Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2019.00631 Marine Science Original Research Managing Marine Protected Areas in Remote Areas: The Case of the Subantarctic Heard and McDonald Islands Brooks Cassandra M. 1 * Epstein Graham 2 Ban Natalie C. 3 1Environmental Studies Program, University of Colorado Boulder, Boulder, CO, United States 2Environmental Change and Governance Group, School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, ON, Canada 3School of Environmental Studies, University of Victoria, Victoria, BC, Canada

Edited by: Fiorenza Micheli, Stanford University, United States

Reviewed by: Edward Jeremy Hind-Ozan, Department for Environment, Food and Rural Affairs, United Kingdom; Carlos F. Gaymer, Universidad Católica del Norte, Chile

*Correspondence: Cassandra M. Brooks, cassandra.brooks@colorado.edu

This article was submitted to Marine Conservation and Sustainability, a section of the journal Frontiers in Marine Science

11 10 2019 2019 6 631 24 03 2019 24 09 2019 Copyright © 2019 Brooks, Epstein and Ban. 2019 Brooks, Epstein and Ban

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Large marine protected areas (MPAs) are increasingly being established to contribute to global conservation targets but present an immense challenge for managers as they seek to govern human interactions with the environment over a vast geographical expanse. These challenges are further compounded by the remote location of some MPAs, which magnify the costs of management activities. However, large size and remoteness alone may be insufficient to achieve conservation outcomes in the absence of critical management functions such as environmental monitoring and enforcement. The Australian subantarctic Heard Island and McDonald Islands (HIMI) Marine Reserve is among the world’s most remote MPAs with notoriously harsh oceanographic conditions, and yet the region’s rich mammal and fish resources have been exploited intermittently since the mid-1800s. More recently, the development of lucrative international markets for Patagonian toothfish, sold as Chilean seabass, led to the growth in both legal and illegal fishing. In 2002, to conserve the unique ecology and biodiversity in the area, Australia declared a 65,000 km2 MPA around HIMI. Worldwide, government agencies have, however, struggled to develop cost-effective institutional arrangements for conservation. This paper therefore draws upon the social-ecological systems meta-analysis database (SESMAD) to characterize the structure of conservation governance and outcomes in the HIMI Marine Reserve. The Marine Reserve has generally been successful in supporting a sustainable fishery while addressing threats to biodiversity. The remote and isolated nature of the Marine Reserve was critical to its success, but also benefited greatly from collaborations between managers and the fishing industry. Commercial fishers keep watch over the Reserve while fishing, report any observations of illegal fishing (none since 2006/07), and have at times been asked to verify remote observation of potential illegal fishing vessels. The industry also undertakes annual ecological surveys in the MPA, allowing managers to track environmental trends. The fishing industry itself highlights the importance of industry participation in conservation planning, strengthened by secure access to resources via statutory fishing rights, which provide critical incentives to invest in conservation. We therefore reflect on the potential application of this case to other remote large MPAs, highlighting potential directions for future research.

conservation common pool resources marine protected areas toothfish subantarctic Southern Ocean collaboration participation Social Sciences and Humanities Research Council of Canada10.13039/501100000155

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Large marine protected areas (MPAs) are increasingly being established to contribute to global conservation targets (e.g., Gruby et al., 2016), but present an immense challenge for managers as they seek to govern human interactions with the environment over a vast geographical expanse (Wilhelm et al., 2014). These challenges are further compounded by the remote location of some of these MPAs, which result in rapidly rising costs for a range of governance activities, including environmental monitoring and enforcement (Jones and De Santo, 2016). Nonetheless, environmental monitoring and enforcement are fundamental to sustainable environmental governance (Ostrom, 1990; Cox et al., 2010), even in remote areas (Agnew et al., 2009; Muir, 2010) where advances in technology and lucrative resources compel actors to exploit opportunities at the few remaining frontiers of human society (Watson et al., 2015; Tickler et al., 2018). As a result, there is a growing need to better understand strategies for governing large and remote MPAs to protect their unique ecological features and species of conservation concern.

      The Australian-governed subantarctic Heard Island and McDonald Islands (HIMI) Marine Reserve, located more than 4,000 km from major human populations (Figure 1), is among the world’s most remote MPAs. HIMI are among the least disturbed islands in the world and the least impacted islands in the Southern Ocean (e.g., minimum alien species) (IUCN, 2017; Whinam and Shaw, 2018). Heard Island is also one of the only subantarctic islands with a continuously active volcano. HIMI support large breeding populations of marine birds and mammals, and the surrounding waters are prime foraging areas for a number of marine predators that also rely on the land for part of their life-history, including threatened seals and albatross, an endemic cormorant, and four species of penguins (Green and Woehler, 2006; IUCN, 2017). The marine region supports a range of slow-growing and vulnerable benthic organisms (e.g., cold-water corals and sponges), several endemic fish and benthic species, and nursery areas for a range of fish species, including Patagonian toothfish (Dissostichus eleginoides) (Meyer et al., 2000; Duhamel and Welsford, 2011; Welsford et al., 2019).

      The remote Heard Island and McDonald Islands (HIMI). HIMI are small subantarctic islands on the Kerguelen Plateau located ∼4,000 km southwest of Australia and ∼1,600 km north of Antarctica. The original HIMI Marine Reserve (65,000 km2) is shown in orange (note that the boundaries of the MPA were expanded in 2014). The Australian governed HIMI is adjacent to the French Kerguelen Islands. Australia’s Exclusive Economic Zone (EEZ) and the adjacent French EEZ, are illustrated by the black circular lines.

      Despite its remoteness and notoriously harsh oceanographic conditions, the region’s rich mammal and fish resources have attracted harvesters since the mid-1800s (Downes and Downes, 2006). More recently the development of lucrative international markets for Patagonian toothfish, sold as Chilean seabass, led to the growth in both legal and illegal fishing around HIMI (Patterson and Skirtun, 2012). In 1997, it was estimated that approximately 70 illegal fishing vessels were operating in the Southern Ocean, and could earn up to a million dollars on a single trip (Baird, 2004).

      In 2002, to conserve the unique ecology and biodiversity in the area, Australia declared a 65,000 km2 no-take marine reserve around HIMI (Welsford et al., 2011) (Figure 2). Yet due to the remoteness of this area, Australian Government agencies have faced the difficult task in devising cost-effective institutional arrangements for its conservation and management. While these volcanic islands with their rich populations of birds and mammals have attracted scientists since their discovery, the logistics of operations there have proved difficult (Green and Woehler, 2006). A national scientific base was established on Heard Island in 1947, but was abandoned by 1955 (Munro, 2006). Since then scientific operations have been sporadic, with only two dedicated scientific expeditions to the HIMI Marine Reserve since it was designated (in 2003/04 and 2016; Green and Woehler, 2006; AAD, 2019).

      Heard Island and McDonald Islands (HIMI) Marine Reserve and bioregions. Islands represented by white features. Bathymetry (1,000 m increments) is represented by blue coloration (with shallower areas being lighter in color). Red boundaries represent physical units underpinning the marine reserve proposal (based on Meyer et al., 2000). The 2002 HIMI Marine Reserve (65,000 km2) is shown in orange, with no-take areas represented by solid areas and Conservation Zones represented by the hatched areas. Conservation areas underwent further study before some of these regions were incorporated in an expanded HIMI Marine Reserve in 2014 (see text). The HIMI exclusive economic zone boundary is shown by the black line.

      Management of the Reserve, including activities such as enforcement, monitoring and research, are a significant challenge for all stakeholders. Indeed, leading up to the time that the MPA was declared, there were growing concerns about illegal, unreported, and unregulated (IUU) fishing in the area, which precipitated an investment of more than AUD $10 million to enhance patrols in the HIMI waters, and where a single trip could cost upwards of AUD $2 million (Baird, 2004). Given the high costs and intermittent nature of funding for enforcement and research, the fishing industry has played an important role in addressing these gaps and contributing to efforts to reduce or minimize threats to biodiversity.

      This paper presents a case study of the HIMI Marine Reserve, and the role that legal toothfish fishers have played in its management from the establishment of the Reserve in 2002 until 2012 (a 10-year snapshot). The HIMI Marine Reserve was expanded on 29 March 2014 (to 71,000 km2; with a new Management Plan), the impacts of which are beyond the scope of the current study. Here we build upon a broader effort to systematically code and analyze the design and performance of large-scale MPAs around the world (Ban et al., 2017; Davies et al., 2018). The remainder of this paper is organized in the following way. First, we briefly describe the methods that were used to code and analyze the HIMI Marine Reserve. We then provide a brief history of HIMI as it transformed from a temporary base for sealers in the 1850s onward to one of the world’s largest no-take marine reserves. This is followed by an analysis of the critical role that fishers have played in its development, implementation, and performance. We then conclude with a brief discussion about potential insights for the design and implementation of MPAs in other remote areas around the globe.

      Materials and Methods

      We performed a longitudinal, qualitative, case study (Yin, 2014) of the governance of the HIMI Marine Reserve. A social-ecological systems framework (Ostrom, 2009; Cox, 2014) was used to structure the analysis by identifying key components (resources, actor groups, governance system) of the HIMI Marine Reserve and coding the attributes of those components as part of the collaborative Social-Ecological Systems Meta-Analysis Database (SESMAD) project (Cox, 2014). Through an online platform, SESMAD facilitates systematic collection of information on the social and ecological attributes of large-scale social-ecological systems, the basic unit of analysis, through content analysis of secondary data (e.g., published studies, gray literature) and primary data (e.g., interviews). The SESMAD database provides a simple, and yet powerful approach for systematically coding and analyzing cases through interactions among three core components.

