Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2015.00056 Marine Science Original Research Footprints of climate change on Mediterranean Sea biota Marbà Núria 1 * Jordà Gabriel 2 Agustí Susana 1 3 Girard Coraline 1 Duarte Carlos M. 1 3 1Department of Global Change Research, Institut Mediterrani d'Estudis Avançats (Universitat de les Illes Balears-Consejo Superior de Investigaciones Científicas) Esporles, Spain 2Department of Marine Resources and Ecology, Institut Mediterrani d'Estudis Avançats (Universitat de les Illes Balears-Consejo Superior de Investigaciones Científicas) Esporles, Spain 3Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia

Edited by: Elvira S. Poloczanska, Commonwealth Scientific and Industrial Research Organisation, Australia

Reviewed by: Gil Rilov, National Institute of Oceanography, Israel; Christopher James Brown, Griffith University, Australia

*Correspondence: Núria Marbà, Department of Global Change Research, Institut Mediterrani d'Estudis Avançats (Universitat de les Illes Balears-Consejo Superior de Investigaciones Científicas), Miquel Marquès 21, 07190 Esporles, Spain nmarba@imedea.uib-csic.es

This article was submitted to Global Change and the Future Ocean, a section of the journal Frontiers in Marine Science

13 08 2015 2015 2 56 08 06 2015 30 07 2015 Copyright © 2015 Marbà, Jordà, Agustí, Girard and Duarte. 2015 Marbà, Jordà, Agustí, Girard and Duarte

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The Mediterranean Sea ranks among the ocean regions warming fastest. There is evidence for impacts of climate change on marine Mediterranean organisms but a quantitative assessment is lacking. We compiled the impacts of warming reported in the literature to provide a quantitative assessment for the Mediterranean Sea. During the last three decades the summer surface temperature has increased 1.15°C. Strong heat wave events have occurred in years 1994, 2003, and 2009. Impacts of warming are evident on growth, survival, fertility, migration and phenology of pelagic and benthic organisms, from phytoplankton to marine vegetation, invertebrates and vertebrates. Overall, 50% of biological impacts in the Mediterranean Sea occur at summer surface temperature anomaly ≤ 4.5°C and at summer surface temperature of 27.5°C. The activation energy (geometric mean 1.58 ± 0.48 eV), the slope of the Arrhenius equation describing the temperature-dependence of biological processes, for the response of Mediterranean marine biota to warming reveals that these responses in the Mediterranean are far steepest than possibly explained by the direct effect of warming alone. The observations are biased toward the northern and western sectors of the basin, likely underestimating the impacts of warming in areas where warming is particularly intense.

temperature heat wave species biological traits activation energy

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The Mediterranean Sea is warming at two to three times the rate for the global ocean (Vargas-Yanez et al., 2008), showing an increase in the occurrence of hot extremes by 200–500% throughout the region (Diffenbaugh et al., 2007). This is due to a combination of its position in the boundary between two climatic regimes, the arid climate of North Africa and the temperate and rainy climate of central Europe, which renders Mediterranean climate vulnerable to even relatively minor modifications of the general circulation (Giorgi and Lionello, 2008), and its semi-enclosed nature (Diffenbaugh et al., 2007), leading to restricted hydrological exchange with the open ocean, resulting in a hydrological residence time of about 100 years and a capacity to store heat (Bethoux and Gentili, 1999). Indeed, climatic models predict rapid mean warming in the Mediterranean region along with a greater occurrence of extremely high temperature events (Giorgi and Lionello, 2008), also affecting the marine environment (Jordà et al., 2012). Moreover, as a result of its semi-enclosed nature, marine species endemic to the Mediterranean have a limited scope to adapt to ocean warming by shifting their biogeographical range poleward, tracking the migration of their isotherms to maintain their thermal niche (Burrows et al., 2011, 2014), as marine species do in general (Poloczanska et al., 2013).

      As a consequence, there is concern on the impacts Mediterranean warming may have on marine biota. A recent review provided a narrative description of the evidence for impacts of climate change on marine biota (Lejeusne et al., 2010), concluding that it is already highly impacted. However, a quantitative assessment of these responses, allowing elucidation of the magnitude of responses, their relationship with warming and the thresholds of warming that are disruptive for various components of the life history and ecology of Mediterranean biota is still lacking. Such assessment would, however, provide a more precise description of the extent of impacts on Mediterranean marine biota already realized with warming and their vulnerability to further warming.

      Here we provide a quantitative assessment of the impacts of climate change on Mediterranean biota. We do so by compiling the literature reporting evidence of such impacts, and extracting the conditions of warming relative to long-term mean values, and when these impacts occurred, thereby allowing the derivation of dose-response relationships as well as the identification of possible thresholds of warming beyond which Mediterranean marine biota experience disruptive impacts.

