Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2019.00835 Marine Science Original Research Gazing at the Crystal Ball: Predicting the Future of Marine Protected Areas Through Voluntary Commitments Nocito Emily S. 1 2 * Brooks Cassandra M. 1 Strong Aaron L. 2 3 1Environmental Studies Program, University of Colorado Boulder, Boulder, CO, United States 2School of Marine Sciences, The University of Maine, Orono, ME, United States 3Environmental Studies Program, Hamilton College, Clinton, NY, United States

Edited by: John A. Cigliano, Cedar Crest College, United States

Reviewed by: Edward Jeremy Hind-Ozan, Department for Environment, Food and Rural Affairs, United Kingdom; Karen Nadine Scott, University of Canterbury, New Zealand

*Correspondence: Emily S. Nocito, emily.nocito@colorado.edu

This article was submitted to Marine Conservation and Sustainability, a section of the journal Frontiers in Marine Science

22 01 2020 2019 6 835 19 03 2019 27 12 2019 Copyright © 2020 Nocito, Brooks and Strong. 2020 Nocito, Brooks and Strong

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The beginning of 2015 saw a new era within the United Nations: the era of the sustainable development goals (SDGs). Built off the previous Millennium Development Goals, this new set of goals included 17 target areas, including, for the first time, an explicit global goal related to the ocean. In June 2017, at the United Nations Headquarters in New York City, a high-level conference surrounding SDG 14: Life Under Water convened. One dimension of goal 14 calls for 10% of the ocean conserved by the year 2020, through sub-target 14.5. That 10% fulfillment is often thought of in terms of areal coverage via marine protected areas (MPAs). While many objectives were laid out for this conference, one of the most prominent objectives was to build on existing partnerships and foster new collaborations. One way to achieve this target was through the creation of the voluntary commitment program. This “Call for Action” came from heads of state and government, as well as high-level representatives from organizations and stakeholder groups. Under this “Call for Action,” 22 actions related to goal 14 were listed for stakeholders to partake in, including an appeal to create voluntary commitments surrounding the oceans. As of September 2017, 1,395 voluntary commitments had been registered through the voluntary commitment portal process, spanning across organizations and disciplines. Here, we analyze these commitments, specifically those related to the fifth sub-target of SDG 14. Commitments were further refined through spotlighting on those under 14.5 that focused on different forms of resilience. The resulting 133 separate codes covered over 12 distinct forms of resilience. Through analyzing commitments, we map out future plans and predict different forms of MPAs. This research shows collaboration and co-production of knowledge linking across the SDGs. This work can be seen as a stepping-stone to the fulfillment of 10% conservation by 2020.

ocean marine protected area marine reserves United Nations sustainable development goals resilience voluntary commitments

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Marine protected areas (MPAs) are regions of the ocean where specific human activities are limited or prohibited, and have been increasingly promoted by policy-makers, scientists, and conservationists as a tool for mitigating ocean threats, conserving biodiversity, managing fisheries, and enhancing resilience to climate change (Lester et al., 2009; Gaines et al., 2010; Lubchenco and Grorud-Colvert, 2015; Roberts et al., 2017). In recent years, the global spatial extent of MPAs has increased across the world’s oceans, with 4.8% of the world’s ocean area currently under some form of protection in 2018 (MPAtlas.org, 2018).

      The political calls for increased use of MPAs arise from numerous studies that demonstrate that MPAs – especially no-take MPAs (also known as marine reserves) – provide significant positive ecosystem benefits (Baskett and Barnett, 2015). These benefits include increases in biomass, density, size, and diversity of life in the region (Lester et al., 2009; Caselle et al., 2015). Benefits derived from MPAs also include benefits to fisheries, including by facilitating the recovery of depleted fisheries and by providing spillover effects (Gaines et al., 2010; Halpern et al., 2010). Further, because they maintain all trophic levels of the ecosystem and increase both species and genetic diversity, MPAs can enhance resilience to ecosystem changes, including those brought about by climate change (Olds et al., 2014; Roberts et al., 2017).

      Despite an increasing trend toward implementing MPAs, doing so in international waters has proved to be a more difficult challenge. It was only recently that MPAs were created within what are commonly called “areas beyond national jurisdiction” (ABNJs) (Gjerde et al., 2008; Wells et al., 2016; Smith and Jabour, 2018). To date, only 1.2% of the high seas fall under protection1, which comprises only 12 total MPAs within ABNJs governed by two different regional management bodies (Ardron et al., 2008; De Santo, 2018). Ten of these MPAs are under the management of the OSPAR Convention and the North East Atlantic Fisheries Commission. The remaining two are located in Antarctica and are managed under the Convention for the Conservation of Antarctic Marine Living Resources. Yet, ABNJs account for >60% of the global ocean by area and include critically important areas for biodiversity and ecosystem processes (Rogers et al., 2014; Gjerde et al., 2016).

      The path to creating MPAs in ABNJs may become clearer. After 10 years of discussion, the United Nations General Assembly is adopting a resolution related to the sustainable use and conservation of the marine environment within ABNJs. This resolution will create an international legally binding instrument providing for the adoption of MPAs, as well as other key concerns such as marine genetic resources and environmental impact assessments (United Nations, 2017b). This process of United Nations meetings to create the legally binding instrument is set to end in 2020, although when the instrument will come into effect is still unknown.

      Due to increasing loss of, and continued threats to marine biodiversity (McCauley et al., 2015) MPAs have become a focal point within international agreements and conferences in the last 10 years. This includes: the first International MPA Conference in 2005 and the adoption of the Convention on Biological Diversity (CBD) in 1992 (National Research Council, 2001). A number of international targets have been promulgated regarding the adoption of MPAs in national waters and in ABNJ. At the 2002 World Summit on Sustainable Development, participating States agreed to designate a global network of MPAs by 2012 encompassing 10% of all ecological regions (Gjerde et al., 2016). This call was further reiterated at both the 2003 and 2008 International Union for Conservation of Nature (IUCN) World Conservation Congresses, which called for protected areas to encompass 20–30% of all marine habitats (Gjerde et al., 2016). The 2010 Aichi Biodiversity Targets adopted by the Convention on Biological Diversity offered a new deadline of 2020 to designate 10% of the global ocean as protected areas. Finally, in 2014 the IUCN World Parks Congress recommended that 30% of the ocean be protected through the designation of MPAs. Given that <5% of the global ocean falls within MPAs, countries still have a long way to go to reach global targets and doing so in ABNJs will be a key element. Despite the challenges of creating MPAs in ABNJ, the increased development of MPAs globally has been accompanied by an interest in the role that MPAs can play in making marine systems more resilient to climate change impacts (Roberts et al., 2017). The increasing use of the climate resilience rationale for MPA creation (as opposed to a more traditional focus on biodiversity conservation) changes stakeholder perceptions of MPAs as policy instruments (Hopkins et al., 2016). Here, as we assess the future of MPAs in the new global ocean regime, the rise of the resilience rationale merits attention.