      In the HIMI case, we systematically coded (i.e., categorized or indexed) (Saldaña, 2015) variables within the SESMAD database, drawing on extensive peer-reviewed and gray literature to develop an understanding of relevant resources, actors, and the governance systems that influence their interactions with the environment. We analyzed the case between 2002 and 2012, which reflects the establishment of the Reserve in 2002 and our reliance upon secondary data, which often results in a lag between data collection and their broader availability for review. This is consistent with the SESMAD approach and previously published studies using these methods (e.g., Fleischman et al., 2014; Ban et al., 2017). We focused on peer-reviewed studies, and reports and other documentation (policy, legislation, management plans) published by agencies involved in the management of HIMI. We also carried out multiple interviews with three key informants to validate our coding and illuminate important details about governance processes, including the role of different agencies in the management of the HIMI Marine Reserve. We selected participants based on their in-depth experience in research and management of the Marine Reserve. Our study was approved by the University of Victoria’s Human Ethics Research Board (ethics protocol number 14-118), and we obtained informed consent from all participants.

      We focused on three types of environmental commons in coding the HIMI case study: Patagonian toothfish (Dissostichus eleginoides; the main fishery in the region; environmental commons 1), king penguin (Aptenodytes patagonicus) as an ecosystem indicator (best studied bird in the area, sensitive to climate and environmental changes; environmental commons 2), and light-mantled sooty albatross (Phoebetria palpebrata; long-term presence on HIMI; environmental commons 3) as a migratory species indicator. Two governance systems and three actor groups were also included. The HIMI Marine Reserve Management Plan (governance system 1) governs the land and ocean within the Australian exclusive economic zone (EEZ) around HIMI and is implemented by the Australian Antarctic Division (actor 1). The HIMI Fishery Management Plan (governance system 2), meanwhile, regulates the harvest of toothfish and icefish resources by fishers (actor 2) within the EEZ and is implemented by the Australian Fisheries Management Authority (actor 3). The content of the HIMI MPA case study is publicly available at https://sesmad.dartmouth.edu/ses_cases/18.

      Results Heard Island and McDonald Islands Marine Reserve: Background

      Heard Island and McDonald Islands (HIMI) are remote volcanic islands in the South Indian Ocean. Located in one of the most isolated regions of the world, the islands are 1,500 km north of Antarctica and about 4,000 km from Australia, South Africa, and Madagascar (Figure 1). The uninhabited islands were discovered in 1853 by American Captain John Heard and were used intermittently as a sealing site between 1856 and the 1880s (Downes and Downes, 2006), with occasional visits by scientific researchers (Green, 2006). By the 1880s, seal populations were decimated, largely ending sealing operations (Downes and Downes, 2006). No nation state claimed HIMI until 1910 when the United Kingdom formally established a claim (Green, 2006). In 1947, with the establishment of an Australian research station on Heard Island, the United Kingdom transferred administration and control of the Islands to the Australian Government (Green, 2006). At that point the islands became governed by Australia as an Australian External Authority through the Heard and McDonald Islands Act of 1953 (Goverment of Australia, 1953).

      The Heard Island research station was abandoned in 1955 due to the difficulty and expense of maintenance and operations, and because of the Australian government’s priority to support its new Mawson base on the Antarctic continent on the coast of Mac. Robertson Land (Munro, 2006). Since then the islands have been visited only sporadically for research or management (Green and Woehler, 2006; AAD, 2019). Visits by tourists are also only sporadic (see e.g., Heritage Expeditions, 2018). Currently, the most frequent visitor to the area are commercial fishers, which annually target Patagonian toothfish (Dissostichus eleginoides) and mackerel icefish (Champsocephalus gunnari) in the waters around the islands (AFMA, 2018).

      In 1979, Australia declared a 200-nautical mile fisheries zone, which in 1994 changed to an official EEZ, abutting France’s subantarctic Kerguelen Islands EEZ (Goverment of Australia, 1979, 1994) (Figure 1). HIMI also falls within the governance boundaries of the 1980 Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR), of which Australia is a signatory (CCAMLR, 1980). The 1991 Australian Fisheries Management Act regulates all fishing within the HIMI EEZ (Goverment of Australia, 1991).

      Australia’s commitment under the Convention on Biological Diversity (CBD, 1992) led Australia to develop a National Strategy for the Conservation of Australia’s Biological Diversity, which included an objective to develop a national representative system of marine reserves (Goverment of Australia, 1996). In 1996, HIMI (with a 12 nm buffer portion of the surrounding waters) were declared a Wilderness Reserve by Australia (AAD, 1995). In 1997, the islands were then added to the World Heritage List (UNESCO, 1997). During this time, the land and 12 nm ocean portion of the Wilderness Reserve were also managed as an IUCN Category 1a nature reserve (AAD, 1995). In 1998, Australia released their National Oceans Policy, which identified HIMI as one of the five priority areas for inclusion in a national representative system of MPAs (Goverment of Australia, 1998). In 1999 a Strategic Plan for a National System of MPAs was developed (ANZECC TFMPA, 1999). Simultaneously, the Environmental Protection and Biodiversity Conservation Act 1999 entered into force, providing a legal process for establishing and managing marine reserves (Goverment of Australia, 1999). The Federal Government’s Environment Australia commissioned the Australian Antarctic Division to complete a comprehensive compilation and review of the conservation values in the marine environment around HIMI (Meyer et al., 2000).

      A comprehensive review of the existing geophysical, oceanographic and biological data of the marine region identified 13 distinct physical units within the HIMI EEZ based on a range of physical variables (e.g., bathymetry, sediment characteristics, water temperature, salinity, currents) (Meyer et al., 2000) (Figure 2). The proposed reserve design was generally consistent with conservation design principles of being comprehensive, adequate and representative, including a portion of almost all biophysical units. Efforts were made to include areas used by land-based breeding predators, and to provide some connectivity between areas (e.g., to allow juvenile fish migration from shallow nursery to deeper areas) (Welsford et al., 2011). The reserve was also designed with the explicit intent of providing long-term protection in the event of changes in the distribution of species due to climate change (Welsford et al., 2011).

      Based on this proposal, after comprehensive stakeholder consultation (described below) a 65,000 km2 HIMI Marine Reserve and Conservation Zone was subsequently established in 2002 (AAD, 2018) (Figure 2). The HIMI Marine Reserve Management Plan was developed and entered into force in 2005, establishing rules and regulations for human activities within the Reserve. The Management Plan is administered by the Australian Antarctic Division, but the Division works in collaboration with multiple agencies and other stakeholders – especially the fishing industry – in undertaking research, monitoring, and enforcement (Goverment of Australia, 2005) (Tables 13).

      Collaborative management of HIMI Marine Reserve.

      Stakeholder/Agency Role
      Australian Antarctic Division Main management agency
      Australian Fisheries Management Authority (in collaboration with others, including the Subantarctic Management Advisory Committee, the Subantarctic Resource Assessment Group, and the Commission for the Conservation of Antarctic Marine Living Resources). Involved in fisheries and ecosystem management, research and monitoring
      Commercial fishers (Austral Fisheries Pty Ltd and Australian Longline Pty Ltd) Integral to fisheries and ecosystem research and monitoring, IUU deterrent and monitoring
      Australian Maritime Safety Authority Liaise on safety issues
      Australian Border Force Patrolling for IUU fishing, monitoring and enforcement, invasive species issues
      Tourist and Recreational Visitors Opportunistic research and monitoring
      French National Authorities IUU monitoring
      Stakeholders and agencies involved in managing the HIMI Marine Reserve and their role in management. IUU refers to illegal, unregulated and unreported fishing.

      Collaboration toward meeting primary management goals.

      Management Goal AAD AFMA or Fishers Others
      Zoning and IUCN Category (land) Active: via zoning
      Environmental Assessment and Approval (for HIMI visitors/activities) Active: environmental impact assessments required (e.g., land visitors); applications to enter Marine Reserve (e.g., research vessels)
      Visitor Management and Reserve Use

      Access and Transport

      Passive: no visitors during snapshot

      Management of Facilities (land)

      Passive: no visitors during snapshot

      Visitor Management and Commercial Activities

      Passive: no visitors during snapshot

      Communicating Reserve Values

      Active: via websites
      Natural Heritage Management

      Flora and Fauna

      Mostly Passive: little to no data on conservation status for many target fauna (e.g., seabirds, mammals); Some assistance from fishery Assistance with some wildlife conservation issues (e.g., mitigating seabird bycatch)

      Natural Asset Use

      Active: in partnership Assistance with ensuring no fishing in Reserve Border Force and French authorities assist with monitoring for fishing activities

      Waste Management

      Passive: no visitors during snapshot

      Prevention and Management of Alien Species and Disease

      Passive: no visitors during snapshot

      Research and Monitoring

      Active: largely in partnership with the fishery Commercial fishers highly involved with research and monitoring (Table 3)
      Cultural Heritage Management Active: Communication goals/prescriptions
      Stakeholders and Partnerships Active: in partnership
      Business Management

      Operational Management

      Active: in partnership

      Compliance and Enforcement

      Active: in partnership Assistance from fishery Assistance from Border Force and French authorities

      Financial Management

      Active: administrative

      Emergency Management

      Passive: no visitors during snapshot, but plans in place
      Performance Assessment Active: research that led to conservation zone inclusion (2014 addition)
      Main management goals of the 2005 Heard Island and McDonald Islands (HIMI) Marine Reserve Management Plan (left column) indicating the responsible agency and mechanisms for achieving each goal (center column and right columns). Passive management indicates that the management goal is likely being met, but not by active management by agencies (de facto by no activity or already existing activities). AAD refers to the Australian Antarctic Division. AFMA refers to the Australian Fisheries Management Authority. Note that the HIMI management plan governs the islands and the surrounding Marine Reserve. Empty cells indicate no involvement.

      Participation of commercial fishery in marine reserve research and monitoring.