      Materials and methods

      We searched for evidence of footprints of warming on biota in the Mediterranean Sea published in the literature until year 2014 using keywords “(Mediterranean) AND ((Bio* OR Eco*)) AND ((warming OR temperature)) AND ((Marine OR Ocean*)) NOT ((paleo*))” in ISI Web of Knowledge. We also searched for the term “cooling” in the Mediterranean, which retrieved mostly studies of paleo-events, and only one recent study, reporting impacts on zooplankton of a cooling event in 1987 in the Croatian Coast (Berline et al., 2012). From this search we only selected those articles directly attributing the changes observed in marine biota to warming. The type of data collected includes information about characteristics of the study conducted (i.e., year or period of years of the study, site name and coordinates, species name, taxonomic group, whether the species is sessile or mobile, native or introduced) and about the biological response (i.e., type of response, magnitude of response). We grouped the types of biological responses in large trait categories: abundance, survival, fertility, migration, phenology, and growth. The data set includes both qualitative and quantitative data. The data set compiled is publically available at http://digital.csic.es/handle/10261/116098 (Marbà et al., 2015).

      We compiled a total of 464 evidence impacts of climate change on Mediterranean biota from 54 papers, 11 and 42 of them including narrative and quantitative evidence, respectively, and 1 both. Quantitative reports encompassed evidence of biological impacts after single warming events (276) and during longer-term monitoring assessments (72 time series; Table 1). The time series compiled have a median duration of 24 years (range 3–197 years) and a median central year at 1995.5 (range 1908.5–2004.5). Most impacts compiled are observed at local (43%) and regional (50%) scales while there are few evidence of footprints of warming at sub-basin (2%) and basin (5%) scales (Table 1).

      Number of descriptive and quantitative reports compiled of footprints of climate change on Mediterranean biota at local, regional, sub-basin, and Mediterranean scales.

      Type of evidence Local Regional Sub-basin (Western, Central, Eastern) Mediterranean Total
      Descriptive 16 109 0 1 126
      Quantitative
          Event-based 156 110 7 3 276
          Time-series 27 10 1 18 56
          Shifts 2 2 1 1 6

      The number of reports of impacts assessed from heat waves (event-based) and time-series and the number of reported thermal shifts in natural populations are indicated.

      The information provided by the articles about the temperature associated to each reported impact was very heterogeneous. Different papers used different temperature diagnostics (e.g., monthly mean, instantaneous values), from different instruments and at different depths. Therefore, in order to use a homogenized temperature diagnostic, we have used the sea surface temperature (SST) at each specific location where an impact has been reported. In particular, we have computed the 99th percentile of the year of the impact (SSTp99) at the location where the impact has been reported [thus SSTp99 is a function of space (x) and time (t)]. Then, we express it as anomaly with respect to the averaged august temperature computed for the period 1960–1985 for the same location [ΔSSTp99 (x, t) = SSTp99 (x, t) – SSTAug 1960–1985 (x)]. August was chosen as the reference period because this is the month when the highest sea surface temperatures are reached in the Mediterranean. Hence, this is the time when warming impacts are most likely to be observed, as extreme temperature, when organisms may be exposed to temperature beyond their optima, are concentrated in August. Other diagnostics as the yearly maximum or the averaged summer temperature lead to similar conclusions.

      The SST database used in this study spans the period 1960–2011 at daily frequency with a spatial resolution of 1∕8° (~10 km). For the period 1980–2011 we have used SST satellite observations. In particular, we have used the MyOcean reanalysis product which consists in a reprocessing of Pathfinder V5.2 (PFV52) AVHRR data (Casey et al., 2010) and provides daily gap-free maps (L4) of the foundation SST at the original PFV52 resolution at 1∕24° (Nardelli et al., 2013). In order to reduce observational noise, the resolution of the satellite data has been degraded to 1∕8° through cell averaging. For the period 1960–1980, we have used the outputs of an atmosphere-ocean regional climate model, the PROTHEUS system (Artale et al., 2010). The model is driven by ERA40 reanalysis fields at the lateral boundaries and provides daily means of SST for the period 1960–2000 with a spatial resolution of 1∕8°. The period 1980–2000 has been used to calibrate the model outputs with satellite data in order to remove the model bias and to adjust the amplitude of the seasonal cycle. Then, the calibrated model outputs for the period 1960–1980 have been included in the database.

      We used the temperature records (annual SST, SST for a particular season and occasionally in situ temperature) provided by the papers when changes in marine biota were assessed from long-term observations, except in two cases (Nincevic-Gladan et al., 2010; Mazzocchi et al., 2012) that we obtained SST time series for the study period as described above.

