Front. For. Glob. Change Frontiers in Forests and Global Change Front. For. Glob. Change 2624-893X Frontiers Media S.A. 10.3389/ffgc.2019.00062 Forests and Global Change Systematic Review Conserving the Last Great Forests: A Meta-Analysis Review of the Drivers of Intact Forest Loss and the Strategies and Policies to Save Them Scullion Jason J. 1 * Vogt Kristiina A. 2 Drahota Bethany 3 Winkler-Schor Sophia 4 Lyons Makaila 1 1Environmental Studies Department, McDaniel College, Westminster, MD, United States 2School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States 3Gila Watershed Partnership of Arizona, Safford, AZ, United States 4Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI, United States

Edited by: Alexandra C. Morel, University of Oxford, United Kingdom

Reviewed by: Maria Piquer-Rodriguez, Institute of Regional Ecology, National University Tucuman, Argentina; René Verburg, Utrecht University, Netherlands

*Correspondence: Jason J. Scullion jscullion@mcdaniel.edu

This article was submitted to Tropical Forests, a section of the journal Frontiers in Forests and Global Change

15 10 2019 2019 2 62 11 01 2019 16 09 2019 Copyright © 2019 Scullion, Vogt, Drahota, Winkler-Schor and Lyons. 2019 Scullion, Vogt, Drahota, Winkler-Schor and Lyons

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The conservation of Earth's remaining intact forests (IFs) is a global priority, but improved understanding of the causes and solutions to IF loss is urgently needed to improve conservation efforts. This meta-analysis examines 207 case studies of IF loss occurring since 1970 to synthesize the drivers of IF loss and the proposed case-specific interventions. The goal of this study is to build a portfolio of conservation best practices for retaining IFs. The most frequently reported direct drivers of IF loss were logging, agriculture, ranching, and infrastructure expansion. Mining and fire were also prominent threats to IFs in selected areas. Indirect drivers of IF loss varied between continents, with high demographic pressures driving forest loss in Latin America, Asia, and Africa, contrasting with North America and Europe-Russia. Indirect economic and socio-political drivers were most frequently reported at the national scale for all continents studied, indicating a central role for national institutions in IF loss and conservation. Decisive socio-political factors underlying IF loss worldwide include political failures, institutional failures, and pro-development policies. A wide range of interventions were recommended in the case studies to conserve IFs. The proposed actions were most frequently within the forest, finance, and education and science sectors, and also emphasized inter-sectoral activities. Based on the results of this study, three core approaches to IF conservation that can be combined at the landscape scale are identified: protected areas, payments for ecosystem services, and agricultural reforms. Related enabling conditions include cooperative landscape management, effective enforcement, and political advocacy. The success of IF conservation efforts ultimately depends on sustained political support and the prioritization of high-value forest landscapes. Such efforts should mitigate socio-economic pressures through policy mixes that are cross-sectoral and place-based. Key policy priorities for IF conservation include addressing the systemic failures of public institutions, increasing political support for IF conservation, and countering harmful development activities.

intact forest forest conservation deforestation drivers policy strategy meta-analysis

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Intact forests (IFs) are a global conservation priority because they provide ecosystem services and vital resources and cultural benefits to local and global societies, especially forest-dependent indigenous people (Finer et al., 2008; Olivero et al., 2016). The loss of these relatively undisturbed native forests has both local and global consequences because human and natural ecosystems are dependent upon stable global carbon and hydrologic cycles and the ability of IFs to mitigate climate change impacts (Seymour and Busch, 2016; Watson et al., 2018). Documenting the loss of IFs has been a long-term priority in biodiversity conservation because the core habitats for many threatened forest-dependent species worldwide are found in IFs (Gibson et al., 2011; Betts et al., 2017; Donald et al., 2019). The threats to and losses of relatively undisturbed native forest ecosystems continue to be reported and recent estimates suggest that only ~25% of global forests are classified as intact (11 million km2) (Heino et al., 2015). Between 2000 and 2012, ~324,000 km2 of IF was lost, which is equal to a land area 1.3 times the size of the United Kingdom (Heino et al., 2015). Scientists and policy-makers have worked for decades to understand the causes of forest loss and to develop effective interventions (e.g., World Resources Institute, 1997; Lambin et al., 2003; Nepstad, 2005; Kissinger et al., 2012). While past efforts have helped to reduce deforestation in some areas (Nepstad et al., 2014; Thaler et al., 2019) and have improved the science of forest conservation (Puri et al., 2016; Min-Venditti et al., 2017), more effective approaches are needed to address the continued and widespread loss of IFs. Current research priorities include improved understanding of the causes of IF loss (Heino et al., 2015) and the development of more evidence to inform the design of place-based forest conservation efforts (Puri et al., 2016; Min-Venditti et al., 2017).

