Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2020.00484 Marine Science Systematic Review Priorities and Motivations of Marine Coastal Restoration Research Bayraktarov Elisa 1 2 * Brisbane Shantala 1 3 Hagger Valerie 4 Smith Carter S. 5 Wilson Kerrie A. 6 Lovelock Catherine E. 4 Gillies Chris 7 8 Steven Andrew D. L. 2 Saunders Megan I. 2 1Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD, Australia 2CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, QLD, Australia 3School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia 4School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia 5Nicholas School of the Environment, Duke University Marine Lab, Beaufort, NC, United States 6Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia 7The Nature Conservancy, Carlton, VIC, Australia 8TropWATER, James Cook University, Townsville, QLD, Australia

Edited by: Laura Airoldi, University of Bologna, Italy

Reviewed by: Donna Marie Bilkovic, College of William & Mary, United States; Bregje Karien van Wesenbeeck, Deltares, Netherlands

*Correspondence: Elisa Bayraktarov e.bayraktarov@uq.edu.au

This article was submitted to Marine Conservation and Sustainability, a section of the journal Frontiers in Marine Science

08 07 2020 2020 7 484 22 03 2020 29 05 2020 Copyright © 2020 Bayraktarov, Brisbane, Hagger, Smith, Wilson, Lovelock, Gillies, Steven and Saunders. 2020 Bayraktarov, Brisbane, Hagger, Smith, Wilson, Lovelock, Gillies, Steven and Saunders

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Active restoration is becoming an increasingly important conservation intervention to counteract the degradation of marine coastal ecosystems. Understanding what has motivated the scientific community to research the restoration of marine coastal ecosystems and how restoration research projects are funded is essential if we want to scale-up restoration interventions to meaningful extents. Here, we systematically review and synthesize data to understand the motivations for research on the restoration of coral reefs, seagrass, mangroves, saltmarsh, and oyster reefs. We base this analysis off a published database of marine restoration studies, originally designed to estimate the cost and feasibility of marine coastal restoration, derived from mostly scientific studies published in peer-reviewed and some gray literature. For the present study, the database was updated with fields aimed at assessing the motivations, outcomes, and funding sources for each project. We classify restoration motivations into five categories: biotic, experimental, idealistic, legislative, and pragmatic. Moreover, we evaluate the variables measured and outcomes reported by the researchers and evaluate whether projects adhered to the Society for Ecological Restoration's (SER) standards for the practice of ecological restoration. The most common motivation of the scientific community to study restoration in marine coastal ecosystems was experimental i.e., to seek experimental data to answer ecological research questions or improve restoration approach, as expected since mostly peer-reviewed literature was evaluated here. There were differences in motivations among the five coastal ecosystems. For instance, biodiversity enhancement was the most common case for a biotic motivation in mangrove restoration projects. The most common metrics evaluated were growth/productivity, survivorship, habitat function, physical attributes, and reproduction. For most ecosystems, ecological outcomes were frequently reported, with socio-economic implications of the restoration rarely mentioned, except for mangroves. Projects were largely funded by governmental grants with some investment from private donations, non-governmental organizations, and the involvement of volunteers. Our findings and database provide critical data to align future research of the scientific community with the real social, economic and policy needs required to scale-up marine coastal restoration projects.

marine coastal restoration motivations for ecological restoration conservation funding restoration success restoration metrics restoration outcome standards for the practice of ecological restoration

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Despite the goods and services that marine coastal ecosystems provide to humans (UNEP, 2006), ecosystems such as coral reefs, seagrass, mangroves, saltmarsh, and oyster reefs are being lost at alarming rates worldwide mainly due to unsustainable land use, coastal development and climate change (Orth et al., 2000; Valiela et al., 2001; Pandolfi et al., 2003; Duke et al., 2007). Protection alone cannot solve this problem, as many areas have little natural habitat left to conserve, are facing extinction (Aronson and Precht, 2001) or have already become functionally extinct globally (Beck et al., 2011). Ecological restoration or “the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed” (SER, 2004) is urgently needed to assist ecosystems where natural recovery is hindered or impeded (Perrow and Davy, 2002). Ecological restoration principally seeks to recover the functioning of degraded ecosystems, however restoration of marine and coastal habitats can provide a range of ecological and socio-economic benefits, such as coastal protection from flooding and erosion, fisheries habitat, water quality improvements, and carbon sequestration and storage (Duarte et al., 2013; Fodrie et al., 2017; Macreadie et al., 2017; Abrantes et al., 2019; Gilby et al., 2020). The United Nations General Assembly recently declared the “UN Decade on Ecological Restoration” for 2021–2030 and ecological restoration is on the rise as a component of the solution to ameliorate ecosystem degradation (Possingham et al., 2015). For example, the United Nations Sustainable Development Goals call for restoration of marine coastal ecosystems (Goal 14). Marine coastal restoration plays a paramount role in the current focus on nature-based solutions to address global societal challenges (e.g., climate change adaptation and mitigation, supporting fisheries) (Cohen-Shacham et al., 2016) that are presently being advocated across government and industry and will feature as a key topic at upcoming global forums (e.g., UN Oceans Conference, Lisbon in 2020; Post-2020 global biodiversity framework for the UN Convention on Biological Diversity). Despite these high-level goals, a synthetic picture on what motivates people on the ground to undertake restoration in marine coastal ecosystems is lacking.

      Restoration is a human undertaking; therefore, it is critical to understand the motivations of individuals and organizations to conduct restoration, and how those motivations relate to project outcomes or funding sources. Understanding motivations, defined as “a reason or reasons for acting or behaving in a particular way” (oxford dictionary), has been well-assessed in various fields of socio-ecological research, for instance, to assess the reasons for people to engage in community-based conservation (Nilsson et al., 2016), to conserve urban biodiversity (Dearborn and Kark, 2010), or to volunteer in marine conservation programs (Kitney et al., 2018). The reasons or motivations why terrestrial ecosystems are restored have been described as “numerous, disparate, generally understated, and commonly underappreciated” (Clewell and Aronson, 2006). Little is known about the motivations of individuals or organizations to undertake restoration in marine and coastal environments. When we understand people's motivations, we can engage them toward achieving common goals. Therefore, understanding the motivations of individuals and organizations to restore are essential to better align these with the desired project outcomes, funding sources, and to overcome the barriers to scaling-up marine coastal restoration practice.

      Motivations for a particular restoration project may be complex, as there are likely multiple agents, governance structures, and funding sources involved. For instance, marine coastal restoration projects form part of many government and non-government environmental programs, which are being implemented by a range of stakeholders including community and Indigenous groups, conservation groups, not-for-profit organizations, and private companies. Scaling-up restoration efforts to meet international commitments (UNEP, 2019), necessarily involves a larger number and variety of stakeholders, which requires consideration of multiple motivations (Wyborn et al., 2012; Menz et al., 2013). It also requires stronger government policy, sustained funding, improving the relationships with existing restoration networks and community engagement (Gillies et al., 2015). This is particularly important for designing large-scale restoration programs which are carried out by multiple stakeholders. Recognizing and integrating different motivations in setting restoration goals and evaluating outcomes against these goals, can allow projects to deliver multiple benefits, help resolve stakeholder conflict, and sustain stakeholder commitments to restoration in the long-term (Hagger et al., 2017). Furthermore, customizing incentives to cater for diverse stakeholder motivations can also encourage restoration projects (Jellinek et al., 2019).