      We quantified the effect of warming on biological parameters through the Activation Energy (E, in eV, Brown et al., 2004), which provides a metric of the relative temperature-dependence or sensitivity of a particular property or process. The activation energy has been shown to provide an adequate, predictable and robust description of the temperature-dependence of biological processes across a scales or organization ranging from molecular and evolutionary processes, to physiological, organismal and community and ecosystem levels (Brown et al., 2004; Dell et al., 2011). Whenever a time series describing interannual changes in biological properties was available, the Activation Energy (E, in eV) was derived as the slope of the Arrhenius equation, ln (V)=C+[E*(1kT)] where V is the value of the biological parameter or rate process, C is the intercept of the fitted regression equation, k is the Boltzmann constant and T is the temperature (in K).

      Where impacts were reported as departures of values observed during a thermal anomaly (Vi) relative to a previous observation (Vo) observed for temperature Ti and T0 (in K), respectively (where To < Ti), an effect size per unit temperature, equivalent to E, was calculated, assuming the differences to conform to an Arrhenius model, as: E=lnV0Vi1kTi1kT0

      E calculated in this manner is equivalent to a ln effect size (Hedges et al., 1999) typically used to compare the magnitude of responses across multiple response variables in meta-analysis (e.g., Kroeker et al., 2013). When the trait decreased with temperature (e.g., net growth rates), the ratio was rearranged (i.e.,  ln ViV0) to provide all E estimates as positive values thereby facilitating comparison of effect size across biological traits.

      Results Warming rates in the mediterranean: observations and model hindcast

      The average summer SST ranges from 22 to 28°C with the highest values in the Levantine basin and the lowest in the north Aegean, the north western Mediterranean and the Alborán sea (Figure 1A). These local minima are caused by different factors. In particular, the minimum in the Alborán Sea is linked to the inflow of colder Atlantic waters through the Strait of Gibraltar. The minimum in the NW Mediterranean can be attributed to the strong winds acting in that area enhancing vertical mixing and therefore cooling the surface waters. Finally, the minimum in the north Aegean can be explained by a combination of the inflow of cold waters from the Black Sea through the Dardanelles strait and the action of local winds. Concerning the vertical structure of the summer temperature field, it is characterized by a strong stratification in the upper layer. Temperature decreases almost linearly by about 7–8°C over the top 50 m water layer (0.14–0.16°C m−1) in both the eastern and western basins (Figure 1B), and it remains relatively uniform at deeper water.

      Averaged Sea Surface Temperature for August during the period 1985–2011 (A) and averaged vertical profiles of temperature for August during the period 1985–2011 in the North Western Mediterranean (0–13°E, 40–45°N) and the Levantine basin (30–40°E, 31–37°N) (B).

      Linear trends were fitted to the satellite SST for the period 1985–2011 in order to characterize multidecadal changes in summer SST (Figure 2). During the last three decades the summer surface temperature has increased, on average, 1.15°C. During this period, the warming trends range from 0.25°C decade−1 in the western basin to 0.65°C decade−1 in the eastern basin. The increase of the summer mean temperature, an important factor affecting biota is the occurrence of heat waves. We characterize heat waves as periods where SST at a particular location exceeded the 99th percentile of a reference period (here 1960–1985) at the same location. The intensity of the heat wave at a given location is expressed in °C degree-days and is computed by integrating the excess temperature above the given threshold (in °C) during the time the threshold has been exceeded (in days). The annual 99th percentile shows a significant interannual variability with basin averaged values ranging from 25.1°C in 1984 to 29.3°C in 2003 (Figure 3A). Also, a multidecadal variability is also apparent with a minimum in the 70's and a significant increase since the mid 80's until present, in good agreement with the multidecadal change of the mean SST already reported by Mariotti and Dell'Aquila (2012). Concerning the heat wave intensity, there is also a strong interannual variability (standard deviation of 20°C degree-days) with strong heat wave events reaching up to 100, 60, and 50°C degree-days in 2003, 2009, and 1994, respectively (Figure 3B). The decadal variability in the heat wave intensity also follows the changes observed in the 99th percentile. During the 60's the averaged intensity was 15°C degree-days, during the 70's and until mid 80's the intensity was almost zero and since then the intensity has been rising. During the period 2000–2010 the averaged heat wave intensity was 40°C·degree-days.

      Sea Surface Temperature Trend (in °C decade−1) computed for the period 1985–2011 using satellite data.

      Time series of basin average SST of 99th annual percentile (SST p99 in °C, A) and of basin average of heat wave intensity (in °C degree-days, B). The dotted line in plot A indicates the basin average of the reference value used to characterize the heat waves.

      Heat waves are not basin-wide processes and large differences can be found regionally. For instance, during 1998 a heat wave affected the Adriatic, the Ionian and parts of the Levantine basin (Figure 4A). In those regions the heat wave intensity was 60–75°C degree-days while in the rest of the basin it was hardly larger than 10°C degree-days. The 2003 heat wave affected a much larger area (Figure 4B). Almost the whole western Mediterranean, the Adriatic and central Mediterranean were affected by a long and intense heat wave that reached over 120°C degree-days in most of those areas. Conversely, the Alborán Sea, the Levantine basin and the Aegean Sea did not experience any heat wave that year.