      Research and Monitoring Priorities Commercial Fishery Participation
      Continuing population counts and monitoring of threatened species to assist in the implementation of the subantarctic Fur Seal and Southern Elephant Seal Recovery Plan, Recovery Plan for Albatrosses and Giant Petrels and Draft Recovery Plan for 10 species of seabirds Observer counts and species identification of seabirds; reporting requirements on any death, injury, or interaction with vessel or gear
      Research and Monitoring toward other recovery plans, action plans, and threat abatement plans Input at Resource Assessment Group and other advisory committee levels; Assistance in preparing potentially successful approaches
      Comprehensive surveys of indigenous species to provide baseline information against which to compare human-introduced or otherwise newly colonized terrestrial, freshwater and marine species Marine species from random stratified trawl survey; also data collection from two fisheries observers; project based research programs
      Long-term whole of reserve and colony specific monitoring to provide fundamental data on the distribution, abundance and population trends of seal and seabird species, with particular emphasis on listed threatened species Fisheries observers conduct counts from vessel while fishing
      Surveys to increase knowledge of the biodiversity of the reserve, and its response to current conditions and climate change. Annual random stratified trawl survey; benthic assemblages sled project, benthic assessment camera work
      Hydrographic surveys for producing and updating of marine charts. Bathymetric data from fishing operations granted upon request (with confidentiality clauses in place); in collaboration with AAD, Universities and Geosciences Australia
      Opportunistic monitoring of the distribution of cetaceans during AAD expeditions, by fishing vessels, yachts, tourist vessels, merchant vessels, spotter aircraft Active monitoring in collaboration with AAD, AFMA observers, Australian and French patrols, scientists, and (occasional) tourist vessels.
      Acoustic mapping of the substratum Active mapping in collaboration with AAD and Universities
      Stratified random sampling of the benthos, particularly habitat-forming benthos such as sponges and corals, to determine the extent of differences in the assemblages and habitats between the biophysical units used to develop the reserve Active sampling in collaboration with AAD and AFMA observers
      Stratified random sampling of benthos within and outside the reserve, to determine how well the reserve configuration protects the features it was designed to protect Active sampling in collaboration with AAD and AFMA observers
      Stratified random sampling within and outside the reserve of target species in the HIMI fishery Active sampling in collaboration with AAD and AFMA observers
      Research into the impacts of commercial fishing in adjacent waters on the reserve and/or its key components (e.g., protected species) Active research via trawl survey, AFMA observers, data collection from vessels, reporting requirements, advisory committees
      Monitoring changes in the degree to which anthropogenic threats affect threatened animal species Some research on environmental variability and some research and management to ensure minimal anthropogenic threats of fishing on seabirds, fish species, ecologically related species
      Investigating the cumulative impacts of research programs and other activities on threatened species or species and their habitats that are vulnerable to human disturbance Ongoing as research programs are undertaken
      Fish stock assessments Substantive involvement with data collection (e.g., from AFMA fisheries observers), participation in advisory committees, and involvement in CCAMLR
      HIMI Marine Reserve research and monitoring priorities (Goverment of Australia, 2005) which the commercial fishery participates in (R. Arangio, Austral Fisheries, 29 June 2016; D. Welsford, AAD, 21 October 2016). AAD refers to the Australian Antarctic Division; AFMA refers to the Australian Fisheries Management Authority.

      The main purpose of the MPA is to protect: the conservation values of HIMI, including the World Heritage and cultural values; biodiversity; the unique features of the benthic and pelagic environments; representative portions of the different marine habitat types; and marine areas used by land-based marine predators for foraging activities (Goverment of Australia, 2005) (Table 2). The MPA is managed as fully no-take. However, fishing, which has occurred since 1997 for toothfish and icefish is allowed in the waters adjacent to the Reserve (Goverment of Australia, 2005).

      MPA Performance Fisheries Outcomes

      The HIMI Marine Reserve contributes to the sustainability of the toothfish fishery by protecting aspects of toothfish life history, connectivity and providing opportunities for regular research and monitoring (Meyer et al., 2000; Goverment of Australia, 2002). While currently both icefish and toothfish are harvested in the waters around HIMI, we focus on toothfish since they sustain the largest fishery (Patterson and Skirtun, 2012). While toothfish populations have decreased from about 82% of unfished levels in 2002 to 62% in 2012 (CCAMLR, 2013), this is consistent with the goals of the fishery management plan (AFMA, 2002) and Southern Ocean management thresholds adopted by CCAMLR (Constable et al., 2000). Both fisheries have been certified as sustainable by the Marine Stewardship Council (icefish since 2006; toothfish since 2012) (MSC, 2018) and are considered precautionary and sustainable by Australian Government agencies (Constable and Welsford, 2011; Patterson and Skirtun, 2012; AFMA, 2014).

      Fishing regulations are strictly enforced through several monitoring and reporting mechanisms. These include two independent onboard observers, vessel and port monitoring systems, the Australian Fisheries Management Authority or Australian Defense Force patrols, and CCAMLR reporting (AFMA, 2002). Fishers face significant government sanctions for violating rules (including fishing within the MPA) and risk losing their highly coveted Marine Stewardship Council certification, resulting in high levels of compliance (see e.g., AFMA, 2014; MSC, 2018). With secure access rights, it is also in the fishers’ long-term interest to ensure a sustainable and well managed fishery.

      While the toothfish populations currently appear sustainable, the fishery operates in a context of significant uncertainty. For instance, there is growing evidence from genetic studies (Appleyard et al., 2002, 2004), parasite faunal analysis (Brickle et al., 2005) and tag recapture studies (Williams et al., 2002; Duhamel and Welsford, 2011) that suggests that HIMI toothfish are part of a larger Kerguelen Plateau/South Indian Ocean population. Recent stock assessments are beginning to incorporate movement between the HIMI and Kerguelen Island regions (WG-FSA, 2017; Ziegler and Welsford, 2019). Further questions, meanwhile, relate to the habitats and locations used for spawning and larval stages, the exact timing of spawning, the proportion of the population that spawns (i.e., evidence of skip-spawning) (Welsford et al., 2012; Péron et al., 2016). From what is known, toothfish are capable of supporting small-scale fisheries, but due to their life history (slow growth, later age at maturity, long-lived) and relatively small populations (Collins et al., 2010), they are vulnerable to overexploitation. For instance, several populations in the region were heavily overexploited by IUU fishers in the 1990s and early 2000s and have yet to recover (McKinlay et al., 2008; Collins et al., 2010; Welsford, 2011).

      Toothfish populations in the circumpolar subantarctic region, including HIMI, were subject to extensive IUU fishing from the mid-1990s to early 2000s (Österblom and Sumaila, 2011). However, as a result of efforts by a variety of stakeholders, including the Australian government and the fishing industry (Österblom and Sumaila, 2011; Österblom and Bodin, 2012), there have been no observations of IUU fishing around HIMI since 2005 (AFMA, 2014), and no sightings of IUU vessels in the CCAMLR Area since 2015/16 (CCAMLR, 2017b). Austral Fisheries, an Australian commercial fishing company, were particularly instrumental in recognizing the environmental and economic threats posed by IUU fishing and spent more than $2 million USD in 2002–2003 on lobbying, surveillance, and hiring private investigators to identify IUU operators (Österblom and Sumaila, 2011). Austral Fisheries continues to provide support in the form of surveillance, along with the French and Australian governments (R. Arangio, Austral Fisheries, 29 June 2016). They are also an active member of the Coalition of Legal Toothfish Operators (COLTO), a group of 50 toothfish fishing companies and support industry companies from a dozen nations that advocates for legal and environmentally sustainable toothfish fishing operations (COLTO, 2018).

      Ecological Outcomes

      Habitat assessments have shown that a significant majority of vulnerable organisms occupy the HIMI seafloor at depths of less than 1,200 m, a range that overlaps with the trawl and longline fisheries (Welsford et al., 2014). However, most of the trawling occurs in a relatively small area, which has limited habitat impacts to less than 1.5% of biomass in waters less than 1,200 m (Welsford et al., 2014). Furthermore, the HIMI Marine Reserve contains areas in which 40% or more of the benthic biomass is considered most vulnerable to bottom fishing. However, it has been estimated that only about 0.7% of the seafloor area within the HIMI EEZ has experienced interactions with bottom fishing gear between 1997 and 2013 (Welsford et al., 2014).

      Relatively little is known about conservation outcomes for species that rely on the HIMI Marine Reserve. Our analysis focused on two species for which at least some data on their life history and status is available, and which may provide an indicator of ecosystem conditions and role in the life histories of migratory species (Parsons et al., 2008; Einoder, 2009), respectively: king penguin (Aptenodytes patagonicus; Bost et al., 2013; Cristofari et al., 2018) and light-mantled sooty albatross (Phoebetria palpebrata; Phillips et al., 2016).

      King penguins have largely recovered from historical over-exploitations throughout the subantarctic (as an oil source) throughout the region in the late 19th and early 20th centuries (Bost et al., 2013). Populations at Heard Island (as well as Kerguelen) have experienced slower rates of recovery compared to other subantarctic populations, and still appear to be increasing (Woehler, 2006; Bost et al., 2013 and references therein). A 1947 visit to Heard Island, for instance, found only three king penguins, compared to the approximately 80,000 pairs found in 2003/4 (Woehler, 2006). Since then, the available data suggest that the population continues to increase (Heritage Expeditions, 2012; Bost et al., 2013; E. Woehler, BirdLife Tasmania, 28 August 2015); although the lack of a population survey or regular observations since 2003/04 contributes to significant uncertainty about the contemporary population status of king penguins and health of the broader marine ecosystem.