      Motivations for restoration can be categorized into five broad categories: biotic (motivations aligned with the desire to recover lost aspects of local biodiversity), idealistic (personal and cultural expressions of concern or atonement for environmental degradation, reengagement with nature, and/or spiritual fulfillment), heuristic (attempts to elicit or demonstrate ecological principles and biotic expressions), technocratic (restoration that is conducted by government agencies or other large organizations to satisfy specific institutional missions and mandates) and pragmatic (recover or repair ecosystems for their capacity to provide a broad array of natural services and products upon which human economies depend and to counteract extremes in climate caused by ecosystem loss) (Clewell and Aronson, 2006). This framework was applied by Hagger et al. (2017) to evaluate the reasons why people restore terrestrial habitats and how this influences planning and monitoring approaches to achieve desired outcomes. So far, in a marine context, the framework has only been used to understand the reasons of the scientific community to restore coral reefs, which were largely focused on improving the restoration approach and answering questions of ecological concern, i.e., heuristic/experimental motivations (Bayraktarov et al., 2019). Little is known about the reasons of scientists to restore other marine coastal habitats and whether these motivations differ among coral reefs, seagrass, mangroves, saltmarsh, and oyster reefs.

      The Society for Ecological Restoration (SER) was founded in 1988 to “advance the science, practice and policy of ecological restoration to sustain biodiversity, improve resilience in a changing climate, and re-establish an ecologically healthy relationship between nature and culture” (SER, 2020)1. The International Standards for the Practice of Ecological Restoration (first edition released by SER, 2016) contain a number of best practice guidelines developed over decades of research and practice from well-established restoration of terrestrial habitats, however is aimed to be transferrable to marine and freshwater ecosystems (McDonald et al., 2016). SER have developed many tools to help restoration practitioners track their progress toward a full ecosystem restoration, such as the “recovery wheel” used to assess advancement based on metrics categorized under the attributes: absence of threats; ecosystem function; external exchanges; physical conditions; species composition; and structural diversity (McDonald et al., 2016). In addition to best practices and metrics, the outcomes from a restoration project can be categorized into ecological, social and economic or a combination thereof following the framework by Wortley et al. (2013). For marine coastal restoration, we do not currently know: (1) whether the best practice standards toward a full ecosystem recovery proposed by SER have been applied; (2) which metrics have been measured to assess recovery; and (3) what the intended outcomes for the restoration projects were.

      Allocation of funding may be considered a metric of an organization's level of interest in a subject, therefore, assessing funding sources in relation to motivations for marine restoration helps us to discern the motivations of organizations. Reported marine coastal restoration costs range from USD $9,000 ha−1 for mangrove restoration where large contributions of effort by communities and volunteers are common (Bayraktarov et al., 2016a) to USD $400,000 ha−1 for coral reefs which often involve logistical constraints to reach the restoration sites (Bayraktarov et al., 2019). While investment in conservation of biodiversity continues to be limited and is simply not enough to meet global biodiversity targets (James et al., 1999; McCarthy et al., 2012), it has to be carefully evaluated in its effectiveness to actually make a change for biodiversity (Ferraro and Pattanayak, 2006).

      Information on restoration projects can be obtained from either the scientific process of examining peer-reviewed papers, or through gray literature such as newspaper reports, newsletters, targeted interviews, or government reports. The knowledge from the former source can be accessed through systematic literature review while the latter is more difficult to synthesize. It is not known what the motivations to restore marine coastal ecosystems from either of these sources are and whether they are aligned with the broader needs to reach restoration at scales. These are: to build a business case and awareness that restoration is feasible, develop a policy framework that enables restoration, to build skills and experience in restoration practitioners and to learn from the expertise of terrestrial restoration and adopt best practices (Gillies et al., 2015). Here we focus on the scientific community, their priorities and motivations to restore marine coastal ecosystems.

      We systematically review empirical results from the published literature, with the inclusion of some gray literature and personal communications, to elucidate the reasons why (mostly) scientists engage in the field of marine coastal restoration. We specifically answer the questions: (1) what priorities and motivations do scientists have to engage in marine coastal restoration; (2) do motivations to engage vary between different ecosystems; (3) what are the metrics measured and which restoration attributes did they assess; (4) were best practices for ecological restoration applied; and (5) what is the nature of funding to carry out restoration projects? We answer these questions by expanding and updating a global systematic review focused on cost and feasibility assessments of marine coastal restoration (Bayraktarov et al., 2016a), to compare the results across five ecosystems: coral reefs, seagrass, mangroves, saltmarsh and oyster reefs.

      Methods

      This paper assesses the motivations underpinning marine coastal restoration as reported primarily by scientists in peer-reviewed scientific literature. The analysis builds off a published database of 235 papers on marine coastal restoration projects which was developed using search criteria aimed at quantifying the cost and feasibility of marine coastal restoration (Bayraktarov et al., 2016a,b). For the purpose of this study the database was updated with more recent literature and expanded to include information on the motivations, outcomes, and funding sources of the research. We used a modified version of the framework by Clewell and Aronson (2006) as adopted by Bayraktarov et al. (2019) for corals reefs to categorize the motivations of the restoration projects. Coral reef data presented in this paper was previously published (Bayraktarov et al., 2019) and is included here as a comparison to four other ecosystems.

      Database

      The database of Bayraktarov et al. (2016a) which included publications up to 2014, was expanded for the present study using the following methods: The database was updated to include publications until 2018. This involved a systematic literature search using Web of Science (Core collection; Thomson Reuters, New York, New York, U.S.A.) and Scopus (Elsevier, Atlanta, Georgia, U.S.A.) and the title search terms “(ecosystemA* OR ecosystemB*) AND restor*,” as well as “(ecosystemA* OR ecosystemB*) AND rehab*.” The terms ecosystemA and ecosystemB were used as placeholders for two different words describing the same ecosystem (e.g., coral and coral reef, mangrove and mangal, saltmarsh and salt marsh, shellfish, and oyster). For consistency with Bayraktarov et al. (2016b), an EndNote (Version X8.1; Thomson Reuters.) search was then performed within the full text using the search terms “(cost* OR feasib* OR surviv*).” Additional information was gathered by following citations, personal communications, and inspecting diverse restoration databases and webpages. Reports included in the database were mostly from the published literature but also included some information from webpages and personal communications. English was the primary language in which the restoration projects were described with a few exceptions in Spanish. The updated database consisted of 275 studies of which 64% were scientific papers published in journals and 36% included other reports (e.g., books, book chapters, conference proceedings, reports, webpages, and personal communication).