      Underlying our need to better understand the drivers of IF loss is the reality that conservation interventions must be matched to the multi-scale drivers threatening IFs. Developing this knowledge can be difficult because the drivers of forest loss vary regionally and temporally due to variations in socio-economic conditions, land-use dynamics, population density, forest condition, and local biophysical conditions, among other factors (Lambin et al., 2003; Geist et al., 2006). This variation implies that efforts to conserve IFs must be place-based and informed by direct deforestation drivers, which operate locally (e.g., logging and mining), and indirect drivers, which are often external to the local area and outside the control of local land-users (e.g., market prices and technology; Geist et al., 2006). A diversity of scholars with different academic backgrounds have studied the direct and indirect drivers of forest change at several scales—global, regional, and local (e.g., Geist et al., 2006; Soares-Filho et al., 2006; Kissinger et al., 2012; DeFries et al., 2013). The existence of various disciplinary frameworks to understand the drivers of forest change suggests that IF conservation efforts be based on an interdisciplinary, and therefore holistic, approach to forming knowledge of the drivers of IF loss.

      Designing effective IF conservation interventions must account not only for the location-specific drivers of forest change, but also overcome a lack of evidence regarding the efficacy of conservation policies and programs. In general, the field of evidence-based policy and program design for biodiversity conservation remains immature (Miteva et al., 2012; Baylis et al., 2016). Various forest conservation policies have been rigorously evaluated in recent decades, but even the most well-studied interventions suffer from a limited study of intervention outcomes and are not geographically representative (Puri et al., 2016). Limited evaluation data for past conservation efforts is problematic because the impacts of interventions, including unintended tradeoffs (Ferraro and Pattanayak, 2006; Puri et al., 2016) such as increased inequality or leakage (Hirsch et al., 2011), cannot be predicted accurately. Insufficient evaluation data may also hinder projections of conservation interventions because policy impacts can vary by efficacy, efficiency, equity, legitimacy, and partisan appeal (Salamon and Lund, 1989). Given the paucity of rigorous evaluations of forest conservation interventions and the multitude of potential outcomes, expanding the evidence used to inform IF conservation efforts and developing best practices for IF conservation efforts is an urgent scientific challenge.

      In addition to insufficient knowledge about the impacts and trade-offs of IF conservation efforts, another key challenge is implementation. Even if a set of well-informed policies is designed to counter the drivers of forest loss, weak governance, institutional failure, and corruption may inhibit implementation and negate desired effects (Geist and Lambin, 2002; Laurance, 2004; Kissinger et al., 2012). The importance of institutional and political failure in policy implementation is rooted in the tradition of command-and-control governance widely used to regulate land-use (Lambin et al., 2014). Implementing conservation policies and enforcing compliance often requires adequate governance capacity and monitoring capabilities, which is problematic in most tropical forest countries (Kissinger et al., 2012; DeFries et al., 2013). Likewise, political support is necessary to enforce IF conservation laws and to develop new legislation, but political will may be lacking due to corruption (Ascher, 1999; Laurance, 2004) and the primacy of economic development (Geist et al., 2006; Nepstad et al., 2014). Policies that conserve IF may also create economic trade-offs that can be difficult to overcome in the face of powerful political actors and market forces (Wunder and Verbist, 2003). Thus, developing effective approaches to conserve IFs that identify and mitigate governance and institutional deficiencies and overcome existing economic and political trade-offs is a research priority.

      To inform the aforementioned gaps in knowledge and the design of IF conservation efforts, this study examined the following questions: (1) what are the drivers of IF loss with respect to the case study literature?; (2) what IF conservation policies and activities are recommended in the case study literature?; and (3) can the synthesis of the case study's reported deforestation drivers and conservation recommendations inform the design of IF conservation policies and strategies?

