Front. Genet. Frontiers in Genetics Front. Genet. 1664-8021 Frontiers Media S.A. 1290658 10.3389/fgene.2024.1290658 Genetics Hypothesis and Theory The open ontology and information society Naidoo 10.3389/fgene.2024.1290658 Naidoo Meshandren * School of Law, University of KwaZulu-Natal, Durban, South Africa

Edited by: Robert R. Downs, Columbia University, United States

Reviewed by: Heru Nugroho, Telkom University, Indonesia

Christopher Mierow Maylahn, New York State Department of Health, United States

*Correspondence: Meshandren Naidoo, 214549331@stu.ukzn.ac.za
30 05 2024 2024 15 1290658 07 09 2023 02 05 2024 Copyright © 2024 Naidoo. 2024 Naidoo

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Information, as the most elusive subject, is central to all forms of thought, governance, economic structure, science, and society. Regulation of information, especially within the healthcare field, is proving to be a difficult task globally, given the lack of a qualitative framework and understanding of the concept and properties of information (or data) itself. The presentation of the overall qualitative framework, comprising a qualitative analysis of information, data, and knowledge, will be valuable and of great assistance in delineating regulatory, ethical, and strategic trajectories. In addition, this framework provides insights (and answers) regarding (1) data privacy and protection; (2) delineations between information, data, and knowledge based on the important notion of trust; (3) a structured approach to establishing the necessary conditions for an open society and system, and the maintenance of said openness, based on the work of Karl Popper and Georg Wilhelm Friedrich Hegel; (4) an active agent approach that promotes autonomy and freedom and protects the open society; and (5) a data governance mechanism based on the work of Friedrich Hayek, which structures the current legal–ethical–financial and social society. This is insightful for questions relating to the extent of rights and duties, the extent of biological bodies and freedom, and the structure of relations in distributed networked systems. There is great value offered in this framework; furthermore, it provides critical insights and thoughts about (and uncovers the interplay between) academic culture, politics, science, society, and societal decay. Note that, in line with the ideas expressed in this manuscript, such as incorporation of personal experience (thereby mending the Kantian and Cartesian gap), a first-person perspective will be used, where relevant.

information data governance trust philosophy privacy logic law National Research Foundation10.13039/501100001321 National Institute of Mental Health10.13039/100000025 section-at-acceptance ELSI in Science and Genetics

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1 Introduction 1.1 Interdisciplinary fib

      I will begin with a brief critical analysis of some structural axioms, which form the foundation of society and thinking today. These axioms are typically “swept-under-the-rug,” hence hiding them from criticism, while also entrenching their status, creating a closed oligopoly-like scenario. This paper aims to bring hidden links out from under the rug so that an open culture of critical reflection and change can start by reflecting upon those very foundations.

      It was René Descartes (1641) who separated the (non-physical) mind (as pure thought, knowledge, objective, and universal truths) from the physical body, emotions, experiences, and empiricism. In doing so, Descartes’s body of work/thought presented two important structural axioms to the world: (1) Cartesian mind–body dualism and (2) Cartesian co-ordinates. The former is of relevance here.

      In keeping with the goal of not separating thought from experience or emotions, I integrate observations and experiences of my own regarding present academic cultures. Cartesian dualism presents itself in academic culture, whereby self-experiential evidence in academic work tends to be a taboo. Another instance is that qualitative analyses, which integrate human psychology or phenomenology, are reserved mainly for philosophical, psychological, or theoretical journals. Typically, the “hard science” journals are reserved for major quantitative results that are supported by empirical evidence. Unfortunately, the idea that qualitative hypotheses or studies belong in specific locations (and not others), because the “tastes” of an audience will not be satisfied, presupposes the audience’s desires and their status as static. A preclusion of this sort serves to reduce the freedom of choice of the audience and entrenches a strong division between subject matter. This hinders the evolution of knowledge (since hidden links remain hidden in this culture). Why would literature about human psychology be any different from literature about astronomy? Does thought and logic not structure both? Previously, Copernicus believed that the Sun revolved around the Earth, thus centralizing the human as being the universal subject (Deutsch, 1998). Now, it seems that the human, as the observer, represents another type of universal, being the universal object, which is apparently removed from that of which it is a part. Both are incorrect.

      Immanuel Kant then opened the doors for “relativity” (Kant demonstrated logically that the concept of the “Universal” must be limited in some way). However, Kant (1890) backtracked from the radicality within his oeuvre by positing instead that the antinomies (contradictions) of pure reason are the limits of reason, not the limits of reality itself. In this way, as accused by Hegel, Kant remained attached to pre-critical metaphysics, which posits a realm of purity, like the allegory of the Platonic cave (the truth is outside of the cave, not within it).

      The Kantian Copernican revolution thus created a split between epistemology and ontology. This is a split between epistemology (as philosophy, qualitative analyses, theory, logical operations, interpretive methods, technique, structure, systems, form, objectivity, thoughts about thought itself, and universalism) and ontology (subjective knowledge, practice, content of thought, experience, phenomenology, empiricism like the sciences, and quantitative analyses). I suggest that this accurately reflects the very notion of “interdisciplinary,” which only serves to entrench (1) unfounded distinctions and (2) the Kantian axioms pervading academic culture. This is a closed system since it resists any critical analysis of its very own presuppositions/assumptions (resisting change as a result). This is contrary to what the scientific method was supposed to be and reflects a stifling of imagination, creativity, and critical thought—all of which are necessary for an open system. We often tend to think of philosophy, or to be more accurate, epistemological assumptions, as being displaced from everyday life, but we do not see how those very assumptions (from thinkers like Kant and Descartes, for example) structure everyday life, all disciplines, and all sources of knowledge.

      There are two reasons for the maintenance of this fib. The first is the raison d’etre of capitalism, wherein relations between individuals are treated as transactional relations between objects (Marx, 1848; Althusser, 2014). An exemplar of the aforementioned is the logical structure of Churchillian dialectics, which involves reciprocal causation (Naidoo, 2023d). Churchillian dialectics is a process where subjects function as objects that freely contract with other objects in society to create/consume objects. These object relations are thought to satisfy desire and provide fulfillment (Althusser, 2014), given that these objects seemingly validate a subject’s sense of freedom of choice and the ability to contract freely. This is known as the classic liberalist interpretation of freedom—which is freedom of choice in relation to objects. Marx (1848) called this commodity fetishism.

      The commodity fetish presents freedom as being tied to objects, and thus, freedom is increased where there is a greater number of objects to choose from. However, while freedom of choice between or of objects may be increasing, meta-freedom, which is the concept of freedom of choice itself, is decaying. In other words, people have more choices related to objects but less scope to construe freedom as something else or choose among different types of freedoms. Unfortunately, this involves a degradation of qualitative freedom. Increasing degradation relating to the scope of meta-freedom is axiomatic of an unhealthy and closed society, as Theodore Adorno (Horkheimer and Adorno, 1989) and Louis Althusser each argued in their various works. For additional information on freedom and unfreedom, choice, and the paradigm of relations between objects that characterize modern society, please refer to part E of Supplementary Material.

      The second, as Sapolsky (2017) demonstrated, is that the dopamine system in the human brain does not support the capitalistic understanding of “satiation through objects.” The dopamine system uses objects for the pursuit, which is the goal (thus, this is contrary to the typical capitalistic understanding, as expressed previously). This was originally a Freudian insight, where Freud described the “objectless drives” (or the Lacanian object-cause-of-desire) (Naidoo, 2023b). Importantly, increases in abundance, in terms of object access, result in less uncertainty, and thus less dopamine release upon acquisition. More predictability leads to less dopamine (and hence that good feeling). Thus, neurobiology/neurochemistry does not support the notion that satisfaction is obtained through choices among material objects. Rather, satisfaction is geared toward the pursuit of an uncertain trajectory.

      Marxist dialectic materialism is different from Churchillian dialectics, in that the former posits a reciprocal constitution instead of reciprocal causation (Naidoo, 2023d). This paradigm has been confirmed by scientific evidence. Sapolsky (2017) pointed out that the prefrontal cortex, as the executive region of the brain, only matures in a human’s late twenties and is more susceptible to contextual influences, as opposed to genetic ones. Furthermore, Dawkins (1976), in The Selfish Gene, demonstrated that phenotypes develop a kind of freedom from their genetic constituents and are more susceptible to contexts as opposed to said constituents. Dialectical materialism thus highlights the importance of contexts within the paradigm of development. Contexts, as described below, enable more meta-degrees of freedom precisely because contexts modulate rapidly in open systems.

      In terms of the second reason for maintaining the fib, the capitalistic system requires that subjects repress, ignore, or are prevented from grasping the hidden links between different subjects, not dissimilar to the hidden variables hypothesis, or the EPR paradox, formulated by Einstein–Podolsky–Rosen (Einstein et al., 1935). For the capitalist system to maintain itself, these links must remain hidden. If links remain hidden, people are less likely to question the appropriability of the system itself.

      Hegel (2018), who preceded Marx, introduced the concept of “embodied cognition” (as the substance equals the subject). This has since come to the forefront within the sciences and ethico-regulatory conversations (thanks to developments in artificial intelligence) (Juarrero, 2023). However, these discussions do not go far enough; although they demonstrate the false separation between the mind, body, and emotion; for example (Damasio, 2005), they do not seek to mend the Kantian split. Lastly, the maintenance of this fib, and the entrenchment of a strict divide of the disciplines, serves to hamper the cohesion of the overall total distributed network, which is that of knowledge acquisition (described below). To assist the reader, a brief navigational map is included in part G of the Supplementary Material.

      2 Knowledge society 2.1 Enlightenment and the knowledge enterprise

      The European Enlightenment greatly impacted the foundations of all system-building, including legal, economic, social, political, financial, ethical, religious, and scientific systems. The European Enlightenment took three main forms: (1) a political thesis for better governance; (2) a philosophical thesis for a secular foundation based on rationality and science; and (3) an economic thesis on creating more wealth (Mokyr, 2012).

      What allows knowledge, ideas, and thought to flourish is an open society (Popper, 1945; Thaldar, 2017). An open society is one in which the thoughts of mad men, who go against the grain, are not rejected or punished as they were in 17th- and 18th-century Britain. These rebels must be protected and afforded the space to be the mad men that they are to protect the openness of a society; it is the acts of such mad men that ensure that society reflects upon itself. As described by Žižek (2003) and Naidoo (2023a), it was Immanuel Kant who put the first crack in the concept of the Universal, the infinite, or the concept of “objective,” followed by others, such as Hegel (2010) (a complete ontology of incompleteness), Karl Marx (1848) (false consciousness), and in mathematics, Gödel (a conditional mathematics), George Cantor (the Cantor set describes a limited infinity), and Hans Peter Luhn (the computer science concept of hashing, which is analogous to the Cantor set) (Naidoo, 2023b).