      Data were extracted from each primary study (publications describing original research) where each study described one restoration project. The first observation representing a study in the database was used for analyses. An exception was the study by Edwards and Gomez (2007), which contained information on five independent restoration projects which were sufficiently described to enable data extraction from the same source for multiple projects. Secondary sources, reviews or guideline papers were excluded because these studies usually lack the level of detail required for data extraction to inform motivations, variables measured or restoration outcomes.

      For the present study, 275 primary (original research) and secondary (research referring to original research e.g., reviews) restoration studies across the five ecosystems—coral reefs (87), seagrass (57), mangroves (64), saltmarsh (33), and oyster reefs (34)—met the above search criteria. These were further refined to 186 primary studies (75 coral reefs; 30 seagrass; 38 mangrove; 23 saltmarsh; 20 oyster reefs) to determine motivations, variables measured, outcomes reported, funding sources and alignment with the six standards for the practice of ecological restoration described by McDonald et al. (2016) (see methods, below). Projects were carried out in 57 countries (Figure 1), of which 27 had high-income economies, 17 had upper-middle income economies, 10 had lower-middle income economies and two were from countries with a low income economy as defined by The World Bank (2014).

      Locations of all marine coastal restoration projects in the database.

      Motivations for Engaging in Marine Coastal Restoration

      For each entry in the database, the motivations of the authors to engage in marine coastal restoration were assigned to five categories adopted from Clewell and Aronson (2006). For example, enhancing or increasing biodiversity is a biotic motivation to restore coral reef habitat and improve resilience to ocean warming and acidification (McLeod et al., 2019). Other examples for biotic motivations are an increase in the number of native species (e.g., for saltmarsh), habitat creation, ecosystem connectivity, and increasing the ecological resilience of the ecosystem (Table S1). Improving the approach to restore coral reefs by harvesting and culturing wild coral-spawn slicks to apply at large, industrial scales (Doropoulos et al., 2019) is an experimental (or heuristic) motivation. Building community awareness, involvement, a shared responsibility for the restoration site, and creating jobs through restoration activities is an idealistic motivation for the restoration of coral reefs (Kittinger et al., 2016). Marine ecosystem restoration required to offset biodiversity in order to comply with an environmental policy (Jacob et al., 2018) is a legislative (or technocratic) motivation. The provision of ecosystem services is an important pragmatic motivation worldwide, for example community-based restoration of mangroves in Indonesia for storm protection (Brown et al., 2014), and oyster and coral reef restoration for fisheries production (Gilby et al., 2018).

      To identify motivations or reasons for restoration we screened for key words like objective, purpose, goal, success, intent, aim, focus, intention, aspiration, direction, target. Motivations for each marine coastal restoration project were classified as biotic; experimental; idealistic; legislative; and/or pragmatic (see examples for motivations in Table S1) following Clewell and Aronson (2006) and Bayraktarov et al. (2019). These five categories are not necessarily mutually exclusive but comprise a categorization that facilitates their systematic description (Clewell and Aronson, 2006).

      Variables Measured

      The methods of each study were inspected to extract variables measured during monitoring of the restoration sites. Variables were grouped to specific “sub-attribute categories” (e.g., survivorship) which were nested within broader “attribute categories” (e.g., ecosystem function) (Table S2) modified from the International Standards for the Practice of Ecological Restoration (McDonald et al., 2016). Following these standards, the variables survival, growth and productivity were categorized under the attribute “ecosystem function.” These variables have been categorized as variables measuring the biological response of the ecosystem to the restoration interventions in other studies e.g., Hein et al. (2017).

      Variables measured during monitoring of the restoration sites included those related to ecosystem function and processes (e.g., survival, reproduction, growth, and productivity), but also the physical environment of the site (e.g., temperature, turbidity, and pH), the level of threats (e.g., invasive species, predators, and physical damage), as well as social and socio-economic variables (Table S2).

      Restoration Outcomes

      The type of restoration outcome was described after searching the abstract, results, and discussion of each study. We categorized the reported outcomes of each restoration project as ecological, economic, social, or as a combination thereof following Wortley et al. (2013).

      Standards for Ecological Restoration

      Each project was searched for whether it aligned (fully or partially) with any or all of the six standards for the practice of ecological restoration (McDonald et al., 2016). We modified the six standards for practical reasons to: (1) having a reference ecosystem to compare restoration progress against a reference; (2a) having clear targets and goals, as well as SMART (specific, measurable, adequate, repeatable, and time-bound) restoration objectives; (2b) having specific and measurable indicators to evaluate targets, goals, and objectives; (2c) employing adaptive management of the restoration site; (3) assessing the capacity for natural recovery of the ecosystem prior to restoration intervention; (4) aiming for full ecosystem recovery; (5) drawing from all relevant knowledge including science, practice and traditional knowledge; and (6) having early and ongoing stakeholder engagement with communities and end-users. Active adaptive management incorporates uncertainty and the process of iterative learning about the system being managed, which leads to better decisions (McCarthy and Possingham, 2007). We added the adaptive management component to complement the SER standards which did not include this principle. Because of the differences in time periods between SER standards (2016) and studies assessed (1974–2018), we did not search for wording of the six standards verbatim but the “philosophy” or scientific “intent” behind them. A full list of all categories and extraction rules are included in the (Table S3). Primary studies were categorized into whether they addressed each of the standards by SER, only addressed them partially and whether they have not addressed them at all. “Partially” often means that a certain component was missing in order to fully address the specific standard. For instance, studies that only partially addressed the standard of “having clear targets and goals, as well as SMART restoration objectives” often had clear restoration objectives, but those objectives were not time-bound.

      Financial Contributors of Marine Coastal Restoration Projects

      Following the methods by Bakker et al. (2010), we extracted data from the acknowledgments section of each primary study and identified the funding sources as a combination of: (1) government funding, (2) non-government funding, (3) private investments by businesses, individuals or philanthropy, and (4) projects supported by volunteer labor.

      Results Motivations of Scientists to Engage in Marine Coastal Restoration

      The most common primary motivation to engage in restoration across all five ecosystems was experimental i.e., to further ecological knowledge and improve restoration techniques. Sixty-seven percent (50 studies out of 75) of the primary studies investigating coral reef restoration followed this rationale with 63% for seagrass (19 out of 30 studies), 24% for mangroves (9 out of 38 studies), 48% for saltmarsh (11 out of 23 studies), and 85% for oyster reefs (17 out of 20 studies) (Figure S1a). The second most predominant motivations were biotic, i.e., to enhance biodiversity, and legislative, i.e., to restore the ecosystem after environmental impact such as ship grounding or oil spill as well as for biodiversity offsets. Only a small number of studies followed the pragmatic motivation to enhance ecosystem services. Six mangrove studies were motivated by enhancing coastal protection through restoration, while three studies on coral reefs, one oyster reef restoration study and one mangrove study aimed to increase fisheries production from restoration.