      Sustainable Development Goal 14.5

      In 2015, the United Nations agreed to 17 sustainable development goals (SDGs) to replace the previously held Millennium Development Goals. Under these 17 SDGs, goal 14 is often referred to as the Ocean goal, as its primary goal is “to conserve and sustainably use the oceans, seas and marine resources for sustainable development” (United Nations, 2017a). Goal 14 includes 10 subtargets relating to all things marine, such as ocean acidification and illegal, unregulated and unreported fishing (Table 1). With regards to MPAs, specifically, SDG 14.5 calls for that “[b]y 2020, [to] conserve at least 10 per cent of coastal and marine areas, consistent with national and international law and based on the best available scientific information.” (United Nations, 2018). SDG 14.5 is measured in terms of success, which calls for “[c]overage of protected areas in relation to marine areas” (United Nations, 2018).

      SDG 14 subtargets and what thematic area they concern.

      SDG 14 subtarget Text of subtarget
      14.1 By 2025, prevent and significantly reduce marine pollution of all kinds, in particular from land-based activities, including marine debris and nutrient pollution
      14.2 By 2020, sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, including by strengthening their resilience, and take action for their restoration in order to achieve healthy and productive oceans
      14.3 Minimize and address the impacts of ocean acidification, including through enhanced scientific cooperation at all levels
      14.4 By 2020, effectively regulate harvesting and end overfishing, illegal, unreported and unregulated fishing, and destructive fishing practices and implement science-based management plans, in order to restore fish stocks in the shortest time feasible, at least to levels that can produce maximum sustainable yield as determined by their biological characteristics
      14.5 By 2020, conserve at least 10% of coastal and marine areas, consistent with national and international law and based on the best available scientific information
      14.6 By 2020, prohibit certain forms of fisheries subsidies which contribute to overcapacity and overfishing, eliminate subsidies that contribute to illegal, unreported and unregulated fishing, and refrain from introducing new such subsidies, recognizing that appropriate and effective special and differential treatment for developing and least developed countries should be an integral part of the World Trade Organization fisheries subsidies negotiation.
      14.7 By 2030, increase the economic benefits to Small Island developing States and least developed countries from the sustainable use of marine resources, including through sustainable management of fisheries, aquaculture, and tourism
      14.a Increase scientific knowledge, develop research capacity, and transfer marine technology, taking into account the Intergovernmental Oceanographic Commission Criteria and Guidelines on the Transfer of Marine Technology, in order to improve ocean health and to enhance the contribution of marine biodiversity to the development of developing countries, in particular small island developing States and least developed countries
      14.b Provide access for small-scale artisanal fishers to marine resources and markets
      14.c Enhance the conservation and sustainable use of oceans and their resources by implementing international law as reflected in UNCLOS, which provides the legal framework for the conservation and sustainable use of oceans and their resources, as recalled in paragraph 158 of The Future We Want
      Subtarget text taken from sustainabledevelopment.un.org/sdg14.

      Sustainable development goal 14 is in its moment of prominence. In June 2017, a week-long, high-level United Nations conference met at the UN Headquarters in New York City to discuss the world’s ocean, and specifically to advance the implementation of SDG 14. This meeting, called the United Nations Ocean Conference, was the first UN conference dedicated explicitly to discussing issues surrounding the marine environment. In addition to country delegations, participants included non-governmental organizations (NGOs), UN entities, academic institutions, civil-society organizations, inter-governmental organizations (IGOs), partnerships, as well as members of the private sector. Days were made up of partnership dialogs that focused on different ocean themes, as well as side events hosted by different state and non-state actors.

      One stated objective of the conference was to build on existing partnerships and foster new collaborations that focused on ocean issues, including conservation and MPAs (United Nations, 2016). One proposed way to achieve this objective was through the creation of a voluntary commitment program for fulling SDG 14, including all of its 10 subtargets. This “Call for Action” was produced during a February preparatory meeting preceding the Ocean Conference, and came from the heads of state and government, as well as high-level representatives.

      Under this Call for Action, developed by nation-state delegations, 22 endeavors were listed for stakeholders to partake in. Among these endeavors was an appeal to create a voluntary commitments database regarding oceans. This database was proposed to be open to anyone, including governments, NGOs, and even individuals. The Call for Action was also published on the official website of the UN Ocean Conference, allowing it to be viewed by those attending the meeting as well as the wider public. During the months preceding the 2017 United Nations Ocean Conference, as well as after, stakeholders were invited to make voluntary commitments under SDG 14. As of September 2017, 1,395 commitments were registered through the voluntary commitment process, spanning across organizations and areas of focus related to SDG 14 as a whole. To date, the voluntary commitment call is still open and accessible, and the website features updates on previously made commitments.

      One way to understand where the world is headed in terms of global MPA targets is through dissecting the voluntary commitment process under the 2017 UN Ocean Conference. Here, we analyze a subset of these commitments that are specifically related to SDG 14.5, which focuses on the creation of MPAs. Analyzing the distribution of voluntary commitments surrounding MPAs offers a potential predictor of whether the goal of 10% protection of the oceans will be achieved. Using government commitments under 14.5, we created a map of potential MPA commitments, including those focused on resilient MPAs. An emergent theme from the data was that many of the MPA commitments referenced resilience, but did not define what form of resilience was to be achieved. Resilience can be thought of as a cluster concept, in that it is a word with multiple meanings (Parsons, 1973). Resilience as a benefit of MPAs has been written on extensively, but often lacks an operational definition (Nocito, 2018). Below we present on the overall number of voluntary commitments made, which actors made them, the geographic location of the commitment, and the kind of MPA committed. We then further present on the use of resilience in the voluntary commitments, including which actors focused on resilience and the forms of resilience referred to. Finally, we reflect on the potential strengths and weaknesses of these voluntary commitments in moving forward toward a global system of MPAs.