      The core of liberalism stemmed from the above, which is the marketplace of ideas (the marketplace is the necessary condition for the social contract). In the marketplace, ideas compete, fight, coalesce, triumph, and hibernate. The marketplace has a structure that reflects varying interests, like economic, social, and political interests (Mokyr, 2012). None of these interests solely determine outcomes within the marketplace, and each interest typically has varying degrees of importance; there is thus another marketplace within the marketplace. The ultimate marketplace, within which all others are nested and structured, is the theory of reality. The ultimate boundaries of a marketplace are thus ideological and based on theories of knowledge and modes of structuring or validating said knowledge. Each mode or theory turns on questions like, what makes knowledge possible? What is persuasive? What kinds of evidence and logic are possible? What kinds of experiments are necessary? How do we structure what the content of truth is? What does it mean to be correct? What is a true statement?

      To provide answers or to construct new questions and answers, it is important to determine whether the structures of any given marketplace being visited are suitable or unsuitable. Typically, debates on this issue lead to reflections involving the Industrial Revolution and the Enlightenment (Mokyr, 2012). The English Enlightenment concerned the removal of ancient and conservative governance structures and values. However, this new modern form seems to have just translated some of the older values into a different language (Mokyr, 2012). The English Enlightenment was not in opposition to Protestantism; rather, it took the Protestant ethics and created a new, secular society around it. The new capitalist society is Protestant, often without knowing it. Herein, a liberal form of Christianity was used to justify the pursuit of one’s self-interests, which perfectly suited the industrial epoch. Hence, science, politics, law, ethics, religion, and the like are shaped by the same schema.

      2.2 Scientific method

      In the 18th century, leading up to the invention of the steam engine, science was very different from today. The common quip is that the invention of the steam engine did more for science than science did for the invention of the steam engine. This “pre-modern” science shaped important developments within empiricism, which became known as the “scientific method.”

      There were many important discoveries in the sciences, such as formulae and understandings relating to heat, thermodynamics, and electricity (Rosen, 2010), which catalyzed perspective shifts as to how the world, physics, and chemistry worked. Given these discoveries and the “force model” imposed by Newton, causation and determinism were the dominant ideas of reality. This catalyzed a move away from the teleological purposiveness, inherent to Aristotelian philosophy and methodology (Naidoo, 2023d).

      The scientific endeavor involved testing conclusions, ideas, and premises and falsifying non-repeated results since science, at this time, believed that invariance and physics should dominate knowledge validation and status as such (given the huge successes of the cause–effect relations of Newton’s force models). What science sought out was evidence in the search for knowledge, and in doing so, it also moved away from the influence and dominance of the Catholic Church. From this cultural shift, the concept of “replication” was born, and inventing was viewed as a social enterprise, instead of a private one. Previously, inventing was seen as the practice of a “lone genius” (Rosen, 2010). The currency for inventors during this time was mostly recognition or fame (Rosen, 2010).

      The notion of perfection, ideal, objective, or universal, at least in Western scholarship, traces back to Plato (2002) and his World of Ideas and Pure Forms. Kant and others built off these ideas through the introduction of a priori pure forms which structure the mind, experience, and thought.

      Technological advancements in this period were nominal, mostly consisting of simple improvements on instrumentation and navigational tools (Rosen, 2010). However, there were many novel understandings, scientific principles, formulae, and logical deductions that were understood as a priori knowledge. Society at that time, did not benefit from the unearthing of a priori concepts. In other words, no tangible value in the form of usable forms of technology was acquired from their derivation. Developing tangible or usable forms required a lot of time and other resources, much more than one individual could possibly provide. Hence, inventing became a social endeavor, wherein many could collaborate, thus sharing resources and responsibilities in the production process (enhancing usefulness, accessing, recording, storing, working, and exploring different avenues). This is what a distributed, networked system is. Hence, the scientific method sought value in the form of physical objects, and the production of the said value required bridges to be built between a priori concepts and utility; theory and empiricism; and theorists and artisans (Rosen, 2010; Mokyr, 2012). The scientific method, as the vital cog, transformed the Age of Enlightenment into the age of utility, objects, and the later Industrial Revolution. The purpose of the formation of the 1836 Select Committee on Arts and Manufactures (Sproll, 1994) was for the committee to determine the best ways in which to disseminate knowledge and principles in the fields of knowledge production and that of makers or manufacturers (Sherman and Bently, 2003). The singular value of utility through the transformation of knowledge into physical objects/products was siphoned into the jurisprudence of patent law. Inventing, in law, was now solidified as a social enterprise, which included the acquisition and validation of data and knowledge. The dominant paradigm prior to this Enlightenment was that of the Lockean private property. In this view, knowledge was understood to be within the personal domain of a person and thus private. Importantly, this underlies the typical conception of personal identity and privacy, which many are unaware of being traced back to Locke. The purpose of the Enlightenment was to bring out, and ensure transparency and access of/to information and knowledge, which was hidden away (hence the name “Enlightenment”) under the veils of preceding religious and cultural practices (Dolar, 1991). This was the first move toward an open society, based on information and knowledge being freely accessible.

      The scientific method ushered in a new understanding: to enhance conversion and utility, knowledge and data had to be recorded and shared for testing. Knowledge was then understood to be conditional on trust and not absolute (Rosen, 2010). Knowledge and conclusions could be improved and replaced. No longer did logic hold center stage as the singular source of validation. Experimentation became the defining methodology in the social enterprise of knowledge (Rosen, 2010).

      Unfortunately, the “practical” or utility justification of innovation pervades many academic explorations, and the necessity and difficulties associated with obtaining funding only serve to entrench four fibs: (1) scientific empirical experiments are necessary to validate knowledge; (2) there is a strong separation between “thinking” and “doing.” As demonstrated by thinkers such as Kant, Hegel, Freud, and Marx, knowledge can be validated through thought alone (second-order inferences). Sapolsky (2017) also echoes the argument that one does not need to perform empirical experiments to simply confirm something that is observationally clear. Fib (3) is that there is a strong separation or difference between science and religion. The final fib (4) is that there is such a thing as progress. Taleb (2007) demonstrates that progress is not a linear concept (nor averageable, much like knowledge), nor is there any consensus as to what constitutes progress. Given that neither progress nor knowledge is linear, both are impossible to evaluate in extremist systems.

      3 Freedom and surprise 3.1 Semantics and meaning

      The breakthrough of communications theory, later dubbed “information theory,” occurred when Claude Shannon and Weaver (1964) published their book The Mathematical Theory of Communication. Both felt it was a mathematical theory of communication, as opposed to a theory of information. The mathematical formulations therein describe the necessary conditions for communication using concepts like symbols, signals, and carriers. Therein, Weaver described information as the measure of one’s degree of freedom of choice when selecting a message (Shannon and Weaver, 1964).

      Shannon and Weaver (1964) were concerned with transmitting information, and not meaning. Thus, Shannon created a formula that could transmit messages in the presence of noise. This formula for encoding messages with maximum efficacy was the same as the one created by Ludwig Boltzmann half a century earlier (Hidalgo, 2015). Both formulas treated information as physical. For Shannon, informational entropy is the minimum volume of data necessary to specify any type of message (Shannon and Weaver, 1964).

      In this paradigm, information is meaningless (and meaning is not information); it is the receiver/interpreter/perceiver who weaves-in/transmits meaning into information. It is not valuable either. Meaning and information are often confused because of this automatic (unconscious) transposition (Taleb, 2007). This creates the illusion of a hidden depth within the information. This automatic transposition occurs because of a need to reduce information and conserve energy. Thus, meaning is not the message, and meaning lies within the receiver, contexts, and prior knowledge (Hidalgo, 2015). Meaning is a tool used to communicate the physical order of things.

      Meaning (dubbed semantics, from here, as semantics are associations of meaning) exists in various spaces and times, within everyday life, and history. Depending on the spatial, temporal, or spatiotemporal co-ordinates, the semantic content of each co-ordinate will vary. Different co-ordinates or contexts entail different semantics, and vice versa. Hence, semantics and co-ordinates are co-constitutive (Naidoo, 2023d); semantics constitute spatiotemporal coordinates as much as spatiotemporal constitutes semantics. Semantics are also not just the product of, or constituted by, human brains, but rather exist as varying types of constraints, which can be context-dependent or context-independent (Naidoo, 2023d). Nonetheless, human beings do bias semantics within spatiotemporal co-ordinates, within their favor (as individuals or as a species), to maintain their viability and structure relations within a networked, distributed system. The semantic content of a co-ordinate is constructed through processes of trial and error and jury rigging, testing, validation, correction, updating, and rejection. These processes require assessment criteria, which bias some semantic content over others, known as selection criteria. Selection criteria are also the product of context-dependent or context-independent constraints. For example, human society would not designate that a volcano is a semantically suitable location for a school, but in human history, it was a suitable location (the heat and noxious fumes are context-independent constraints) for sacrificing virgins to appease the gods. Hence, the semantics of contexts shape human selections.

      What is required to maintain the semantic content of a spatiotemporal location is continuous, repeated observations and assessments, known as measurements. It was Sigmund Freud (Naidoo, 2023b) who first suggested that repetition is not something that is defined by humans but something that defines humans (Lacan, 1979). Hence, the validity or continuous appropriability of semantic content is determined through repeated observational or experiential assessment (measurements) consisting of taking in, keeping up-to-date, and updating factual information in the form of events. Importantly, events are not removed from observation; observation and events are reciprocally constitutive.

      3.2 Passive and active mind

      Understanding of David Chalmers’ (1996; 2010) “hard problem of consciousness” requires knowledge of what preceded the hard problem. In 1799, Friedrich Heinrich Jacobi (di Giovanni and Livieri, 2018) wrote a letter to Johann Gottlieb Fichte in which he expressed his unhappiness about the loss of subjectivity, which arose because of Spinozism and the rationalistic physical sciences. Jacobi wanted to “save” humanity from the perils of nihilism, tasking Fichte, as the “true disciple” of Kant, with this duty (di Giovanni and Livieri, 2018). In The Spinoza Letters (Spinoza, 1995), Jacobi quite clearly foresaw that humanity would be saved by a return to inner experience and feeling (affect) (di Giovanni and Livieri, 2018). However, thoughts like Fichte’s only served to entrench nihilism, which Hegel argued, since there was a reliance on “spurious infinities,” such as the linear flow of time or advancement. Neither time nor progression is linear (Deutsch, 1998).

