Front. Hum. Neurosci. Frontiers in Human Neuroscience Front. Hum. Neurosci. 1662-5161 Frontiers Media S.A. 10.3389/fnhum.2023.1095413 Neuroscience Original Research Occupation-modulated language networks and its lateralization: A resting-state fMRI study of seafarers Wu Huijun 1 Peng Deyuan 1 Yan Hongjie 2 * Yang Yang 3 Xu Min 4 Zeng Weiming 5 Chang Chunqi 1 6 * Wang Nizhuan 7 * 1School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China 2Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China 3CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China 4Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China 5Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China 6Peng Cheng Laboratory, Shenzhen, China 7School of Biomedical Engineering, ShanghaiTech University, Shanghai, China

Edited by: Georg Northoff, University of Ottawa, Canada

Reviewed by: Xia Liang, Harbin Institute of Technology, China; Pengfei Xu, Beijing Normal University, China

*Correspondence: Nizhuan Wang, wangnizhuan1120@gmail.com Chunqi Chang, cqchang@szu.edu.cn Hongjie Yan, yanhjns@gmail.com

These authors have contributed equally to this work

This article was submitted to Cognitive Neuroscience, a section of the journal Frontiers in Human Neuroscience

13 03 2023 2023 17 1095413 11 11 2022 27 02 2023 Copyright © 2023 Wu, Peng, Yan, Yang, Xu, Zeng, Chang and Wang. 2023 Wu, Peng, Yan, Yang, Xu, Zeng, Chang and Wang

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Introduction

Studies have revealed that the language network of Broca’s area and Wernicke’s area is modulated by factors such as disease, gender, aging, and handedness. However, how occupational factors modulate the language network remains unclear.

Methods

In this study, taking professional seafarers as an example, we explored the resting-state functional connectivity (RSFC) of the language network with seeds (the original and flipped Broca’s area and Wernicke’s area).

Results

The results showed seafarers had weakened RSFC of Broca’s area with the left superior/middle frontal gyrus and left precentral gyrus, and enhanced RSFC of Wernicke’s area with the cingulate and precuneus. Further, seafarers had a less right-lateralized RSFC with Broca’s area in the left inferior frontal gyrus, while the controls showed a left-lateralized RSFC pattern in Broca’s area and a right-lateralized one in Wernicke’s area. Moreover, seafarers displayed stronger RSFC with the left seeds of Broca’s area and Wernicke’s area.

Discussion

These findings suggest that years of working experience significantly modulates the RSFC of language networks and their lateralization, providing rich insights into language networks and occupational neuroplasticity.

functional magnetic resonance imaging lateralization occupational neuroplasticity occupation language network seafarers 61971289 82001160 National Natural Science Foundation of China10.13039/501100001809

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1. Introduction

      The human brain controls language (Catani et al., 2005), movement (Weiller et al., 1996), learning (Hein et al., 2016), emotion (Kringelbach and Berridge, 2017), memory (Lane et al., 2015), consciousness (Penfield, 2015), the subconscious (Martin et al., 2016), and other high-level cognitive activities. Language-related functions were among the first to be ascribed to a specific location in the human brain (Broca, 1861) and have been the subject of intense research for well over a century. A “classical model” of language organization, based on data from aphasic patients with brain lesions, was popularized during the late 19th century and remains in common use (Wernicke, 1874; Mayeux and Kandel, 1985). Furthermore, studies with neuroimaging techniques (Biswal et al., 1995; Achard et al., 2006; Damoiseaux et al., 2006) have found that the human brain has stable, low-frequency fluctuations in resting states, forming reliable intrinsic brain networks (Wang et al., 2012, 2013, 2015a,b, 2016, 2017a; Yao et al., 2013; Shi et al., 2017) with specific functions, such as the language network (Gohel et al., 2019; Broday-Dvir and Malach, 2021), auditory network (Chen et al., 2017), default network (Schilbach et al., 2016), and visual network (Shen et al., 2019).

      Resting-state functional magnetic resonance imaging (rsfMRI) is widely used to map the physiology and behavior of the healthy/diseased brain (Lottman et al., 2019). Furthermore, rsfMRI-based resting-state functional connectivity (RSFC) provides a useful technique for assessing lateralization, which is increasingly being used in clinical practice and research (Fox and Greicius, 2010; Friederici, 2011). Previous studies on the neurophysiological basis of human language ability have generally found that, for most individuals, the left hemisphere is the dominant hemisphere of language ability (Bradshaw et al., 2017). For example, clinical language lateralization assessment is necessary in the examination of epilepsy patients prior to resection surgery of the temporal lobe (Baxendale, 2009). At the same time, in the healthy population, language lateralization has historically been found to depend on gender (Nenert et al., 2017), age (Sepeta et al., 2016), handedness (Agcaoglu et al., 2021), genetics (Schmitz et al., 2017), and language-learning experience (Gurunandan et al., 2020). However, language lateralization may also be affected by other factors, e.g., occupation, which is the main focus in this study. At present, only a few research studies have reported on the association of the language network and occupational neuroplasticity (Villar-Rodríguez et al., 2020; Wu et al., 2020). Villar-Rodríguez et al. (2020) found musicianship is related to atypical (symmetric or right-hemispheric) language dominance in healthy left-handed subjects. Further, the lateralization of language functions can be used to explain subtle differences in behavior and cognitive levels (Szaflarski et al., 2006; Olulade et al., 2020). Thus, given the mechanism of language lateralization and the relative noise (auditory stimulation, e.g., the sound of waves or machines) and isolation (lacking social interaction) of seafarers’ long-term training and stable work environments, we hypothesized that there is a higher incidence of atypical language dominance among seafarers.