      Materials and Methods

      To study the voluntary commitment process of the UN Ocean Conference, we completed an empirical textual analysis of the content of the voluntary commitments. To create a voluntary commitment, a member of an organization must fill out a commitment registration form online. Some of the information is open-ended, such as project timeline, partners, and description. Other aspects are preset, such as what aspects of SDG 14 does the commitment concern and what features of an MPA are being committed to. The preset feature, however, also prevented capture of some finer details, such as size of MPA being proposed.

      To carry out our textual analysis, we downloaded voluntary commitments2 related to SDG 14 in September 2017, 3 months after the close of the UN Ocean Conference. This database is publicly accessible. To identify how priorities were distributed over the entirety of SDG 14, we sorted all the commitments by what sub-goals of SDG were selected as being achieved through the commitment. To gain a better understanding of what entities were creating commitments of SDG 14 overall, we then sorted commitments by the nature of the actor making the commitment. Actors include: Government, UN entities, IGOs, NGOs, civil society organizations (CSOs), Academic Institutions, Scientific Communities, Private Sector, Philanthropic Organizations, Partnerships, and Others. This pre-sorting gave us a set of voluntary commitments that were seeking to help implement SDG 14.5.

      These 14.5-related commitments were then sorted into those that referred to resilience within the description of the commitment text. Because “resilience” was not a categorized keyword, we searched each individual voluntary commitment text for references to resilience. The various definitions of resilience were developed through a meta-analysis of 183 papers that referenced both resilience and MPAs. Papers were downloaded from Web of Science, a database, using a nested search approach. Nest one included the terms: marine reserve, marine nature reserve, MPA, MPA, no take reserve, MPA. From that initial search, a secondary nest was created, using the terms: resilien. This allowed the papers from nest one to be searched for references to resilience, resiliency, and resilient. From the papers, definitions of the various types of resilience were either given or created (Nocito, 2018; Table 2). AS validated the codes that were produced. Codes were reviewed three times by the lead author using grounded theory and followed Strauss and Corbin’s three step process: open coding, axial coding, and selective coding (Corbin and Strauss, 1990). In cases where papers from the meta-analysis lacked a specific definition within the text, definitions were created by referencing various papers to create a single, salient definition. We then used these definitions to code the resilience sub-set of the voluntary commitments.

      Definitions of different forms of resilience.

      Code Definition Source
      Biological “Changes in the structure of natural communities following multiple acute disturbances are often related to inter-specific differences in their ability to resist pressures and/or their capacity to recover in the aftermath of disturbances” Shedrawi et al., 2017
      Biological-Fish “The ability of an ecosystem that supports large-scale fisheries to adapt, resist, or recover” Nocito, 2018
      Climate “The ability of an area to either (a) adapt, (b) resist, and/or (c) recover from the effects of climate change or climate variability” Nocito, 2018
      Coastal “Ability of a community to ‘bounce back’ after hazardous events such as hurricanes, coastal storms, and flooding” NOAA, 2017
      Community “The existence, development, and engagement of community resources by community members to thrive in an environment characterized by change, uncertainty, unpredictability, and surprise” Magis, 2010
      Coral “Refers to the capacity of an ecosystem to tolerate disturbance without abruptly shifting to an alternate regime and losing structure, function, or services” Abelson et al., 2016
      Economic “A business’ ability to adapt and respond to an economic impact” Moore et al., 2016
      Ecosystem “Measure of the persistence of systems and of their ability to absorb change and disturbance and still maintain the same relationships between populations or state variables” Holling, 1973
      General “The capacity of a system to continually change and adapt and yet remain within critical thresholds” Glaser et al., 2015
      Other If no commitment fit into the categories, it was given the code of other Nocito, 2018
      Social–Ecological “The capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks” Walker et al., 2004
      These definitions informed the coding process of voluntary commitments referencing resilience under sustainable development goal (SDG) 14.5.

      To create a map of potential MPAs based on commitments, only national governments were selected, as other groups such as NGOs and CSOs may work in multiple countries and only governments have the authority to designate MPAs. The EU was also omitted for the same reason as it cannot establish MPAs without working through an individual country. Voluntary commitments were re-downloaded in December 2018 to create as recent of a map as possible. Data were sorted by the filters of “14.5” and “government entity.”

      We quantitatively compared the distribution of the total pool of voluntary commitments among different entities to the distribution of commitments under SDG14.5, in which we assigned expected values for SDG14.5 commitments based on the initial distribution of all voluntary commitments. We also quantitatively compared the distribution of the pool of MPA-related commitments among different entities to the distribution of commitments focused on resilience. For this comparison we assigned expected values for resilience commitments based on the distribution of SDG14.5 commitments. All statistical analyses were performed as two-tailed chi-square tests, comparing observed distributions using the R statistical software program (base package).

      Results How Many Commitments?

      Of the 3,795 subtarget commitments made as of September 2017, only 10% (389 subtarget commitments) commitments pertained to SDG 14.5 (Figure 1). SDG 14.2, which pertains to ecosystem-based management of the coastal and marine environment, had the largest portion of the commitments, at 19% (713 subtarget commitments). SDG 14.3 pertains to ocean acidification and accounted for 6% (236 subtarget commitments). SDG 14.4 aims to end illegal, unregulated, and unreported fishing and accounted for 11% (423 subtarget commitments) of the total commitments. SDG 14.6 aims to decrease the number of fisheries subsidies and accounted for 2% (95 subtarget commitments) of the subtarget commitments. SDG 14.7 pertains to increasing the economic benefits for Small Island Developing States and accounted for 9% (335 subtarget commitments) of the total commitments. SDG 14. a aims to increase scientific knowledge of the marine environment and to develop marine technology and accounted for 14% (541 subtarget commitments). SDG 14. b pertains to small-scale artisanal fishers and their rights to access the marine environment and accounted for 6% (241 subtarget commitments). SDG 14. c encourages governments to implement national laws in line with the UN Convention on the Law of the Sea and accounted for 7% (278 subtarget commitments).

      Voluntary ocean commitments. Number of voluntary commitments (N = 3,795) made with regards to sustainable development goal (SDG) 14 (Life under water) subgoal. Note that an individual commitment could address multiple specific goals. Data collected from https://oceanconference.un.org/commitments/ between June 2017 and September 2017.