      Materials and Methods

      Meta-analyses of case studies are widely used to provide systematic knowledge of scientific topics (Khan et al., 2001), including case-based analyses of the drivers of tropical deforestation (e.g., Geist and Lambin, 2002; Rudel, 2007). Like all research methods, the case-oriented meta-analysis approach has strengths and limitations (Rudel, 2008). An important strength of the approach is the method's ability to identify broad patterns that explain the causes of land-cover change and inform policy development (Rudel, 2008; Magliocca et al., 2015). Drawing inferences from unique case studies can also present methodological challenges, including potential issues with inter-coder variability in the analysis of case studies (Rudel, 2005) and potential bias if cases are mostly focused on popular issues or regions of interest (Rudel, 2008). The following case-oriented meta-analysis sought to avoid potential biases by collecting a global sample of case studies of IF loss, extracting relevant data from each case study using two independent reviewers, and analyzing the case studies at continental and global levels. Continents studied were North America, Latin America, Europe-Russia, Asia, and Africa. Only two cases were identified related to IF loss in Australia-Pacific, so this area was excluded from the continental analyses. To reduce inter-coder variability and ensure that each reviewer utilized a similar approach to extracting information from a case, the reviewers were trained by the lead author using sample case studies. Reviewers then evaluated each assigned case independently before comparing and synthesizing their results with the reviewer who analyzed the same case. The data extracted from the cases was categorized and assessed using existing conceptual frameworks (Table 1).

      The drivers of IF loss and the proposed conservation interventions extracted from the case studies.

      Variable extracted Variable definition Variable structure
      Direct drivers Drivers locally responsible for forest conversion or degradation (1) agricultural expansion; (2) infrastructure development; (3) wood extraction; (4) natural disturbances (e.g., fire, pests, drought); (5) mining and hydrocarbon extraction; and (6) ranching
      Indirect drivers Drivers that enable or encourage conditions that lead to forest conversion or degradation. (1) demographic; (2) economic; (3) sociopolitical; (4) cultural and religious; and (5) scientific and technological. Drivers were recorded by spatial scale of local, national, and international
      Institutional failures Failures in public institutions that lead to forest loss or degradation (1) weak or inadequate law enforcement; (2) poorly designed policies; (3) insufficient capacity; (4) failures in tenure regime; (5) poor planning; (6) poor coordination or collaboration; and (7) institutional corruption
      Political failures Failures by political actors that lead to forest conversion or degradation (1) absent policies or insufficient political will; (2) political corruption; (3) failed policy effort; (4) unclear or ambiguous policies; (5) political instability or uncertainty; (6) insufficient or weak policies; and (7) insufficient funding
      Pro-development policies Forest development, natural resource extraction, or immigration policies implemented by political leaders or policy-makers (1) encourage resource extraction; (2) encourage agriculture/pasture expansion; (3) encourage migration/colonization projects; (4) subsidies or tax incentives to deforest; (5) encourage/support infrastructure development; and (6) promotion of general economic growth.
      Forest conservation interventions Policy recommendations of case study authors to conserve forests (1) sectoral policies; (2) inter-sectoral policies; and (3) unique policies and strategies

      The direct drivers of IF loss were extracted using a modified version of the framework of Geist and Lambin (2002) and indirect drivers were identified using the framework developed by Nelson et al. (2006). The institutional and political failure typologies were produced based on results of the case studies and the political science concepts of policy failure, government failure, and institutional failure (Acheson, 2006; Howlett and Ramesh, 2014; Press, 2015).

      The final dataset included 207 case studies from 193 publications documenting the drivers of IF loss at the local, regional, or national scale. Cases were identified and screened using the PRISMA-P meta-analysis protocol (Shamseer et al., 2015) (see Appendix 1 for complete PRISMA search results). All cases included were peer-reviewed research articles, dissertations or master's theses, or related institutional publications. Cases were obtained using keyword searches in Google Scholar and the Web of Science database from the first 30 pages, showing 10 results per page. The following search terms were used: agricultural frontier, forest frontier, and deforestation frontier, as well as keyword searches constructed using the following methodology: “forest” + climate or condition keyword + change keyword. Climate keywords included dry, rainforest, tropical, subtropical, boreal, and temperate. Condition keywords included old-growth, intact, and primary. Change keywords included deforestation, conversion, and loss. For example, search strings included “dry forest deforestation” and “tropical forest loss.” To be included, each case study had to describe IF loss at the local, regional, or national scale, occur partly or entirely after 1970, and contain information on the drivers of IF loss.