      An important development of the human mind (and of identity) was John Locke’s (1860) An Essay Concerning Human Understanding, wherein Locke proposed an account of the passive mind as a tabula rasa. Locke’s mind simply served to reflect what was perceived. This passive mind was challenged by others, like Freud, who proposed, in his topological economic theory of mind, that the mind was active. In Freud’s (1915) breakthrough work, The Interpretation of Dreams, he proposed that the separation of the conscious and the unconscious was a defensive threshold, implemented by the psyche, to protect against high energy levels of states and excitation. The purpose of this defense was to maintain a dynamic equilibrium/homeostatic stability. The mind is active. Consciousness and unconsciousness were separated because excessive energy is damaging; the unconscious, which contains the highly energy-invested (bestsum) forms of thought and ideas, is limited by consciousness. In other words, consciousness exists as nothing but a limit to energy. These views have been confirmed by modern science (refer to part D of Supplementary Material).

      Chalmers (1996; 2010) also queried why there exists the subjective “I.” Naidoo (2023a; 2023c), relying on Lacanian thought, and Benveniste (1966) noted that the “I” is a stabilizing referent. The purpose of the “I” is to indicate the spatial location/identity of the speaker. At a deeper level, and importantly, the subjective “I” represents a resistance to symbolic representation, meaning a failure to obtain a positive identity through positive knowledge of what theIis. The resistance to symbolic incorporation (a deadlock or knot) is important for maintaining an open system and society, as argued by Althusser (2014) in his critique of the overdetermining effect of state apparatus. In other words, the “I” serves as an irreducible, indivisible link enabling constitutive couplings, interrelations, and entanglements that serve to create an autocatalytic feedback loop between a system and its previous context [which now becomes a “niche” (Naidoo, 2023d)]. This constitutive coupling enables for the structuring of language, identity, and knowledge. Indivisible knots are used to construct distributed, networked systems and maintain their status as “open,” which is a dynamical (non)equilibrium state of stability (homeostasis). The content of the “I” is “unknowledge,” meaning that there is no positive knowledge as to what it is, but rather knowledge as to what it is not. Consensus on the “I” is thus reached through determinate negation, instead of affirmation. Consensus is thus constituted through a lack of positive affirmation. I call this constitutive consensus dis-consensus, which in social matters takes the form of “we agree to disagree.” Importantly, this kind of reasoning is analogous to the Kantian infinite judgment, the Gödel incompleteness theorem, or the Hegelian logic of Aufhebung (or chirality, present in biology and chemistry) (Naidoo, 2023b). To examine the appearance of the “I,” we see that it is constituted by two parallel horizontal lines and a single perpendicular line joining the two, as in Figure 1 below.

      Composed by author, 2023.

      In other words, the parallel lines are kept apart but also kept together by a vertical line, which separates and joins them. Returning to Hegel (2010), this is precisely the logic of Aufhebung, or chirality, which describes the holding apart, while simultaneously holding together something. They are held together by what I (based on Lacan) call a pure difference (Naidoo, 2023b). That pure difference is an indivisible link, as described. When turned on its side, it resembles Figure 2, transitioning from the subjective “I” (also the “I” of information) to the “H” of homeostasis.

      Composed by author, 2023.

      The logic of Aufhebung (Naidoo, 2023b) is coupled with that of an autocatalytic-feedback-loop, akin to the Belousov–Zhabotinsky chemical reaction, wherein the presence of a fourth step (the observer in the sciences) encloses an open-dynamism intrinsic to a system (Juarrero, 2023). Such a logic provides the necessary enabling conditions for a system to incorporate contextual information into its very constitution, increasing its informational content (Yoshida, 2010). The Hegelian dialectic is topological (relating to circles)—being similar mathematically to Poincare’s cobordism, which he explained in Papers on Topology: Analysis Situs and Its Five Supplements (Poincaré, 2010). The four categories of cobordism are almost mirrored by Hegel’s four-fold infinities (Naidoo, 2023b). Cobordism describes how two circles can be morphed into two other circles, like a pair of pants (Dimitrov, 2015). In Figure 3, the Hegelian fourfold infinities are represented. In Figure 4, the Hegelian ontology, which produces an “internal pair of pants” within the original, is presented. Figure 3 represents what is known as autopoiesis, self-causing logic, or Aufhebung.

      Dimitrov (2015).

      Dimitrov (2015).

      Both Aufhebung and autocatalytic feedback loops are necessary conditions for open systems, open societies, and the creation of a dynamic equilibrium (a stable state of non-equilibrium, or homeostasis). It is necessary to note that knowledge is not static, but dynamic and evolving, in such systems. On a neurobiological level, the subjective state, as pointed out by Sapolsky (2017) and Naidoo (2023b), operates as a simulated, stochastic risk management strategy aimed at maintaining the viability of the system itself.

      3.3 Information gain and surprise

      Information is a measure of the degree of surprise obtained by an agent who observes or experiences an event (thus the link to probability). This degree of surprise of an event is described by self-information. Information (I) is thus a function called self-information. Self-information is the informational content inherent to any event or occurrence. Information entropy extends this idea to discrete random variables (X). The entropy of (X) is the average of self-information over all possible outcomes of (X). Conversely, the entropy of a random variable describes the average degree of surprise obtained by the outcome of (X). There is an increased information gain after a surprise, as opposed to expected or predicted events. Information gain is tied to reductions in entropy. Entropy, to conclude, is about the degree of surprise obtained from outcomes based on prediction (part B of Supplementary Material).

      4 Building an ontology 4.1 Negative definition

      Any ontology needs to begin with a definition; so, what is information? Currently, there is no qualitative consensus on an account of information; only a compendium of various and vague axioms exists (Floridi, 2009). We know that information is quantifiable, additive, storable, and transmittable. It is also a golden thread that runs through all disciplines (Deacon, 2007). It is certainly incorporeal and intangible because one cannot physically handle or manipulate information. In the 21st century, the importance of information increased, resulting in heavy commodification (Badiou, 2006; Hidalgo, 2015). Information was thought to be physical because of its physical embodiment. It was not construed as a “thing,” but instead a physical arrangement, taking the form of a thing. Information was that which differed from its surroundings, based on its identity, which is its appearance, or the physical order of its arrangement (Hidalgo, 2015). As time passed, the nature of information morphed into being understood as digital, immaterial, and non-physical.

      A founding father of cybernetics, Norbert Wiener (1961), provided a negative (exclusionary) definition of information in cybernetics. Wiener (1961) said that

      “…The mechanical brain does not secrete thought “as the liver does bile,” as the earlier materialists claimed, nor does it put it out in the form of energy, as the muscle puts out its activity. Information is information, not matter or energy. No materialism which does not admit this can survive at the present day.”

      The last part of this quote is insightful; information is not matter or energy. This is a negative definition since Wiener does not propose to know what information is, but he suggests what it is not. Although information is neither matter nor energy, it needs matter for embodiment and energy for its communication.

      4.2 Reduction, patterns, and data

      Entropy is a limit on efficient communication of the outcome of (X). In other words, it describes how much compression can take place while maintaining the efficiency of the communication. In communication theory, there is a correspondence between the base of the logarithm and the symbol quantity, which is used in a hypothetical scenario involving two agents who communicate surprising, random events (Brownlee, 2019). Any change in the base of the logarithm results in a corresponding change in the entropy equation (Bernstein, 2020). This means that informational entropy describes the minimum number of symbols (lower bound) needed to communicate an outcome of (X). The base of the logarithm of the self-information function is also the lower bound on the number of symbols required to communicate, as above.

      Information is expensive (energy-wise) (Taleb, 2007) to obtain (the rule-finding, updating, learning, and executive region of the human brain, being the prefrontal cortex, is highly metabolic) (Sapolsky, 2017). It is similarly expensive to store, order, manipulate, and retrieve information. To combat this, systems need energy-efficient ways to handle and store information. The solution to the energy-efficiency issue is to order information, thus making information less random, which requires an association or attachment to narrations, words, or symbols (Taleb, 2007). As Shannon and Weaver (1964) demonstrated, for efficient communication, strings of symbols and signals can be used. Shannon (1940) also demonstrated that some symbols will be used more frequently than others (the source of the code will have a higher frequency with regard to certain symbols or knowledge). Based on this, it was possible to assign shorter codes to more frequently occurring symbols (including symbol pairings), reducing the total length of the required code. Natural language processing (in artificial intelligence) uses the same principle, namely, the frequency of a letter depends on what precedes the said letter. This is Shannon’s empirical entropic frequency distribution formula (Hartnett, 2022). This is a predictive functionality. Importantly, Hawkins and Dawkins (2021) demonstrated that the brain functions according to a single cortical algorithm—which is prediction. Humans build their own subjective (and inter-subjective) world-maps according to this system, comprising spatiotemporal semantic relations.

      In other words, compression is fundamental for energy efficiency. Compression is achieved through the creation of tunnels, called narratives, wherein the dimensionality of information is reduced (Taleb, 2007). A side effect of compression or reduction is that vast chunks of information are typically ignored. Along with reduction, compression requires an active function of repeated, continuous assessment and observation, wherein information is abstracted (reduced in dimensionality). The abstracted information is reduced through the combination of both ignoring chunks and the creation of narrations (association links or chains of sequential chunks of observed events). These selective narrations, as sequential observations, are known as patterns, which connect events, thus making prediction possible.

      Patterns are abstractions or representations of reduced information. Abstraction (as opposed to concretization) is fundamental to mathematics and physics. Abstraction describes the derivation of non-physical patterns. Concretization refers to the creation of physical objects. Abstraction is similar to Plato’s (2002) concept of ideal. The transformation of the Platonic ideal into the language of sciences by philosophy is important to understand. It is this concept that structures others, like Newton’s universal clock. The Platonic and Aristotelian triadic structure consists of three components: (1) the physical/material world; (2) the mental world; and (3) the world of structures. Abstraction is thus the mental process of removing properties from an (X), followed by attaching a name/identity to those properties. These abstractions belong in the world of mentality, which can be individualized or collectivized.

      Patterns enable efficient informational manipulation and storage. It is impossible to use and store all available information, given the several orders of magnitude of energy required. Hence, only useful bits or patterns are used to make generalized knowledge possible. Examples/descriptions of patterns include summaries, compressions, narrations, episodes, sequences, slices, and foliations of information. From patterns, rules or laws can be derived, which are generalized forms of knowledge (Woodward, 2000). Generalized knowledge is that which is judged to be invariant (Woodward, 2000) for a given set of contexts, thus holding the status of governing or ruling constraints (Juarero, 2023), which allows for greater predictability, less uncertainty, and the performance of experiments (which test and maintain the validity of the said rule or law).

      Rules and laws, as governing constraints, are compact, and because of their reliability value (Woodward, 2000), they enable functions to occur with less energy expenditure, while also enabling coherence, comprehensibility, and understanding. Media, in the forms of books, magazines, plays, stories, videos, movies, paintings, poetry, and all sciences are based on this principle of compressed bits of information (Taleb, 2007). Patterns also take the form of ideas or concepts.