      Heat wave intensity for years 1998 (A) and 2003 (B) across the Mediterranean Sea.

      Footprints of warming on mediterranean biota

      A large number of impacts of warming on Mediterranean biota have been reported since year 1950, but 90% of them have been observed after 1987 (Figure 5). Most (61%) event-based biological impacts occurred in years 1994–1995, 1999, and 2003 (Figure 5). Despite most (90%) long term changes in marine biota attributed to warming follow linear trends, there are some evidence (6 out of 72) of abrupt shifts in Mediterranean biota attributed to shifts in SST in 1970, the end of the 80's and the end of the 90's (Supplementary Table 1).

      Time series of the number of biological impacts attributed to Mediterranean warming assessed (A) from single warming events and (B) from long-term observations. The number of impacts assessed from long-term observations corresponds to the number of time-series exhibiting significant linear trends between biological parameters and temperature. Time in (B) corresponds to the central year of the observational period of each study (median duration 24 years).

      Evidence of warming impacts on Mediterranean biota are largely (94%) concentrated in the North Western Mediterranean basin and the Adriatic Sea (Figure 6). No impacts are reported along the Southern Mediterranean coast, except Tunisia, and few impacts have been described in the central and eastern Mediterranean sub-basins (Figure 6). Mediterranean warming is already affecting the fitness of marine biota, as reflected by reports of changes in abundance, survival and fertility, their phenology and triggering species migration (Figure 6). Population abundance and survival are the biological traits accounting for most (68%) reported impacts of Mediterranean warming. Yet, migration of native and introduced (mostly Lessepian) species accounts for 15% of total biological footprints of Mediterranean warming (Figure 6). Footprints of Mediterranean warming have been observed in several marine phylum, including populations of invertebrates (porifera, cnidaria, polychaeta, mollusca, ascidians, bryozoa, echinodermata, crustaceans), vertebrates (fishes, reptiles, mammals), phytoplankton, and macrophytes (macroalgae and seagrasses). However, most (53%) evidence of impacts of warming on Mediterranean biota are reported for fish and cnidaria.

      Location of the reported impacts of temperature on biota in the Mediterranean Sea. The color of dots and numbers indicates the category of impact reported. The numbers next to the dots and quadrats show the number of impacts per impact category reported per site when it exceeds one. Impacts reported at local (color dots), regional (asterisks), sub-basin (Western, Central, Eastern Mediterranean), and Mediterranean basin scales are indicated.

      Impacts of warming on marine species living in the Mediterranean Sea have been observed at SSTp99 anomalies up to 5.5°C (Figure 7). However, the frequency of anomalies decreases with anomaly strength. Thus, we corrected the thermal anomaly distribution of impacts for the frequency of occurrence of anomalies by dividing the number of impacts observed by the number of SSTp99 anomalies within 0.5°C increments occurred since 1960. The magnitude of warming triggering impacts on Mediterranean marine biota varied across biological traits (Figure 7). Fertility is the biological trait that risks to be largely impacted by mild warming (50% probability of impact at SSTp99 anomaly ≤ 1°C), followed by migration (50% probability of impact at SSTp99 anomaly ≤ 2°C) and abundance (50% probability of impact at SSTp99 anomaly ≤2.5°C, Figure 7). Conversely, 50% of impacts on phenology and survival occur at large SSTp99 anomalies up to 3 and 4.5°C, respectively (Figure 7). Similarly, SSTp99 exceeding 27.5, 25.5, 26, 28, and 28.5°C, respectively, triggers the probability of impact above of 50% on fertility, migration, abundance, phenology and survival of species living in the Mediterranean Sea, respectively (Figure 8). Overall, 50% of biological impacts in the Mediterranean Sea occur at SSTp99 anomaly ≤ 4.5°C (Figure 9A) and at SSTp99 of 27.5°C (Figure 9B).

      Corrected histogram of the number of reported impacts as a function of SSTp99 anomaly (see text for details) for each trait: abundance, survival, fertility, migration, and phenology. The red line in each plot indicates the cumulative probability.

      Corrected histogram of the number of reported impacts as a function of SSTp99 (see text for details) for each trait: abundance, survival, fertility, migration, and phenology. The red line in each plot indicates the cumulative probability.

      Corrected histograms of the number of reported impacts as a function of SSTp99 anomaly (A) and as a function of SSTp99 (B) for all traits.