      In this paper, taking seafarers as an example, two important sub-functions of language, namely, the language network (study 1) and the lateralization of the language network (study 2), were investigated to explore the association between the occupational factor and language by using the method of resting state functional connectivity (RSFC) (Tomasi and Volkow, 2012; Zhu et al., 2014). The analysis is presented together with interpretations, discussion, and conclusions related to the language network and occupational neuroplasticity in professional seafarers.

      2. Materials and methods 2.1. Data acquisition

      Since seafarers have been engaged in repetitive technical work for a long time we recruited twenty male professional seafarers (age: 42–57 years, mean age = 49 years old, right handedness) from a shipping company in Shanghai, China. All of them had more than 10 years of experience in navigation. For non-seafarers, 20 Chinese male participants (age: 48–55 years, mean age = 51 years old, right handedness), were recruited from land-based jobs (i.e., campus landscaping and office support) at university or secondary school campuses. All the subjects in the non-seafarer group had no maritime professional training, maritime navigational skills, or long-term experience on the sea. All subjects signed the informed consent form and were considered to have normal functions of language and communication. Also, no history of mental health conditions or neurological diseases were reported. The blood-oxygen-level-dependent imaging (BOLD) rsfMRI data for each participant was scanned at the Shanghai Key Laboratory of Magnetic Resonance. All participants were informed about the purpose of the study and signed a written consent form according to the procedures approved by the IRB of East China Normal University (ECNU). The specific parameters were listed as follows: GE 3.0 Tesla using a gradient echo EPI, a total of 36 slices covering the whole brain area, 160 time points, TR (time of repetition) = 2 s, matrix size = 64 × 64, in-plane resolution = 3.75 mm × 3.75 mm, and slice thickness = 4 mm. The detailed information related to the dataset can also be found in Wang et al. (2017b), Wang et al. (2018), Shi et al. (2021), and Yan et al. (2022).

      2.2. Data preprocessing

      All data preprocessing was performed using the Data Processing Assistant for RS-fMRI software package (DPARSF) (Yan and Zang, 2010) which is based on Statistical Parametric Mapping (SPM)1 and the Resting-State fMRI Data Analysis Toolkit (REST).2 The preprocessing steps for the Resting-State fMRI data of each subject were as follows: (1) slice timing; (2) realignment; (3) normalization by EPI template (resampling voxel size = 3 mm*3 mm*3 mm); (4) spatial smoothing using a Gaussian kernel with FWHM = 6 mm; (5) nuisance regression including covariates such as six head motion parameters, whole brain mean signal, white matter signal, and cerebrospinal fluid signal; (6) band-pass temporal filtering (0.01–0.1 Hz); and (7) scrubbing volumes with sudden head motion, i.e., a threshold of frame-wise displacement (FD) was set to 0.05, and we removed one volume before and two volumes after the motion spike.

      2.3. Functional connectivity and lateralization of language network

      The RSFC method generates a high-precision functional connection diagram of a complex brain system by interpreting the relevant patterns of low-frequency fluctuations in the blood oxygen level signals, which can be used to identify language-related functional tissues. In this paper, the Broca and Wernicke in the left side of brain were selected as the region of interest (ROI) (lBro and lWer), with MNI coordinates (−51, 27, 18) and (−51, −51, 30) as the center of the seed points (Zuo et al., 2013; Zhu et al., 2014) with a radius of 3 mm, respectively. In order to explore the functional asymmetry of the main language regions in the brain, the right Broca’s area (rBro) and right Wernicke’s area (rWer) were reversed from the left side of the brain to the right side, respectively; the central coordinates of the seed points, i.e., rBro and rWer, were (51, 27, 18) and (51, −51, 30), with the same volume size. Based on DPARSF software, the time series of the four aforementioned ROIs were extracted, and then the Pearson correlation coefficients were computed between the average time series of four ROIs and the time series of each voxel across the brain. Furthermore, the correlation coefficient (cc) value was subjected to Fisher Z-transformation (Fisher, 1921) according to formula (1). According to the transformed correlation coefficient, the functional connection diagram of the seed points and whole brain voxels can be obtained according to the following formula:

      z = 1 2 l n ( 1 + c c 1 - c c )

      Based on the RSFC map of each subject, the one-sample t-test results (Figure 1) for each group and two-sample t-test results (Table 1; Figures 2, 3) between two groups were performed using REST software.

      Visualization of functional connectivity using Broca’s region and Wernicke’s region as the independent seeds in the seafarer and non-seafarer group (p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05). R: right hemisphere, L: left hemisphere.

      The cerebral cortex involved significant functional connectivity with Broca’s and Wernicke’s areas in the seafarer group and the non-seafarer group (p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05).

      No. Anatomical region BA MNI coordinates Peak value
      X Y Z
      Broca’s area (seafarer < non-seafarer)
      1 L SFG 6 −28 −8 68 -3.78
      2 Precentral gyrus 6 −32 −22 67 -4.803
      3 Precentral gyrus 4 −33 −28 68 -3.74
      4 L MFG 6 −35 −7 58 -2.559
      Wernicke’s area (seafarer > non-seafarer)
      1 Parietal 7 −2 −65 41 3.465
      2 Limbic 31 −5 −43 41 3.701
      3 Precuneus 7 11 −69 35 4.016
      4 Cingulate gyrus 23 −5 −37 25 4.528

      BA, Brodmann area; L, left; SFG, superior frontal gyrus; MFG, middle frontal gyrus.