      Based on the keyword searches and after screening the titles for relevance to the study, a total of 1,113 case studies were identified and a total of 483 duplicate studies were removed. The abstracts of the remaining 630 cases were then screened and 441 were excluded, leaving 189 cases (see Appendix 1 for reasons for exclusion). An additional 41 records were obtained from reference lists and Google Scholar alerts, resulting in 230 records for full-text screening. After full-text screening 37 records were excluded, which resulted in a database of 193 records for study. Cases were organized and analyzed in Excel. The following data was extracted from each case study by each reviewer: direct and indirect drivers of change, institutional failures, political failures, pro-development policies, and proposed conservation policies or activities. The data extracted by each reviewer was then refined based on discussions between the paired case study reviewers. Bias was present in the form of the unequal global distribution of case studies. To control for this bias, extracted data was quantitatively analyzed and synthesized as a percent of the case studies at the global and continental scales. For a detailed description of each variable extracted see Table 1.

      Results Case Studies of IF Loss Reviewed

      The review of 193 publications produced 207 case studies of IF loss that formed the database used in this study. Data was collated across all major forest types, five continents, and 49 countries (Appendices 2, 3). The most common reported forest type was tropical-subtropical wet forests (63% of cases), followed by tropical-subtropical dry forests (20%), temperate forests (8%), and boreal forests (8%). The case studies were mostly focused on Latin America (57%), followed by Asia (22%), Africa (10%), Europe-Russia (6%), and North America (5%). Eighty-nine percent of the cases were from developing countries and the remaining 11% were from developed countries.

      Global and Continental Direct Drivers

      By order of frequency reported, the global direct drivers (i.e., proximate causes) of IF loss were agriculture, logging, and ranching (Appendix 4). However, logging was most frequently reported as the greatest contributor to IF loss in all continents studied with the exception of Latin America. In Asia, logging was followed by agriculture and infrastructure development, with ranching infrequently reported. In North America and Europe-Russia, logging was followed by natural factors (i.e., fire), with many of the fires reported caused directly or indirectly by humans. In Latin America, the most frequently reported direct driver of IF loss was agriculture followed by ranching and infrastructure development. Infrastructure development was reported to play a role in ≥50% of each of the continental analyses and mining and oil/gas drilling was reported in 19–31% of cases by continent. A continental analysis of the co-occurrence of agriculture and logging as driving IF loss found that 50% of the Europe-Russian cases and 40% of the North American cases reported logging as the primary reason for IF loss without identifying agriculture as a driver. In contrast, logging without agriculture was reported in only 13% of the cases from Africa and Asia and 4% of the cases from Latin America. Agricultural crops commonly reported to replace IFs at the continental level were soy in Latin America, palm oil and rubber in Asia, and corn in Africa.

      Global and Continental Indirect Drivers

      The indirect drivers (i.e., underlying causes) of IF loss reported in the cases reviewed varied widely by continent and driver type (Appendix 5). Socio-political and economic indirect drivers were most commonly reported at the national scale for all continents at 55 and 63% of all cases, respectively. National and international economic drivers of IF loss were higher in Latin America, Asia, and North America compared to Europe-Russia and Africa. Notable economic factors identified across the cases included increasing commodity and land prices, poverty, and economic recession. National demographic factors were most commonly reported as IF loss factors in Africa (63% of cases), Latin America (48%), and Asia (36%). A continental analysis of the association between demographic factors and IF change identified four IF loss-demographic scenarios: high internal population growth, general internal migration, internal immigration caused by instability, and immigration from abroad. In Latin America, Asia, and Africa, the demographic factors of importance were internal population growth (34, 29, and 31% of cases, respectively), internal migration (39, 22, and 50% of cases, respectively), and migration due to internal instability (5, 2, and 19%, respectively). In Latin America and Asia, immigration was often associated with government-sponsored immigration projects and spontaneous colonist expansion due to poverty, whereas in Africa, immigration was associated with poverty and refugee movements caused by war and political unrest. With a few exceptions, cultural and religious drivers and scientific and technological drivers were reported in ≤10% of the continental case studies. Examples of cultural drivers reported included the transition from traditional hunting and gathering practices to subsistence agriculture and changes in traditional land-use practices. Examples of scientific and technological drivers reported included advances in seed varieties, improved irrigation technologies, and increased mechanization of logging operations and wood processing.