      Primary motivations varied among ecosystems, with the most common motivations in mangrove projects being biotic (i.e., biodiversity enhancement) while in oyster, coral, saltmarsh and seagrass studies, projects were most often motivated by the experimental rationale (i.e., improving restoration approaches, technology and methods and answering ecological research questions) (Figure 2). Restoration projects of coral reefs had the largest proportion of studies with experimental motivations. Projects for oyster reefs were the only projects that did not include biotic motivations. These were largely motivated by the experimental rationale, as well as pragmatic (e.g., ecosystem services), and to a lesser degree idealistic (e.g., social) reasons. Note that only the primary motivations are described here, while also information on secondary and tertiary motivations are available in the database as well as an analysis in (Figure S1).

      Primary motivation for marine coastal restoration aggregated by ecosystems for restoration studies. The total number of primary studies: n = 186. The motivation categories biotic, experimental, idealistic, legislative, and pragmatic are color coded.

      Alignment With Standards for Ecological Restoration

      We identified a mismatch between the six standards proposed by McDonald et al. (2016) and the characteristics of the projects, implemented between 1974 and 2018. None of the projects (which were implemented between 1974 and 2018) aligned with all six standards proposed by McDonald et al. (2016). Only the standards of having a reference site; clear, SMART targets and goals; and specific and measurable indicators to track progress were recorded in the studies (Figure 3).

      Proportion of studies following the six standards for the practice of ecological restoration proposed by the Society for Ecological Restoration (SER) (McDonald et al., 2016). Studies were assessed based on the standard categories: (A) Reference site, (B) Clear, SMART targets and goals, (C) Specific and measurable indicators, (D) Adaptive management, (E) Assessing of natural recovery, (F) Aiming for full ecosystem recovery, (G) All knowledge elicited, and (H) Stakeholder engagement.

      Variables Measured

      The most common attribute category of variables measured was “ecosystem function” (Figure 4), which mostly described the sub-categories growth/productivity (assessed 387 times); survivorship (151 times); habitat function (130 times); but also physical attributes (79 times); and reproduction (75 times) were often assessed (Table 1).

      Attribute categories of the variables measured to assess the restoration studies.

      Number of primary restoration projects reporting on variables grouped under the following sub-attribute categories.

      Sub-attribute category Coral reefs Mangroves Oyster reefs Saltmarshes Seagrasses
      Growth, productivity 140 53 54 43 97
      Survivorship 66 27 23 10 25
      Habitat function 52 18 16 29 15
      Physical attributes 19 10 14 21 15
      Reproduction 13 21 11 10 20
      Biological threats 23 8 6 11 8
      Physico-chemical variables (water) 18 3 26 5 3
      Physical disturbance 4 8 6 8 21
      Physico-chemical variables (soil) 0 20 5 14 0
      Socio-economic attributes 0 34 2 0 0
      Species make-up, diversity and distribution 6 5 1 12 5
      Growth, productivity of species 8 4 0 15 1
      Survivorship of species 22 3 0 3 0
      Nutrient cycling 3 3 0 3 13
      Engagement 1 14 3 0 2
      Recruitment/succession of species 11 4 0 4 1
      Health/condition 1 3 6 5 2
      Rate of sedimentation 13 0 2 0 0
      Response to environmental stress 14 0 1 0 0
      Contamination 3 9 0 1 0
      Strata diversity 1 6 1 4 1
      Physico-chemical threats 0 3 0 1 5
      Environmental variables 0 2 3 3 0
      Hydrological connectivity 0 7 0 1 0
      Species composition (non-target ecosystem flora) 0 0 0 4 4
      Restoration costs 4 0 0 3 0
      Awareness 0 7 0 0 0
      Coastal protection 0 5 2 0 0
      Diversity of growth forms 1 4 0 0 1
      Growth, productivity (adjacent ecosystem) 0 0 6 0 0
      Genetics/gene flow 5 0 0 0 0
      Anthropogenic threats 0 3 0 2 0
      Environmental threats 0 1 0 1 0
      Species composition (adjacent ecosystem) 0 0 2 0 0
      Species composition (non-target ecosystem fauna) 0 0 2 0 0
      Potential nutrient enrichment 0 0 0 0 2
      Sediment trapping 0 0 0 0 2
      Species composition (non-target ecosystem flora or fauna) 1 0 0 0 0
      Health/Condition 0 1 0 0 0
      Physico-chemical variables 0 1 0 0 0
      Growth, reproduction 0 0 1 0 0
      Genetic relationships 0 0 0 1 0

      The numbers correspond to times a sub-attribute was recorded by the studies (i.e., a single study can report multiple variables belonging to the same sub-attribute). The sub-attributes are ordered from most frequently recorded to least frequently recorded across all five ecosystems.

      Restoration Outcome

      Ecological outcomes were the most commonly reported outcomes (79.0% of all primary studies, Figure 5). Some studies reported an ecological and social outcome (10.2%). Only 2.2% of the overall studies reported a combined ecological, social and economic outcome. Mangrove ecosystems were the only ecosystem for which all types of outcomes i.e., ecological, social and economic as well as combinations thereof were reported. Studies of the other ecosystems reported predominantly ecological outcomes; seagrass (93.3%), saltmarsh (91.4%), oyster reefs (85.0%), and coral reefs (77.3%) (Table 2).

      Breakdown of outcomes reported by studies on the restoration of coral reefs, seagrass, mangroves, saltmarsh, and oyster reefs.

      Percentage of outcome categories reported.

      Outcome Coral reefs Seagrass Mangroves Saltmarsh Oyster reefs
      Ecological 77.3 93.3 60.5 91.4 85.0
      Social 0 0 2.6 0 0
      Economic 0 0 5.3 0 0
      Ecological & social 13.3 6.7 15.8 0 5.0
      Ecological & economic 8.1 0 5.3 4.3 5.0
      Social & economic 0 0 2.6 0 0
      Ecological & social & economic 1.3 0 7.9 0 0
      None 0 0 0 4.3 5.0

      The number of studies used for analysis was n = 75 for coral reefs, n = 30 for seagrass, n = 38 for mangroves, n = 23 for saltmarsh and n = 20 for oyster reefs.

      Financial Contributors

      Restoration projects were primarily funded by government agencies (92 of 186 studies) or government agencies in combination with other funding institutions (149 studies). Few studies were funded exclusively by non-government organizations (NGO) (four studies) or private organizations (10 studies), and no studies were supported exclusively through volunteer effort. Sixty-four studies reported multiple funding types and 16 studies did not acknowledge any funding (Figure 6A). Government funding was the largest contributor to restoration for each individual ecosystem, funding 83% of coral projects (62 of 75 studies), 82% of mangrove projects (31 of 38 studies), 90% of oyster projects (18 of 20 studies), 78% of saltmarsh projects (18 of 23 studies), and 67% of seagrass projects (20 of 30 studies). Coral reef restoration projects also had a large contribution of funding by NGOs (19 studies) and by donations and investments from private businesses (15 studies). The investment by NGOs vs. unpaid volunteers was equivalent for mangrove restoration projects (11 studies each). For oyster reef restoration projects volunteer-funded projects (11 studies) exceeded NGO (eight studies), and private funding (five studies). Saltmarsh and seagrass had only a few NGO and volunteer-based projects. Seagrass had a relatively small proportion of investment by private donations or businesses (seven studies) (Figure 6B).