      Results of two-sample t-test of functional connectivity of Broca’s region (the seafarer group < the non-seafarer group; p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05). R: right hemisphere, L: left hemisphere.

      Results of two-sample t-test of functional connectivity of Wernicke’s region (the seafarer group > the non-seafarer group; p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05). R: right hemisphere, L: left hemisphere.

      When discussing the functional asymmetry, we calculated each seed-based whole brain RSFC maps, namely the lBro and lWer RSFC maps, and the flipped rBro and rWer RSFC maps. The hemispheric asymmetry was evaluated through comparison of the RSFC maps of the lBro and lWer and the left-right flipped RSFC maps of the rBro and rWer (Yan et al., 2009). In this study, the non-normalized asymmetry index (AI) is defined by following formula (2) (Zhu et al., 2014):

      A I = z F C L - z F C f l i p p e d R ,

      where zFCL is a whole brain functional connection diagram based on the left seed points (i.e., lBro and lWer), respectively, and zFCflipped R is a left-right flipped functional connection diagram based on the right seed points (rBro and rWer), respectively. Similarly, as in previous studies (Yan et al., 2009; Zhu et al., 2014), ipsilateral asymmetry was shown on the left side of the AI map, representing the difference between the lBro or lWer and the left hemisphere (LH) and the rBro and rWer and the right hemisphere (RH). Also, contralateral asymmetry was established on the right side of the AI map, indicating the differences between the lBro or lWer and the RH and the rBro and rWer and the LH. Further, a one-sample t-test was conducted to reveal regions which show significant hemispheric asymmetry based on individual AI maps. Moreover, the two-sample t-test was applied to analyze the differences of language lateralization between seafarers and the control participants. All RSFC maps and AI maps were established with the test criteria of p 0.005 and cluster size >200 voxels (corresponding to corrected pFWE 0.05).

      3. Results 3.1. Functional connectivity using language areas as seed points

      First, we identified the brain areas that were significantly functionally correlated with the two seed points, i.e., Broca’s and Wernicke’s regions, with regard to the seafarer group and the non-seafarer group; the results are shown in Figure 1, and the color bar reflects the correlation. Figure 1 shows that the linguistic functional connectivity patterns of the non-seafarer group were highly similar to those previously reported (Zhu et al., 2014), while the ones of seafarers showed some differences in the involved locations and connectivity values. Further, two-sample t-test analysis of the linguistic functional connectivity patterns from the seafarer and non-seafarer groups revealed that: the negative functional connectivity of Broca’s region appeared weaker in the seafarer group than the non-seafarer group, especially in the left superior/middle frontal gyrus and left precentral gyrus (Figure 2; Table 1); functional connectivity of the Wernicke’s region as the seed region was higher in the seafarer group compared to the non-seafarer group (Figure 3; Table 1), where this phenomenon was especially reflected in the posterior cingulate cortex and precuneus.

      3.2. Functional asymmetry of language areas

      A profile of the lateralization for each subject was obtained based on the RSFC map in terms of Broca’s area and Wernicke’s area. REST software was used to conduct a one-sample t-test (results in Table 2 and Figure 4) for each group and a two-sample t-test (results in Table 3 and Figures 5, 6) between the two groups, respectively, where the test criterion was p < 0.005 and cluster size >200 voxels (corresponding to corrected pFWE < 0.05).

      The cerebral regions involving significant functional lateralization with Broca’s and Wernicke’s areas in the seafarer group and non-seafarer group (p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05).

      No. Anatomical regions BA MNI coordinates Peak value
      X Y Z
      Non-seafarer
      Broca’s area
      1 R IFG 45 57 27 27 10.839
      2 L IFG 45 −57 27 21 -16.882
      3 R SOG 18 15 −90 18 5.1994
      4 B precuneus 7 3 −57 51 -5.0739
      Wernicke’s area
      1 L STG 6 −57 −15 54 9.0572
      2 L cuneus/precuneus 23 −21 −54 24 -10.3471
      3 L SFG 10 −18 63 9 -5.9298
      4 R IFG 47 45 30 −3 6.042
      5 R SMG 40 63 −54 36 8.331
      6 L MFG / SFG 8/9 −27 18 63 -14.023
      Seafarer
      Broca’s area
      1 L IFG 45 −57 27 18 -14.4288
      Wernicke’s area
      There is no cluster!

      BA, Brodmann area; L, left; R, right; B, bilateral; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; STG, superior temporal gyrus; SMG, supramarginal gyrus; SOG, superior occipital gyrus.

      AI maps with regard to functional lateralization of language network in the seafarer and non-seafarer groups, respectively (p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05). R: right hemisphere; L: left hemisphere.

      The cerebral regions involved significant functional lateralization with regard to Broca’s and Wernicke’s areas (the seafarer group > the non-seafarer group; p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05).

      No. Anatomical regions BA MNI coordinates Peak value
      X Y Z
      Broca’s area
      1 B precuneus 7 −13 −54 46 3.937
      2 B paracentral lobule 31 6 −34 45 4.016
      3 B middle cingulum 24 6 −18 40 3.189
      Wernicke’s area
      1 B precuneus 7 −9 −72 42 3.858
      2 L SFG 8 −23 22 56 4.764
      3 L MFG 6 −23 20 59 5.551

      BA, Brodmann area; L, left; B, bilateral; SFG, superior frontal gyrus; MFG, middle frontal gyrus.

      Results of two-sample t-test of language lateralization in terms of Broca’s area (the seafarer group > the non-seafarer group; p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05). R: right hemisphere, L: left hemisphere.