      The sensitivity of Mediterranean biota to warming varies across taxonomic groups. 50% of the impacts on ascidiacea, crustacea, echinodermata, fish, and phytoplankton occur at SSTp99 anomaly up to 2 or 2.5°C, whereas those on cnidaria, mollusca and porifera, and seagrasses occur at SSTp99 anomaly up to 5°C (Figure 10). The observed thermal anomalies impacting sessile marine organisms (76.6% affected survival and 1% phenology) on average are three-fold higher (1.51 ± 0.11°C, N = 197) than those (0.59 ± 0.09°C) impacting motile biota (4% affected survival and 4.1% phenology).

      Box plot of SSTp99 anomaly during reported warming impacts across taxonomic groups of Mediterranean biota. The number of single estimates is shown within brackets. Impact observations are corrected by the temperature anomaly distribution at the sites for the period 1950–2011.

      Because the attribution of reported impacts to warming at SSTp99 anomalies smaller than 2°C (Figure 9A) involves considerable uncertainty, we defined a threshold at 2°C thermal difference, above which the attribution of estimated effect sizes to Mediterranean warming is likely robust, to assess the magnitude of the responses. Most (63%) of quantified changes in marine biological activity in the Mediterranean Sea, however, have been documented for thermal differences below 2°C. Calculation of the activation energy of biological activity could reach extremely large, abnormal values for thermal anomalies below 2°C (Supplementary Figure 1), thereby inflating the possible response of organisms to warming. When Mediterranean warming involves thermal differences exceeding 2°C, the median activation energy of marine biological activity is 2.25 eV (Figure 11), although when assessed from event-based observations (1.69 eV) is about half that estimated from time series (3.65 eV). However, the geometric mean of activation energy of Mediterranean marine biological traits is comparable for event-based observations (1.24 ± 0.58 eV), and time-series observations (2.69 ± 0.78 eV), with an overall geometric mean activation energy of 1.58 ± 0.48 eV (Figure 11). Abundance and reproduction rates tend to be the traits displaying a steepest response to warming, followed my survival and phenology shifts, and migrations show, comparatively, a limited response (Figure 11).

      Mean activation energy of biological traits (abundance, survival, fertility, migration, phenology) across taxonomic groups and overall calculated from event-based and long-term observations. Error bars are standard error of the mean value. The number of observations per taxon and trait category, when greater than one, is indicated within brackets. Only activation energy estimates for a temperature range exceeding 2°C are included.

      Discussion

      The warming trend of 0.25°C decade−1 in the western basin and 0.65°C decade−1 in the eastern basin can be partially explained by an increase of the Atlantic Multidecadal Oscillation (AMO) index. Mariotti and Dell'Aquila (2012) have shown that multidecadal variability of Mediterranean SST is highly correlated with AMO. AMO has been increasing during the last 40 years, which could explain an increase of about 0.10–0.15°C decade−1 in the Mediterranean SST during that period. The rest of the trend may be linked to global warming. Unfortunately up to our knowledge there are no dedicated studies on the attribution of recent Mediterranean warming to confirm this apportioning of warming trends.

      The synthesis presented documents a large number (>450) of reported impacts of warming on the Mediterranean Sea, one of the rapid warming areas in the ocean (Hoegh-Guldberg et al., 2014). The geographical distribution of these reports reflects, to a large extent, the distribution of marine research institutions, with a high density of observations in the NW Mediterranean and a remarkable paucity of observations along the Northern African coast. This is unfortunate, as the NW Mediterranean is the area in the Mediterranean Sea with the most moderate long-term warming trend, whereas rates of warming were much higher in the Eastern basin and along the African coast from Algeria to Israel (Figure 2). Also, impacts driven by invasive behavior propelled by warming of lessepian migrants reaching the Mediterranean from the Red Sea are likely to be greatest in the Eastern basin. On the other hand, the intense research effort in the NW Mediterranean allowed for a thorough documentation of the impacts of the 2003 heat wave, the strongest recorded in the Mediterranean over at least the past 50 years and that is responsible for a high fraction (17%) of the reports of warming impacts on Mediterranean biota. Indeed, most reports were event-based rather than derived from time-series analyses, which weakens the attribution of these impacts to warming and, particularly, its anthropogenic component, which requires multi-decadal time series (Parmesan et al., 2013; O'Connor et al., 2014). An assessment of the robustness of studies assessing the impacts of climate change on Mediterranean biota shows these to be, on average, weaker than those available in the general field of climate change ecology (O'Connor et al., 2014). In particular, the studies for the Mediterranean suffer from insufficient data, particularly due to the prevalence of event-based observations, and inappropriate statistical analyses. In contrast, the expectations were formulated in a more explicit manner than usually encountered in the field.