      Type of financial contributors to marine coastal restoration projects extracted from the acknowledgments of each primary study. (A) Shows the combination of funders across all studies (n = 186). (B) Shows the number of studies by ecosystem that had support from each funding type (note: a single study can be represented in multiple bars if it received funding from multiple sources). Abbreviations: GO, governmental; NGO, non-governmental; V, supported by volunteers; P, supported by private organizations or businesses, and None, no funding reported.

      Discussion

      Based on a published database of primarily published literature, we found that scientists who engaged in marine coastal restoration globally were mainly motivated by experimental reasons i.e., to improve the restoration approach and/or answer ecological questions. This differs from the survey results obtained from terrestrial restoration practitioners across Australia, who were mainly motivated by biodiversity enhancement and also biodiversity offsetting, water quality improvements, and social reasons (Hagger et al., 2017). It is yet to be explored whether surveying marine coastal practitioners would lead to similar results. Our results based on the scientific literature may reflect a lag in development of the field, where restoration approaches for coral, kelp and seagrass in particular are still in the proof-of-concept phase, focused at small-scale experimental interventions (Bayraktarov et al., 2016a) and not yet (widely) aiming to maximize biodiversity or the provision of ecosystem services. This finding might also be biased by the difference in motivation of those who do research with publication as a key motivation (i.e., scientists and students), vs. those involved in the practice and operationalization of large-scale restoration projects (NGOs, natural resource management bodies, community groups, governments, consultants, developers etc.). For example, a study that used a systematic review to assess the global literature of marine coastal restoration found that ca. 84% of published studies included an author affiliated with a university (Zhang et al., 2018).

      It is also questionable whether restoration for the purpose of methodology development should be considered “restoration” sensu stricto as per definition of the Society for Ecological Restoration (SER). Projects aiming at an improvement of the restoration approach are typically carried out at small scales (Bayraktarov et al., 2016a) and do not aim to achieve a full ecosystem recovery (this study). We observed that restoration of coral reefs in low income and lower-middle income countries followed the experimental rationale, however, this was only the case for seven studies on mangrove restoration. In countries with low and lower-middle income economies, mangrove restoration was motivated by pragmatic, biotic, social and legislative reasons, potentially due to the growing interest in carbon storage, livelihood creation and nature-based solutions (Grabowski and Peterson, 2007; Greiner et al., 2013; Cohen-Shacham et al., 2016; Macreadie et al., 2017). All records on the restoration of seagrass, saltmarsh and oyster reefs in our database were from countries with a high or upper-middle income economy and cases from countries with low and lower-middle income economies remain unknown to the published literature.

      Motivations of scientists to engage in marine coastal restoration vary among ecosystems. While the restoration of most ecosystems described here were motivated by an experimental rationale, mangrove restoration differed in that projects were equally motivated by biotic, experimental, and pragmatic rationales. Mangrove restoration projects also deviated in the type of outcomes reported. While projects for most ecosystems reported a purely ecological outcome, mangrove restoration research often considered socio-economic implications of the restoration intervention and had the highest proportion of social and socio-economic variables included as metrics of achieving outcomes. Many of the published studies recommended greater efforts to incorporate social, economic, and cultural factors in assessing the effectiveness of ecological restoration e.g., Ruiz-Jaen and Mitchell Aide (2005), indicating that this is a priority for future marine restoration practice. Restoration of mangroves is less expensive, has been accomplished over larger areas, and it has higher survival of restored organisms than the other coastal ecosystems (Bayraktarov et al., 2016a). Failures of mangrove restoration have occurred, but this has been largely associated with poor site selection, often driven by social factors (Lee et al., 2019). The feasibility of mangrove restoration may be due to being practiced for a relatively long duration (since at least 1977, with reforestation of mangroves dating back to the early 1900s, Primavera and Esteban, 2008) and has efficient methods, while restoration of other marine coastal ecosystems may need to mature. The maturity of mangrove restoration was evident in the reduced focus on improving methods compared to the other ecosystems. There also tended to be higher levels of involvement of communities and support by volunteer labor in mangrove restoration (Brown et al., 2014) which may also contribute to successful projects at larger spatial scales. Greater accessibility to the restoration sites by communities may also contribute to enhanced success of mangrove restoration which can be carried out by fishermen and small boats, in comparison to ecosystems like coral reefs, oyster reefs and seagrass which require underwater activities and other logistics (e.g., divers, SCUBA equipment).

      This analysis included three main biases inherent in the database: (1) a large number of papers in the field of research of marine coastal restoration are omitted due to a relatively narrow scope provided by the original search terms (“cost,” “feasibility,” and or “survival”); (2) much of the knowledge from practitioners who conduct restoration, and whom have less incentive to publish in the literature, are omitted; (3) the database is comprised of records mainly in English and a few entries in Spanish. Despite these limitations, the analysis is systematic and repeatable, and the biases are consistent across the five ecosystems. Therefore, while the results may not paint a complete picture of the motivations for marine ecological restoration in general, and do not canvass the full body of literature in the field, the results can be used to compare general trends for scientists studying restoration across the five coastal ecosystems. A more comprehensive search that goes beyond the publication bias, capturing newspaper articles, newsletters, social media posts, blogs, YouTube videos, and incorporates targeted interviews with marine coastal restoration practitioners may yield different results because it would represent the motivations of the wider restoration community.

      The focus of restoration on experimental motivations may not be surprising when data are assessed from the published scientific literature. Many restoration practitioners may not publish results because of limited resources, and thus their motivations for restoration may differ from what we have found in our assessment of the scientific literature. This is a general trend in conservation where there is still a gap between conservation science and practice (Sunderland et al., 2009; Milner-Gulland et al., 2010). Studies where motivations were gleaned by surveying restoration practitioners have found primarily biotic, pragmatic or social rationales for restoration, e.g., Bernhardt et al. (2007) and Hagger et al. (2017). Information on large-scale restoration and in countries where English is not the main language is often not published, with only few exceptions, e.g., Bayraktarov et al. (2020), and we may be missing out on more than 35% of the knowledge in conservation if peer-reviewed literature searches are restricted to English (Amano et al., 2016). Another caveat is that funding provided by the research institution in terms of salaries and facilities are rarely acknowledged in a scientific publication. The results presented here may largely ignore the contributions of academic institutions and academics who often volunteer their time to carry out the research.