      Results of two-sample t-test of language lateralization in terms of Wernicke’s area (the seafarer group > the non-seafarer group; p 0.005, cluster size >200 voxels, corresponding to corrected pFWE 0.05). R: right hemisphere, L: left hemisphere.

      According to Figure 4, three distinct cortical language-related areas were observed in the left hemisphere. These were: (1) for the Broca’s region of the non-seafarer group, significant ipsilateral asymmetry showed in the left inferior frontal gyrus (IFG) and precuneus, while contralateral asymmetry was displayed in the right superior occipital gyrus (SOG), IFG, and precuneus; (2) for the Wernicke’s region of the non-seafarer group, significant ipsilateral asymmetry areas were in the left superior frontal gyrus (SFG), middle frontal gyrus (MFG), precentral, precuneus, and cuneus, while the right IFG and supramarginal gyrus (SMG) showed contralateral hemispheric asymmetry; (3) for the Broca’s region of seafarer group, the IFG showed significant ipsilateral hemispheric asymmetry and greater connection with rBro; (4) there was no significant language networks’ lateralized brain areas for the Wernicke’s area of the seafarer group. The detailed brain regions involved in significant functional lateralization with regard to Broca’s and Wernicke’s areas for the seafarer and control groups were coordinated and recorded in Table 2.

      In order to further quantify the differences in language lateralization between the seafarer group and the non-seafarer group, we performed a two-sample t-test analysis on the AI maps of the two core language regions for the two groups. The statistical results are shown in Figures 5, 6 and Table 3. For the AI maps corresponding to the Broca’s region, the seafarer group elicited greater functional asymmetry in the paracentral and precuneus (BA7 and BA31). For the AI maps corresponding to the Wernicke’s area, the lateralization difference between the seafarer group and the non-seafarer group was mainly reflected in the left frontal gyrus and bilateral precuneus.

      4. Discussion

      Previous studies have investigated whole-brain language networks using the RSFC method (Gao et al., 2019; Sulpizio et al., 2020). Sulpizio et al. (2020) found that each experience-related factor seems to play a role in brain plasticity changing; bilingual experience especially impacts both within and between language and control networks. Interestingly, the functional connectivity of language networks is also affected by disease, and children with autism spectrum disorders (ASDs) show increased connectivity between regions of an extended language network. Further, these brain regions are associated with self-reflection and visual processing (Gao et al., 2019). In its most general form, this model proposes a frontal “expressive” area for planning and executing speech and writing movements, named after Broca (1861), and a posterior “receptive” area for analysis and identification of linguistic sensory stimuli, named after Wernicke (1874). One study (Binder et al., 1997) suggested that Wernicke’s area, although important for auditory processing, is not the primary location where language comprehension occurs, and that the frontal areas involved in language extend well beyond the traditional Broca’s area to include much of the lateral and medial prefrontal cortex. Based on seed regions in Broca and Wernicke, seed-based RSFC were applied to the characterization and reproducibility of functional connectivity of language networks (Tomasi and Volkow, 2012; Zhu et al., 2014; Wang et al., 2019). Meanwhile, language lateralization has been widely approached to detect different patterns in children (Phillips et al., 2021; Stipdonk et al., 2021), tumors (Połczyńska et al., 2021), psychiatric disorders (Jouravlev et al., 2020), and neurological disorders (Rolinski et al., 2020).

      4.1. Language network’s functional connectivity and its relation to occupation

      In this study, we selected the special occupation group of seafarers as the research object, and compared the functional language network seafarers with non-seafarers. Regarding the seafarers, the functional connectivity related to functional language networks showed a negative connection with Broca’s area, though strongly left-lateralized, including in the left SFG/MFG (BA 6) and the precentral gyrus (BA 6 and 4), which may be involved due to the extended length of time spent in a relatively closed environment and the lack of spoken interaction. Cerri et al. (2015) suggested the mirror neuron system (MNS), including BA 6, is similar to monkey premotor area F5 (Gallese et al., 1996) and closely involved in articulatory rather than semantic speech. Hence, seafarers likely weakened motor control of speech production may be caused by a lack of opportunity to talk with each other randomly and frequently, under strict management with strong self-discipline consciousness. In contrast, the significant positive functional connections in the seafarers’ Wernicke’s area and the precuneus (including the posterior cingulate gyrus and the parietal) are the areas that are preferentially involved during the recall of real episodic memories rather than fictitious memories (Hassabis and Maguire, 2007). These findings probably indicate that seafarers have powerful cognitive functions which are able to recollect past professional experiences and predict future occurrences to make decisions for the future, including spatial navigation and use of the imagination that can contribute to seafarers’ career performance.

      4.2. Language network’s lateralization and its relation to occupation

      We examined the functional language networks’ lateralization of RSFC using Broca’s and Wernicke’s areas as independent seeds. According to the results of the language networks’ lateralization, functional language lateralization is related to some measures of AI asymmetry in seafarers and non-seafarers. We found slightly rightward lateralization in the Broca’s seed of seafarers with left IFG, and almost leftward asymmetric distribution in the non-seafarers (see Figure 4 and Table 2). Recently, studies have examined the lateralization of language networks with various elements (Nielsen et al., 2013; Chou et al., 2017; Schmitz et al., 2017). Schmitz et al. (2017) raised a novel perspective that genes related to language networks’ lateralization were specifically engaged in mental and neurological diseases. Moreover, while Bishop (2013) figured out that weak language lateralization may be the result of impaired language learning, other studies have suggested minimal involvement between the degree of language lateralization and performance (van Ettinger-Veenstra et al., 2010). The right-hemispheric activation might indicate additional resources are required for the process of integrating phonological input (van Ettinger-Veenstra et al., 2010). The precentral gyrus is related to exercise, and the cuneus and precuneus are involved in advanced cognitive functions. Here, seafarers have atypical language dominance, although a higher rate of atypical right hemispheric language lateralization was found in left-/mixed-handed people, and Packheiser et al. (2020) suggested that the assumptions related to language lateralization and dominant handedness need to be more deliberate. Furthermore, the atypia indicated that sentence processing was supported by the left and right networks (Labache et al., 2020), and semantic language performance was better (Bartha-Doering et al., 2018). Meanwhile, the lateralization of the left IFG was declared when processing iconic gestures with or without speech, overlapping with those brain regions that are also involved in advanced semantic information processing of speech (Özyürek, 2014). This may be a consequence of occupational skill-related requests: in the working environment of seafarers, it is necessary to communicate with foreigners and obey commands in various languages.