      There has been much discussion as to the role of anthropogenic climate change (very likely, confidence level >90%, that human influence was responsible, e.g., Stott et al., 2004) vs. other processes (e.g., aerosols from Saharan dust and forest fires, Lyamani et al., 2006) in causing the 2003 heat wave, upon which a significant fraction of the evidence rests. Regardless of whether the impacts associated with the 2003 heat in the NW Mediterranean can be attributed to anthropogenic climate change or not, this heat wave provides a proxy of the impacts to be expected in the future when downscaled models predict that heat waves of this magnitude will become frequent (Jordà et al., 2012). The 2003 heat wave event was reported to result in mortality of benthic organisms, including gorgonians, sponges, molluscs, bryozoos (e.g., Garrabou et al., 2009; Bensoussan et al., 2010) and seagrass (Posidonia oceanica, Díaz-Almela et al., 2009; Marbà and Duarte, 2010) as well as mass flowering of P. oceanica (Díaz-Almela et al., 2007). These observations provide indications of the impacts that may be expected with future climate change in the Mediterranean, where the projected increased in the frequency and magnitude of heat waves will compromise the most vulnerable ecosystems, such as coral and P. oceanica meadows (e.g., Jordà et al., 2012).

      The distribution of reports by taxa is dominated by reports on fish and cnidaria. This distribution of reports reflects a mixture of the vulnerability of the taxa and the availability of data. For instance, the existence of systematic and regular fishery surveys has provided a robust basis for the evaluation of the response of fishes to warming, not only in terms of the data available but the fact that these are usually available as time-series, which provide a stronger basis for detection and attribution (Parmesan et al., 2013; O'Connor et al., 2014). The availability of high quality-data for fish communities is likely responsible for the fact that impacts on fish were detected and reported at lower temperature anomalies (median 2.0°C) than reported for other taxa (overall median 5.0°C, Figure 10). In contrast, cnidaria, for which also a substantial (for not as high-quality) observational basis was available, seem to be more resistant to warming, as impacts were observed at relatively higher temperature anomalies (median 5.0°C, Figure 10).

      Examination of the reports of impacts in relation to the weighted (by frequency of occurrence) thermal anomalies showed that some impacts seem to respond continuously to warming, such as those on abundance, migration and phenology (Figure 7). It also showed that a number (2%) of reports of impacts which attribution to warming seem questionable, as impacts were reported with no, or negative, thermal anomalies (i.e., in the absence of evidence of warming or even in cooling periods, Figure 9A). In contrast, reports of enhanced mortality with warming showed a threshold behavior, where the likelihood of finding enhanced mortality increased abruptly at temperature anomalies in excess of 4°C.

      The examination of activation energy for the response of Mediterranean marine biota to warming reveals a prevalence of high (>1 eV) activation energy values (geometric mean 1.58 ± 0.48 eV), which is about three-fold higher than the activation energy the metabolic theory of ecology assumes to govern biological processes (Brown et al., 2004). This implies that biological responses to warming in the Mediterranean are far steepest than possibly explained by the direct effect of warming alone. Indeed, warming affects a number of processes, in addition to its direct effect on biological processes. For instance, warming affects the strength of vertical stratification in the Mediterranean, which in turn affects turbulent nutrient supply to the photic layer, reducing primary production in the stratified season (e.g., Doney, 2006). Indeed, warming is leading to reduced primary production in the subtropical and tropical ocean (Boyce et al., 2010) and an expansion of the subtropical gyres (Polovina et al., 2008), largely through this mechanism. Moreover, warming does not occur in isolation but concurrently with other stresses, such as pollutant inputs (Duarte, 2014), where warming can amplify the sensitivity of organisms to other stresses. For instance, research in a Mediterranean Bay has shown that the probability of hypoxia increases with temperature (Vaquer-Sunyer et al., 2012), while warming also increases metabolic oxygen consumption (Regaudie-de-Gioux and Duarte, 2013) and raises the thresholds of oxygen concentration for hypoxia-induced stresses in marine organisms (Vaquer-Sunyer and Duarte, 2011). Hence, the geometric mean empirical activation energy of 1.58 ± 0.48 eV reported here for marine Mediterranean biota compounds the direct and indirect effects of warming and identifies a steeper response to warming than expected based on metabolic theory alone. The limited activation energy for migration compared to other traits likely reflects the confined nature of the Mediterranean basin, where organisms have limited scope for poleward migration (Burrows et al., 2011, 2014), thereby limited the role of migration as an adaptive strategy to cope with climate change (Poloczanska et al., 2013).

      In summary, the synthesis presented here provides widespread evidence of severe impacts of warming on Mediterranean biota, mostly associated with the recent heat waves affecting this region, in particular the 2003 heat wave affecting the NW Mediterranean. The observations, however, are biased toward the northern and western sectors of the basin, where research institutions and, therefore, effort aggregate, likely underestimating the impacts of warming in areas, such as the African coast and Eastern basin where warming is particularly intense. The reported impacts of warming should be considered with caution when these are associated with thermal anomalies less than 2°C, as the reported warming derives largely, but not exclusively, from anthropogenic climate change. The analysis presented provides compelling evidence that Mediterranean biota is far more sensitive to warming than predicted by metabolic theory, as reflected in activation energy typically >1 eV across processes. We suggest that this reflects the multifaceted role of temperature in affecting biological processes directly, through its metabolic effect, and indirectly through effects on nutrient supply and physical processes and enhancing the vulnerability of biota to other stresses in the ecosystem.