      The most common metrics recorded in marine coastal restoration research were growth/productivity, survivorship, habitat function, physical attributes and reproduction. This is in line with plant survival being the most commonly used metric in terrestrial restoration practice, followed by absence of weeds or pest animals, plant species diversity, and vegetation cover (Hagger et al., 2017). Assessments based on peer-reviewed literature show that restoration progress is commonly reported by variables related to biodiversity, vegetation structure or ecological functions (Ruiz-Jaen and Mitchell Aide, 2005; Basconi et al., 2020). Expanding the variables monitored in marine coastal restoration (e.g., monitoring ecosystem function or ecosystem services more effectively than simply assessing growth/productivity and survival) is an important step toward capturing socio-economic outcomes, to improve the effectiveness of restoration and alignment with the motivations of stakeholders sectors such as fishing, aquaculture, governments, tourism and water utilities/managers (Fonseca et al., 2000; Paling et al., 2009; Basconi et al., 2020).

      Restoration projects presented here were primarily funded by government agencies, either alone or in combination with other funding contributors. Restoration forms part of many government and non-government environmental programs, and is implemented by a diverse range of stakeholders, from community groups and not-for-profit organizations, to private companies and government agencies (Hobbs, 2017; Maron and Louis, 2018). Increased diversification of financing will be required to enable wider adoption and scaling-up of marine coastal restoration, to meet ambitious recent targets (e.g., increasing the global mangrove area by 20% by 2030 within the ‘Global Mangrove Alliance' – a coalition of global conservation organizations Waltham et al., 2020). Opportunities such as market-based mechanisms to fund marine coastal restoration, including payment for ecosystem services (e.g., carbon storage or nutrient cycling) may increase resources available for restoration (Basconi et al., 2020). Additionally, a combination of government funding in conjunction with supportive policy has been found to leverage substantial private funding for large-scale marine coastal restoration in the USA, an approach which could be more widely implemented (Waltham et al., 2020). For example, the “Mangroves for the Future” program, established under the International Union for the Conservation of Nature (IUCN) and the United Nations Development Program, and involving many institutional partners, have promoted large-scale planting of mangroves throughout Southeast and South Asia.

      Most of the projects we assessed did not address the six key standards of the International Standards for the Practice of Ecological Restoration by McDonald et al. (2016). This is not necessarily surprising, given that the standards were first released in late 2016, while the restoration projects described here were implemented between 1974 and 2018, and that two thirds of the studies were motivated by experimental reasons. The earliest studies in our database were published in 1974 by seagrass, followed by 1977 for mangroves, 1988 for saltmarsh, 1991 for coral reefs and 1999 for oyster reefs. While the limited number of projects and studies prevented us from assessing changes in adoption of the SER concepts embedded in projects over time, our study provides a baseline assessment from which future studies can assess changes in the application of best practices in restoration projects, which are key to scaling-up restoration of marine coastal ecosystems and achieving economies of scale (Gillies et al., 2015; Bayraktarov et al., 2016a; McDonald et al., 2016; van Katwijk et al., 2016). Nevertheless, it should be noted that there are other, equally valuable reasons for restoring marine and coastal habitat that go beyond SER's goal of reaching full ecosystem restoration, which may expand future restoration initiatives. Examples include restoration for socioeconomic and cultural benefits (Kittinger et al., 2016), building/engineering with nature for green infrastructure and urbanization control (Vargas-Hernández and Zdunek-Wielgołaska, 2020) or to explore the value of reconstructed novel ecosystems (Hobbs et al., 2006) as nature-based solutions for climate change mitigation and adaptation (e.g., for costal protection, Reguero et al., 2018).

      The hurdles that many marine coastal restoration practitioners experience are typically not related to the restoration approach or technique but rather deal with finding agreements between the different stakeholders involved, having a policy framework which allows for the implementation of the restoration projects, a clear legislation related to biodiversity offsets, and competition between different organization carrying out restoration (Menz et al., 2013; Gillies et al., 2015; Waltham et al., 2020; Stewart-Sinclair et al. submitted). To increase access to information on practitioner-led restoration activities and showcase how barriers to marine coastal restoration can be overcome, we recommend that practitioners connect with existing coastal ecosystem networks, such as the Global Mangrove Alliance or Seagrass Watch, and encourage data sharing (Worthington et al., 2020). Better guidance for data gathering and monitoring would assist in disseminating information and evaluating outcomes to support future funding.

      Conclusion

      Our work based on systematic literature review suggests that the restoration of marine coastal ecosystems is a developing field of conservation, with the scientific community still largely motivated by evaluation of experimental approaches. While the restoration of some ecosystems (e.g., coral reefs, seagrass, saltmarsh, and oyster reefs) may still be in a rapidly developing proof-of-concept phase, the scientific community carrying out mangrove restoration has begun to be motivated by, and engage in, a broader consideration of socio-economic and other benefits, similar to motivations reported for restoration of terrestrial ecosystems. We found that government funding supports most projects with matching involvement from a range of other sectors. Increased involvement from other sectors could increase resources available for marine and coastal restoration which may push restoration science along a developing trajectory beyond small-scale experimental studies. We show that marine coastal restoration research is still much focused on experimental work, while it requires a better alignment with the real needs for scaling-up future efforts such as counteracting the biodiversity decline, solving issues around biodiversity offset policy, reaching resilience goals by providing ecosystems services for climate change adaptation and mitigation to humans, and achieving community acceptance and participation. More science on the socio-economic benefits from restoring marine coastal ecosystems is needed to be able to connect restoration research to policy and people.

      Data Availability Statement

      The datasets generated for this study can be found in the Dryad Digital Repository: https://datadryad.org/stash/share/MKbsS4eQh7w5RjXK4_wXZJawc-gAvdA_FhGvJk0VlPE.

      Author Contributions

      EB, SB, VH, and KW conceived and designed the research. EB and SB carried out data extraction from the published literature. EB, CS, and VH analyzed the data. EB, SB, VH, CS, CL, KW, CG, AS, and MS wrote and edited the manuscript. All authors contributed to the article and approved the submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We acknowledge Phoebe J. Stewart-Sinclair and Keila Stark for data extraction support from the published literature and Audrey Van Herwaarden for economic conversions of cost data in the database.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2020.00484/full#supplementary-material