      Who Made the Commitments?

      Eleven different types of actors or entities made voluntary commitments to SDG 14, including SDG 14.5. A breakdown of which entities made commitments under SDG 14, and SDG14.5 is shown in Figure 2. Overall, the distribution of the 376 SDG 14.5 implementing commitments across the 11 entities significantly differed from the distribution of the 1395 voluntary commitments across entities (d.f. = 10, p = 0.04). This difference was driven markedly by the under performance of the private sector and academia and the over representation of NGOs and CSOs.

      Number of commitments made under SDG 14 and SDG 14.5. Sustainable development goal (SDG) 14 commitments (N = 1,395) and SDG 14.5 commitments (N = 376) sorted by entity who made the commitment. Data collected from https://oceanconference.un.org/commitments/ between June 2017 and September 2017.

      What Kinds of MPAs Were Proposed in Voluntary Commitments?

      The voluntary commitment portal allowed participants to select preset types of MPA commitments (Figure 3). Twenty-four percent (180 commitments) of the commitments pertain to local and/or community managed MPAs. Multi-use MPAs accounted for 20% (156 commitments) of the commitments. Fifteen percent (144 commitments) of the commitments concern MPAs with partial protection, which can mean the MPA has features such as seasonal closures or fisheries permits. Only 14% (109 commitments) of the commitments were for no-take MPA. Twenty-two percent (171 commitments) of the MPA commitments are toward supporting management and enforcement of MPAs. The category of “Other” allows the entity to put in any deliverable that is not covered by predetermined categories. Other accounted for the lowest percentage, at only 5% (41 commitments) of the total SDG 14.5 commitments.

      Marine protected area commitments. Voluntary commitments made with regards to sustainable development goal (SDG) 14.5 (marine protected area goal). Chart represents proportion chosen within the different category commitments. Data from https://oceanconference.un.org/commitments/ as of September 2017.

      What Kinds of Resilience Are Included?

      Resilience was coded 132 times over 91 voluntary commitments for SDG 14.5. Climate resilience accounted for one-third (43 mentions) of the total references of resilience (Table 3), followed by ecosystem resilience at 17% (22 mentions) (Figure 4). Community resilience was accounted for 11% (15 mentions) of the overall references. SES resilience accounted for 8% (11 mentions). Biological resilience accounted for 7.5% (10 mentions), while biological-fish resilience accounts for 5% (7 mentions). General resiliency also made up 5% (7 mentions) of the overall references. Coral resilience accounted for 7% (nine mentions) of the references. Economic resilience accounted for 4% (five times). Coastal resilience only accounted for 2% (three mentions) of the references, although SDG 14 and SDG 14.5 deals with both marine and coastal environments. Lastly, the category of “other” only accounted for >1% (1 mention) of the references.

      Examples of resilience commitments.

      Code Voluntary commitment example Organization making the commitment
      Biological “Maximize the resilience of vulnerable species to the impacts of climate change and climate variability by reducing other pressures, including poor water quality.” Government of Australia
      Biological-Fish “Promote measures to improve management and resiliency of fisheries/marine resources.” Government of Belize
      Climate “California’s evaluation of its MPA Network will include a focus on helping better understand how areas that reduce or remove fishing impacts may respond differently to, and potentially build resilience against, additional stressors like climate change and invasive species.” Ocean Protection Council on behalf of the State of California (Government)
      Coastal “Reduction of land-based marine littering, strengthening the resilience of coastal zones against the impacts of climate change…” Government of Germany
      Community “Monaco commits financially support this integrated approach in favor of ocean acidification monitoring, strategies to strengthen the resilience of local communities, and concrete actions to adapt to and mitigate ocean acidification.” Government of Monaco
      Coral “This will protect coral reef biodiversity; build climate resilience of reefs as well as dependent industries and communities; and make coral reefs a part of sustainable development/a blue economy.” Global Coral Reef Partnership (NGO)
      Economic “Additionally, education and climate financing must also be made available to help developing countries build resilience.” Perfect Union (NGO)
      Ecosystem “Pacific Island communities and ecosystems are resilient to the impacts of ocean acidification and a changing ocean, with practical adaptation measures and alternate livelihoods in place.” Secretariat of the Pacific Regional Environment Programme (IGO)
      General “This initiative aims at conserving and sustainably use our marine environment and its resources for our current and future generations. It is also our contribution to the regional and global effort to maintain and restore the health, productivity, and resilience of our Ocean.” French Polynesia Government
      Other “Art Installations underwater provide opportunities for studies on corals, their evolution, resilience, and species interaction.” Raisa Mar-Conservation Artist (Other)
      Social–Ecological “Build socio-ecological resilience to coral reef degradation in the islands of the Western Indian Ocean.” Plymouth Marine Laboratory (NGO)
      Examples of voluntary commitments made under SDG goal 14.5 which represented the various resilience categories (based on Table 2), including which entity made them.

      Marine protected area commitments related to resilience. Voluntary commitments made with regards to sustainable development goal 14.5 (related to marine protected areas) which specifically mentions resilience in the descriptor (see Table 2 for definitions of resilience; Table 3 for examples of commitments). Data from https://oceanconference.un.org/commitments/ as of September 2017.

      What Actors Use Which Forms of Resilience in MPA Proposals?

      Resilience MPA commitments were made by all of the 11 entities that made commitments under SDG 14.5. NGOs made 22% (20 commitments) of the resilience commitments (Figure 5). Consistent with overall trends of entity commitments (Figure 1), government is leading the number of 14.5 commitments that reference resilience at 36% (33 commitments). UN entities accounted for 10% (nine commitments). IGOs accounted for t 9% (nine commitments). The scientific community, private sector, philanthropy, partnership, and CSOs each accounted for 3% (three commitments each). The entity of “Other” made 2% (two commitments) under SDG 14.5 that referenced resilience.

      Resilience MPA commitments according to entity. Each commitment description under SDG 14.5 was read for references toward resilience. Data were collected in September 2017. N = 91.

      Different entities focused on different types of resilience in their voluntary commitments. Governments made the most references to resiliency overall, accounting for 37% (49) of the overall references. Government’s main focus was on climate resilience over the other forms (Figure 6), accounting for 39% (19 references). NGOs accounted for 20% (27 references) of the overall references. Of these, climate resilience accounted for 22% (6 references) of the NGOs total references to resilience. 100% (three references) of the references of coastal resilience were made by governments.