      Author contributions

      Conceived and designed the study: NM, GJ, SA, and CD. Acquired the data: NM, GJ, and CG. Analyzed the data: NM, GJ, and CD. Wrote the paper: NM, GJ, SA, CG, and CD. Final approval of the manuscript: NM, GJ, SA, CG, and CD.

      Conflict of interest statement

      The Review Editor Dr. Christopher James Brown declares that, despite having collaborated with the author Prof. Carlos M. Duarte, the review process was handled in an impartial manner and no conflict of interest exists. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      This research is a contribution to the ESTRESX (CTM2012-32603) and the CLIMPACT (CGL2014-54246-C2-1-R) projects funded by the Spanish Ministry of Economy and Competitiveness. We thank Xavier Carcelero for assistance during data compilation. GJ also acknowledges a Ramón y Cajal contract (RYC-2013-14714) funded by the Spanish Ministry of Economy and Competitiveness and the Regional Government of the Balearic Islands.

      Supplementary material

      The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmars.2015.00056

      References Artale V. Calmanti S. Carillo A. Dell'Aquila A. Herrmann M. Pisacane G. . (2010). An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim. Dyn. 35, 721740. 10.1007/s00382-009-0691-8 Bensoussan N. Romano J. C. Harmelin J. G. Garrabou J. (2010). High resolution characterization of northwest Mediterranean coastal waters thermal regimes: to better understand responses of benthic communities to climate change. Estuar. Coast. Shelf Sci. 87, 431441. 10.1016/j.ecss.2010.01.008 Berline L. Siokou-Frangou I. Marasović I. Vidjak O. de Puelles M. L. F. Mazzocchi M. G. . (2012). Intercomparison of six Mediterranean zooplankton time series. Prog. Oceanogr. 97, 7691. 10.1016/j.pocean.2011.11.011 Bethoux J. P. Gentili B. (1999). Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes. J. Mar. Sys. 20, 3347. 10.1016/S0924-7963(98)00069-4 Boyce D. G. Lewis M. R. Worm B. (2010). Global phytoplankton decline over the past century. Nature 466, 591596. 10.1038/nature0926820671703 Brown J. H. Gillooly J. F. Allen A. P. Savage V. M. West G. B. (2004). Toward a metabolic theory of ecology. Ecology 85, 17711789. 10.1890/03-9000 Burrows M. T. Schoeman D. S. Buckley L. B. Moore P. Poloczanska E. S. Brander K. M. . (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652655. 10.1126/science.121028822053045 Burrows M. T. Schoeman D. S. Richardson A. J.Molinos J. G. Hoffmann A. Buckley L. B. . (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492495. 10.1038/nature1297624509712 Casey K. S. Brandon T. B. Cornillon P. Evans R. (2010). The past, present and future of the AVHRR pathfinder SST program, in Oceanography from Space: Revisited, eds Barale V. Gower J. F. R. Alberotanza L. (Dordrecht; Heidelberg; London; New York: Springer), 273287. Dell A. I. Pawar S. Savage V. M. (2011). Systematic variation in the temperatura dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 1059110596. 10.1073/pnas.101517810821606358 Díaz-Almela E. Marbà N. Duarte C. M. (2007). Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Glob. Change Biol. 13, 224235. 10.1111/j.1365-2486.2006.01260.x Díaz-Almela E. Marbà N. Martínez R. Santiago R. Duarte C. M. (2009). Seasonal dynamics of Posidonia oceanica in Magalluf Bay (Mallorca, Spain): temperature effects on seagrass mortality. Limnol. Oceanogr. 54, 21702182. 10.4319/lo.2009.54.6.2170 Diffenbaugh N. S. Pal J. S. Giorgi F. Gao X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 34, L11706. 10.1029/2007GL030000 Doney S. C. (2006). Oceanography: plankton in a warmer world. Nature 444, 695696. 10.1038/444695a17151650 Duarte C. M. (2014). Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1:63. 10.3389/fmars.2014.00063 Garrabou J. Coma R. Bensoussan N. Bally M. Chevaldonne P. Cigliano M. . (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 10901103. 10.1111/j.1365-2486.2008.01823.x Giorgi F. Lionello P. (2008). Climate change projections for the Mediterranean region. Glob. Planet. Chang. 63, 90104. 10.1016/j.gloplacha.2007.09.005 Hedges L. V. Gurevitch J. Curtis P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology 80, 11501156. 