      The HIMI Marine Reserve Management Plan addresses a number of threats to king penguins and the marine ecosystem. On land, management zones are used to protect breeding areas, tourists are prohibited from closely approaching and harassing penguins; and scientists require permits to study them (Goverment of Australia, 2005). At sea, meanwhile, some foraging areas fall within the boundaries of the Marine Reserve, but also extend into the French EEZ (around Kerguelen) and into the high seas (see e.g., Meyer et al., 2000). King penguins forage at great depths (reaching 440 m) and feed on pelagic fish, especially myctophids (Moore et al., 1999; Bost et al., 2013). If myctophids are not readily available, king penguins may also feed on mackerel icefish – a species which is also commercially harvested outside the boundaries of the Marine Reserve, thus potentially putting penguins in competition with commercial fishers (Bost et al., 2013). King penguins travel far, especially in the winter (up to 1,800 km from their colony, 5,000 km round trip) (Putz et al., 1999). However, during the breeding season, they typically stay within 500 km of their colonies (Putz et al., 1999). Their foraging ecology has been extensively studied and is strongly dependent on the Antarctic frontal zone features, especially the Antarctic Polar Front (Bost et al., 2015; Cristofari et al., 2018). This makes them highly vulnerable to climate change (Peron et al., 2012; Bost et al., 2013, 2015; Cristofari et al., 2018). Shifts in their main prey, myctophids, are predicted under future climate change scenarios, with unknown consequences for king penguins (Freer et al., 2019).

      The MPA was explicitly designed with the intent of protecting breeding sites and foraging grounds for migratory seabirds, including light-mantled sooty albatross (Meyer et al., 2000; Goverment of Australia, 2005). These circumpolar birds can travel more than 6,000 km from breeding sites (including sites on Heard Island) to their foraging grounds (Weimerskirch and Robertson, 1994). Light-mantled sooty albatrosses demonstrate high breeding site fidelity but because they are biennial breeders, they do not return each year (Bonnevie et al., 2012). The population at Heard Island has been estimated at somewhere between 200 and 500 nesting pairs based upon 2000/01 and 2003/4 surveys (Green and Woehler, 2006; Woehler, 2006). This population is relatively stable based on comparisons with early counts from the 1950s which also estimated between 200–500 pairs (Downes et al., 1959). Historical trends and expert interview (E. Woehler, BirdLife Tasmania, 28 August 2015) suggest the population is stable or increasing, the latter being due to the novel nesting sites found since the 1950s (Woehler, 2006). Counts by tourists in 2012 also support estimates of a persistent population (Heritage Expeditions, 2018). However, accessibility and changes in nesting locations pose significant challenges for obtaining a reliable estimate of the breeding population (Woehler, 2006).

      The HIMI Marine Reserve Management Plan addresses a number of potential threats to light-mantled sooty albatross on land and sea portions of the Reserve. This includes requirements for visitor permits, restrictive zoning of land areas to concentrate impacts and avoid nesting areas; and prohibitions against fishing in the Reserve (Goverment of Australia, 2005). Protection of land areas has been greatly facilitated by isolation. However light-mantled sooty albatross breeding at HIMI continue to face significant threats emerging from beyond the boundaries of the Reserve. These include climate change and incidental mortality in legal and IUU fisheries for tuna and toothfish (ACAP, 2012; Phillips et al., 2016; BirdLife International, 2018). However, the toothfish fishery at HIMI has proved remarkably successful in avoiding such impacts through the adoption of innovative technologies and mitigation measures (AFMA, 2014). Since 2006, very few birds (1–7 per year) are taken in the toothfish fishery at HIMI, none of which were light-mantled sooty albatross (CCAMLR, 2017a).

      HIMI: Factors Contributing to Conservation Success

      HIMI has been offered as an example of successful marine conservation in a remote and challenging environment (Constable and Welsford, 2011; Goldsworthy et al., 2016; MSC, 2018). Our case study indicates that the success of the HIMI Marine Reserve stems from two critical factors: (1) remoteness and isolation which reduce human threats and impacts, and (2) collaboration with the fishing industry, which has allowed stakeholders to manage threats posed by the fishing industry and provide an efficient approach for addressing management gaps.

      Remoteness

      The remoteness of HIMI and the harsh climate it experiences have made significant contributions to the protection of biodiversity on land and marine areas, by limiting direct human interactions with the environment since sealing and whaling activities ceased in the early 20th century (Green and Woehler, 2006; IUCN, 2017; Whinam and Shaw, 2018). Since the 1960s, Heard Island has experienced mostly sporadic visits from scientists and tourists, while McDonald Island has only been visited on two occasions (AAD, 2018). While isolation offers significant protection from a number of threats, it also poses significant challenges for managing the Reserve and responding to emerging threats (Whinam and Shaw, 2018). A lack of funding and logistical support by the Australian Antarctic Division and the high costs of traveling to HIMI have prevented managers from undertaking activities specified in management plans, such as ecological monitoring which could provide important details about the status and trends for species of conservation concern (see Tables 2, 3).

      The remoteness and difficulty of access also means that managers know very little about the status of marine life, with the exception of targeted commercial fish species, around HIMI (IUCN, 2017; Tables 2, 3). Similarly, satellite imaging of Heard Island has revealed significant glacial retreat (see e.g., Mitchell and Schmeider, 2017; AAD, 2018), but scientists and managers currently lack an understanding of the potential impacts of these changes (and other climate change impacts) on birds and mammals on the island (Chambers et al., 2013, 2014). Climate change has caused phenological changes in many other Southern Ocean seabirds, especially penguins and some albatrosses, including species that live on HIMI (Chambers et al., 2013, 2014). Finally, although there is no indication that climate change has adversely affected HIMI toothfish populations as of yet, toothfish recruitment may be sensitive to changes in sea surface temperature and could be affected by predicted future changes (Trathan and Agnew, 2010; Constable et al., 2014).

      Collaboration With the Fishing Industry

      Australia adopted a highly transparent and collaborative process for developing the HIMI MPA, including opportunities for significant participation by the fishing industry. After reviewing ecological values in the area and proposing an MPA design that followed best practices in conservation (Meyer et al., 2000), the Australian Antarctic Division released the proposal in early 2001 and began an extensive (18-month) consultation process which included the formation of the HIMI stakeholder group (Welsford et al., 2011; Goldsworthy et al., 2016). This group included members from the policy and research branches of the Australian Antarctic Division, the fishing industry and a variety of non-governmental organizations. After consultation, the stakeholder group largely supported the design and rationale for the MPA proposal and they supported inclusion of approximately 85% of the original proposal (Welsford et al., 2011). The HIMI stakeholder group, chose to temporarily set some of the proposed areas as “Conservation Zones” which allowed for further research on the conservation values of these areas against the representativeness of other areas in the MPA as well as for examining the threat of fishing to the conservation values in this area against the economic importance of the fishery (Welsford et al., 2011). The HIMI Marine Reserve was subsequently established in 2002 as a 65,000 km2 no-take (IUCN category Ia) MPA (Figure 2), and parts of these conservation zones were incorporated into the expanded Marine Reserve in 2014.

      This transparent process resulted in strong support by the fishing industry, which consists of only two companies: Austral Fisheries and Australian Longline. In 2003, Austral Fisheries received an award from the World Wildlife Fund for their involvement in the HIMI and the Macquarie Island Marine Reserves (Austral Fisheries, 2018). The fishing companies have strongly supported the HIMI Marine Reserve and believe it contributes to a stronger and more sustainable fisheries management system.

      “We have a strong belief in the science that underpins the fishery and we know what can happen if it’s not managed properly. The end game is a balance between protection and rational use and we supported the MPA because we knew it would protect benthic assemblages, juvenile fish stocks and create broader ecosystem balance”

      (R. Arangio, Austral Fisheries, 29 June 2016).

      The two toothfish fishing companies hold individual transferable quotas that provide a secure and long-term right to harvest toothfish resources at HIMI. Although there are a number of important exceptions (see e.g., Ban et al., 2009), individual transferable quotas can provide critical incentives to support the long-term sustainability in fisheries (Grafton et al., 2006; Costello et al., 2008, 2010).

      The collaboration between the Australian Antarctic Division and the fishing industry early on lent itself to collaborative management. Moreover, the Australian Fisheries Management Authority employs a ‘partnership approach’ in their fisheries management (Smith et al., 1999). As was exemplified in the HIMI Marine Reserve process, fisheries management in Australia emphasizes stakeholder involvement in all key area of fisheries management, including stock assessment, research priorities, enforcement and decision-making (Smith et al., 1999). In the case of HIMI, while the Australian Antarctic Division and the Australian Fisheries Management Authority (the government agency which oversees fisheries) are separate bodies with separate mandates and management plans, they work very closely in the management of the HIMI Marine Reserve (see e.g., AFMA, 2002; Goverment of Australia, 2005) (Tables 2, 3). The fishing industry also has an agreement to monitor the MPA, which is complemented by a vessel monitoring system and remote surveillance by the governments of Australia and France via satellites. Ultimately, activities occurring within and adjacent to the MPA are actively monitored, and there are no indications of IUU fishing or other prohibited activities occurring within the HIMI EEZ since 2005 (AFMA, 2014).

      HIMI Marine Reserve Management

      Australia’s Antarctic Territories, including HIMI, are managed by the Australian Antarctic Division, which often struggles with limited resources and fiscal constraints that create challenges for research and monitoring in the HIMI Marine Reserve. As a result, the Division has relied heavily on partners, including the fishing industry, to assist in research and monitoring (Tables 13). Minor assistance is also provided by the Australian Department of Defense, tourists, and French national authorities who actively undertake research and patrols in the Kerguelen and Crozet EEZ (Table 1). The Australian Antarctic Division issues permits for the rare visitors, manages flora and fauna, and monitors compliance with fishing regulations. Management of the Reserve is largely passive in the sense that there is a limited human presence beyond fishing (Table 2). In the time since the Reserve was established in 2002, there has only been two dedicated science expeditions to the HIMI Marine Reserve – one in 2003/04 and one in 2016. Two private tourism expeditions have visited the Reserve (in 2012 and 2016) and the Australian Antarctic Division has had one management visit (in 2008) (AAD, 2019). Some research and monitoring is done remotely (e.g., via satellites), while the majority is undertaken in collaboration with the fishing industry (Tables 2, 3). Monitoring for fishing activity is undertaken via satellites, through government vessel patrols (in collaboration with the French Government) and in collaboration with the fishing industry. Other organizations provide support in the form of information (e.g., CCAMLR, COLTO), monitoring, and enforcement (e.g., surveillance carried out by the Australian Border Force) (Tables 13).