      Resilience codes by entity. The panel shows both the number of references made by each entity and the breakdown of what type of resiliency each entity made. See Table 3 for resiliency definitions. N = 132. Data collected from https://oceanconference.un.org/commitments/ as of September 2017.

      Looking solely at the governments making resilience MPA commitments (Figure 6), 39% (19 commitments) referred to climate resilience, followed by ecosystem resilience at 21% (10 commitments). Biological–Fisheries resilience accounted for 10% (5), and community resilience accounted for 10% (five commitments). Coral resilience and coastal resilience each accounted for 6% (three commitments) of the government commitments. Only 2% (one commitment) of the commitments were focused on biological resilience, as well as only 2% (one commitment) referred social–ecological system (SES) resilience. No governments made commitments surrounding the economic resilience of MPAs (0 commitments).

      Climate resilience dominated the MPA resilience categories (Figure 7). Environmental, which encompasses ecosystem, coral, coastal, biological–fish, and biological forms of resilience accounted for 38% (51 references). Climate, as a single form of resilience, accounts for 32% (43 references) of the references. Social forms of resilience, which include community, economic, and SES, accounted for 23% (31 references). General resilience was singularly grouped, and it only accounted for 5% (seven references), and “other” was singularly coded accounting for >1% (one reference).

      Grouped types of resilience from all entities made in voluntary commitments of SDG 14.5. N = 133. Climate is single coded to emphasize its number and overall importance to entities. Data collected from https://oceanconference.un.org/commitments/ as of September 2017.

      What Actors Use Which Forms of Resilience in MPA Proposals?

      Overall, there is a significant difference between the distribution of entities making MPA-related commitments under the voluntary commitment process, and those making specific reference to resilience in their commitments (d.f. = 10, p < 0.01). Just as for total MPA commitments, state governments made the greatest number of commitments that incorporated resilience but were actually underrepresented in their use of resilience (n = 49, expected = 57). Similarly, NGOs comprised the second largest number of resilience references, but also underperformed (n = 27, expected = 31). Academic entities were the greatest over performers when it came to resilience references (n = 7, expected = 2). UN entities and IGOs also overperformed in their use of resilience (n = 14, expected = 12 and n = 11, expected = 4, respectively).

      Climate resilience was the most dominant form of resilience across all entities. Thirty-nine percent of the resilient MPA commitments made by governments were related to climate resiliency (Figure 6). However, there were no commitments made by governments that related to economic resiliency when discussing SDG 14.5, while NGOs did not focus their use of MPAs on coastal resilience. The scientific community was dominated by a focus on biological and climate resilience (Figure 6).

      Where Are the MPA Commitments Being Made?

      Multiple nation states made voluntary commitments toward MPAs under SDG 14.5 (Figure 8 and Supplementary Table S1). Sixty-five nation-states governments committed to created MPAs, for a total of 166 potential MPAs. Sweden led the way with 10 voluntary commitments (6%) toward creating MPAs, followed by Canada with 8 voluntary commitments (5%). Pacific Small Island Developing State (PSIDS), as a whole, made 34 voluntary commitments (20%) toward creating MPAs.

      Map of government’s MPA voluntary commitments (SDG 14.5) from 2017 UN Ocean Conference. This map shows proposed areas of new MPAs, within the country’s exclusive economic zone. N = 65 countries, not including the EU. 173 potential MPA sites were identified. Data collected from https://oceanconference.un.org/commitments/ as of November 2018.

      Discussion

      The UN Ocean Conference brought the marine environment to the forefront of international issues. For the first time, various sectors came together to discuss issues surrounding the oceans, including its conservation and sustainable use of the marine and coastal environment. This is key given international targets and imminent timelines: to conserve 10% of the marine environment by 2020 and to establish a new treaty guiding MPA designation processes on the high seas by 2020. The large number of voluntary commitments made aligns with these global trends (Lubchenco and Grorud-Colvert, 2015; Boonzaier and Pauly, 2016).

      Despite much interest by non-state actors (e.g., NGOs, foundations, and the private sector) in taking the mantle of conservation leadership, national governments still made the largest number of commitments. This is consistent with governments being the only entities with the authority to establish and implement MPAs (Agardy, 1994). Thus, the responsibility to fulfill global commitments rests on them. Yet NGOs also made their fair share, showing the commitment of external organizations in working with governments and communities toward developing a global network of MPAs (Christie and White, 2007; White et al., 2010). In our MPA crystal ball, there is a clear indication of the large role of non-state actors in the development of future MPAs, but no indication that establishment and implementation of MPAs will become anything other than a state-led process.

      The voluntary commitments toward MPAs ranged from no-take commitments to multi-use and community MPAs. This reflects the complexity inherent in MPAs where trade-offs must be made between conservation and allowing for sustainable use (Hirsch et al., 2010; McShane et al., 2011; Davies et al., 2018). This may also reflect the multiple stakeholders involved in developing MPAs at the national level (Brown et al., 2001). Importantly, having stakeholders, such as the fishing industry, involved in citing MPAs can lead to higher levels of compliance (Oracion et al., 2005) yet it may lead to a less ecologically effective MPA. No-take MPAs, where no use is allowed, have been shown to be the most effective at conserving biodiversity (Lester et al., 2009; Edgar et al., 2014; Costello and Ballantine, 2015; Sala and Giakoumi, 2018). Also, some of the MPA categories, such as multi-use or community, may not even qualify as an MPA. Under internationally recognized IUCN guidelines, community-managed protected areas that are managed mainly for the extraction of marine genetic resources should not be automatically classified as an MPA (Dudley, 2008; Day et al., 2012). In our MPA crystal ball, there is a clear indication that MPAs are no longer just about fisheries conservation.

      This research also showed that many entities view the creation of MPAs as a path toward resilience. One of the most highlighted goals of MPAs in recent studies are their role in enhancing resilience (Barnett and Baskett, 2015; Hopkins et al., 2016; Mellin et al., 2016). In particular, the voluntary commitment process involved a heavy focus on MPAs as tools of climate resilience, aligning marine conservation with broader discussions about trajectories for global climate policy. Climate resilience accounted for one-third of the total mentions of resilience, followed by ecosystem resilience at 17% of the mentions (Figure 4). Also, academic entities made the greatest number of references to resilience, which is perhaps to be expected, given the academic origins of the resilience concept. All of the references of coastal resilience were made by governments, which is in line with government priorities of their exclusive economic zones, which are located within 200 nm of a nation-states coastline.