      We also examined the occupational differences of functional language networks’ lateralization between two groups. The functional network of seafarers had ipsilateral and contralateral asymmetry located in the precuneus for both seeds. Furthermore, there was ipsilateral and contralateral asymmetry in the paracentral lobule and middle cingulum with Broca’s area as the seed, and also Wernicke’s ipsilateral asymmetry in the left SFG/MFG (see Figures 5, 6). Interestingly, a study on structural plasticity suggested that the left precuneus and paracentral lobule are closely related to spatial navigation training (Wenger et al., 2012), especially in young adults. Thus, the increased asymmetry of seafarers reflects the increased demand for professional competencies such as spatial navigation. Also, the right middle cingulate gyrus showed evidence that it is associated with general executive function in language conversion tests (Wang et al., 2007). Moreover, rsfMRI has shown the MFG is comparable with Broca’s area in its ability to determine hemispheric dominance for language (Gohel et al., 2019). Also, seafarers showed a significant increase in the left SFG and left MFG, which might relate to both gestures and spoken language used during voyages, as a few studies have found left MFG sensitivity to hand movements with unambiguous meanings (Willems et al., 2009). In summary, occupational factors have an impact on the functional language network of the brain.

      4.3. Limitations and future works

      This study is limited by sample size; studies in this area have yet to be conducted with larger datasets, and the robustness of the results should be treated with more caution due to the alternative steps in fMRI data processing (Murphy et al., 2009; Chai et al., 2012). In future, we are planning to recruit more subjects to explore and validate the findings regarding language networks and occupations. Due to the lack of behavioral data, such as detailed working years, we cannot clarify the relationship between language network and working years. More occupational research is needed, because occupation is a lifelong daily activity, and different occupations may have different effects on the brain language network; further research is needed in the future. Obviously, occupational effects on language networks occurs across the lifespan, and changes in the language network could be associated with various jobs. As a result, further work should be done on these points.

      5. Conclusion

      This study provides new findings that professional seafarers as a special occupation group elicited a weaker connection in the left SFG/MFG and left precentral gyrus with Broca seed-based RSFC, and a greater connection of Wernicke’s area with the cingulate and precuneus. Moreover, the slightly right-lateralized feature of functional language networks was observed in the Broca’s area of seafarers, but no significant voxels were observed in Wernicke’s area as seed; on the contrary, non-seafarers showed an almost leftward lateralization with Broca’s area as the seed, and rightward lateralization with Wernicke’s area. Interestingly, regarding the differences in language lateralization, the seafarers revealed greater connection with left Broca’s and left Wernicke’s areas. Overall, according to our findings, the seafarer’s occupation showed potential effects on brain language networks and their lateralization, which provides new evidence regarding occupational neuroplasticity and language.

      Data availability statement

      The original contributions presented in this study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

      Ethics statement

      The studies involving human participants were reviewed and approved by the IRB of East China Normal University (ECNU). The patients/participants provided their written informed consent to participate in this study.

      Author contributions

      HW and DP: conceptualization, methodology, validation, formal analysis, and writing—original draft. HY: conceptualization, methodology, validation, formal analysis, writing—original draft, and funding acquisition. YY: investigation and writing—review and editing. WZ: investigation, writing—review and editing, and data curation. CC and NW: conceptualization, resources, writing—review and editing, supervision, funding acquisition, and project administration. All authors contributed to the article and approved the submitted version.

      Funding

      This work was supported by the National Natural Science Foundation of China (Nos. 61971289 and 82001160), the Shenzhen Fundamental Research Project (No. JCYJ20170412111316339), the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2019SHIBS003), the Shenzhen Talent Peacock Plan (No. 827-000083), the Project of Huaguoshan Mountain Talent Plan–Doctors for Innovation and Entrepreneurship, the “Haiyan Plan” Scientific Research Funding Project of Lianyungang City (No. 2017-QD-009), and the First People’s Hospital of Lianyungang–Advanced Technology Support Project (No. XJ1811).