      Institutional Arrangements With the Fishing Industry

      Environmental monitoring for the HIMI Marine Reserve and the broader HIMI EEZ takes place in the context of the “fishery assessment plan,” a formal agreement between the Australian Antarctic Division with the Australian Fisheries Management Authority that specifies research activities and responsibilities on an annual basis (D. Welsford, AAD, 21 October 2016; R. Arangio, Austral Fisheries, 29 June 2016). Permits for research activities in the HIMI Marine Reserve (including fish surveys) are issued by the Australian Fisheries Management Authority in consultation with the Australian Antarctic Division (Welsford et al., 2011). The fishing industry is primarily responsible for ad hoc monitoring via fisheries observers on vessels and for undertaking the annual random stratified trawl survey (see below; D. Welsford, AAD, 21 October 2016). However, apart from research activities and transit, the fishing industry is strictly prohibited from entering the Marine Reserve (Goverment of Australia, 2005; R. Arangio, Austral Fisheries, 29 June 2016).

      While the Australian Antarctic Division leads stock assessment work, the fishing industry carries out supportive research and monitoring on an annual basis, the costs of which it is not compensated for. The Australian Fisheries Management Authority policy is that the industry provides in-kind support (equivalent to about $600,000 AUD) for the stratified survey alone (D. Welsford, AAD, 21 October 2016). These are the conditions agreed to for entry into the fishery. Industry also pay for fish tagging (D. Welsford, AAD, 21 October 2016), which includes both the cost of the tag, but also the opportunity cost of the released fish. Two fisheries observers, which are required to be on board at all times, are also funded by industry. Industry may also take a third observer to assist with completing surveys or required research from time to time. Industry costs are generally shared between the two fishing companies as a proportion of the fishing quota holdings (R. Arangio, Austral Fisheries, 29 June 2016).

      Fishing Role and Activities Random stratified trawl survey

      Since 1997, commencing with the start of the commercial fishery for toothfish and icefish, the fishing industry has undertaken an annual Random Stratified Trawl Survey, typically occurring in April-May (AFMA, 2014). The survey covers 10 regions (strata) of the Heard Island Plateau that define areas of similar depth and/or fish abundance. The annual surveys have continued since the establishment of the MPA and routinely incorporate stations inside and outside the boundaries of the MPA (Welsford et al., 2011). Approximately 20 days of the industry fishing time is provided to complete the survey (R. Arangio, Austral Fisheries, 29 June 2016). The Australian Antarctic Division provides a specific set of instruments for the survey, in addition to tow times, tow directions, and a list of stations randomly dotted across the plateau. Approximately 15–20% of the 160 stations are found in the MPA (R. Arangio, Austral Fisheries, 29 June 2016). The survey is conducted by Austral Fisheries, on behalf of the two fishing companies that own quota in the HIMI toothfish fishery (Austral Fisheries and Australian Longline) (R. Arangio, Austral Fisheries, 29 June 2016).

      Benthic survey

      The fishing industry (Austral Fisheries) has also undertaken specific monitoring and survey work to assist the Australian Antarctic Division in past years, including benthic sampling with towed sleds (R. Arangio, Austral Fisheries, 29 June 2016). In 2003 a benthic beam trawl and sled sampling occurred as part of an Australian Antarctic Division and fishing industry funded research project to evaluate the biodiversity inside and outside the Reserve and Conservation Zone. Further work was undertaken in 2007/8 as part of a large collaborative project involving the Division, the fishing industry, the Australian Fisheries Management Authority and the Fisheries Research and Development Corporation, and continued until 2013. The research project involved video habitat monitoring to identify and evaluate benthic assemblages in the HIMI area. Cameras were mounted on trawl gear, longlines, and pots. The video information was combined with habitat mapping and analyses of regional community structures (R. Arangio, Austral Fisheries, 29 June 2016). The resulting study found that more than 98% of habitat was unaffected by fishing and offered further knowledge of the region, including areas within the MPA (Welsford et al., 2014).

      Seabird monitoring and technical innovation

      While the MPA explicitly includes provisions for migratory species, including foraging areas for albatross (Goverment of Australia, 2005), the primary threat to these birds is incidental bycatch by commercial fishing vessels. In accordance with the HIMI Fishery Management Plan (2002), the fishing industry must implement several seabird bycatch mitigation measures. Internally weighted lines, which are now a global standard for automatic longline fishing vessels allow hooks to sink rapidly out of reach from seabirds (Wiedenfeld, 2016). HIMI fishers use these weighted lines combined with tori lines and brickle curtains on every haul and this combination has minimized seabird interactions (AFMA, 2002, 2014). The fishers also follow restrictions on time of day for setting gear to avoid seabird interactions as well as seasonal closures. The release of offal is prohibited to avoid attracting seabirds to fishing vessels (AFMA, 2002). Each vessel must also have two full time observers (AFMA, 2002). These observers maintain daily records that outline the number and types of seabirds observed while fishing. Further, they are required to report any physical interactions between fishing activities and seabirds (AFMA, 2002, 2014). Australian and New Zealand toothfish fishers have also contributed to the development of innovative technologies designed to reduce threats to seabirds (R. Arangio, Austral Fisheries, 29 June 2016). These seabird bycatch mitigation measures are in accordance with the current scientific consensus and are considered perhaps the best example of seabird bycatch mitigation techniques (see e.g., Croxall, 2008; Wiedenfeld, 2016).

      Social monitoring (IUU)

      The rapid growth of IUU fishing for toothfish in the late 1990s and early 2000s contributed to the establishment of COLTO (Österblom and Sumaila, 2011). COLTO, along with dozens of other governmental and non-governmental organizations, have worked to dramatically reduce IUU fishing throughout the Southern Ocean, including around the Heard and McDonald Islands (Österblom and Sumaila, 2011). Crew and fisheries observers on commercial fishing vessels have played an important role in these efforts by monitoring for and reporting observations of potential IUU vessels. Crew members report observations directly back to the fishing company (e.g., Austral Fisheries) while the fisheries observer records any vessel sightings and provides this information to the Australian Fisheries Management Authority, the Australian Antarctic Division and CCAMLR (R. Arangio, Austral Fisheries, 29 June 2016). Further, Australia has signed a memorandum of understanding with the French Government for joint patrols and surveillance over the Kerguelen Plateau, which can be undertaken from French or Australian patrol vessels (R. Arangio, Austral fisheries, 29 June 2016). Since 2005, through the joint efforts of the fishing industry, French and Australian Governments, there have been no reports of IUU fishing within the HIMI EEZ (AFMA, 2014).

      Fisheries and Fisheries Management Near HIMI

      Fisheries in the HIMI EEZ are managed by the Australian Fisheries Management Authority, under the Fisheries Management Act 1991 (Goverment of Australia, 1991) in close cooperation with the Australian Antarctic Division and in accordance with Conservation Measures set by CCAMLR (AFMA, 2014). The HIMI Fishery Management Plan includes the trawl fishery for mackerel icefish and the trawl, longline and pot fisheries for Patagonian toothfish (AFMA, 2002). Longlines were introduced in 2003 and pots were introduced in 2009, though fishing via pots remains at a very low level. The total allowable catch for toothfish between 2002 and 2012 has ranged between 2400–2800 tones (with pots comprising only 30–68 tons) (CCAMLR, 2017a). The toothfish fishery has gradually shifted from trawls to longline (e.g., in 2012 about half the total allowable catch was caught via trawl, but by 2017 it was only 24 tons) (AFMA, 2014) as innovations in longline technology have reduced threats to seabirds (AFMA, 2014; CCAMLR, 2017a). In addition, the Antarctic Marine Living Resources Conservation Act 1981 (Goverment of Australia, 1981), administered by the Australian Antarctic Division, implements Australia’s international obligations under the Commission for the Conservation of Antarctic Marine Living Resources (AFMA, 2014).

      With regards to Patagonian toothfish, the HIMI Fishery Management Plan establishes rules for setting catch limits, granting fishery quotas, and implementing other fisheries and environmental measures (e.g., gear restrictions, bycatch rules) (AFMA, 2002). The plan is implemented primarily by the Australian Fisheries Management Authority who cooperates with the Australian Antarctic Division to avoid potential impacts on the MPA and ensures consistency with CCAMLR Conservation Measures. The Australian Fisheries Management Authority aims to maintain toothfish populations at sustainable levels, while also attempting to avoid impacts on the broader ecosystem through limits on bycatch and mitigation measures to avoid interactions with seabirds (AFMA, 2002, 2014).

      The HIMI fishery is managed using transferable quotas, which are currently held by two Australian fishing companies: Austral Fisheries (71% of fishing rights) and Australian Longline (29% of fishing rights) (R. Arangio, Austral Fisheries, 29 June 2016). Until the 2011/12 season, three or four vessels were in operation per season at HIMI (CCAMLR, 2018). Through consultative fora, toothfish fishers play an active role in the governance and management of toothfish (e.g., through industry representatives at SouthMAC – the Subantarctic Fisheries Management Advisory Committee and SARAG – the Subantarctic Resource Assessment Group – which includes representatives from the fishing industry, conservation groups, scientists and other relevant experts) (AFMA, 2014). Based on advice from SARAG, SouthMAC recommends catch rules to AFMA. Mechanisms are also in place to manage perceived or actual conflicts of interest by members of these groups when they are developing their advice. These fora, along with engagement via COLTO, provide mechanisms for conflict resolution and building trust through repeated face to face interactions (Ostrom et al., 1994).