      The name of this compressed information, such as patterns, ideas, concepts, episodes, movies, or any of the aforementioned, is data. Data describe identifiable, embodied, encoded, or nested patterns within various physical mediums, structures, or forms (like vehicles). In a non-physical medium, such as a mind, patterns or data exist in the form of ideas, concepts, or thoughts, each of which is largely represented by analog encoding through synchronized neuronal spiking and synaptic connections in the brain (Hawkins and Dawkins, 2021). These sequences form through continuous, repetitive observations. As Hawkins and Dawkins (2021) note, world maps are built up of reference frames (mental structures), and thinking is a virtual movement through reference frames.

      Observation, I suggest, is a dual function. The passive form of observation is known as measurement, quantizing, foliation, and hermeneutics. These are repeated processes of automatic assessments and updates. These passive observations consist of subjective, yet autonomic behaviors, aimed at updating and maintaining a system’s world map (Hawkins and Dawkins, 2021). In doing so, these processes maintain the system’s dynamic equilibrium. Observations are thus subjectively sliced into qualitative and quantitative “pieces” of space, time, or a combination of both. Passive observation can occur through perception and experience (if it is possible to even distinguish between them). Observation is thus precisely a method of biasing information in favor of the observer.

      Embodied knowledge, as passive observation, is difficult to acquire, communicate, store, and copy. The knowledge and knowhow contained in the human body (and mind) is “heavier”; knowledge and knowhow contained in objects is relativity easier to move, as objects can be carried and communicated through mediums, such as books and the internet (Hidalgo, 2015). Embodied knowledge is comparatively slower to acquire. This includes technical proficiency like scientific, programming, and legal skills/techniques. It is known as expertise. It includes the knowledge and abilities of other team members and knowledge of contextual circumstances. Embodied knowledge is biased in terms of sociality; it is accumulated and translated through social learning and experience. Beginners learn from more experienced persons; thus, it is not an individual endeavor. There is a social and experiential learning curve, which makes its accumulation time-consuming and limits the speed at which individuals can develop it. Embodied knowledge also biases geographic locations, which have greater quantities of some quality. To solve the issue of embodied knowledge distribution, society breaks up knowledge and knowhow among different individuals in a distributed, networked structure.

      These individuals then utilize their specific forms of knowledge and knowhow as a social network of individuals performing as a team (Hidalgo, 2015). Through networks, the collective body of this knowledge and knowhow can be increased, which is greater than what an individual can produce. Importantly, these networks must be able to distribute knowledge evenly and ensure there is cohesion and a combination of individual parts to produce the result. It is harder to maintain a cohesion rather than to ensure everyone performs their roles. The whole is thus greater than the sum of its parts. For this, there must be timeous and performative cohesion, shared responsibility, social practice, updates, corrections of mistakes, assessments, proper communication, and trust.

      The Freudian “id” described the automatic, unconscious aspect of Freud’s topological mind. In modern terms, this would describe the lizard brain, which performs autonomic functions like maintaining homeostasis in the body (Sapolsky, 2017). As I have described, patterns or ideas describe subjective (or relative) perspectives intrinsic to the constitution of any pattern or data. In other words, ideas are inherently linked to the concept of identity. The processes of observation and abstraction described above are automatic functions of the brain and body (Hawkins and Dawkins, 2021). Both observation and abstraction aim to maintain autonomic stability or homeostasis (Sapolsky, 2017). These are autonomic/automatic forms of applied reason; hence, the separation between observation and reason is misplaced. Reason and observation are reciprocally constitutive; memories, for example, influence reason, and reason influences and alters memories (Taleb, 2007). Reason is thus not something which one does; reason is something which one is. In this light, obtaining patterns is then not a matter of a strong form of labor, expenditure, autonomy, or creativity. As argued below, it is the modulation of contexts, which are in a reciprocally constitutive relation with subjects, which enables patterns to emerge. These are known as discoveries.

      The active form of observation, which I define as assessment (or meta-assessment, to be more accurate), entails active selection and direct participation. Meta-assessment would constitute a strong form of labor, expenditure, autonomy, and creativity in the form of second-order inferences, as described below. These are considerations of meta-suitability or meta-reasoning, which are examples of reasoning about the various modalities (and viabilities) of reason itself. In other words, this process involves biasing certain forms of reason (and, by extension, the products of reason) over others.

      4.3 Imagination and an open system

      Reasoning is the name given to processes used in abstracting and compressing (and ignoring) information to form sequential narrations. Reasoning is thus a technique or the various employed methods of constructing sequences, forming patterns, and collecting data. The various types or techniques of reasoning are called inferences. Inferences (like induction, deduction, and abduction) are used to validate, falsify, cast in doubt, maintain, or update sequences or patterns. Hence, reasoning involves constructing various types of coherences (different techniques can obtain different patterns or informational content from the same information). Some techniques are more contextually suitable than others.

      The applications of these various techniques serve to slice subjective perceptions or experiences (Hegel, 2010; 2018). This process converts each piece (through construction) into spatiotemporal sequential patterns, as functionally usable or functionally relevant data. Reasoning enables the construction of associative semantic relationships (a semantic network or semantic web) between observational and/or experiential information with a spatiotemporal location within a subject’s world map. In other words, reasoning creates an interrelation of dependencies. Using reason, subjects can construct their own affordances (affordances are advantages or adaptations, which enable and create agency) based on the value and suitability of said data, in a given context. The data’s functional usage has value since it enables the subject to persist (delay the thermodynamic equilibrium of the second law of thermodynamics), maintain, or enhance its viability values and update its world maps (Naidoo, 2023d). Second-order inferences are processes of repeated meta-assessment. They are analogous to the Freudian death-drive (Naidoo (2023b). In psychoanalytic terms, this oscillation is known as hysteria (Žižek, 2014).

      I conceive second-order inferences as those that simultaneously target current and previously obtained data (including memories). These inferences also target the reasoning techniques used to obtain said data, including any data obtained about the catalog of reasoning techniques, thus determining the appropriability of the data and the applied techniques (in terms of maintaining a dynamic equilibrium by ascertaining the viability value of data relating to reason and data relating to obtained data).

      Second-order inferences are thus observations about observations or thoughts about thoughts or reason about reason (hence, meta-reasoning). These inferences are typically ignored in favor of observed data (Hossenfelder, 2016), especially in the sciences. These kinds of inferences are often labeled as “mere philosophy” in my experience and ignored. However, they are most important since they ensure that a system remains open and viable, or, in Popper’s (1945) understanding, a closed system of totalitarianism does not ensure. These inferences are aimed at questioning the natural or accepted order of things and serve to undermine settled positions by demonstrating their inherent contradictions, a la Hegel. In other words, transposed into Schrödinger’s (1944) terms, second-order inferences enable a system to persist, avoid their (systems) own entropy increases, and thus avoid thermodynamic equilibrium associated with heat death. Second-order inferences are thus those that maintain a stable-non-equilibrium state, known as a dynamical equilibrium, using negentropy (Schrödinger, 1944). In psychoanalytic theory, a closed system is one that has psychotic foreclosure, wherein “things” are accepted without question. The goal of psychoanalysis is to move a subject from a state of psychotic foreclosure to a state of hysteria.

      Three important questions to answer are as follows: (1) when does data become knowledge? (2) what are the conditions for the acquisition of the status of knowledge (and acquisition of knowledge as such)? and (3) what is learning?

      The first two questions are strongly linked and can be dealt with concurrently. Data becomes, or is converted into knowledge only upon gaining a certain grade of trust. Trust grading is based on various considerations, such as the invariance (Woodward, 2000) and the value of the data, both of which are related to the aim of maintaining a system’s dynamic equilibrium. Thus, knowledge is data trusted to maintain or enhance a system’s dynamic equilibrium. To establish trust, there must be repeated observations and assessments (mainly second-order inferences). The observations and assessments must also target modes of data acquisition/creation, like sampling frequency, error rates, subjective and contextual conditions associated with sampling, the timeframe of the sampling, the sample size, integration with other knowledge, and many others. Trust, like knowledge, is thus context-sensitive or relative and needs to be continuously maintained. Both trust and knowledge fluctuate, degrade, or modulate slower in comparison to contextual information and data acquisition. In this way, data and knowledge (as context-dependent constraints) influence and reciprocally constitute one another. Contexts, as a concept, I understand as being the overarching context-independent constraint. Trust and knowledge exist in a dynamic equilibrium, both serving to maintain an open-dynamic-equilibrium system state. Repeated assessment is necessary, not just repeated observation.

      In terms of the truth–knowledge dichotomy, knowledge is not absolute (universal or objective) but relatively-absolute. Relatively absolute, instead of absolutely relative, highlights the distinction between a postmodern insight and insights into postmodernism. The former would posit that knowledge is completely contextual, which would delight Locke (given his passive mind) and a contextualist like Jacques Derrida. The latter, on the other hand, would suggest that the former replaces one false universal/idol (absolute objectivity or universality) with another false universal/idol (absolute relativity). Thus, the latter attacks the concept of absoluteness/universality itself. Hence, absolutely-relative can be explained with reference to art: in societal terms, art cannot be absolute subjectivity or just anything anyone says it is. Art is a singular thing; that singular thing is where current consensus lies, particularly in art, and it is situated in an art gallery. In Kantian–Lacanian terms, art, or knowledge, is that which is sublime or imbued with fundamental fantasy (Naidoo, 2023b). The sublime, or the fundamental fantasy, is trust. Absolutely relative, as the postmodern, contextualist account of knowledge, typically ignores the underbelly consensus of unknowledge or that which is deemed not trusted. For example, if I write a paper about the origins of life, which is then disproven by someone else, it may seem like the state of knowledge has not been improved. However, this is not true because invalidation itself serves as a reduction. The state of knowledge knows what does not describe the origins of life, which is my invalidated paper.

      As pointed out by Popper (1962), the aim of science is not truth but rather knowledge. Knowledge is conditional; knowledge is only acquired as such through confirmation, repeated assessment, and integration (Woodward, 2000). Science thus aims to build generalized knowledge. Truth is impossible to obtain, argued Popper, because there are infinite paths in history from which knowledge could have originated, making the endeavor of obtaining truth fruitless. Science thus does not prove; science only confirms through corroboration or refutes. This means that while knowledge may be relative to space, time (epochs), or spatial–temporal locations, it nonetheless is relatively absolute since knowledge is only knowledge as such if it contains selective trust (which is an expression of societal autonomy). Hegel (2010), anticipating Popper, presented this insight in a different way through his explication of the necessity of contingency. Facts are thus forms of knowledge, which have a higher trust value and appear most often in a social context; but facts are not truth.

      Knowledge and trust are thus based on consensus. Consensus is ultimately about building-in, indivisible, irreducible knots into a distributed, networked system (a multi-agent system) (OpenCSF, n.d.). This allows a system to function and maintain a dynamic equilibrium. The issue is that consensus is often interpreted in a closed manner, meaning that it requires the constitution of consensus to be an agreement among all participants or agents. However, as voting within politics demonstrates, the presence of a winner does not mean that there is consensus.