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      http://www.fil.ion.ucl.ac.uk/spm

      http://www.restfmri.net

      References Achard S. Salvador R. Whitcher B. Suckling J. Bullmore E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 6372. 10.1523/JNEUROSCI.3874-05.2006 16399673 Agcaoglu O. Muetzel R. L. Rashid B. White T. Tiemeier H. Calhoun V. D. (2021). Lateralization of resting-state networks in children: Association with age, sex, handedness, intelligence quotient, and behavior. Brain Connect. 12 246259. 10.1089/brain.2020.0863 34102875 Bartha-Doering L. Kollndorfer K. Kasprian G. Novak A. Schuler A. L. Fischmeister F. (2018). Weaker semantic language lateralization associated with better semantic language performance in healthy right-handed children. Brain Behav. 8:e01072. 10.1002/brb3.1072 30298640 Baxendale S. (2009). The wada test. Curr. Opin. Neurol. 22 185189. 10.1097/WCO.0b013e328328f32e 19289955 Binder J. R. Frost J. A. Hammeke T. A. Cox R. W. Rao S. M. Prieto T. (1997). Human brain language areas identified by functional magnetic resonance imaging. J. Neurosci. 17 353362. 10.1523/JNEUROSCI.17-01-00353.1997 8987760 Bishop D. V. (2013). Cerebral asymmetry and language development: Cause, correlate, or consequence? Science 340:1230531. 10.1126/science.1230531 23766329 Biswal B. Zerrin Yetkin F. Haughton V. M. Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 537541. 10.1002/mrm.1910340409 8524021 Bradshaw A. R. Bishop D. Woodhead Z. (2017). Methodological considerations in assessment of language lateralisation with fMRI: A systematic review. PeerJ 5:e3557. 10.7717/peerj.3557 28713656 Broca P. (1861). Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bull. Mem. Soc. Anat. Paris 6 330357. Broday-Dvir R. Malach R. (2021). Resting-state fluctuations underlie free and creative verbal behaviors in the human brain. Cereb. Cortex 31 213232. 10.1093/cercor/bhaa221 32935840 Catani M. Jones D. K. Ffytche D. H. (2005). Perisylvian language networks of the human brain. Ann. Neurol. 57 816. 10.1002/ana.20319 15597383 Cerri G. Cabinio M. Blasi V. Borroni P. Iadanza A. Fava E. (2015). The mirror neuron system and the strange case of Broca’s area. Hum. Brain Mapp. 36 10101027. 10.1002/hbm.22682 25366580 Chai X. J. Castañón A. N. Öngür D. Whitfield-Gabrieli S. (2012). Anticorrelations in resting state networks without global signal regression. Neuroimage 59 14201428. 10.1016/j.neuroimage.2011.08.048 21889994 Chen Y. C. Xia W. Chen H. Feng Y. Xu J. J. Gu J. P. (2017). Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Hum. Brain Mapp. 38 23842397. 10.1002/hbm.23525 28112466 Chou P. H. Lin W. H. Li W. R. Huang C. M. Sun C. W. (2017). Reduced language lateralization in first episode schizophrenia: A near infrared spectroscopy study. Prog. Neuropsychopharmacol. Biol. Psychiatry 78 96104. 10.1016/j.pnpbp.2017.05.001 28499897 Damoiseaux J. S. Rombouts S. A. R. B. Barkhof F. Scheltens P. Stam C. J. Smith S. M. (2006). Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A. 103 1384813853. 10.1073/pnas.0601417103 16945915 Fisher R. A. (1921). 014: On the “Probable Error” of a coefficient of correlation deduced from a small sample. Metron 1, 332. Fox M. D. Greicius M. (2010). Clinical applications of resting state functional connectivity. Front. Syst. Neurosci. 4:19. 10.3389/fnsys.2010.00019 20592951 Friederici A. D. (2011). The brain basis of language processing: From structure to function. Physiol. Rev. 91 13571392. 10.1152/physrev.00006.2011 22013214 Gallese V. Fadiga L. Fogassi L. Rizzolatti G. (1996). Action recognition in the premotor cortex. Brain 119 593609. 10.1093/brain/119.2.593 8800951 Gao Y. Linke A. Jao Keehn R. J. Punyamurthula S. Jahedi A. Gates K. (2019). The language network in autism: Atypical functional connectivity with default mode and visual regions. Autism Res. 12 13441355. 10.1002/aur.2171 31317655 Gohel S. Laino M. E. Rajeev-Kumar G. Jenabi M. Peck K. Hatzoglou V. (2019). Resting-state functional connectivity of the middle frontal gyrus can predict language lateralization in patients with brain tumors. Am. J. Neuroradiol. 40 319325. 10.3174/ajnr.A5932 30630835 Gurunandan K. Arnaez-Telleria J. Carreiras M. Paz-Alonso P. M. (2020). Converging evidence for differential specialization and plasticity of language systems. J. Neurosci. 40 97159724. 10.1523/JNEUROSCI.0851-20.2020 33168623 Hassabis D. Maguire E. A. (2007). Deconstructing episodic memory with construction. Trends Cogn. Sci. 11 299306. 10.1016/j.tics.2007.05.001 17548229 Hein G. Engelmann J. B. Vollberg M. C. Tobler P. N. (2016). How learning shapes the empathic brain. Proc. Natl. Acad. Sci. U.S.A. 113 8085. 10.1073/pnas.1514539112 26699464 Jouravlev O. Kell A. Mineroff Z. Haskins A. Ayyash D. Kanwisher N. (2020). Reduced language lateralization in autism and the broader autism phenotype as assessed with robust individual-subjects analyses. Autism Res. 13 17461761. 10.1002/aur.2393 32935455 Kringelbach M. L. Berridge K. C. (2017). The affective core of emotion: Linking pleasure, subjective well-being, and optimal metastability in the brain. Emot. Rev. 9 191199. 