      References Abrantes K. G. Sheaves M. Fries J. (2019). Estimating the value of tropical coastal wetland habitats to fisheries: caveats and assumptions. PLoS ONE 14:e0215350. 10.1371/journal.pone.0215350 Amano T. González-Varo J. P. Sutherland W. J. (2016). Languages are still a major barrier to global science. PLoS. Biol. 14:e2000933. 10.1371/journal.pbio.200093328033326 Aronson R. B. Precht W. F. (2001). White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460, 2538. 10.1023/A:1013103928980 Bakker V. J. Baum J. K. Brodie J. F. Salomon A. K. Dickson B. G. Gibbs H. K. . (2010). The changing landscape of conservation science funding in the United States. Conserv. Lett. 3, 435444. 10.1111/j.1755-263X.2010.00125.x Basconi L. Cadier C. Guerrero-Limon G. (2020). Challenges in marine restoration ecology: how techniques, assessment metrics, and ecosystem valuation can lead to improved restoration success, in: YOUMARES 9 - The Oceans: Our Research, Our Future. Proceedings of the 2018 conference for Young Marine Researcher in Oldenburg, eds Jungblut S. Liebich V. Bode-Dalby M. (Germany: Springer Switzerland). 10.1007/978-3-030-20389-4_5 Bayraktarov E. Banaszak A. Montoya Maya P. Kleypas J. Arias-González J. Blanco M. . (2020). Coral reef restoration efforts in Latin American countries and territories. bioRxiv. 10.1101/2020.02.16.950998 Bayraktarov E. Saunders M. Abdullah S. Mills M. Beher J. Possingham H. . (2016b). Data From: The Cost and Feasibility of Marine Coastal Restoration. Dryad Digital Repository. 10.1890/15-1077.127509748 Bayraktarov E. Saunders M. I. Abdullah S. Mills M. Beher J. Possingham H. P. . (2016a). The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 10551074. 10.1890/15-107727509748 Bayraktarov E. Stewart-Sinclair P. J. Brisbane S. Bostrom-Einarsson L. Saunders M. I. Lovelock C. E. . (2019). Motivations, success, and cost of coral reef restoration. Restor. Ecol. 27, 981991. 10.1111/rec.12977 Beck M. W. Brumbaugh R. D. Airoldi L. Carranza A. Coen L. D. Crawford C. . (2011). Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107116. 10.1525/bio.2011.61.2.5 Bernhardt E. S. Sudduth E. B. Palmer M. A. Allan J. D. Meyer J. L. Alexander G. . (2007). Restoring rivers one reach at a time: results from a survey of US River restoration practitioners. Restor. Ecol. 15, 482493. 10.1111/j.1526-100X.2007.00244.x Brown B. Fadillah R. Nurdin Y. Soulsby I. Ahmad R. (2014). CASE STUDY: Community based ecological mangrove rehabilitation (CBEMR) in Indonesia from small (12-33 ha) to medium scales (400 ha) with pathways for adoption at larger scales (> 5000 ha). Sapiens: Large-scale restoration 7(2). Available online at: https://journals.openedition.org/sapiens/1589 Clewell A. F. Aronson J. (2006). Motivations for the restoration of ecosystems. Conserv. Biol. 20, 420428. 10.1111/j.1523-1739.2006.00340.x16903103 Cohen-Shacham E. Walters G. Janzen C. Maginnis S. (eds.). (2016). Nature-Based Solutions to Address Global Societal Challenges. Gland: IUCN, 97. Dearborn D. C. Kark S. (2010). Motivations for conserving urban biodiversity. Conserv. Biol. 24, 432440. 10.1111/j.1523-1739.2009.01328.x19775276 Doropoulos C. Vons F. Elzinga J. ter Hofstede R. Salee K. van Koningsveld M. . (2019). Testing industrial-scale coral restoration techniques: Harvesting and culturing wild coral-spawn slicks. Front. Marine Sci. 6:658. 10.3389/fmars.2019.00658 Duarte C. M. Sintes T. Marbà N. (2013). Assessing the CO2 capture potential of seagrass restoration projects. J. Appl. Ecol. 50, 13411349. 10.1111/1365-2664.12155 Duke N. C. Meynecke J. O. Dittmann S. Ellison A. M. Anger K. Berger U. . (2007). A world without mangroves? Science 317:41. 10.1126/science.317.5834.41b17615322 Edwards A. Gomez E. D. (2007). Reef Restoration Concepts and Guidelines: Making Sensible Management Choices in the Face of Uncertainty. Coral Reef Targeted Research & Capacity Building for Management Programme. St Lucia, 38. Ferraro P. J. Pattanayak S. K. (2006). Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS. Biol. 4:e105. 10.1371/journal.pbio.004010516602825 Fodrie F. J. Rodriguez A. B. Gittman R. K. Grabowski J. H. Lindquist N. L. Peterson C. H. . (2017). Oyster reefs as carbon sources and sinks. Proc. R Soc. B: Biol. Sci. 284:20170891. 10.1098/rspb.2017.089128747477 Fonseca M. S. Julius B. E. Kenworthy W. J. (2000). Integrating biology and economics in seagrass restoration: how much is enough and why? Ecol. Eng. 15, 227237. 10.1016/S0925-8574(00)00078-1 Gilby B. L. Olds A. D. Duncan C. K. Ortodossi N. L. Henderson C. J. Schlacher T. A. (2020). Identifying restoration hotspots that deliver multiple ecological benefits. Restor. Ecol. 28, 222232. 10.1111/rec.13046 Gilby B. L. Olds A. D. Peterson C. H. Connolly R. M. Voss C. M. Bishop M. J. . (2018). Maximizing the benefits of oyster reef restoration for finfish and their fisheries. Fish Fish. 19, 931947. 10.1111/faf.12301 Gillies C. L. Fitzsimons J. A. Branigan S. Hale L. Hancock B. Creighton C. . (2015). Scaling-up marine restoration efforts in Australia. Ecol. Manage. Restor. 16, 8485. 10.1111/emr.12159 Grabowski J. H. Peterson C. H. (2007). 15 - restoring oyster reefs to recover ecosystem services. Theor. Ecol. Ser. 4, 281298. 10.1016/S1875-306X(07)80017-7 Greiner J. T. McGlathery K. J. Gunnell J. McKee B. A. (2013). Seagrass restoration enhances “Blue Carbon” sequestration in coastal waters. PLoS One 8:e72469. 10.1371/journal.pone.007246923967303 Hagger V. Dwyer J. Wilson K. (2017). What motivates ecological restoration? Restor. Ecol. 25, 832843. 10.1111/rec.12503 Hein M. Y. Willis B. L. Beeden R. Birtles A. (2017). The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol. 25, 873883. 10.1111/rec.12580 Hobbs R. J. (2017). Where to from here? Challenges for restoration and revegetation in a fast-changing world. Rangeland J. 39, 563566. 10.1071/RJ17053 Hobbs R. J. Arico S. Aronson J. Baron J. S. Bridgewater P. Cramer V. A. . (2006). Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 17. 10.1111/j.1466-822X.2006.00212.x Jacob C. Buffard A. Pioch S. Thorin S. (2018). Marine ecosystem restoration and biodiversity offset. Ecol. Eng. 120, 585594. 10.1016/j.ecoleng.2017.09.007 James A. N. Gaston K. J. Balmford A. (1999). Balancing the Earth's accounts. Nature 401, 323324. 10.1038/4377416862091 Jellinek S. Wilson K. A. Hagger V. Mumaw L. Cooke B. Guerrero A. M. . (2019). Integrating diverse social and ecological motivations to achieve landscape restoration. J. Appl. Ecol. 56, 246252. 10.1111/1365-2664.13248 Kitney S. Stanway A. R. Ryan M. M. (2018). Volunteer tourism motivations of the marine conservation cambodia project. Curr. Iss. Tourism 21, 10911096. 