      Pro-development Policies and Political and Institutional Failures

      A global and continental analysis of “pro-development” policies leading to IF loss found that 49% of all cases reported one or more pro-development policy, and the number of policies reported varied widely by continent. Pro-development policies were more commonly reported as driving IF loss in North America (50% of cases), Latin America (47%), and Asia (44%) compared to Europe-Russia (30%) and Africa (19%). In Latin America, the most frequent pro-development policies were associated with agriculture and pasture expansion, colonization schemes, and promotion of resource extraction (e.g., gold mining and logging). In Asia, the most common pro-development policies were agriculture expansion, promotion of resource extraction (i.e., logging), and infrastructure development. In North America, the pro-development policies most often reported were the promotion of resource extraction (i.e., logging) and agriculture expansion.

      A common socio-political factor leading to IF loss is political failure (59% of all cases studied) due to the absence of political will or policies to conserve IFs (30% of all cases) (Table 2). Absence of political will or policies was most frequently reported on all continents except Asia, where political corruption and failed policy efforts were more frequently reported. In Africa, a multitude of factors drive political failure contributing to IF loss, including political corruption, lack of policies or political will, political instability, and insufficient or weak policies. In North America, 80% of the cases reviewed reported the absence of political will or a lack of policies and insufficient or weak policies to conserve IFs. Another common indirect socio-political factor leading to IF loss is institutional failure, with 57% of all cases reporting a related institutional failure (Table 3). Globally, the most commonly reported institutional failure was inadequate law enforcement (26% of cases), followed by insufficient institutional capacity (12%), and poor resource/development planning (10%). Similarly, inadequate law enforcement was most frequently reported in Latin America, Asia, and Africa, followed by insufficient institutional capacity, and poor resource/development planning. Institutional failures were reported less frequently in Europe-Russia and North America.

      The table below shows the reported political failures at the global and regional scales leading to IF loss.

      Political failures Global cases Latin America Asia Africa Europe—Russia North America
      % of cases with political failures 59 55 67 69 40 70
      Absent policies or political will 30 30 18 44 30 50
      Political corruption 10 6 20 19 0 0
      Failed policy effort 11 11 20 0 0 0
      Political instability or uncertainty 10 9 4 38 10 0
      Insufficient or weak policies 8 4 7 25 10 30
      Lack of funding 5 5 0 13 10 0

      Results shown as a percentage of the total case studies reporting a political failure.

      The table below shows the reported institutional failures at the global and regional scales leading to IF loss.

      Institutional failures Global cases Latin America Asia Africa Europe—Russia North America
      % of cases with institutional failures 57 55 69 69 30 30
      Inadequate law enforcement 26 25 36 31 10 0
      Poorly designed policies/planning 5 4 9 13 10 10
      Insufficient institutional capacity 12 13 11 6 10 0
      Issues with land tenure 9 11 9 6 0 0
      Poor resource/development planning 10 11 11 13 10 20
      Inadequate collaboration/coordination 1 1 2 0 0 10
      Institutional corruption 2 2 4 0 0 0

      Results shown as a percentage of the total case studies reporting an institutional failure.

      Recommended Policies and Strategies for IF Conservation

      In the 207 case studies, a total of 456 interventions were recommended to address forest loss. Each intervention was classified and organized by its respective governance sector (Appendix 6). The most frequently recommended sectoral intervention was forest-conservation (53% of all recommendations), followed by inter-sectoral actions (13%), efforts within the finance sector (8%), and public education and science (8%). A sample of the policies and activities proposed within each sector is shown in Appendix 6. Interventions were assessed by how frequently they were recommended to address indirect or direct drivers of IF loss. The most frequently recommended interventions were forest governance (20% of cases), forest management activities (15%), protected areas (10%), collaboration and landscape governance (7%), and law enforcement and monitoring (7%). The least recommended interventions were sustainable land-use planning (2%), political advocacy and lobbying (<1%) and addressing corruption (<1%) (Appendix 6).