10.1177/1754073916684558 28943891 Labache L. Mazoyer B. Joliot M. Crivello F. Hesling I. Tzourio-Mazoyer N. (2020). Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries. eLife 9:e58722. 10.7554/eLife.58722 33064079 Lane R. D. Ryan L. Nadel L. Greenberg L. (2015). Memory reconsolidation, emotional arousal, and the process of change in psychotherapy: New insights from brain science. Behav. Brain Sci. 38:e1. 10.1017/S0140525X15000011 24827452 Lottman K. K. Gawne T. J. Kraguljac N. V. Killen J. F. Reid M. A. Lahti A. C. (2019). Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG. Neuroimage Clin. 24:101959. 10.1016/j.nicl.2019.101959 31377556 Martin M. V. Cho V. Aversano G. (2016). Detection of subconscious face recognition using consumer-grade brain-computer interfaces. ACM Trans. Appl. Percept. 14:7. 10.1145/2955097 Mayeux R. Kandel E. R. (1985). “Natural language, disorders of language, and other localizable disorders of cognitive function,” in Principles of neural science, eds Kandel E. R. Schwartz J. (New York, NY: Elsevier), 688703. Murphy K. Birn R. M. Handwerker D. A. Jones T. B. Bandettini P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 44 893905. 10.1016/j.neuroimage.2008.09.036 18976716 Nenert R. Allendorfer J. B. Martin A. M. Banks C. Vannest J. Holland S. K. (2017). Age-related language lateralization assessed by fMRI: The effects of sex and handedness. Brain Res. 1674 2035. 10.1016/j.brainres.2017.08.021 28830770 Nielsen J. A. Zielinski B. A. Ferguson M. A. Lainhart J. E. Anderson J. S. (2013). An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS One 8:e71275. 10.1371/journal.pone.0071275 23967180 Olulade O. A. Seydell-Greenwald A. Chambers C. E. Turkeltaub P. E. Dromerick A. W. Berl M. M. (2020). The neural basis of language development: Changes in lateralization over age. Proc. Natl. Acad. Sci. U.S.A. 117 2347723483. 10.1073/pnas.1905590117 32900940 Özyürek A. (2014). Hearing and seeing meaning in speech and gesture: Insights from brain and behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130296. 10.1098/rstb.2013.0296 25092664 Packheiser J. Schmitz J. Arning L. Beste C. Güntürkün O. Ocklenburg S. (2020). A large-scale estimate on the relationship between language and motor lateralization. Sci. Rep. 10:13027. 10.1038/s41598-020-70057-3 32747661 Penfield W. (2015). Mystery of the mind: A critical study of consciousness and the human brain. Princeton, NJ: Princeton University Press. 10.1515/9781400868735 Phillips N. Shatil A. Go C. Robertson A. Widjaja E. (2021). Resting-state functional MRI for determining language lateralization in children with drug-resistant epilepsy. Am. J. Neuroradiol. 42 12991304. 10.3174/ajnr.A7110 33832955 Połczyńska M. Beck L. Kuhn T. Benjamin C. Ly T. Japardi K. (2021). Tumor location and reduction in functional MRI estimates of language laterality. J. Neurosurg. 135 16741684. 10.3171/2020.9.JNS202036 33799298 Rolinski R. You X. Gonzalez-Castillo J. Norato G. Reynolds R. Inati S. (2020). Language lateralization from task-based and resting state functional MRI in patients with epilepsy. Hum. Brain Mapp. 41 31333146. 10.1002/hbm.25003 32329951 Schilbach L. Hoffstaedter F. Müller V. Cieslik E. C. Goya-Maldonado R. Trost S. (2016). Transdiagnostic commonalities and differences in resting state functional connectivity of the default mode network in schizophrenia and major depression. Neuroimage Clin. 10 326335. 10.1016/j.nicl.2015.11.021 26904405 Schmitz J. Lor S. Klose R. Güntürkün O. Ocklenburg S. (2017). The functional genetics of handedness and language lateralization: Insights from gene ontology, pathway and disease association analyses. Front. Psychol. 8:1144. 10.3389/fpsyg.2017.01144 28729848 Sepeta L. N. Berl M. M. Wilke M. You X. Mehta M. Xu B. (2016). Age-dependent mesial temporal lobe lateralization in language fMRI. Epilepsia 57 122130. 10.1111/epi.13258 26696589 Shen W. Tu Y. Gollub R. L. Ortiz A. Napadow V. Yu S. (2019). Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. Neuroimage Clin. 22:101775. 10.1016/j.nicl.2019.101775 30927604 Shi Y. Zeng W. Wang N. (2017). SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis. Comput. Methods Programs Biomed. 148 137151. 10.1016/j.cmpb.2017.07.001 28774436 Shi Y. Zeng W. Wang N. (2021). The brain alteration of Seafarer revealed by activated functional connectivity mode in fMRI data analysis. Front. Hum. Neurosci. 15:656638. 10.3389/fnhum.2021.656638 33967722 Stipdonk L. Boon R. Franken M. van Rosmalen J. Goedegebure A. Reiss I. (2021). Language lateralization in very preterm children: Associating dichotic listening to interhemispheric connectivity and language performance. Pediatr. Res. 91 18411848. 10.1038/s41390-021-01671-8 34408271 Sulpizio S. Del Maschio N. Del Mauro G. Fedeli D. Abutalebi J. (2020). Bilingualism as a gradient measure modulates functional connectivity of language and control networks. Neuroimage 205:116306. 10.1016/j.neuroimage.2019.116306 31654763 Szaflarski J. P. Holland S. K. Schmithorst V. J. Byars A. W. (2006). fMRI study of language lateralization in children and adults. Hum. Brain Mapp. 27 202212. 