      Total agreement is unnecessary when the function of consensus, which is irreducibility, is unearthed. In this light, consensus can also be a dis-consensus, meaning a consensus based on a failure to reach consensus. This kind of conflict takes the form of “we agree to disagree.” This is an irreducible link, which entangles polemic positions in such a way that it keeps the overall system in an open, dynamic equilibrium (hysteria). Žižek (2008) calls this “oppositional determination,” which, in computer science, is known as “a split brain” in distributed, networked systems (the split brain can be traced back to Kant, who demonstrated the split between understanding and reason. This split was confirmed by Sapolsky (2017) as analogous to the neurobiological workings of the amygdala and the prefrontal cortex. Hegel also described the idea of the split as “unhappy consciousness”). I call this a pure difference, which is how Lacan described the way sexual difference is articulated in society (Naidoo, 2023b). It is not that there are differences between polar positions or contested points of view; instead, a meta-difference is introduced, wherein the difference itself is conceived differently. If difference itself is construed differently, there can be no consensus, and a dis-consensus results. Dis-consensus ensures that there is a radical enclosure of openness within a distributed networked system, enabling the persistence of its status as dynamic, as opposed to static. This is also known as an open society in political terms. In this society, opposing sides remain linked while in a state of continuous observation and assessment because of their very (intentional, unbeknownst to them) oppositional determinations. It enables a system of this sort to continuously and dynamically seek out new gradients of energy or information, which are relevant for viability maintenance. Hence, it is not that identities are used for violence; rather, intentional, conceptual violence is performed to create identities. The creation of an indivisible knot as such, which structures a split brain, requires the use of second-order inferences.

      On question 3, learning is the process of repeated observation, assessment, validation, correction, storage (memorization), updating, degrading, and relating useful or important semantic, spatiotemporal information within a system’s world map. It is thus an active process intrinsically related to the constitution (construction) or destruction of data, knowledge, and trust. This is the dual role of imagination. Imagination is absent in a closed system.

      4.4 Launderer and physicality of information

      Ralf Launderer (1961) suggested that information, as a mathematical object, plays a crucial role in physics. His intention was to find the minimum energy required for computation using standard thermodynamics. He used the Launderer reset, which comprises a starting state (say 0) and a binary switch, the latter of which consists of “1” and “0.” Each binary state is a possible logical state for this binary switch. This operation is often referred to as “information erasure” since it reduces the amount of information that can be associated with the binary switch. Before operation, there are two possible states; after operation, there is one. According to thermodynamics, a reduction in the number of possible states for a physical device requires a minimum energy expenditure, which is computable thanks to Boltzmann’s equation. Launderer (1961) then proceeded to deduce the logically irreversible concept, arguing that it implies physical irreversibility. His ultimate deduction was thus that information must be physical. However, this spawned much research into logical reversibility, famously by Charles Henry Bennett (1973) and others. Bennet demonstrated that Launderer erred (refer to part B of Supplementary Material).

      The claim that information is physical has been refuted, and the current consensus is that it is not physical. An experiment at the NiPS laboratory demonstrated that the logically irreversible gate can be reversed logically with a small amount of energy expenditure (López-Suárez et al., 2016), concluding that there was no fundamental limit and that reversible logic is not required to operate computers with zero energy expenditure. This means that there is no limit as to how much we can lower energy consumption during computation. In turn, this means that information cannot be physical; it only has a physical representation (Burgin and Mikkilineni, 2022).

      Information and physical carriers/representations are different. Different physical carriers can carry the same kinds of information (different brands of pens still carry the information, that it is a pen, used for writing, despite different appearances). Studies like those done by Vopson and Lepadu (2022) demonstrate valuable insights into the teleological movement of information but also have (in conjunction with later studies) incorrectly described the nature of information by confusing physical carriers with information. The properties of informational representations and informational carriers are different (Burgin and Mikkilineni, 2022). Information is never directly interacted with; rather, methods of dealing with informational representations and carriers of information are used, like computation, for example. Humans are prone to conflating metaphorical symbols with literals due to the recent evolution and organization of the brain, with the prefrontal cortex being an honorary member of the emotional limbic system (Sapolsky, 2017).

      4.5 Does information have mass?

      The current consensus is that information is massless (Burgin and Mikkilineni, 2022). The physical representation of information has mass, which means it would comply with physical laws. This is important to keep in mind.

      4.6 Place of information

      Information forms part of the world of structures. In the physical world, entities like genes and neurons process, communicate, and convert information into data (and then knowledge). They communicate information first through a representative analog form, such as biological and neurological structures. Second, communication of such form is achieved with the use of chemical or electrical signals (Burgin and Mikkilineni, 2022). For example, “bits” in the digital world are information, which can have many physically representative forms (like symbols, electrical voltage, or pulses). Information is “carried” by these physical representations in the same way that temperature is “carried” by thermometers (Burgin and Mikkilineni, 2022). The General Theory of Information (GTI) describes and distinguishes the properties of information from those of representations and carriers of information.

      4.7 General theory of information and the physical world

      Material structures in the physical world carry information, which represents the state and the dynamics of the analog structures mentioned (Burgin and Mikkilineni, 2022). In the physical world, physical or material things are governed by the transformation laws of matter and energy; energy can create or change material structures. All physical (including chemical) structures, which are created or changed by the transformation of matter and energy, are governed by and obey transformation laws. Hence, this is how physics distinguishes what is physical from what is not.

      All physical structures contain information, which characterizes their structures, functions of their components (including the interactions of the components with their surroundings), and their behaviors upon the occurrence of fluctuations. Factually, there is a relationship between the characteristics of physical objects, which allows for the conversion of mass into the energy of physical objects described by these characteristics. Einstein’s mass–energy equivalence equation, E = mc2, interlinks the energy and mass of physical objects. However, this formula does not mean that substance (matter) is equal to energy; rather, it describes the maximal amount of energy in a physical object with a given mass.

      Thus, the states of physical structures and the regularities of their evolution are described by the laws of physics, which are mental structures created by humans. “Living” organisms developed physical structures, which exploit matter and energy transformations, to acquire unique identities and the ability to sense and process information, which is carried by material/physical structures. They can do this by converting it into data or knowledge, which are mental structures.

      All living organisms have varying degrees of perceptive, processing, magnification, and information-to-data-to-knowledge conversion abilities. Humans can typically represent and manage mental structures using ideal structures or categories like named sets or fundamental triads (Burgin, 2010). Triads provide the schema, including the necessary operations for creating organized forms of data and knowledge, like entities, relationships, and evolutions, based on events and behaviors (Burgin et al., 2020; Mikkilineni, 2022a; Mikkilineni, 2022b). These are world maps.

      Events are caused by (1) fluctuations in the interactions among the components of structures and (2) fluctuations among components and their niches (Naidoo, 2023d). Function, structure, and fluctuations play important roles in a system’s microscopic and macroscopic behaviors (Prigogine, 1978). Mental models, created by information processing, are observer-dependent, as they are conditional on subjective foliations, previous knowledge of the observer, and various other idiosyncratic variables.

      4.8 General theory of information and the ontological principle

      According to this principle, information plays the same role in the world of structures as energy plays in the physical, material world. Despite this link, information is not part of the physical world. It can only be materialized in a physical form (Burgin and Krzanowski, 2022; Burgin and Mikkilineni, 2022).

      For any portion of information (I), there is always a representation (R) for this (I) in a system. This representation is often material, and because of this, information seems physical (Burgin and Mikkilineni, 2022). The physical representation, rather, is the materialization or manifestation of this information and is not the same kind of thing as the information itself. This material form enables the possibility of social exchange, given that it allows other subjects to read, process, obtain, and transfer information. DNA is an example of an inanimate transformation and transmittance of information from one physical representation to another. It is the physical/material representation of information that complies with physical laws, and not the information itself. Mental processes themselves are also not physical; they are tied to something physical, like the brain, but are themselves not (Davis et al., 2012). In other words, semantics are not physical.

      In terms of this principle, information in any system can precipitate the potential for, or cause, transformations within the system itself (like changing its structural or logical elements) (Burgin and Krzanowski, 2022).

      4.9 General theory of information and the representability principle

      According to this principle, for any part of information (I), there is always a representation (R) of this part of (I) for a system (S). (R) is a material representation of said information, and it is only (R) only that obeys physical laws.

      4.10 General theory of information and the embodiment principle

      In terms of this principle, for any information (I), there is always also a carrier (C) in a system (S). As a rule, (C) is typically material; hence, (I) is present in the material world. (C) is an instance of materialization of the information, which I call the second level materialization sub-principle (or SLM for short). Consider this example: a piece of paper, as a carrier, requires the materialization of symbolic information (enaction or inscription, in the form of writing letters forming a language) via an instrument, such as a pen. In this example, information is materialized and hence present in the material world when embodied within a carrier, but the materialization in the form of the inked-in written words is only a physical representation of information. The symbols, being the letters of the language, are also carriers. This is supported by Shannon and Weaver, who separated the message from semantics.

      Thus, any (C) of (I) is a physical something within which (I) is embodied. A physical (R) is also a physical (C) if it allows for the direct extraction of the said information. The key difference between (C) and (R) is that any physical representation is a physical carrier, but not every physical carrier is a physical representation (Burgin and Mikkilineni, 2022).

      To illustrate, consider the following: an envelope is a physical carrier of information (the envelope contains a paper letter with writing on it). The paper letter is also a physical carrier of the same information as the envelope since the information embodied within both the envelope, and the paper letter is the text written on the paper. Given that direct extraction is only possible through viewing the text (reading it), it is not possible to extract this text from the envelope without opening it and reading the letter. One also cannot directly extract the text from the paper letter itself but only from the visible writing embodied on the paper letter. For example, if the letter is written in a visible foreign language, being in possession of the letter does not mean that one can extract the information embodied within it. It is the visible symbols themselves, from which direct abstraction is possible and proceeds (not the paper letter). Hence, the envelope and paper letter within it are only (C). Neither, however, is (R) of the information contained within the letter, since the extraction process cannot be performed on either the paper letter or the envelope. Hence, the difference between FLM (representations) and SLM (carriers) is that FLM comprises SLM, but SLM does not necessarily comprise FLM. A (C) of (I), which is not an (R) (like the envelope or paper letter), is called an enveloping carrier of (I).

      The mental worlds of living biological organisms are structured by scaffolding (Naidoo, 2023b). Information obtained from the environment through the senses enables mental representation, which is then converted into mental structures in the form of triads. There are two types of mental structures: (1) those derived from external observations and (2) those created by human minds serving to represent ideal structures. Mathematics is used to represent ideal structures and operators; it is also used to model systems from the material world, their states, and their evolution (Burgin and Mikkilineni, 2022). The mental world/reality contains different mental structures that are involved in transforming information and data into knowledge. These processes are physical processors, namely, genes and neurons.