      Discussion

      The HIMI Marine Reserve and the role that toothfish fishers have played in its establishment, implementation and management, and its success in managing threats and supporting conservation efforts are a remarkable example of the benefits of participatory conservation planning. The toothfish fishers have made significant efforts to develop technologies and adjust operations to reduce seabird bycatch, and have made a number of critical contributions to the governance of the Reserve, including surveillance and environmental monitoring. This case clearly demonstrates the potential value of adopting participatory conservation models that view resource users not only as a potential threat to the environment, but also as a critical partner for achieving conservation goals (Stoll-Kleemann and O’Riordan, 2011; Andrade and Rhodes, 2012). Toothfish fishers were engaged in the early stages of conservation planning, their input was respected and incorporated in the form of temporary conservation zones, and as a result the fishers have continued to support the Reserve through a range of activities and actions. The HIMI Marine Reserve presents a potentially valuable model that can inform conservation planning, although important questions remain concerning the contexts in which similar approaches are more (or less) likely to prove effective. In particular, the success of participatory conservation planning at HIMI may have been facilitated by a number of critically important enabling conditions that contributed to its success.

      First and perhaps foremost, the HIMI Marine Reserve was established in the context of political debates surrounding IUU fishing of toothfish and the potential impacts of Antarctic fisheries in general on what is seen by many as a ‘pristine’ environment (Potts and Haward, 2006; Stokstad, 2010; Cavanagh et al., 2016). These debates and the potential threats they pose to the livelihoods of the fishers have likely motivated them to invest in efforts to avoid, minimize, or mitigate their impacts on the broader marine environment. Furthermore, the HIMI fishery is a high-valued resource that is currently exploited by a low number of users (two companies) that possess secure and long-term rights to the resource. Small group size is generally thought to facilitate efforts to negotiate and implement agreements by reducing transaction costs (Olson, 1965); while secure property rights and the economic value of toothfish provide incentives to invest in the long-term sustainability of a resource (Ostrom, 1990; Grafton et al., 2006). These factors are clearly highlighted as critical by the fishers themselves:

      “It [managing the MPA] involves lots of collaboration and cooperation between all parties, and a good understanding of the goals and attributes of MPAs. One powerful benefit available in the HIMI fishery, but not available in (for example) high seas fisheries, is the granting of secure, long term, fishing access rights. That also has a considerable impact on helping to focus on the longer term benefits of conservation and protection, as opposed to being constantly worried about ‘will I have access next year’ which, clearly, engenders a more short-term response and approach”

      (R. Arangio, Austral Fisheries, 29 June 2016).

      In other remote protected regions, meanwhile, such as the newly adopted Ross Sea region MPA in Antarctica, fisheries are competitive in that all fishing vessels lack individually assigned quotas and instead race to fish until the total quota is captured (Reid, 2019). While the Ross Sea region MPA planning process did include some fishing industry stakeholders, and the adopted MPA does accommodate commercial fisheries, it is unclear if the fishing industry will have similar incentives to participate in research and monitoring as at HIMI. Up to 16 different fishing companies from nine different fishing nation states compete for fisheries resources in the Ross Sea (CCAMLR, 2019). The race to fish is often cited as a core driver of overexploitation in fisheries, with corresponding impacts on the environment and the people that depend upon them (Grafton et al., 2006; Branch, 2009). As a result, it is unclear if participation alone will be sufficient to achieve similar results in the Ross Sea.

      Second, although the remote nature of the HIMI Marine Reserve has certainly contributed to its success by limiting direct human interactions with the environment; human impacts on the prevailing climate regime are a growing threat to the HIMI Marine Reserve and the species it protects (IUCN, 2017; Whinam and Shaw, 2018). Because of the islands’ location in the subantarctic region, occurring within the path of major circumpolar fronts, both the land and sea systems are highly vulnerable to climate change. King penguins and other species on HIMI, for instance, have depended upon foraging grounds located along these fronts (e.g., Peron et al., 2012; Bost et al., 2013). The environmental monitoring system supported by toothfish fishers and tourists which provides merely ad hoc monitoring of many species (with the notable exception of monitoring of toothfish and benthic surveys), may be insufficient to detect and respond appropriately to emerging threats from climate change. As a result, although the efforts of the toothfish fishers are to be commended, further support from government stakeholders for scientific surveys on land and in the sea may be necessary to ensure the long-term sustainability of the HIMI ecosystem.

      Conclusion

      The global push for large MPAs have led to an increasing number of relatively vast and remote protected areas that pose significant management, research, and monitoring challenges. Here we presented a unique case of the HIMI Marine Reserve – one of the most remote MPAs on earth and relatively large at 65,000 km2 (since expanded to 71,000 km2) – and the collaborative management between the Australian Government and fishing industry in meeting the objectives of the Reserve. The Reserve has generally been successful at both supporting sustainable fisheries while also conserving biodiversity. Importantly, the Reserve has in part met its goals through being remote and isolated; little to no humans regularly visit the HIMI region besides commercial fishers. The fishers are prohibited from fishing in the Reserve and demonstrate high compliance, as a result of several factors – their involvement with zoning of the MPA, their desire to keep their exclusive quotas for lucrative toothfish, as well as both companies striving to be good corporate citizens (for example Austral Fisheries are, to date, the only certified carbon neutral fishing business in the world). The early involvement of the fishing industry in the MPA process facilitated continued collaboration throughout management; the industry invests in research and monitoring to support the objectives of the Reserve while also aiding in monitoring and reporting any illegal fishing activities. However, mainly due to lack of capacity by the Australian Government, research, management and enforcement is largely passive with very little information on the status of species and ecosystems around HIMI. Given the future threat of climate change, current management may be insufficient at conserving the HIMI marine ecosystem. Additional support is needed from government, scientists and other stakeholders. Further, while this model works relatively well at HIMI, it may not apply to other remote MPAs. Only two companies fish in the HIMI EEZ and they have exclusive quota rights. In contrast in other remote MPAs, e.g. the Ross Sea, where more than a dozen companies compete to fish in ‘Olympic-style’ fisheries, all vessels involved compete for the available catch. Further, while the collaborative management between fishers and the Australian government has arguably been a success, it may not be enough to manage for future environmental change, invasive species or other threats.

      Data Availability Statement

      All datasets generated for this study are included in the manuscript and online at https://sesmad.dartmouth.edu/ses_cases/18.

      Ethics Statement

      The committee is the University of Victoria Human Ethics Research Board. Procedure: We obtained informed consent from all participants. As interviews were done remotely via telephone and/or through email exchanges, we obtained verbal informed consent during interviews, and written consent in email exchanges. All participants reviewed the manuscript and approved the use of their names, organizations, and quotes where relevant.

      Author Contributions

      CB, GE, and NB designed the research. CB and GE carried out the research, including interviews, and conducted the analyses. All authors wrote the manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. Social Sciences and Humanities Research Council of Canada was the main funder that provided support for this work. CB was also supported by the Price Fellowship, and Stanford University’s Emmett Interdisciplinary Program in Environmental Resources.

      NB and GE thank the Social Sciences and Humanities Research Council (SSHRC). CB gratefully acknowledges the support from the Price Fellowship, and Stanford University’s Emmett Interdisciplinary Program in Environmental Resources. The authors thank John Weller for assistance with figures. The authors gratefully acknowledge Rhys Arangio, Dirk Welsfor, and Eric Woehler for participating in the key informant interviews and for useful feedback on the manuscript. The authors also thank the two independent reviewers for useful edits and comments on the manuscript.