10.1002/hbm.20177 16035047 Tomasi D. Volkow N. D. (2012). Resting functional connectivity of language networks: Characterization and reproducibility. Mol. Psychiatry 17:841. 10.1038/mp.2011.177 22212597 van Ettinger-Veenstra H. M. Ragnehed M. Hällgren M. Karlsson T. Landtblom A. M. Lundberg P. (2010). Right-hemispheric brain activation correlates to language performance. Neuroimage 49 34813488. 10.1016/j.neuroimage.2009.10.041 19853040 Villar-Rodríguez E. Palomar-García M. Á Hernández M. Adrián-Ventura J. Olcina-Sempere G. Parcet M. A. (2020). Left-handed musicians show a higher probability of atypical cerebral dominance for language. Hum. Brain Mapp. 41 20482058. 10.1002/hbm.24929 32034834 Wang N. Zeng W. Shi Y. Yan H. (2017b). Brain functional plasticity driven by career experience: A resting-state fMRI study of the seafarer. Front. Psychol. 8:1786. 10.3389/fpsyg.2017.01786 29075223 Wang N. Chang C. Zeng W. Shi Y. Yan H. (2017a). A novel feature-map based ICA model for identifying the individual, intra/inter-group brain networks across multiple fMRI datasets. Front. Neurosci. 11:510. 10.3389/fnins.2017.00510 28943838 Wang N. Wu H. Xu M. Yang Y. Chang C. Zeng W. (2018). Occupational functional plasticity revealed by brain entropy: A resting-state fMRI study of seafarers. Hum. Brain Mapp. 39 29973004. 10.1002/hbm.24055 29676512 Wang N. Zeng W. Chen D. (2016). A novel sparse dictionary learning separation (SDLS) model with adaptive dictionary mutual incoherence constraint for fMRI data analysis. IEEE Trans. Biomed. Eng. 63 23762389. 10.1109/TBME.2016.2533722 26929024 Wang N. Zeng W. Chen L. (2012). A fast-FENICA method on resting state fMRI data. J. Neurosci. Methods 209 112. 10.1016/j.jneumeth.2012.05.007 22659001 Wang N. Zeng W. Chen L. (2013). SACICA: A sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis. J. Neurosci. Methods 216 4961. 10.1016/j.jneumeth.2013.03.014 23563324 Wang N. Zeng W. Chen D. Yin J. Chen L. (2015b). A novel brain networks enhancement model (BNEM) for BOLD fMRI data analysis with highly spatial reproducibility. IEEE J. Biomed. Health Inform. 20 11071119. 10.1109/JBHI.2015.2439685 26054077 Wang N. Zeng W. Shi Y. Ren T. Jing Y. Yin J. (2015a). WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis. J. Neurosci. Methods 246 7596. 10.1016/j.jneumeth.2015.03.011 25791013 Wang S. Van der Haegen L. Tao L. Cai Q. (2019). Brain functional organization associated with language lateralization. Cereb. Cortex 29 43124320. 10.1093/cercor/bhy313 30561523 Wang Y. Xue G. Chen C. Xue F. Dong Q. (2007). Neural bases of asymmetric language switching in second-language learners: An ER-fMRI study. Neuroimage 35 862870. 10.1016/j.neuroimage.2006.09.054 17324590 Weiller C. Jüptner M. Fellows S. Rijntjes M. Leonhardt G. Kiebel S. (1996). Brain representation of active and passive movements. Neuroimage 4 105110. 10.1006/nimg.1996.0034 9345502 Wenger E. Schaefer S. Noack H. Kühn S. Mårtensson J. Heinze H. J. (2012). Cortical thickness changes following spatial navigation training in adulthood and aging. Neuroimage 59 33893397. 10.1016/j.neuroimage.2011.11.015 22108645 Wernicke C. (1874). Der aphasische symptomencomplex: Eine psychologische studie auf anatomischer basis. Breslau: Max Cohn & Weigert. Willems R. M. Özyürek A. Hagoort P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. Neuroimage 47 19922004. 10.1016/j.neuroimage.2009.05.066 19497376 Wu H. Yan H. Yang Y. Xu M. Shi Y. Zeng W. (2020). Occupational neuroplasticity in the human brain: A critical review and meta-analysis of neuroimaging studies. Front. Hum. Neurosci. 14:215. 10.3389/fnhum.2020.00215 32760257 Yan C. Zang Y. (2010). DPARSF: A MATLAB toolbox for” pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13. 10.3389/fnsys.2010.00013 20577591 Yan H. Wu H. Chen Y. Yang Y. Xu M. Wang N. (2022). Dynamical complexity fingerprints of occupation-dependent brain functional networks in professional seafarers. Front. Neurosci. 16:830808. 10.3389/fnins.2022.830808 35368265 Yan H. Zuo X. N. Wang D. Wang J. Zhu C. Milham M. P. (2009). Hemispheric asymmetry in cognitive division of anterior cingulate cortex: A resting-state functional connectivity study. Neuroimage 47 15791589. 10.1016/j.neuroimage.2009.05.080 19501172 Yao S. Zeng W. Wang N. Chen L. (2013). Validating the performance of one-time decomposition for fMRI analysis using ICA with automatic target generation process. Magn. Reson. Imaging 31 970975. 10.1016/j.mri.2013.03.014 23587929 Zhu L. Fan Y. Zou Q. Wang J. Gao J. H. Niu Z. (2014). Temporal reliability and lateralization of the resting-state language network. PLoS One 9:e85880. 10.1371/journal.pone.0085880 24475058 Zuo X. N. Xu T. Jiang L. Yang Z. Cao X. Y. He Y. (2013). Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space. Neuroimage 65 374386. 10.1016/j.neuroimage.2012.10.017 23085497
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jijjrj.com.cn
      www.fismall.com.cn
      kqynym.org.cn
      etulel.com.cn
      sbrhqr.com.cn
      sjmqwk.com.cn
      sfywyt.com.cn
      thirdxcx.com.cn
      nmchain.com.cn
      www.jnswmb.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p