      Discussion

      The basic assumption of this research is that the long-term conservation of IFs depends on the integration of scientific knowledge and conservation efforts. Results from this meta-analysis show that the drivers of IF loss vary at the continental level, which adds further support to existing evidence that place-based conservation strategies are needed. As shown by this study, a wide variety of forest conservation policies are available. However, further research is needed to inform the design of IF conservation interventions for specific locations and to develop a portfolio of best practices. Improved understanding of the causes of IF loss and an overview of best practices for IF conservation is the focus of the following sections.

      Understanding and Linking the Drivers of IF Loss to Conservation Efforts

      The meta-analysis results presented provide an overview of the case study literature describing the global and continental drivers of IF loss and their recommended conservation interventions. While the drivers of tropical forest loss are well understood (Geist and Lambin, 2002; Rudel, 2005; Kissinger et al., 2012), knowledge gaps remain with respect to the causes of IF loss (Heino et al., 2015). Echoing previous research on the causes of deforestation (Geist and Lambin, 2002; Kissinger et al., 2012), this study finds that IF loss is often directly due to a combination of factors, including agriculture, logging, infrastructure expansion, and ranching. Agriculture was the most frequently reported direct driver of IF loss at the global level, but logging was the most frequently reported continental direct driver, occurring in >85% of the case studies not in Latin America. This finding aligns with research conducted by Potapov et al. (2017), who used remote sensing to show that IF loss 2000–2013 was most frequently due to logging. Logging, agriculture, and ranching co-occurred with high frequency on most continents, but in North American and European-Russian forests, logging was reported as a direct driver on its own at a higher frequency than Latin America, Asia, and Africa. This finding highlights how the boreal and temperate forests of North America and Europe-Russia are particularly threatened by the logging industry (Hansen et al., 2013; Potapov et al., 2017). Another key continental difference was the high frequency of ranching in Latin America but relatively low frequency in Asia. Also, while agriculture is a frequent driver on all five continents, the most commonly reported crops replacing IFs on three continents were distinct. The individual case studies also demonstrate that direct drivers often vary at regional and local levels. For example, at the local level, Scullion et al. (2014) found that the direct drivers of forest loss in Madre de Dios, Peru varied by land-use designations. At the regional level, Caldas et al. (2015) found that cattle ranching was the largest driver of change in the Paraguayan Chaco, which contrasts with other dry forest case studies in Latin America where conversion due to soya expansion was dominant (Pacheco, 2006; Volante et al., 2016). Common to all continents was the ubiquity of infrastructure development resulting in IF loss. A number of cases also reported mining and oil and gas extraction as drivers, but at lower frequencies. Overall, the direct drivers of IF loss vary widely at the continental level and often at regional and local levels as well. The broad geographic diversity of deforestation threats and the ubiquity of IF loss worldwide (Appendices 2, 3) indicate that IF conservation efforts should focus on high-value regions. The strategy of regional prioritization of IF conservation efforts is reinforced by the finding that many “IF landscapes” (Potapov et al., 2008) lack the full complement of their native fauna (Plumptre et al., 2019). In other words, fully intact forests are increasingly rare and should be targeted for conservation efforts based on priority IF landscapes.