      Given that the bulk of the literature deals with ecosystem resilience, there may be a paradigm shift toward climate resilience occurring in terms of practical applications of resilience. This is in line with increasing evidence that MPAs can enhance resilience of marine systems under environmental change and stress (Olds et al., 2014; Mellin et al., 2016; Roberts et al., 2017; Darling and Côté, 2018; Laffoley et al., 2019). The increased focus on resilience in MPAs shows where priorities may lie, such as on resilient fisheries or resilience toward climate change (McClanahan et al., 2012; McLeod et al., 2012; Green et al., 2014; Ford et al., 2016). In our MPA crystal ball, the future aligns marine conservation, ocean conservation, and climate change global priorities, using the lens of climate resilience as a key organizing principle.

      Resilience is understood as a key organizing and framing concept that shapes a systems ability to respond to external stresses, and it is a concept widely deployed in adaptation science, ecological science, and common pool resource management theory (e.g., Holling, 1973; Tompkins and Adger, 2004; Mosimane et al., 2012). But what kinds of resilience are being discussed in voluntary commitments? This research revealed the wide array of interpretations of resilience across entities, in line with the lack of clarity around this term in the literature. Nocito (2018) found that the amount of literature surrounding MPAs and resilience has steadily increased since the 1990s, but that only one-third of the papers gave a definition of what form of resilience the authors were referring to within the text. This is concerning when resilience is considered an aim or a goal of a MPA, as without proper definition the success of reaching that aim may come into question.

      The voluntary commitments also provided a way to map out potential future MPAs within country’s exclusive economic zones. This mapping exercise shows what countries are – and possibly more importantly are not – pledging future MPAs. While each commitment has its own fulfillment date, this map will help predict where MPAs in exclusive economic zones will exist in the future. The majority of commitments were made in the Pacific, which is expected as the UN Ocean Conference was influenced greatly by PSIDS, as well as co-hosted by the Pacific country of Fiji. The single country making the most MPA commitments was Sweden, totaling in at 10 MPA commitments, followed by Canada at 8 MPA commitments. However, as a region, PSIDS proposed 32 MPAs within the voluntary commitment system. The government of Sweden has committed to fulfilling SDG 14 and Aichi Target 11 through their national legislation body, called the Riksdag (Government of Sweden, 2015). To date, Sweden has 1,373 MPAs in their waters, making them a leader on MPAs in the EU as a whole (see text footnote 1) (European Environment Agency, 2015). The PSIDS, as a unit, are harbor 466 MPAs to date (see text footnote 1). PSIDS have called for a strong commitment to MPAs in international dialogs, and emphasize their commitments previously to creating MPAs (Moses, 2017). In our MPA crystal ball, based on the voluntary commitment process, MPAs are increasingly a tool of wealthy, conservation minded developed countries, and small island states. The lack of commitment from major emerging economies is a sign that work is to be done to build a broader coalition of economic and political leaders for conservation (Miller, 2014).

      Ultimately, despite slow progress on achieving global MPA goals, it is clear that the use of area-based management tools as policy instruments to provide protection for oceanic spaces is an idea that is not going away (Boonzaier and Pauly, 2016). Yet the idea of MPAs, like all policy ideas that have come into maturity through implementation, is evolving. It is moving toward the incorporation of a multi-sector, multi-stakeholder approach in MPA development and in the proposal process for MPAs. MPAs are now fully understood to be tools of climate change resilience, yet, ultimately, their success must still be measured by the efficacy of their implementation for achieving an increasingly broad set of policy-goals.

      Sustainable development goal 14 is set to expire in 2020. By that time, the goal is to have 10% of the marine and coastal environment conserved through area-based management tools, such as MPAs. To date, only 4.8% of the global ocean is conserved (see text footnote 1). While these predicted MPAs will add to that, there is still a lot of work to be done to reach 10%. These countries need to act quickly to create and establish these proposed MPAs by 2020, for the goal to be met. Countries must also consider that not all MPAs are created equal. No-take MPAs, or marine reserves, are often seen as the strongest MPAs for conservation and restoration of ocean processes (Russ and Alcala, 2004; Lubchenco and Grorud-Colvert, 2015). If the majority of these proposed MPAs are multi-use, or with partial protections, it will still go toward that 10% goal. However, the benefits derived from them may be less than expected since they are still being used and subject to anthropogenic stress (Lester and Halpern, 2008).

      Conclusion

      With various international goals and targets aimed at reaching 10% of the marine environment conserved through MPAs by the year 2020, it is fitting that so many entities have turned their attention toward fulfillment. The voluntary commitment portal of the UN Ocean Conference allows these entities to receive well-earned attention of their efforts. From these voluntary commitments came a newfound movement toward resiliency, but also showed the dire need of operational definitions to ensure success. The different types of resilience show what types are being prioritized, and by whom. The voluntary commitment portal also allowed a map of potential future MPAs to be created. This map shows which countries are truly committed to fulfilling SDG 14.5, and emphasizes how few countries actually made SDG 14.5 commitments through the voluntary commitment portal.

      Data Availability Statement

      All datasets generated for this study are included in the article/Supplementary Material.

      Author Contributions

      EN, AS, and CB designed the research and wrote the manuscript. EN and AS carried out the research and conducted the analyses.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to thank Anna McGinn and Anama Solofa for assisting in the collaborative event ethnography at UNOC. EN was supported by the School of Marine Sciences at the University of Maine at the time of the research and is now supported by the Environmental Studies Program at the University of Colorado at Boulder. AS was supported by the National Oceanic and Atmospheric Administration, and the School of Marine Sciences at the University of Maine, and is currently supported by Hamilton College. CB was supported by the Pew Charitable Trusts and the Environmental Studies Program at the University of Colorado–Boulder.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2019.00835/full#supplementary-material