10.1080/13683500.2016.1269727 Kittinger J. N. Bambico T. M. Minton D. Miller A. Mejia M. Kalei N. . (2016). Restoring ecosystems, restoring community: socioeconomic and cultural dimensions of a community-based coral reef restoration project. Reg. Environ. Chang. 16, 301313. 10.1007/s10113-013-0572-x Lee S. Y. Hamilton S. Barbier E. B. Primavera J. Lewis R. R. (2019). Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870872. 10.1038/s41559-019-0861-y31036899 Macreadie P. I. Ollivier Q. R. Kelleway J. J. Serrano O. Carnell P. E. Ewers Lewis C. J. . (2017). Carbon sequestration by Australian tidal marshes. Sci. Rep. 7:44071. 10.1038/srep4407128281574 Maron M. Louis W. R. (2018). Does it matter why we do restoration? Volunteers, offset markets and the need for full disclosure. Ecol. Manage. Restor. 19, 7378. 10.1111/emr.12330 McCarthy D. P. Donald P. F. Scharlemann J. P. W. Buchanan G. M. Balmford A. Green J. M. H. . (2012). Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946949. 10.1126/science.122980323065904 McCarthy M. A. Possingham H. P. (2007). Active adaptive management for conservation. Conserv. Biol. 21, 956963. 10.1111/j.1523-1739.2007.00677.x17650246 McDonald T. Gann G. Jonson J. Dixon K. (2016). International Standards for the Practice of Ecological Restoration – Including Principles and Key Concepts. Washington, DC: Society for Ecological Restoration. 10.1111/rec.12359 McLeod E. Anthony K. R. N. Mumby P. J. Maynard J. Beeden R. Graham N. A. J. . (2019). The future of resilience-based management in coral reef ecosystems. J. Environ. Manage. 233, 291301. 10.1016/j.jenvman.2018.11.03430583103 Menz M. H. M. Dixon K. W. Hobbs R. J. (2013). Hurdles and opportunities for landscape-scale restoration. Science 339, 526527. 10.1126/science.122833423372001 Milner-Gulland E. J. Fisher M. Browne S. Redford K. H. Spencer M. Sutherland W. J. (2010). Do we need to develop a more relevant conservation literature? Oryx 44, 12. 10.1017/S0030605309991001 Nilsson D. Gramotnev G. Baxter G. Butler J. R. A. Wich S. A. McAlpine C. A. (2016). Community motivations to engage in conservation behavior to conserve the Sumatran orangutan. Conserv. Biol. 30, 816826. 10.1111/cobi.1265026511405 Orth R. J. Harwell M. C. Bailey E. M. Bartholomew A. Jawad J. T. Lombana A. V. . (2000). A review of issues in seagrass seed dormancy and germination: Implications for conservation and restoration. Mar. Ecol. Prog. Ser. 200, 277288. 10.3354/meps200277 Paling E. Fonseca M. S. van Katwijk M. M. van Keulen M. (2009). Seagrass restoration, in CoastalWetlands: An Integrated Ecosystems Approach, eds Perillo G. Wolanski E. Cahoon D. Hopkinson C. (Amsterdam), 687713. Pandolfi J. M. Bradbury R. H. Sala E. Hughes T. P. Bjorndal K. A. Cooke R. G. . (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955958. 10.1126/science.108570612920296 Perrow M. Davy A. (2002). Handbook of Ecological Restoration. Cambridge: Cambridge University Press. 10.1017/CBO9780511549984 Possingham H. P. Bode M. Klein C. J. (2015). Optimal conservation outcomes require both restoration and protection. PLoS. Biol. 13:e1002052. 10.1371/journal.pbio.100205225625277 Primavera J. H. Esteban J. M. A. (2008). A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl. Ecol. Manag. 16, 345358. 10.1007/s11273-008-9101-y Reguero B. G. Beck M. W. Agostini V. N. Kramer P. Hancock B. (2018). Coral reefs for coastal protection: a new methodological approach and engineering case study in Grenada. J. Environ. Manage. 210, 146161 10.1016/j.jenvman.2018.01.02429339333 Ruiz-Jaen M. C. Mitchell Aide T. (2005). Restoration success: how is it being measured? Restor. Ecol. 13, 569577. 10.1111/j.1526-100X.2005.00072.x SER (2004). The SER Primer on Ecological Restoration. Tucson, Arizona. Sunderland T. Sunderland-Groves J. Shanley P. Campbell B. (2009). Bridging the gap: How can information access and exchange between conservation biologists and field practitioners be improved for better conservation outcomes? Biotropica 41, 549554. 10.1111/j.1744-7429.2009.00557.x The World Bank (2014). World Development Indicators. Washington, DC: The World Bank. UNEP (2006). Marine and Coastal Ecosystems and Human Wellbeing: A Synthesis Report Based on the Findings of the Millennium Ecosystem Assessment. 76. UNEP (2019). New UN Decade on Ecosystem Restoration offers Unparalleled Opportunity for Job Creation, Food Security and Addressing Climate Change. Available online at: https://www.unenvironment.org/news-and-stories/press-release/new-un-decade-ecosystem-restoration-offers-unparalleled-opportunity Valiela I. Bowen J. L. York J. K. (2001). Mangrove forests: one of the world's threatened major tropical environments. Bioscience 51, 807815. 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 van Katwijk M. M. Thorhaug A. Marbà N. Orth R. J. Duarte C. M. Kendrick G. A. . (2016). Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567578. 10.1111/1365-2664.12562 Vargas-Hernández J. G. Zdunek-Wielgołaska J. (2020). Urban green infrastructure as a tool for controlling the resilience of urban sprawl. Environ. Dev. Sustain. 10.1007/s10668-020-00623-2 Waltham N. J. Elliott M. Lee S. Y. Lovelock C. Duarte C. M. Buelow C. . (2020). UN decade on ecosystem restoration 2021–2030—what chance for success in restoring coastal ecosystems? Front. Marine Sci. 7:71. 10.3389/fmars.2020.00071 Worthington T. Andradi-Brown D. Bhargava R. Buelow C. Bunting P. Duncan C. . (2020). Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2, 429443. 10.1016/j.oneear.2020.04.018 Wortley L. Hero J.-M. Howes M. (2013). Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537543. 10.1111/rec.12028 Wyborn C. Jellinek S. Cooke B. (2012). Negotiating multiple motivations in the science and practice of ecological restoration. Ecol. Manage. Restor. 13, 249253. 10.1111/j.1442-8903.2012.00667.x Zhang Y. Cioffi W. Cope R. Daleo P. Heywood E. Hoyt C. . (2018). A global synthesis reveals gaps in coastal habitat restoration research. Sustainability 10:1040. 10.3390/su10041040

      1Available online at: https://www.ser.org/

      Funding. This work was supported by The Commonwealth Scientific and Industrial Research Organization in Australia. A part of this research was funded by the Australian Research Council (ARC) Center of Excellence for Environmental Decisions and a Future Fellowship awarded to KW. VH was funded by an ARC Linkage grant LP170101171.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hmpuhk.com.cn
      www.fixiapac.com.cn
      www.pf9jf.com.cn
      sbrhqr.com.cn
      rcs-pro.com.cn
      sogkx.com.cn
      www.tmhalp.org.cn
      www.plchain.com.cn
      www.weiyigo.com.cn
      szvara.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p