      The indirect causes of IF loss also vary widely at the continental level. The three most frequently reported indirect drivers of IF loss were factors related to demographics, economics, and socio-politics. These factors can be summarized as increasing human demand for natural resources and the global trade in commodities, which drive local-to-global teleconnections (Carrasco et al., 2017) and endanger not only IFs but also wildlife (International Union for the Conservation of Nature, 2009; Estrada et al., 2019). In agreement with trends of global population growth and immigration (United Nations, 2019), clear differences were found between reported demographic pressures across continents, including higher frequencies of population growth and internal migration affecting IFs in developing countries. The causes of migration affecting IFs within developing countries were also variable, with colonization projects, poverty, and population growth being most reported in Latin America and Asia, and population growth, poverty, and refugee movements being most reported in Africa. These findings are insightful because they draw attention to the important and diverse role of human migration in IF change, which can include reductions or increases in forest cover depending on the circumstances (Radel et al., 2019). Economic factors were the most frequently reported indirect driver worldwide and most commonly reported on the same three continents with high levels of pro-development policies: Latin America, Asia, and North America. The economic drivers reported were often linked to economic growth, but economic contraction and poverty also led to IF loss. These findings demonstrate that an important factor driving the continued loss of IFs, which are often geographically remote (Potapov et al., 2008), is their continued integration into global commodity supply chains. Since this integration threatens IFs, this study therefore suggests that conservation efforts should target the leading industries and pro-development policies on each continent. For example, in Latin America, the most frequently reported pro-development policies are the promotion of agriculture, pastures, and logging. Thus, primary targets in Latin America include the beef and soya industries and companies engaged in tropical forest logging. Similarly, priority conservation targets in Asia should include palm oil and logging companies, and in North America, logging companies. Interestingly, the least reported indirect drivers of IF loss, scientific and technological factors and cultural and religious practices, are likely relevant in far more cases than reported due to the central role of culture in influencing human behavior (Brislin, 1993; Schultz, 2011) and the importance of science and technology in driving economic expansion and environmental degradation (Millennium Ecosystem Assessment, 2005). Taken together, this study finds that meta-analysis studies of cases describing IF loss can inform the design and targeting of conservation interventions and confirms that the meta-analysis approach is limited by the biases and reporting of case study authors (Rudel, 2008).

      The need to simultaneously target both market forces and national development policies and institutions to conserve IF is evident in this study by the high frequency of reported political and institutional failures driving IF loss. More than half of the case studies reviewed reported one or more political failure. Lack of political will or absent policies were especially problematic and pronounced in North America and Africa. Many studies have identified the role of political failures, including failed policy efforts, political corruption, political instability, and insufficient or weak policies as major threats to forests in the tropics (e.g., Ascher, 1999; Geist and Lambin, 2002; Kissinger et al., 2012). This study confirms these findings and shows that such drivers are worldwide threats to IFs. Similarly, echoing previous findings on the important role of institutional failure in forest loss (e.g., Dourojeanni, 1999; Kissinger et al., 2012; Rodrigues-Filho et al., 2015), this research found that institutional failures leading to IF loss occur worldwide and were reported in more than half of the cases studied. Overall, institutional failures were more frequently reported in developing countries than in developed countries. Across all continents, except for North America, inadequate law enforcement was the most frequently reported institutional failure, which aligns with other research showing that weak law enforcement is a persistent problem facing forests in developing countries (Kissinger et al., 2012). The relatively high frequency of failures related to law enforcement worldwide demonstrates that preventing IF loss is often not about writing new laws, but enforcing existing laws and regulations. Likewise, the frequency at which the lack of political will is cited indicates the importance of political advocacy to change the domestic politics that surround IFs. However, increased political advocacy on behalf of IFs was rarely mentioned as a recommended conservation intervention. In many cases, the political reforms required to address issues of weak law enforcement and insufficient political will need to address the social inequities that often lead to IF loss (Dourojeanni, 1999) and the strengthening of political constituencies in favor of IF conservation and government accountability (Nepstad, 2005).

      A key finding of this study is the relatively high frequency of indirect drivers of IF loss at the national level, including demographic, economic, and socio-political factors. The importance of these national-level factors in IF loss, particularly decisions made by national governments and corporations, is supported by others who have noted the key role of national-scale institutions in driving tropical deforestation (Wells et al., 2015; Nolte et al., 2017) and maintaining protected area effectiveness (Brandon, 1998; Bradshaw et al., 2015). Related evidence showing the importance of national-scale institutions in forest conservation outcomes includes the recent success of national initiatives to conserve large areas of forests in China, Vietnam, and Brazil (Liu et al., 2008; Meyfroidt and Lambin, 2009; Nepstad et al., 2014). Opportunities exist for international actors to catalyze domestic reforms through multilateral agreements that provide economic assistance or increased market access in return for reform. One example is the US-Peru trade agreement that required forest governance reforms in Peru for greater market access to the United States (Del Gatto et al., 2009). Similarly, international actors can incentivize nation-states to strengthen government institutions that manage IFs through international aid, such as the recent investments of Norway in Liberia, Indonesia, and Brazil (Rainforest Foundation Norway, 2018). While prioritizing conservation efforts at the national scale makes intuitive sense given the hierarchical structure of modern nation-states and the importance of national-level drivers of IF loss, this research also shows that important indirect drivers of IF loss are nested at local and international scales. In summary, future IF conservation efforts should design policies that target deforestation drivers at specific geographic scales and emphasize the targeting of national-level political systems, economic systems, and public institutions whose mission and activities influence IFs.