      References Abelson A. Nelson P. A. Edgar G. J. Shashar N. Reed D. C. Belmaker J. (2016). Expanding marine protected areas to include degraded coral reefs. Conserv. Biol. 30 11821191. 10.1111/cobi.12722 26991947 Agardy T. (1994). Advances in marine conservation?: the role of marine protected areas. Trends Ecol. Evol. 7 267270. 10.1016/0169-5347(94)90297-6 21236850 Ardron J. Gjerde K. Pullen S. Tilot V. (2008). Marine spatial planning in the high seas. Mar. Pol. 32 832839. 10.1016/j.marpol.2008.03.018 Barnett L. A. K. Baskett M. L. (2015). Marine reserves can enhance ecological resilience. Ecol. Lett. 18 13011310. 10.1111/ele.12524 26423326 Baskett M. L. Barnett L. A. K. (2015). The ecological and evolutionary consequences of marine reserves. Ann. Rev. Ecol. Evol. Syst. 46 4973. 10.1146/annurev-ecolsys-112414-054424 Boonzaier L. Pauly D. (2016). Marine protection targets: an updated assessment of global progress. Oryx 50 2735. 10.1017/S0030605315000848 Brown K. Adger W. N. Tompkins E. Bacon P. Shim D. Young K. (2001). Trade-off analysis for marine protected area management. Ecol. Econ. 37 417434. 10.1371/journal.pone.0118764 25714431 Caselle J. E. Rasssweiler A. Hamilton S. L. Warner R. R. (2015). Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5:14102. 10.1038/srep14102 26373803 Christie P. White A. T. (2007). Best practices for improved governance of coral reef marine protected areas. Coral Reefs 26 10471056. 10.1007/s00338-007-0235-9 Corbin J. Strauss A. (1990). Grounded theory research: procedures, canona and evaluative criteria. Zeitschrift Fur Sociologie 19 418427. 10.1007/BF00988593 Costello M. J. Ballantine B. (2015). Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30 507509. 10.1016/j.tree.2015.06.011 26321055 Darling E. S. Côté I. M. (2018). Seeking resilience in marine ecosystems. Science 359 986987. 10.1126/science.aas9852 29496864 Davies T. E. Epstein G. Aguilera S. E. Brooks C. M. Cox M. Evans L. S. (2018). Assessing trade-offs in large marine protected areas. PLoS One 13:e0195760. 10.1371/journal.pone.0195760 29668750 Day J. Dudley N. Hockings M. Holmes G. Laffoley D. Stolton S. (2012). Guidelines for Applying the IUCN Protected Area Management Categories to Marine Protected Areas. Gland: IUCN. Dudley N. (2008). Guidelines for Protected Area Management Categories, Vol. 3. Gland: IUCN, 10.2305/IUCN.CH.2008.PAPS.2.en Edgar G. J. Stuart-Smith R. D. Willis T. J. Kininmouth S. Baker S. C. Banks S. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature 506 216220. 10.1038/nature13022 24499817 European Environment Agency (2015). Marine Protected Areas in Europe’s Seas. Copenhagen: European Environment Agency. Ford A. K. Bejarano S. Marshell A. Mumby P. J. (2016). Linking the biology and ecology of key herbivorous unicornfish to fisheries management in the Pacific. Aqua. Conserv. 26 790805. 10.1002/aqc.2623 Gaines S. D. Lester S. E. Groroud-Colvert K. Costello C. Pollnac R. (2010). Evolving science of marine reserves: new developments and emerging research frontiers. Proc. Natl. Acad. Sci. U.S.A. 107 1825118255. 10.1073/pnas.1002098107 20978212 Gjerde K. M. Dotinga H. Molenaar E. Rayfuse R. Warner R. (2008). Regulatory and Governance Gaps in the International Regime for the Conservation and Sustainable Use of Marine Biodiversity in Areas beyond National Jurisdiction. IUCN, Vol. 1. Amsterdam: Elsevier, 10.1038/535465a 27466088 Gjerde K. M. Nordtvedt Reeve L. L. Harden-Davies H. Ardron J. Dolan R. Durussel C. (2016). Proctecting Earth’s last conservation frontier: scientific, management and legal priorities for MPAs beyond national jurisdiction. Aqua. Conserv. 26 4560. 10.1002/aqc.2646 Glaser M. Breckwoldt A. Deswandi R. Radjawali I. Baitoningsih W. Ferse S. C. A. (2015). Of exploited reefs and fishers - A holistic view on participatory coastal and marine management in an Indonesian archipelago. Ocean Coast. Manag. 116 193213. 10.1016/j.ocecoaman.2015.07.022 Government of Sweden (2015). Swedish Strategy for Biodiversity and Ecosystem Services. Stockholm: Government of Sweden. Green A. L. Fernandes L. Almany G. Abesamis R. McLeod E. Aliño P. M. (2014). Designing marine reserves for fisheries management, biodiversity conservation, and climate change adaptation. Coast. Manag. 42 143159. 10.1080/08920753.2014.877763 20200311 Halpern B. S. Lester S. E. McLeod K. L. (2010). Placing marine protected areas onto the ecosystem-based management seascape. Proc. Natl. Acad. Sci. U.S.A. 107 1831218317. 10.1073/pnas.0908503107 20176945 Hirsch P. D. Adams W. M. Brosius J. P. Zia A. Bariola N. Dammert J. L. (2010). Acknowledging conservation trade-offs and embracing complexity. Conserv. Biol. 25 259264. 10.1111/j.1523-1739.2010.01608.x 21091769 Holling C. S. (1973). Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4 123. 10.1146/annurev.es.04.110173.000245 Hopkins C. R. Bailey D. M. Potts T. (2016). Perceptions of practitioners: managing marine protected areas for climate change resilience. Ocean Coast. Manag. 128 1828. 10.1016/j.ocecoaman.2016.04.014 Laffoley D. Baxter J. M. Amon D. J. Currie D. E. J. Downs C. A. Hall-Spencer J. M. (2019). Eight urgent, fundamental and simultaneous steps needed to restore ocean health, and the consequences for humanity and the planet of inaction or delay. Aqua. Conserv. 115. Lester S. E. Halpern B. S. (2008). Biological responses in marine no-take reserves versus partially protected areas. Mar. Ecol. Prog. Ser. 367 4956. 10.3354/meps07599 Lester S. E. Halpern B. S. Groroud-Colvert K. Lubchenco J. Ruttenberg B. I. Gaines S. D. (2009). Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 387 3346. 10.3354/meps08029 Lubchenco J. Grorud-Colvert K. (2015). Making waves: the science and politics of ocean protection. Science 350 382383. 10.1126/science.aad5443 26472764 Magis K. (2010). Community resilience: an indicator of social sustainability. Soc. Nat. Resour. 