      References AAD (1995). “Heard Island Wilderness Reserve Management Plan”, Australian Antarctic Division. Canberra, ACT: National Library of Australia. AAD (2018). Heard Island & McDonald Islands. Available: http://heardisland.antarctica.gov.au (accessed March 1, 2019). AAD (2019). Personal Communication with Australian Antarctic Division via email. Available at: http://www.antarctica.gov.au/living-and-working/training (accessed April, 07 2019). ACAP (2012). Light-Mantled Albatross Phoebetria Palpebrata. Sydney, NSW: ACAP. AFMA (2002). Heard Island and McDonald Islands Fishery Management Plan 2002 A.F.M. Canberra, AU: Australian Fisheries Management Authority and the Office of Legislative Drafting and Publishing. AFMA (2014). Status report: Heard Island and McDonald Islands Fishery. Canberra, AU: Australian Fisheries Management Authority. AFMA (2018). Heard Island and McDonald Islands Fishery. Available: https://www.afma.gov.au/fisheries/heard-island-mcdonald-island-fishery (accessed March 1, 2019). Agnew D. J. Pearce J. Pramod G. Peatman T. Watson R. Beddington J. R. (2009). Estimating the worldwide extent of illegal fishing. PLoS One 4:e4570. 10.1371/journal.pone.0004570.t001 19240812 Andrade G. S. M. Rhodes J. R. (2012). Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. 17:14. 10.5751/es-05216-170414 ANZECC TFMPA (1999). Strategic Plan of Action for the National Representative System of Marine Protected Areas: A guide for Action by Australian Governments. Canberra, ACT: ANZECC TFMPA. Appleyard S. A. Ward R. D. Williams R. (2002). Population structure of the patagonian toothfish around heard, mcdonald and macquarie islands. Antarctic Sci. 14 364373. 10.1017/s0954102002000238 Appleyard S. A. Williams R. Ward R. D. (2004). Population genetic structure of patagonian toothfish in the west indian ocean sector of the southern ocean. CCAMLR Sci. 11 2132. Baird R. (2004). Coastal state fisheries management: a review of australian enforcement action in the heard and mcdonald islands australian fishing zone. Deakin L. Rev. 9:91. Ban N. C. Caldwell I. R. Green T. L. Morgan S. K. O’Donnell K. Selgrath J. C. (2009). Diverse Fisheries Require Diverse Solutions. Science 323:338. 10.1126/science.323.5912.338 19150828 Ban N. C. Davies T. Aguilera S. Brooks C. Cox M. Epstein G. (2017). Social and ecological effectiveness of large marine protected areas. Glob. Environ. Change 43 8291. 10.1371/journal.pone.0050074 23226237 BirdLife International. (2018). Phoebetria Palpebrata. The IUCN Red List of Threatened Species 2018: e.T22698448A132647449. Available: http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22698448A132647449.en (accessed March 20, 2019). Bonnevie B. T. Connan M. McQuaid C. D. (2012). Effects of re-breeding rates on population size estimation of biennial breeders: results from a model based on albatrosses. IBIS 154 499507. 10.1111/j.1474-919x.2012.01247.x Bost C. A. Cotte C. Terray P. Barbraud C. Bon C. Delord K. (2015). Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun. 6:8220. 10.1038/ncomms9220 26506134 Bost C.-A. DeLord K. Barbraud C. Cherel Y. Putz K. Cotte C. (2013). “King Penguin,” in Penguins: Natural History and Conservation, eds Garcia P. Boersma P. D. (Seattle, WA: University of Washington Press), 722. Branch T. A. (2009). How do individual transferable quotas affect marine ecosystems? Fish Fisher. 10 3957. 10.1111/j.1467-2979.2008.00294.x Brickle P. MacKenzie K. Pike A. (2005). Parasites of the patagonian toothfish, dissostichus eleginoides smitt 1898, in different parts of the subantarctic. Polar Biol. 28 663671. 10.1007/s00300-005-0737-732 Cavanagh R. D. Hill S. L. Knowland C. A. Grant S. M. (2016). Stakeholder perspectives on ecosystem-based management of the antarctic krill fishery. Mar. Policy 68 205211. 10.1016/j.marpol.2016.03.006 CBD (1992). Convention on Biological Diversity. New York, NY: United Nations. CCAMLR (1980). The Convention on the Conservation of Marine Living Resources. Hobart, TAS: CCAMLR. CCAMLR (2013). Fishery Report 2013: Dissostichus Eleginoides Heard Island Australian EEZ (Division 58.5.2). Hobart, TAS: CCAMLR. CCAMLR (2017a). Fishery Report 2017: Dissostichus Eleginoides Heard Island Australian EEZ (Division 58.5.2). Hobart,TAS: CCAMLR. CCAMLR (2017b). Report of the XXXVI Meeting of the Commission. Hobart, TAS: CCAMLR. CCAMLR (2018). Fisheries Reports Archive. Available: https://www.ccamlr.org/en/publications/fishery-reports-archive (accessed March 21, 2019). CCAMLR (2019). List of Authorised Vessels. Available: https://www.ccamlr.org/en/compliance/list-vessel-authorisations (accessed March 22, 2019). Chambers L. E. Altwegg R. Barbraud C. Barnard P. Beaumont L. J. Crawford R. J. (2013). Phenological changes in the southern hemisphere. PLoS One 8:e75514. 10.1371/journal.pone.0075514 24098389 Chambers L. E. Dann P. Cannell B. Woehler E. J. (2014). Climate as a driver of phenological change in southern seabirds. Int. J. Biometeorol. 58 603612. 10.1007/s00484-013-0711-716 23934162 Collins M. A. Brickle P. Brown J. Belchier M. (2010). “The Patagonian Toothfish: Biology, Ecology and Fishery,” in Advances in Marine Biology, ed. Lesser M. (Cambridge, MA: Academic Press), 2273000. COLTO (2018). COLTO- The Coalition of Legal Toothfish Operators. Available: https://www.colto.org (accessed March 18, 2019). Constable A. de la Mare W. Agnew D. Everson I. Miller D. (2000). Managing fisheries to conserve the antarctic marine ecosystem: practical implementation of the convention on the conservation of antarctic marine living resources (CCAMLR). ICES J. Mar. Sci. 57 778791. 10.1006/jmsc.2000.0725 Constable A. Welsford D. (2011). “Developing a precautionary ecosystem approach to managing fisheries and other marine activities at heard island and mcdonald islands in the indian sector of the southern ocean,” in The Kerguelen Plateau: Marine Ecosystem and Fisheries, eds Duhamel G. Welsford D. (Paris: Société française d’ichtyologie), 233255. Constable A. J. Melbourne-Thomas J. Corney S. P. Arrigo K. R. Barbraud C. Barnes D. K. (2014). Climate change and southern ocean ecosystems i: how changes in physical habitats directly affect marine biota. Glob. Chang. Biol. 20 30043025. 10.1111/gcb.12623 24802817 Costello C. Gaines S. D. Lynham J. (2008). Can catch shares prevent fisheries collapse? Science 321 16781681. 10.1126/science.1159478 18801999 Costello C. Lynham J. Lester S. E. Gaines S. D. (2010). Economic incentives and global fisheries sustainability. Ann. Rev. Res. Econom. 2 299318. 10.1146/annurev.resource.012809.103923 Cox M. (2014). Understanding large social-ecological systems: introducing the SESMAD project. Int. J. Commons 8 265276. Cox M. Arnold G. Tomas V. (2010). A review of design principles for community-based natural resource management. Ecol. Soc. 15:38. Cristofari R. Liu X. Bonadonna F. Cherel Y. Pistorius P. Le Maho Y. (2018). Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8 245251. 10.1038/s41558-018-0084-82 Croxall J. P. (2008). The role of science and advocacy in the conservation of southern ocean albatrosses at sea. Bird Conserv. Int. 18 s13s29. 10.1017/s0959270908000300 Davies T. E. Epstein G. Aguilera S. E. Brooks C. M. Cox M. Evans L. S. (2018). Assessing trade-offs in large marine protected areas. PLoS One 13:e0195760. 10.1371/journal.pone.0195760 29668750 Downes M. Downes E. (2006). “Sealing at heard island in the nineteenth century,” in Heard Island: Southern Ocean Sentinel, eds Green K. Woehler E. J. (Chipping Norton, NSW: Surrey Beatty & Sons Pty Limited), 184195. Downes M. C. Ealey E. H. M. Gwynn A. M. Young P. S. (1959). The birds of heard island. ANARE Rep. 1:135. Duhamel G. Welsford D. (2011). The Kerguelen Plateau: Marine Ecosystems and Fisheries. Paris: Société française d’ichtyologie. Einoder L. D. (2009). A review of the use of seabirds as indicators in fisheries and ecosystem management. Fisher. Res. 95 613. 10.1016/j.fishres.2008.09.024 Fisheries A. (2018). Austral Fisheries Awards and Achievements. Available: https://www.australfisheries.com.au/about-us/awards (accessed March 20, 2019). Fleischman F. D. Ban N. C. Evans L. S. Epstein G. Garcia-Lopez G. Villamayor-Tomas S. (2014). Governing large-scale social-ecological systems: lessons from five cases. Int. J. Commons 8 428456. Freer J. J. Tarling G. A. Collins M. A. Partridge J. C. Genner M. J. (2019). Predicting future distributions of lanternfish, a significant ecological resources within the southern ocean. Biodivers. Res. 25 12591272. Goldsworthy L. Zuur B. Llewellyn G. (2016). “Marine protected areas in the antarctic and sub-antarctic region,” in Big, Bold and Blue: Lessons From Australia’s Marine Protected Areas, eds Wescott G. Fitzsimmons J. (Clayton, MO: CSIRO Publishing), 99116. Goverment of Australia (1953). Heard Island and McDonald Islands Act 1953. Canberra, ACT: Goverment of Australia. Goverment of Australia (1979). “Commonwealth of Australia Gazette, No. S189” (26 September 1979). Canberra, ACT: Australian Goverment Publications Service. Goverment of Australia (1981). “Antarctic Marine Living Resources Conservation Act 1981.” Act No. 30 of 1981. Canberra, ACT: Goverment of Australia. Goverment of Australia (1991). Fisheries Management Act 1991 No. 162 of 1991. Canberra, ACT: Goverment of Australia. Goverment of Australia (1994). Maritime Legislation Amendment Act 1994 No. 20. Canberra, ACT: Goverment of Australia. Goverment of Australia (1996). “National Strategy for the Conservation of Australia’s Biological Diversity”, Department of the Environment, Sport and Territories. Canberra, ACT: Goverment of Australia. Goverment of Australia (1998). Australia’s Oceans Policy - Specific Sectoral Measures. Canberra, ACT: Environment Australia. Goverment of Australia (1999). Environment Protection and Biodveristy Conservation Act. Canberra, ACT: Goverment of Australia. Goverment of Australia (2002). Heard Island and McDonald Islands Marine Reserve Proposal. Canberra, ACT: Environment Australia. Goverment of Australia (2005). Heard Island and McDonald Islands Marine Reserve Management Plan. Canberra, ACT: Australian Antarctic Division and Director of National Parks. Grafton R. Q. Arnason R. Bjørndal T. Campbell D. Campbell H. F. Clark C. W. (2006). Incentive-based approaches to sustainable fisheries. Can. J. Fisher. Aquatic Sci. 63 699710. 