papatheodorou G. Tsiaras K. (2017). Modeling the Fate and Distribution of Floating Litter Particles in the Aegean Sea (E. Mediterranean). Front. Mar. Sci. 4:191. 10.3389/fmars.2017.00191 Politikos D. V. Tsiaras K. Papatheodorou G. Anastasopoulou A. (2020). Modeling of ?oating marine litter originated from the Eastern Ionian Sea:Transport, residence time and connectivity. Mar. Pollut. Bull. 150:110727. 10.1016/j.marpolbul.2019.110727 31732179 Poulain P. M. Menna M. Mauri E. (2012). Surface Geostrophic Circulation of the Mediterranean Sea Derived from Drifterand Satellite Altimeter Data. J. Phys. Oceanogr. 973990. 10.1175/JPO-D-11-0159.1 Primpke S. Wirth M. Lorenz C. Gerdts G. (2018). Reference database design for the automated analysis of microplasticsamples based on Fourier transform infrared (FTIR) spectroscopy. Anal. Bioanal. Chem. 410 51315141. 10.1007/s00216-018-1156-x 29978249 Reisser J. Slat B. Noble K. Du Plessis K. Epp M. Proietti M. (2015). The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre. Biogeosciences 12 12491256. 10.5194/bg-12-1249-2015 Romera-Castillo C. Pinto M. Langer T. M. Álvarez-Salgado X. A. Herndl G. J. (2018). Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9:1430. 10.1038/s41467-018-03798 Ruiz-Orejón L. F. Sardá R. Ramis-Pujol J. (2016). Floating plastic debris in the Central and Western Mediterranean Sea. Mar. Environ. Res. 120, 136144. 10.1016/j.marenvres.2016.08.001 27540696 Rummel C. D. Jahnke A. Gorokhova E. Kühnel D. (2017). Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Environ. Sci. Technol. Lett. 4 258267. Ryan P. G. (2015). The importance of size and buoyancy for long-distance transport of marine debris. Environ. Res. Lett. 10:084019. 10.1088/1748-9326/10/8/084019 Schmidt N. Thibault D. Galgani F. Paluselli A. Sempéré R. (2017). Occurrence of microplastics in surface waters of the Gulf of Lion (NW Mediterranean Sea). Prog. Oceanogr. 163:72. 10.1016/j.pocean.2017.11.010 Suaria G. Achtypi A. Perold V. Lee J. R. Pierucci A. T. Bornman G. (2020). Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6:eaay8493. 10.1126/sciadv.aay8493 32548254 Suaria G. Avio C. G. Mineo A. Lattin G. L. Magaldi M. G. Belmonte G. (2016). The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters. Sci. Rep. 6:37551. 10.1038/srep37551 27876837 Sun J. Dai X. Wang Q. van Loosdrecht M. C. M. Ni B. J. (2019). Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res. 152 2137. 10.1016/j.watres.2018.12.050 30660095 Taipale S. J. Peltomaa E. Kukkonen J. V. K. Kainz M. J. Kautonen P. Tiirola M. (2019). Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis. Sci. Rep. 9 115. 10.1038/s41598-019-55990-2 31882692 Talvitie J. Heinonen M. Pääkkönen J. P. Vahtera E. Mikola A. Setälä O. U. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 72:9. 10.2166/wst.2015.360 26524440 Thompson C. (2015). “Microplastics in the Marine Environment: sources, Consequences and Solutions” in Marine Anthropogenic Litter. eds Bergmann M. Gutow L. Klages M. (Berlin: Springer). 313328. Thompson R. C. Olsen Y. Mitchell R. P. Davis A. Rowland S. J. John A. W. G. (2004). Lost at sea: Where is all the plastic? Science 304:838. 10.1126/science.1094559 15131299 Torres F. G. Dioses-Salinas D. C. Pizarro-Ortega C. I. DelaTorre G. E. (2021). Sorption ofchemical contaminants on degradable and non-degradable microplastics: recent progress andresearch trends. Sci. Total Environ. 757:143875. 10.1016/j.scitotenv.2020.143875 33310573 UNEP/MAP (2017). Mediterranean Quality Status Report Quality Status Report for the Mediterranean – MED QSR 2017. Kenya: United Nations Environment Programme. Van Cauwenberghe L. Vanreusel A. Mees J. Janssen C. R. (2013). Microplastic pollution in deep-sea sediments. Environ. Pollut. 182 495499. 10.1016/j.envpol.2013.08.013 24035457 van der Hal N. Ariel A. Angel L. Dr (2017). Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters. Mar. Pollut. Bull. 116 151155. 10.1016/j.marpolbul.2016.12.052 28063700 van Sebille E. Aliani S. Lavender Law K. Maximenko N. (2020). The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15:023003. van Sebille E. Wilcox C. Lebreton L. C. M. Maximenko N. A. Hardesty B. D. van Franeker J. A. (2015). A global inventory of small floating plastic debris. Environ. Res. Lett. 10:124006. 10.1088/1748-9326/10/12/124006 Veerasingam S. Mugilarasan M. Venkatachalapathy R. Vethamony P. (2016). Influence of 2015 flood on the distribution and occurrence of microplastic pellets along the Chennai coast, India. Mar. Pollut. Bull. 109 196204. 10.1016/j.marpolbul.2016.05.082 27287866 Veiga J. M. Fleet D. Kinsey S. Nilsson P. Vlachogianni T. Werner S. (2016). Identifying Sources of Marine Litter MSFD GES TG Marine Litter Thematic Report” in JRC Technical Report. (Italy: Joint Research Centre). 10.2788/018068 Wright S. L. Frank J. Kelly F. J. (2017). Plastic and human health: a micro issue? Environ. Sci. Technol. 51 66346647. Zambianchi E. Trani M. Falco P. (2017). Lagrangian Transport of Marine Litter in the Mediterranean Sea. Front. Environ. Sci. 5:5. 10.3389/fenvs.2017.00005 Zeri C. Adamopoulou A. BojaniæVareziæ D. Fortibuoni T. KovaèViršek M. Kržan A. (2018). Floating plastics in Adriatic waters (Mediterranean Sea): from the macro- to the micro- scale. Mar. Pollut. Bull. 136 341350. 10.1016/j.marpolbul.2018.09.016 30509816 Zeri C. Adamopoulou A. Koi A. Koutsikos N. Lytras E. Dimitriou E. (2021). Rivers and Wastewater-Treatment Plants as Microplastic Pathways to Eastern Mediterranean Waters: first Records for the Aegean Sea. Greece. Sustainability 13:5328. 10.3390/su13105328 Zettler E. R. Mincer T. J. Amaral-Zettler L. A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47 71377146. Zhao S. Zhu L. Wang T. Li D. (2014). Suspended microplastics in the surface water of the Yangtze Estuary System, China:. First observations on occurrence, distribution. Mar. Pollut. Bull. 86 562568. 10.1016/j.marpolbul.2014.06.032 25023438 Zhao S. Y. Zhu L. X. Li D. J. (2015). Microplastic in three urban estuaries. China. Environ. Pollut. 206 597604. 10.1016/j.envpol.2015.08.027 26312741

      http://meteosearch.meteo.gr/

      www.plasticseurope.org

      www.marinetraffic.com

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.fqjxjd.com.cn
      www.lifushou.org.cn
      www.hezeqiche.com.cn
      iegvc.com.cn
      www.tianyu0.com.cn
      www.psafca.com.cn
      vxtxf.net.cn
      sbsbsbppx.com.cn
      www.picoins.com.cn
      www.xcchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p