23 401416. 10.1080/08941920903305674 McCauley D. J. Pinksy M. L. Palumbi S. R. Estes J. A. Joyce F. H. Warner R. R. (2015). Marine defaunation: animal loss in the global ocean. Science 347:6219. 10.1126/science.1255641 25593191 McClanahan T. R. Donner S. D. Maynard J. A. MacNeil M. A. Graham N. A. J. Maina J. (2012). Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS One 7:e0042884. 10.1371/journal.pone.0042884 22952618 McLeod E. Green A. Game E. Anthony K. Cinner J. Heron S. F. (2012). Integrating climate and ocean change vulnerability into conservation planning. Coast. Manag. 40 651672. 10.1080/08920753.2012.728123 McShane T. O. Hirsch P. D. Trung T. C. Songorwa A. N. Kinzig A. Monteferri B. (2011). Hard choices: making trade-offs between biodiversity conservation and human well-being. Biol. Conserv. 144 966972. 10.1016/j.biocon.2010.04.038 Mellin C. Aaron Macneil M. Cheal A. J. Emslie M. J. Julian Caley M. (2016). Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19 629637. 10.1111/ele.12598 27038889 Miller D. C. (2014). Explaining global patterns of international aid for linked biodiversity conservation and development. World Dev. 59 341359. 10.1016/j.worlddev.2014.01.004 Moore F. Lamond J. Appleby T. (2016). Assessing the significance of the economic impact of Marine conservation zones in the Irish Sea upon the fisheries sector and regional economy in Northern Ireland. Mar. Pol. 74 136142. 10.1016/j.marpol.2016.09.025 Moses M. (2017). “Pacific small island developing states,” in Proceedings of the United Nations Conference to Support Implementation of Sustainable Development Goal 14: Elements for the Call to Action, New York, NY. Mosimane A. W. Breen C. Nkhata B. A. (2012). Collective identity and resilience in the management of common pool resources. Int. J. Commons 6 344362. MPAtlas.org (2018). Available at: http://www.mpatlas.org/ (accessed October 20, 2018). National Research Council (2001). Marine Protected Areas: Tools for Sustaining Ocean Ecosystems. Washington, DC: The National Academies Press, 10.17226/9994 NOAA (2017). What is Resilience? Silver Spring, MA: NOAA. Nocito E. S. (2018). Marine Protected Areas in Areas Beyond National Jurisdiction: Defining “Success” for Conservation & Management. Master’s Thesis, University of Maine, Orono. Olds A. D. Pitt K. A. Maxwell P. S. Babcock R. C. Rissik D. Connolly R. M. (2014). Marine reserves help coastal ecosystems cope with extreme weather. Glob. Change Biol. 20 30503058. 10.1111/gcb.12606 24849111 Oracion E. G. Miller M. L. Christie P. (2005). Marine protected areas for whom? Fish. Tour. Solid. Philippine Commun. 48 393410. 10.1016/j.ocecoaman.2005.04.013 Parsons K. P. (1973). Three concepts of clusters. Philos. Phenomenol. Res. 33 514523. Roberts C. M. O’Leary B. C. McCauley D. J. Cury P. M. Duarte C. M. Lubchenco J. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl. Acad. Sci. 114 61676175. 10.1073/pnas.1701262114 28584096 Rogers L. A. Olsen E. M. Knutsen H. Stenseth N. C. (2014). Habitat effects on population connectivity in a coastal seascape. Mar. Ecol. Prog. Ser. 511 153163. 10.3354/meps10944 31230154 Russ G. Alcala A. C. (2004). Marine reserves: long-term protection is required for full recovery of predatory fish populations. Oecologia 138 622627. 10.1007/s00442-003-1456-4 14716555 Sala E. Giakoumi S. (2018). No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75 11661168. 10.1093/icesjms/fsx059 24797815 De Santo E. M. (2018). Implementation challenges of area-based management tools (ABMTs) for biodiversity beyond national jurisdiction (BBNJ). Mar. Pol. 97 3443. 10.1016/j.marpol.2018.08.034 Shedrawi G. Falter J. L. Friedman K. J. Lowe R. J. Pratchett M. S. Simpson C. J. (2017). Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances. Coral Reefs 36 861872. 10.1007/s00338-017-1576-7 Smith D. Jabour J. (2018). MPAs in ABNJ: lessons from two high seas regimes. ICES J. Mar. Sci. 75 417425. 10.1093/icesjms/fsx189 Tompkins E. L. Adger W. N. (2004). Does adaptive management of natural resources enhance resilience to climate change? Ecol. Soc. 9:10. United Nations (2017a). Communities of Ocean Action. Available at: https://oceanconference.un.org/ (accessed October 20, 2018). United Nations (2017b). Development of an International Legally Binding Instrument Under the United Nations Convention on the Law of the Sea on the Conservation and Sustainable Use of Marine Biological Diversity of Areas Beyond National Jurisdiction (BBNJ) (A/RES/69/292). San Francisco, CA: United Nations, 118. (accessed October 20, 2018). United Nations (2018). Sustainable Development Goal 14. Available at: https://sustainabledevelopment.un.org/sdg14 (accessed October 20, 2018). United Nations (2016). Our Oceans, Our Future. Available at: https://www.un.org/en/conf/ocean/ (accessed October 20, 2018). Walker B. Holling C. S. Carpenter S. R. Kinzig A. (2004). Resilience, adaptability and transformability in social – ecological systems. Ecol. Soc. 9:5. 10.1103/PhysRevLett.95.258101 16384512 Wells S. Ray G. C. Gjerde K. M. White A. T. Muthiga N. Bezaury Creel J. E. (2016). Building the future of MPAs – lessons from history. Aqua. Conserv. 26 101125. 10.1002/aqc.2680 White A. T. Courtney C. A. Salamanca A. White A. T. Courtney C. A. Experience A. S. (2010). Experience with marine protected area planning and management in the Philippines. Coast. Manag. 753 126. 10.1080/08920750252692599

      mpatlas.org

      https://oceanconference.un.org/commitments/

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016ffwyqt.com.cn
      www.fanyouxi.com.cn
      gidnht.com.cn
      www.mhchain.com.cn
      ipue.com.cn
      sftcjs.com.cn
      www.spyqmf.com.cn
      wbit.net.cn
      www.viplyj.com.cn
      room79.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p