10.1139/f05-247 Green K. (2006). “Sovereignty, science and twentieth century sealing,” in Heard Island: Southern Ocean Sentinel, eds Green K. Woehler E. J. (Chipping Norton, NSW: Surrey Beatty & Sons), 196201. Green K. Woehler E. J. (2006). Heard Island: Southern Ocean Sentinel. Chipping Norton, NSW: Surrey Beatty & Sons. Gruby R. L. Gray N. J. Campbell L. M. Acton L. (2016). Toward a social science research agenda for large marine protected areas. Conserv. Lett. 9 153163. 10.1111/conl.12194 Heritage Expeditions (2012). Species List From Voyage 1262: South Indian Ocean to Heard and McDonald Islands, 16. Heritage Expeditions (2018). Heard Island. Available: https://www.heritage-expeditions.com/destination/heard-island/ (accessed March 14, 2019). IUCN. (2017). IUCN World Heritage Outlook: Heard and McDonald Islands. Available: https://www.worldheritageoutlook.iucn.org/explore-sites/wdpaid/145576 (accessed 20 March 2019). Jones P. J. S. De Santo E. M. (2016). Viewpoint – is the race for remote, very large marine protected areas (VLMPAs) taking us down the wrong track? Mar. Policy 73 231234. 10.1016/j.marpol.2016.08.015 McKinlay J. P. Welsford D. Constable A. Nowara G. B. (2008). An assessment of the exploratory fishery for dissostichus spp. on BANZARE Bank (CCAMLR Division 58.4.3b) based on fine-scale catch and effort data. CCAMLR Sci. 15 5578. Meyer L. Constable A. Williams R. (2000). Conservation of Marine Habitats in the Region of Heard Island and McDonald Islands. Fountain Valley, CA: Kingston Technology. Mitchell W. Schmeider R. (2017). Retreat of Stephenson Glacier, Heard Island, from Remote Sensing and Field Operations. San Francisco, CA. Moore G. J. Wienecke B. Robertson G. (1999). Seasonal change in foraging areas and dive depths of breeding king penguins at heard island. Polar Biol. 21 376384. 10.1007/s003000050376 MSC (2018). Australian Heard Island and McDonald Islands Toothfish & Icefish fisheries. Marine Stewardship Council. Available: https://fisheries.msc.org/en/fisheries/australian-heard-island-and-mcdonald-islands-toothfish-icefish-fisheries/ (accessed March 18, 2019). Muir A. K. M. (2010). Illegal, unreported and unregulated fishing in the circumpolar arctic. Arctic Inst. North Am. 63 373378. Munro G. (2006). “Waiting on the weather” - the ANARE years 1947-1955,” in Heard Island: Southern Ocean Sentinel, eds Green K. Woehler E. J. (Chipping Norton, NSW: Surrey Beatty & Sons), 202230. Olson M. (1965). The Logic of Collective Action. Cambridge, MA: Harvard University Press. Österblom H. Bodin O. (2012). Global cooperation among diverse organizations to reduce illegal fishing in the southern ocean. Conserv. Biol. 26 638648. 10.1111/j.1523-1739.2012.01850.x 22624623 Österblom H. Sumaila U. R. (2011). Toothfish crises, actor diversity and the emergence of compliance mechanisms in the southern ocean. Glob. Environ. Change 21 972982. 10.1016/j.gloenvcha.2011.04.013 Ostrom E. (1990). Governing the Commons. Cambridge: Cambridge University Press. Ostrom E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science 325 419422. 10.1126/science.1172133 19628857 Ostrom E. Gardnder R. Walker J. M. (1994). Rules, Games, and Common-Pool Resources. Ann Arbor, MI: University of Michigan Press. Parsons M. Mitchell I. Butler A. Ratcliffe N. Frederiksen M. Foster S. (2008). Seabirds as indicators of the marine environment. ICES J. Mar. Sci. 65 15201526. 10.1093/icesjms/fsn155 Patterson H. Skirtun M. (2012). “Heard Island and McDonald Islands Fishery,” in Fishery Status Reports 2012. Canberra, ACT: ABARES. Peron C. Weimerskirch H. Bost C. A. (2012). Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the crozet islands, southern indian ocean. Proc. Biol. Sci. 279 25152523. 10.1098/rspb.2011.2705 22378808 Péron C. Welsford D. C. Ziegler P. Lamb T. D. Gasco N. Chazeau C. (2016). Modelling spatial distribution of Patagonian toothfish through life-stages and sex and its implications for the fishery on the Kerguelen Plateau. Prog. Oceanogr. 141 8195. 10.1016/j.pocean.2015.12.003 Phillips R. A. Gales R. Baker G. B. Double M. C. Favero M. Quintana F. (2016). The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201 169183. 10.1016/j.biocon.2016.06.017 Potts T. Haward M. (2006). International trade, eco-labelling, and sustainable fisheries – recent issues, concepts and practices. Environ. Dev. Sustainabil. 9 91106. 10.1007/s10668-005-9006-9003 Putz K. Ropert-Coudert Y. Charrassin J.-B. Wilson R. (1999). Foraging areas of king penguins aptenodytes patagonicus breeding at possession island, southern indian ocean. Mar. Orinthol. 27 7784. Reid K. (2019). “Commission for the conservation of antarctic marine living resources (CCAMLR): implementation of conservation of southern ocean marine living resources,” in Governing Marine Living Resources in the Polar Regions, eds Liu N. Brooks C. M. Qin T. (Cheltenham: Edward Elgar Publishing). Saldaña J. (2015). The Coding Manual for Qualitative Researchers. Thousand Oaks, CA: SAGE. Smith A. D. M. Sainsbury K. J. Stevens R. A. (1999). Implementing effective fisheries-management systems – management strategy evaluation and the Australian partnership approach. ICES J. Mar. Sci. 56 967979. 10.1006/jmsc.1999.0540 Stokstad E. (2010). Behind the eco-label, a debate over antarctic toothfish. Science 329 15961597. 10.1126/science.329.5999.1596 20929825 Stoll-Kleemann S. O’Riordan T. (2011). From participation to partnership in biodiversity protection: experience from germany and south africa. Soc. Nat. Res. 15 161177. 10.1080/089419202753403337 Tickler D. Meeuwig J. J. Palomares M.-L. Pauly D. Zeller D. (2018). Far from home: distance patterns of global fishing fleets. Sci. Adv. 4:eaar3279. 10.1126/sciadv.aar3279 30083601 Trathan P. N. Agnew D. (2010). Climate change and the antarctic marine ecosystem: an essay on management implications. Antarctic Sci. 22 387398. 10.1017/s0954102010000222 UNESCO (1997). Report of the Twenty-First Session of the World Heritage Committee. Naples: UNESCO. Watson R. A. Nowara G. B. Hartmann K. Green B. S. Tracey S. R. Carter C. G. (2015). Marine foods sourced from farther as their use of global ocean primary production increases. Nat. Commun. 6:7365. 10.1038/ncomms8365 26079714 Weimerskirch H. Robertson G. (1994). Satellite tracking of light-mantled sooty albatrosses. Polar Biol. 14 123126. Welsford D. (2011). Evaluating the impact of multi-year research catch limits on overfished toothfish populations. CCAMLR Sci. 18 4755. Welsford D. Candy S. G. Verdouw J. J. Hutchins J. J. (2012). Robust characterisation of the age structure, Growth and Recruitment of Toothfish in the Macquarie Island and Heard Island and McDonald Islands fisheries. Kingston, TAS: Australian Antarctic Division Welsford D. Constable A. Nowara G. B. (2011). “The Heard Island and McDonald Islands Marine Reserve and Conservation Zone - A model for Southern Ocean marine reserves?,” in The Kerguelen Plateau: Marine Ecosystems And Fisheries, eds Duhamel G. Welsford D. (Paris: Société française d’ichtyologie), 297304. Welsford D. Ewing G. P. Constable A. Hibberd T. Kilpatrick R. (2014). Demersal Fishing Interactions with Marine Benthos in the Australian EEZ of the Southern Ocean: An Assessment of the Vulnerability of Benthic Habitats to Impact by Demersal. Kingston, TAS: The Department of the Environment, Australian Antarctic Division and the Fisheries Research and Development Corporation Welsford D. C. Dell J. Duhamel G. (2019). The kerguelen plateau. in Proceedings of theMarine Ecosystems and Fishereis. Proceedings of the Second Symposium. Kingston, TAS WG-FSA. (2017). Report of the Working Group on Fish Stock Assessment. Hobart, TAS: Working Group on Fish Stock Assessment. Whinam J. Shaw J. D. (2018). “Australia’s World Heritage Islands,” in Australian Island Arks: Conservation, Management and Opportunities. Clayton, MI: CSIRO Publishing. Wiedenfeld D. A. (2016). Seabird Bycatch Solutions for Fishery Sustainability. Plains, VA: American Bird Conservancy. Wilhelm T. A. Sheppard C. R. C. Sheppard A. L. S. Gaymer C. F. Parks J. Wagner D. (2014). Large marine protected areas - advantages and challenges of going big. Aqua. Conserv. 24 2430. 10.1002/aqc.2499 Williams R. Tuck G. N. Constable A. Lamb T. (2002). Movement, growth and available abundance to the fishery of dissostichus eleginoides Smitt, 1898 at heard island, derived from tagging experiments. CCAMLR Sci. 9 3348. Woehler E. J. (2006). “Status and conservation of the seabirds of heard island,” in Heard Island: Southern Ocean Sentinel, eds Green K. Woehler E. J. (Chipping Norton, NSW: Surrey Beatty & Sons), 12165. Yin R. K. (2014). Case Study Research. Los Angeles, CA: Sage. Ziegler P. Welsford D. (2019). “The patagonian toothfish (dissostichus eleginoides) fishery at heard islan an mcdonald islands (HIMI) – population structure an history of the fishery stock assessment,” in The Kerguelen Plateau: Marine Ecosystems and Fisheries, eds Welsford D. Dell J. Duhamel G. (Kingston, TAS: Australian Antarctic Division), 187217.
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.kxchain.com.cn
      www.gqnxjtx.com.cn
      www.kgrdrr.com.cn
      ihfjhs.com.cn
      www.lftkbk.com.cn
      www.gidnht.com.cn
      ups-kehua.com.cn
      www.mmilul.com.cn
      mtllgk.com.cn
      minwu.net.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p