      4.11 General theory of information and the rightful placing of information

      Information is non-physical (Timpson, 2004; Timpson, 2008; Timpson, 2013), but it is tied to physical and mental structures and processes. Informational (R) and (C) are embodied in other physical and mental structures (Burgin and Mikkilineni, 2022). If the physical (R) is altered, the information changes too. Erasing a representation (like erasing writing)results in (R) losing its status as such since it would no longer embody information. The status as a (C) likewise can be constituted or un-constituted as such.

      Symbolic (R) of information is involved in logical or abstract computation (like linguistics), whereas physical computation works with physical (R) and (C) of information (Burgin and Mikkilineni, 2022). GTI locates information not in the world of abstract objects (information exists in things outside of mentality) but rather within the world of ideal structures. Information appears in mental and physical worlds through materialization and mentalization. Abstract objects are mental representations of information from the world of ideal structures. They are structures themselves, but they do not belong in the world of ideal structures; they are rather external structures within the general theory of structures.

      With regard to living organisms, information can be conceptually (not physically) separated into ontological information and mental information. The former is that which precipitates formations and transformations of structures within the physical world/physical systems (Burgin and Krzanowski, 2022). Ontological information functions within the physical world; hence, it is used in treating natural phenomena. Mental information (also known as epistemic information), on the other hand, is that which facilitates formations and transformations of structures within the mental world/systems (Burgin and Krzanowski, 2022).

      According to GTI, physical energy is a type of generalized information situated within the physical world and is that which precipitates the changing or preserving of physical systems (Burgin and Krzanowski, 2022). There is a key difference between ontological information and energy as generalized information; the former (as genuine information that can precipitate alterations or preservations of physical systems) acts only on physical systems, which have physical representations, and are embedded in a physical carrier. The latter, energy, directly acts on physical systems. Ontological information can also have physical energy as its representation (Burgin and Krzanowski, 2022). This position has also been supported by the demonstration of Maxwell’s demon in laboratories (refer to part B of Supplementary Material) (Hossenfelder, 2016). Information can be converted into work. This means that it is possible to replace the transfer of energy from a sender to a receiver with a transfer of information, and this information transfer can occur with much less energy than what the receiver gains from the information (Hossenfelder, 2014).

      GTI also distinguishes between mental/epistemic information and mental/psychic energy. Mental/psychic information is generalized information in the mental world that can precipitate the change or preservation of mental systems. Mental information, as epistemic information, is genuine information that can precipitate changes or the preservation of mental systems because of the way it behaves. The difference between both is that mental/psychic information directly acts on mental systems, while mental information, as epistemic information, acts only on systems with a mental representation and embedded within a mental carrier. For example, knowledge is embedded within the mentalities/minds of people. Mental information can have mental energy as its representation (Burgin and Krzanowski, 2022).

      5 Data governance

      Utilizing the framework proposed by Friedrich Hayek (1945) (refer to part C of Supplementary Material), one can answer some of the important questions relating to data governance. The first is ownership of data and the second is the issue of personal data migrations, which bring into play many different, stringent, national and international ethical and regulatory frameworks.

      5.1 Attribution, not ownership 5.1.1 Objects and order

      Imagination is a process of ideation, as I described above, which is the process of constructing and destructing sequential, semantic relations of association. Objects are “crystallized” forms of the imagination, in reference to Erwin Schrödinger (1944) and Ilya Prigogine, 1978. Schrödinger (1944), in What is Life, explained that the persistence and resistance of information (moving against thermodynamic equilibrium) are abilities gained from their crystal structures, which keep systems in a dynamic equilibrium. The information is embodied within these solid, physical crystals as patterns/data. Corporeality or solids have shielding properties, enhancing the “stubbornness” of the embodied information. The aperiodicity of solids was fundamental for the evolution of life, as pointed out by Schrödinger (1944). In social systems, humans build houses and take photographs for the same reason.

      Imagination is the name of a triadic structure composed of what I call the big three. The big three are (1) information, (2) knowledge, and (3) knowhow. Bringing objects from imagination to life requires each of the big three. This often requires assistance from other subjects, such as a structured supply-chain (a distributed network). This is a collaborative effort. A distributed network, as a supply-chain, enables a robust and efficient way to obtain each of the big three and to structure the relations and roles between the different actors of the big three. Each of the big three can originate from different sources. For example, the desire to create an object (a concept)—like a new type of flamethrower—can be my own. The desire and idea are attributable to me; however, I have no knowledge of the scientific (or legal) laws and mathematics required to design it, use it, or analyze its possibility of existence. I also do not have the knowhow, resources, and technical skills required to bring it into physical manifestation/existence. Of the big three, knowledge and knowhow are the rarest (and harder to accumulate). However, knowledge and knowhow are different from the notion of value, despite often being equated. The value of products and the value of knowledge and knowhow are qualitatively different.

      The value associated with products (be it notoriety or economic value) is qualitatively different from the value associated with a person who displays/possesses knowledge sets and knowhow as specific skills, both of which translate into the ability to create products. Both types of value are subject to supply and demand; however, knowledge and knowhow are applicable to different contexts and different creations/products (higher invariance values). In other words, knowledge and knowhow display more invariance because they can directly translate to different contexts and different objects (the knowhow of drilling, for example, can be used to create many different objects). The qualitative difference is that one value is tied to objects, while the other value is tied to its creator. Hence, it is the ability to create that is most important, not the creation itself. That is why the former is afforded privilege, through attribution, and requires societal nurturing.

      Viewing objects as crystals of imagination explains both their social and economic value. In terms of the former, they enable subjects to feel socially linked to one another, thus sharing in a social experience or interrelation. This is the fantasy of equivalency, wherein, through objects, one seemingly feels equivalent to the lived experience of another.

      In the latter, statistics relating to imports and exports are important. The objects of import and export are (the exchange of) crystallized/embodied forms of imagination. Export structures and statistics reveal information about a country’s ability (and requisite resources) to bring objects from imagination into physical reality. Hence, exports provide information about a country’s knowledge and knowhow. If viewed through the paradigm of crystalized imagination, traditional economic concepts like the balance of trade are ill-suited to their task. An alternative lens is an analysis centered on balances of imagination, which involves an imagination exchange (embodied by objects). This also reframes common understandings of exploitation, which are typical in “developing countries” (the idea is that it is exploitative to buy raw materials from a developing country and then sell back to that country an object of higher economic value). The paradigm shift enables linking economic value to the source of imagination, instead of the source of raw materials. Economic prosperity relies on imaginative utility, not on consumption. For example, inventors like Faraday and Tesla developed theoretic frameworks of electromagnetism and methods to make practical applications feasible. These inventors provided imagination for “developing countries” to then see the value of their raw materials. In other words, developing countries are capitalizing on the imagination of others (Hidalgo, 2015).

      Hence, economic value is not only understood in terms of the origins of physical order but also includes the context in which these objects and orders are utilized. Physical forms of order, or objects, allow for certain functional performances in certain contexts. These functional performances are interrelated with contexts and the arrangements of order embodied as said objects. Arrangement orders precipitate function; the need for different functions precipitates different arrangements.

      Medication, for example, is an instance of embodied information, which has greater economic value in some contexts as opposed to others (hence, the economic value is modulated by the contextual conditions). This means that where medicine is produced, and used, is important. An instance of medication, being a pill, allows for a deeper description. Intrinsic to the pill’s constitution are the practical uses of the creators’ knowledge, imagination, and knowhow (this is social value). The creators precipitated a disclosure of the potential biological effects of chemical compounds contained in the pill. What is not present in the pill is information relating to how the creators obtained their understanding of these effects and how to synthesize said effects. The practical uses of the pill exist within the context of its use. The development process would have required many resources in the form of the big three. This is the background context, being knowledge of the “what” and the “how” (what connections, rules, and laws were important) and the knowhow, which is the technical skill required to bring it into physical existence (Hidalgo, 2015). It is the background context that renders the pill economically and socially valuable (utility). Contexts also provide for and modulate the value of creators. It is the variety of knowledge and knowhow embodied by various people and objects, which enables better and more creative information processing.

      There is a qualitative difference between practical uses of knowledge, the knowhow embodied within physical objects, and the knowledge and knowhow embodied in people. The knowledge and knowhow embodied in people are related to the human experience, body, and reality—not the thing (the object) itself. It is acquired throughout development in life, scaffold (Naidoo, 2023b) thinking, ideas, and abilities. This is known as “tacit” knowledge, which is a term attributable to Hayek (1945). Tacit knowledge, in my ontology, is descriptive of the type of knowledge that arises due to the analog form of the human and analog biological structures, including the brain, neuronal patterns (data), organization of patterns, perception, memories, and experiences. This is the process of passive observation (and the content and form of the subjective world map) I detailed above.

      5.1.2 Creativity

      These patterns, in both subjects and objects, are not subject to ownership, but are only attributable to persons in terms of said persons being recognized as the rightful creators of said patterns. Here, I briefly discuss the formation and settlement of these ideas, which took place in the early formation of intellectual property (IP) law (refer to part F of Supplementary Material). In the Lockean era, labor (as performance) was the source of property and proprietorship. Labor pertains to the work that went into creating an intangible entity. The labor concept was flawed, as it did not answer questions related to identifiability; thus, the notion of creativity evolved to supplant it.

      Creativity describes a specific form of labor, namely, mental labor. Mental labor performed by minds enacts processes of creativity, which precipitate in protectable intangibles (in patent law). Although the common law literary debate used the language of identity more than creativity 1 , I would suggest that creativity described both the rules and the consequences of mental performance, whereas the identification aspect added a surplus rule (the identifiability of the work with its progenitor). Creativity was an internal performance, and identity was the linking of said internal performance of the creator with the created external object.

      This understanding of creativity became widespread in the mid-19th century, with leaders such as Thomas Webster (1853), who, in his Treatise on Designs and Patents, stated that any products

      “of the mind or intellectual labour when embodied in a practical form, whether in books, music, paintings, designs, or inventions in the arts and manufactures’ have the peculiar claim derived from the nature of the subject namely, that the subject matter of such property did not exist like land, the air, or wild-animals … such property is, in the strictest sense of the term, a creation” (Webster, 1853; Burke Inlow, 1950; Sherman and Bently, 2003).

      “Creativity,” however, still needed to be described. The understanding was that inventions involved creativity, whereas discoveries were simply observations of existing natural patterns, which were not patentable, because this observational process did not involve qualitative mental labor, which constituted creation. The conceptual bridge then to creativity, from discovery, required qualitative mental labor.