10.2307/177062 Hoegh-Guldberg O. Cai R. Poloczanska E. S. Brewer P. G. Sundby S. Hilmi K. . (2014). The ocean, in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Barros V. R. Field C. B. Dokken D. J. Mastrandrea M. D. Mach K. J. Bilir T. E. . (Cambridge; New York: Cambridge University Press), 16551731 Jordà G. Marbà N. Duarte C. M. (2012). Mediterranean seagrass vulnerable to regional climate warming. Nature Clim. Change 2, 821824. 10.1038/nclimate1533 Kroeker K. J. Kordas R. L. Crim R. Hendriks I. E. Ramajo L. Singh G. S. . (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 18841896. 10.1111/gcb.1217923505245 Lejeusne C. Chevaldonné P. Pergent-Martini C. Boudouresque C. F. Pérez T. (2010). Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Tends Ecol. Evol. 25, 250260. 10.1016/j.tree.2009.10.00919959253 Lyamani H. Olmo F. J. Alcántara A. Alados-Arboledas L. (2006). Atmospheric aerosols during the 2003 heat wave in southeastern Spain I: spectral optical depth. Atmos. Environ. 40, 64536464. 10.1016/j.atmosenv.2006.04.048 Marbà N. Duarte C. M. (2010). Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 23662375. 10.1111/j.1365-2486.2009.02130.x Marbà N. Jordà G. Agustí S. Girard C. Duarte C. M. (2015). Impacts of Climate Change on Organisms in the Mediterranean Sea [Dataset]. DIGITAL.CSIC. Available online at: http://hdl.handle.net/10261/116098 Mariotti A. Dell'Aquila A. (2012). Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes. Clim Dyn. 38, 11291145. 10.1007/s00382-011-1056-7 Mazzocchi M. G. Dubroca L. García-Comas C. Di Capua I. Ribera d'Alcalà M. (2012). Stability and resilience in coastal copepod assemblages: the case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Prog. Oceanogr. 97–100, 135151. 10.1016/j.pocean.2011.11.003 Nardelli B. B. Tronconi C. Pisano A. Santoleri R. (2013). High and ultra-high resolution processing of satellite sea surface temperature data over Southern European Seas in the framework of MyOcean project. Rem. Sens. Env. 129, 116. 10.1016/j.rse.2012.10.012 Nincevic-Gladan Z. Marasovic I. Grbec B. Skejic S. Buzancic M. Kuspilic G. . (2010). Inter-decadal variability in phytoplankton community in the Middle Adriatic (Kastela Bay) in relation to the North Atlantic Oscillation. Estuar. Coast. 33, 376383. 10.1007/s12237-009-9223-3 O'Connor M. I. Holding J. Kappel C. V. Duarte C. M. Brander K. Brown C. J. . (2014). Strengthening confidence in climate impacts science. Glob. Ecol. Biogeogr. 24, 6476. 10.1111/geb.12218 Parmesan C. Burrows M. T. Duarte C. M. Poloczanska E. S. Richardson A. J. Schoeman D. S. . (2013). Beyond climate change attribution in conservation and ecological research. Ecol. Let. 16, 5871. 10.1111/ele.1209823679010 Poloczanska E. S. Brown C. J. Sydeman W. J. Kiessling W. Schoeman D. S. Moore P. J. . (2013). Global imprint of climate change on marine life. Nat. Clim. Change 3, 919925. 10.1038/nclimate1958 Polovina J. J. Howell E. A. Abecassis M. (2008). Ocean's least productive waters are expanding. Geophys. Res. Lett. 35, L03618. 10.1029/2007GL031745 Regaudie-de-Gioux A. Duarte C. M. (2013). Global patterns in oceanic planktonic metabolism. Limnol. Oceanogr. 58, 977986. 10.4319/lo.2013.58.3.0977 Stott P. A. Stone D. A. Allen M. R. (2004). Human contribution to the European heatwave of 2003. Nature 432, 610614. 10.1038/nature0308915577907 Vaquer-Sunyer R. Duarte C. M. (2011). Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Chang. Biol. 17, 17881797. 10.1111/j.1365-2486.2010.02343.x Vaquer-Sunyer R. Duarte C. M. Jordá G. Ruíz-Halpern S. (2012). Temperature dependence of oxygen dynamics and community metabolism in a shallow Mediterranean macroalgal meadow (Caulerpa prolifera). Estuar. Coast. 35, 11821192. 10.1007/s12237-012-9514-y Vargas-Yanez M. García M. J. Salat J. García-Martínez M. C. Pascual J. Moya F. (2008). Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Planet. Chang. 63, 177184. 10.1016/j.gloplacha.2007.09.001
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016langtel.com.cn
      ltjrhy.org.cn
      www.jiajiaoyun.com.cn
      www.seqqjo.com.cn
      qkchain.com.cn
      www.pyszro.com.cn
      svenya.com.cn
      www.mjdcks.com.cn
      mnchain.com.cn
      sdiyes.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p