      Discoveries were understood to be already existing a priori, which are context-independent constraints, and always existed independent of human interventions (Webster, 1853; Sherman and Bently, 2003). A genius is one who, as the height of human ability, could ascertain the pool of a priori’s, which consisted of scientific laws, ideas, and principles (like gravity or electromagnetism). Like the exclusion of ideas in the literary common law property debate, these a priori’s were excluded because of their universality (Godson, 1833; Sherman and Bently, 2003). Inventions, however, were objects derived from these a priori’s. Inventions were protectable through patent law and attribution. Attributions in patent law attributions thus recognize a derived utility from a priori’s, arising from creativity. Webster (1853) said

      “discoverer is one thing and an inventor is another. The discoverer is one who discloses something which exists in nature, for instance, coal fields, or a property of matter, or a natural principle: such discovery never was and never ought to be the subject of a patent … The Subjects of discovery are indeed sown broadcast; they exist in nature.”

      Webster (1853) goes on to note that while there may have been great expenditure in making discoveries, discoveries are not inventions (nor subject to ownership). Instead, discoveries are attributable to other mechanisms, such as awards or recognition. Inventions are those that involve a conversion from a priori abstract laws, existing in the minds of men, into something physical and useful. This became the reduction to practice requirement in patent law (Sherman and Bently, 2003). Hence, empirical embodiment, drawn from a priori concepts and converted into physical reality, constitutes an invention. In Boulton and Watt v Bull (1795), Justice Buller said that patents “were granted for some production from these elements and not for the elements themselves” (Boulton and Watt v Bull, 1795). Thus, the logic of creativity was a human creation, and the object of protection afforded by patent law was the human element of creation and creativity in the empirical embodiment of a physical object or process (Sherman and Bently, 2003). This is the foundation for the conception element in patent law, which determines the attribution of data or patterns.

      5.1.3 Attribution, not ownership

      An important issue to address is the common law ownership of ideas or data (part F of Supplementary Material). The common law ownership of ideas, data, or patterns was explicitly rejected for many legal and social reasons, including the maintenance of a social dynamic equilibrium and an open system. The very constitution of IP as a whole served to close common law property in ideas, data, and the like. The very existence of IP thus serves as a consensus regarding the limits of common law protections for legal, viability, and social reasons. IP is thus not something different from the common law of property, but it is its limit. IP exists as a context-independent constraint and as a designation for that which is not susceptible to common law ownership.

      It is important to provide clarity on this position, given that recent works, such as that of Thaldar. et al. (2022), have provided an incorrect and irrational account of the data ownership question within the context of South African law. There are several substantive errors made by Thaldar. et al. (2022), which render their conclusions void. To begin, the relevant question to be answered by the authors is whether data are subject to common law ownership under South African property law. The authors note their methodology/protocol for the article as

      “However, the purpose of this article is not to engage in a normative analysis (what should the law be?), but to engage in a positivist analysis (what is the law?) that draws attention to the multidimensional legal nature of personal genomic sequence data. Accordingly, we do not develop these normative arguments further in this article” (my emphasis) (Thaldar., et al. 2022).

      In exploring the relevant law, the authors note that physical control is required as a necessary/peremptory for data to be considered property under the South African common law of ownership. The authors note

      “A potential obstacle to conceiving of data in this way could be the requirement of physical control, given that personal genomic sequence data are not a corporeal object. It may be recorded on physical devices” (my emphasis) (Thaldar., et al. 2022).

      In this light, the authors acknowledge that physical control is a peremptory requirement for data to be considered property under the South African property law. However, in breaking with their methodology, the authors now reject the positivist requirement of physical control and then make a normative argument stating that physical control is outdated. The authors say

      We suggest that the requirement of physical control is outdated in today’s world where so many valuable assets have a digital rather than a physical existence, and where these digital assets are effectively controlled via digital device interfaces” (my emphasis) (Thaldar., et al. 2022).

      Based on a rejection of a peremptory requirement and thus a positivist analysis as required by the authors’ own methodology, a normative argument is presented so that a conclusion can be constructed that data qualifies as an object under the current South African property law, which is not the case. The conclusion reached by the authors on this matter reflects the following:

      “Accordingly, personal genomic sequence data—understood not in the abstract, but as a specific instance of personal genomic sequence data—qualify as property” (Thaldar., et al. 2022).

      Had the authors followed their methodology, which is to present the law on the issues of whether data qualify as property under the South African common law of property and thus whether data are susceptible to private ownership, the exact opposite conclusion would have been reached. The rightful and rational conclusion, given the peremptory requirement of physical control, leads to the conclusion that data neither qualify as property nor qualify as being susceptible to private ownership under the South African common law of property.

      Additionally, the authors claimed that an instance of personal sequence data is unowned property

      “Personal genomic sequence data are res nullius—something that belongs to no one” (Thaldar., et al. 2022).

      However, the authors have hypostasized data as being property, without meeting the necessary criteria for something to qualify as property. The authors state the following:

      “For the purposes of this discussion, the term “property” denotes a legal object (or “thing”) that is susceptible of ownership. Property can be corporeal (such as a house) or incorporeal (such as intellectual property)” (my emphasis) (Thaldar., et al. 2022).

      However, the authors have made the mistake of conflating corporeality or incorporeality with physicality and non-physicality. For something to qualify as an object of property law, the said object must be physical. The authors have made category errors by confusing physical objects, of which corporeality and incorporeality are sub-categories, with non-physical instances such as knowledge, data, or information. Physical objects are objects of the common law, including intangibles. For example, gas is capable of being an object if it is enclosed; however, qualitatively, gas is categorized as matter, which is both physical and empirical (Rowlands, 2007). Data are not categorized as matter, and that is because data is information or knowledge, which is the object of intellectual property, and subject to attribution, not ownership.

      The objects of both patent law and copyright are data and knowledge (identity in the form of style, in terms of copyright). Both forms exist because of a consensus regarding the societal value of knowledge and the value of the knowhow (the knowledge producer). It is not the physical body of the object that is protected (this is explicitly reserved for the common law); it is the new knowledge/data embodied within the object that is protected. This protection is a recognition of the value of the knowhow producer through the attribution of legal rights. IP was explicitly created to govern imagination (as information, data, knowledge, and knowhow). One of the reasons for this was the perpetuity aspect of the common law, which is harmful to societal equilibrium, and new data/knowledge production. Objects of the common law are physical embodiments of information, not the information, knowledge, or data itself. See part F of the Supplementary Material for more information.

      5.1.4 Misunderstanding of physicality and corporeality

      Any claim that data can be owned makes the logical error of reification or hypostasis. This is confusing a symbolic pattern with the literal (physical) object. The very first criterion for an object to qualify as such in common law property is physicality. I have already described what is considered physical. It is a category error to conflate physical objects, of which corporeality and incorporeality are sub-categories, with non-physical instances, such as data, knowledge, or information. Objects can be intangible, incorporeal, corporeal, or fungible and still be physical. For example, typically, gas is capable of being an object of the common law only upon its enclosure. Gas, despite its intangible nature, is qualitatively categorized as matter, which is both physical and empirical (Rowlands, 2007). This is not to suggest that the premises of the IP law should not be reconsidered.

      5.2 Distributed, tiered approach

      Following Hayek (1945) once more, we can obtain answers regarding the issue of data migrations. It is possible instead to send algorithms to personal/private data storage instead of the other way around. Data produced by the usage of a migrated algorithm would be attributable to the sending party. This potentially limits the risks associated with legal and ethical cross-border data transfers. In terms of data integrity, a Hayekian approach would suggest leaving the decisions to the man on the ground. A solution is simply allowing data analytics companies (any company that performs analytics on datasets. These can be genomic companies, financial companies, legal companies, and so on) to construct their own tiered quality/integrity approach, wherein they charge different amounts depending on a guarantee the company makes related to the quality of the data. Alternatively, data analytics companies can apply the same tiered approach to in-house analytic tools, which can be applied to their in-house datasets. Higher amounts can be charged for higher-quality data or analytic tools. This way, both parties can decide for themselves and rely on contractual provisions and guarantees to regulate their relations.

      6 Data security and data privacy

      Figures 57 present serve to add to the ontology. Each figure outlines important concepts for regulators, ethicists, and the private industry to be aware of. For example, often, mechanisms aimed at data security are mixed up with those that are aimed at data privacy (and vice versa). The information is introductory, for conceptual clarity and exploration in further work (Figures 57).

      Cryptography. Composed by author, 2023.

      Non-security algorithms. Composed by author, 2023.

      Data privacy. Composed by author, 2023.

      7 Conclusion

      Avoiding any lengthy conclusions due to complexity and because I wish any readers of this work to draw their own, I will simply conclude with two things. The first is that I have presented a usable and adaptable framework for an open, dynamically stable, information society, which is applicable to regulatory considerations based on trust and conditionality. Second, I have only provided a negative definition of information. My definition of information is hidden within the first part of this conclusion. Information is reflection.

      Data availability statement

      Publicly available datasets were analyzed in this study. These data can be found at: Naidoo (2023a). An (ontogenetic) transcendental (de)materialist theory of subjectivity. DOI: 10.31219/osf.io/cwugk: https://osf.io/preprints/osf/cwugk. Naidoo (2023b). Contradiction and desire. DOI: 10.31219/osf.io/up5f4: https://osf.io/preprints/osf/up5f4. Naidoo (2023c). The hard problem, qualia, agency, intelligence, and Freud. DOI: 10.31219/osf.io/gqspk: https://osf.io/preprints/osf/gqspk. Naidoo (2023d). What does it mean to be an Agent? DOI: 10.31219/osf.io/evna6: https://osf.io/preprints/osf/evna6 (now published on Frontiers at /journals/psychology/articles/10.3389/fpsyg.2023.1273470/full).

      Author contributions

      MN: conceptualization, formal analysis, investigation, methodology, resources, writing–original draft, and writing–review and editing.

      Funding

      The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. Work on this article was supported by the U.S. National Institute of Mental Health and the U.S. National Institutes of Health (award number U01MH127690) under the Harnessing Data Science for Health Discovery and Innovation in Africa (DS-I Africa) program. The content of this article is solely my responsibility and does not necessarily represent the official views of the U.S. National Institute of Mental Health or the U.S. National Institutes of Health. In addition, support was also obtained from the National Research Foundation (NRF) under the Doctoral Innovation Scholarship.

      The author would like to thank Amy Gooden for her assistance with the technical editing of this manuscript, as well as the figures and tables included herein.

      Conflict of interest

      The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fgene.2024.1290658/full#supplementary-material

      There are finer distinction and details, but they do have much in common as they are both performance-based.

      References Althusser L. (2014). On the reproduction of capitalism: ideology and ideological state apparatuses. London: Verso. Badiou A. (2006). Logics of worlds: being and event II. Continuum. Bennett C. H. (1973). Logical reversibility of computation. IBM J. Res. Dev. 17 (6), 525532. 10.1147/rd.176.0525 Benveniste E. (1966). Problems in general linguistics. Chicago: University of Chicago Press. Bernstein M. N. Castellano G. (2020). Information entropy. Found. Inf. theory Part 2, 249257. 10.1201/9780429022937-23 Boulton and Watt v Bull (1795). 126 er 662. Brownlee J. (2019). A gentle introduction to information entropy. Machine Learning Mastery. Available at: https://machinelearningmastery.com/what-is-information-entropy/ (Accessed August 2, 2023). Burgin M. (2010). Theory of information: fundamentality, diversity, and unification. World Scientific Publishing Company. Burgin M. Krzanowski H. R. (2022). World structuration and ontological information. Proceedings 81 (1), 14. 10.3390/proceedings2022081093 Burgin M. Mikkilineni R. (2022). Is information physical and does it have mass? Information 13 (11), 110. 10.3390/info13110540 Burgin M. Mikkilineni R. Phalke V. (2020). Autopoietic computing systems and triadic automata: the theory and practice. Adv. Comput. Commun. 1, 1635. 10.26855/acc.2020.12.003 Burke Inlow E. (1950). The patent grant. Baltimore: The Johns Hopkins Press. Chalmers D. (1996). The conscious mind: in search of a fundamental theory. Oxford: Oxford University Press. Chalmers D. J. (2010). The character of consciousness. Oxford: Oxford University Press. Cryptography (2021). What is indistinguishability obfuscation? Available at: https://crypto.stackexchange.com/questions/44770/what-is-indistinguishability-obfuscation (Accessed July 11, 2023). Cuff P. Yu L. (2016). Differential privacy as a mutual information constraint. 10.1145/2976749.2978308 Damasio A. (1991). Somatic markers and the guidance of behavior. Oxford: Oxford University Press. Damasio A. (2005). Descartes’ error: emotion, reason, and the human brain. New York: Penguin Books. Davis S. F. Palladino J. J. Christopherson K. (2012). Psychology. London: Pearson. Dawkins R. (1976). The selfish gene. Oxford: Oxford University Press. Deacon T. W. (2007). Shannon – Boltzmann — Darwin: redefining information (Part I). Cogn. Semiot. 1, 123148. 10.1515/cogsem.2007.1.fall2007.123 Descartes R. (1641). Meditations on first philosophy (translated by elizabeth S. Haldane). Deutsch D. (1998). The fabric of reality. London: Penguin Books. Di Giovanni G. Livieri P. (2018). Friedrich Heinrich Jacobi. Available at: https://plato.stanford.edu/entries/friedrich-jacobi/ (Accessed October 14, 2022). Dimitrov B. G. (2015). Topological (in) Hegel: topological notions of qualitative quantity and multiplicity in Hegel’s fourfold of infinities. PhD thesis, University St. Kliment Ohridski). Dolar M. (1991). I shall Be with you on your wedding-night: lacan and the uncanny. Lacan uncanny 58, 523. 10.2307/778795 Einstein A. Podolsky B B. Rosen N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777780. 10.1103/physrev.47.777 Floridi L. (2009). “Philosophical conceptions of information,” in Formal theories of information: from Shannon to semantic information theory and general concepts of information muenchenwiler seminar (Switzerland). 10.1007/978-3-642-00659-3_2 Freud S. (1915). The Interpretation of Dreams (translated by brill, A. A.). The Macmillan Company. Godson R. (1833). Law of patents. Hansard col , 15. Hartnett K. (2022). How Shannon entropy imposes fundamental limits on communication. Quanta Mag. Available at: https://www.quantamagazine.org/how-claude-shannons-concept-of-entropy-quantifies-information-20220906/ (Accessed January 18, 2023). Hawkins J. Dawkins R. (2021). A thousand brains: a new theory of intelligence. New York: Basic Books. Hayek F. A. (1945). The use of knowledge in society. he American Economic Review 35 (4), 519530. http://www.jstor.org/stable/1809376. Hegel G. W. F. (2010). Science of logic (translated by G. Di Giovanni). Cambridge: Cambridge University Press. Hegel G. W. F. (2018). Phenomenology of Spirit (translated by T. Pinkard). Oxford: Oxford University Press. Hidalgo C. (2015). Why information grows: the evolution of order, from atoms to economies. New York: Basic Books. Horkheimer M. Adorno T. W. (1989). Dialectic of enlightenment. New York: The Continuum Publishing Company. Hossenfelder S. (2014). The remote Maxwell demon. Back ReAction. arXiv. 10.48550/arXiv.1408.3797 Hossenfelder S. (2016). The remote Maxwell demon as energy down-converter. Found. Phys. 46, 505516. 10.1007/s10701-015-9981-7 Juarrero A. (2023). Context changes everything: how constraints create coherence. Cambridge: MIT Press. Lacan J. (1979). The Seminar of Jacques lacan, book XI: the four fundamental Concepts of psychoanalysis (translated by A. Sheridan). W. W. Norton and Company. Landauer R. (1961). Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5 (3), 183191. 10.1147/rd.53.0183 Lock J. (1860). An Essay concerning human understanding. Available at: http://www.philotextes.info/spip/IMG/pdf/essay_concerning_human_understanding.pdf (Accessed January 18, 2023). López-Suárez M. Neri I. Gammaitoni L. (2016). Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 12068 (7), 16. 10.1038/ncomms12068 Marx K. Engels F. (1848). “Manifesto of the communist party,” in Marx/engels selected works. Editors Marx K. Engels F. (Moscow: Progress Publishers), 98137. Mikkilineni R. (2022a). A new class of autopoietic and cognitive machines. Information 13, 2414. 10.3390/info13010024 Mikkilineni R. (2022b). Infusing autopoietic and cognitive behaviors into digital automata to improve their sentience, resilience, and intelligence. Big Data Cogn. Comput. 6, 715. 10.3390/bdcc6010007 Mokyr J. (2012). The enlightened economy: an economic history of britain 1700-1850. New Haven: Yale University Press. Naidoo M. (2023a). An (ontogenetic)transcendental (de)materialist theory of subjectivity. 10.31219/osf.io/cwugk Naidoo M. (2023b). Contradiction and desire. 10.31219/osf.io/up5f4 Naidoo M. (2023c). The hard problem, qualia, agency, intelligence, and Freud. 10.31219/osf.io/gqspk Naidoo M. (2023d). What does it mean to be an Agent? 10.31219/osf.io/evna6 OpenCSF (n.d.). Consensus in distributed systems. Available at: https://w3.cs.jmu.edu/kirkpams/OpenCSF/Books/csf/html/DistConsensus.html (Accessed May 17, 2023). Plato (2002). The republic. Available at: https://www.sciencetheearth.com/uploads/2/4/6/5/24658156/plato_-_the_republic.pdf (Accessed May 17, 2023). Poincaré H. (2010). Papers on Topology: analysis Situs and its five Supplements (translated by J. Stillwell). American Mathematical Society. Popper K. (1945). The open society and its enemies. London: Routledge. Popper K. R. (1962). On the sources of knowledge and of ignorance. Philosophy Phenomenological Res. 23 (2), 292293. 10.2307/2104935 Prigogine I. (1978). Time, structure, and fluctuations. Science 201 (4358), 777785. 10.1126/science.201.4358.777 Rosen W. (2010). The most powerful idea in the world: a story of steam, industry, and invention. London: Jonathan Cape. Rowlands P. (2007). Zero to infinity: the foundations of physics. World Scientific Publishing Company. Sapolsky R. M. (2017). Behave: the biology of humans at our best and worst. New York: Penguin Books. Schrödinger E. (1944). What is Life? Cambridge: Cambridge University Press. Schrödinger E. (1967). What is life? The physical aspect of the living cell with mind and matter & autobiographical sketches. Cambridge: Cambridge University Press. Shannon C. E. (1940). A symbolic analysis of relay and switching circuits PhD Thesis (Massachusetts Institute of Technology). Available at: https://dspace.mit.edu/handle/1721.1/11173 . Shannon C. E. Weaver W. (1964). The mathematical theory of communication. Illinois: The University of Illinois Press. Sherman B. Bently L. (2003). The making of modern intellectual property law: the British experience, 1760–1911. Cambridge: Cambridge University Press. Spinoza B. (1995). Spinoza: the letters (translated by S. Shirley). Indianapolis: Hackett Publishing Company. Sproll P. A. C. (1994). Matters of taste and matters of commerce: British government intervention in art education in 1835. Stud. Art Educ. 35 (2), 105113. 10.2307/1320824 Taleb N. N. (2007). The black swan: the impact of the highly improbable. New York: Penguin Books. Thaldar D. (2017). The open society: what does it really mean? De. Jure 50 (2), 396405. 10.17159/2225-7160/2017/v50n2a11 Thaldar D. W. Townsend B. A. Donnelly D. L. Botes M. Gooden A. van Harmelen J. (2022). The multidimensional legal nature of personal genomic sequence data: a South African perspective. Front. Genet. 13, 997595. 10.3389/fgene.2022.997595 Timpson C. (2004). Quantum information theory and the foundations of quantum mechanics. Oxford: University of Oxford. [PhD thesis]. Timpson C. (2008). “Philosophical aspects of quantum information theory,” in The ashgate companion to the new philosophy of physics. Editor Rickles D. (London: Routledge), 197261. Timpson C. (2013). Quantum information theory and the foundations of quantum mechanics. Oxford: Oxford University Press. Vopson M. Lepadatu S. (2022). Second law of information dynamics. AIP Adv. 12, 17. 10.1063/5.0100358 Webster T. (1853). On property in designs and inventions in the arts and manufactures. Chapman & Hall. Wiener N. (1961). Cybernetics: or the control and communication in the animal and the machine. 2 ed. Cambridge: MIT Press. Woodward J. (2000). Explanation and invariance in the special sciences. Brit. J. Phil. Sci. 51, 197254. 10.1093/bjps/51.2.197 Yackel R. (2021). What is homomorphic encryption, and why isn’t it mainstream? Key Factor. Available at: https://www.keyfactor.com/blog/what-is-homomorphic-encryption/ (Accessed May 4, 2023). Yoshida R. (2010). Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv. Mater. 22 (31), 34633483. 10.1002/adma.200904075 Žižek S. (2003). The puppet and the dwarf: the perverse core of christianity. Cambridge: MIT Press. Žižek S. (2008). The ticklish subject: the absent centre of political ontology. London: Verso. Žižek S. (2014). The most Sublime hysteric: Hegel with lacan (translated by T. Scott-railton). Cambridge: Polity Press.
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hocgnw.com.cn
      www.hebeijiu.com.cn
      gzawty1.com.cn
      www.krdxnp.com.cn
      www.eqnmrf.com.cn
      www.qhdrohe.com.cn
      sttlfn.com.cn
      www.tmoqcw.com.cn
      mqurhg.com.cn
      ossygz.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p