      Core IF Conservation Interventions

      Individual conservation policies and activities can be understood as “tools in the toolbox” of potential forest conservation interventions because policy instruments are viewed as substitutable (Landry and Varone, 2005). That is, as shown in this study, a wide range of policies and strategies exist to conserve IFs and many of these approaches are useful under a range of circumstances. However, some policy instruments, such as payments for ecosystem services, are more specialized and only effective under certain conditions (Scullion et al., 2011; Wunder, 2013). Given the variation of policy impacts in different contexts and the lack of “policy panaceas” to resolve the overuse of natural resources (Ostrom, 2007), intelligent combinations of policy instruments, known as “policy mixes” (Howlett, 2004), are needed to conserve IFs. The strength of policy mixes is that they are designed to create positive synergies between individual policies and contextual conditions (Howlett, 2004). The wide variety of policies identified in the case studies shows that numerous IF conservation policies are available. While there are many options available, we identified a set of conservation interventions that when implemented together at the landscape scale are likely to lead to long-term IF conservation: protected areas, payments for ecosystem services, and agricultural reforms. These policies were chosen because of their ability to target key drivers of IF loss identified in this study: land conversion for agriculture, logging, and ranching as well as market prices and politics favoring converted forests over IFs. The trade-offs of these core interventions and their related enabling conditions are discussed below.

      Protected Areas

      Protected areas (PAs) form the foundation of global biodiversity and forest protection and are designed to prevent land-use change (United Nations Environmental Program, 2016). The effectiveness of PAs in conserving forests has been studied extensively with most studies finding that PAs slow or stop deforestation compared to unprotected lands (Joppa and Pfaff, 2011; Geldmann et al., 2013). The success of PAs depends on internal and external conditions, such as adjacency and intensity of nearby development and the density of park guards (Bruner et al., 2001; Joppa and Pfaff, 2011). Not all PAs are effective as many fail to maintain their biodiversity (Laurance et al., 2012) or are degazetted due to political pressure (Mascia and Pailler, 2011; Kroner et al., 2019). Establishing PAs on expanding forest frontiers may be helpful in the short-term, but without other supporting initiatives, such as regional land-use planning and law enforcement, their long-term maintenance may be too costly economically and politically. The main reasons for this being that PAs can result in the displacement of other land-uses (Dewi et al., 2013) and create political opposition (Mascia and Pailler, 2011). PA success is especially challenged in developing countries where institutions and political support for conservation are weaker (Ascher, 1999). Similar options but with fewer restrictions, such as indigenous reserves and multiple-use community forestry systems, have also been shown to be effective in maintaining forest cover (Nepstad et al., 2006; Blackman et al., 2017). Based on the aforementioned, we hypothesize that government-led PAs are more likely to effectively conserve IFs in North America and Europe-Russia and community-based systems more effective in Latin America, Asia, and Africa.

      Payments for Ecosystem Services (PES)

      PES programs are an increasingly popular forest conservation strategy that can be used to conserve IFs in lieu of or in addition to PAs. PES programs come in a variety of forms, including carbon payments (e.g., REDD+) and payments for hydrological services (Porras et al., 2008; Angelsen and Rudel, 2013). The strength of the PES approach is that under the right conditions they create a market price for the services of intact ecosystems that can compete with market prices for ecosystem conversion (Wunder, 2005). PES programs may also be advantageous because they can provide an equitable way to offset opportunity costs borne by land-users whose land-use is reduced by conservation efforts (Grieg-Gran et al., 2005). Major drawbacks to PES programs are that the payments are often marginal to the income of land-users and they may not compete with high returns from agriculture (Fisher et al., 2011; Scullion et al., 2014). PES interventions also require existing tenure regimes and effective law enforcement (Wunder, 2005), which are often lacking in remote or frontier regions. PES policies may also increase economic resources in poor regions and ultimately increase deforestation (Assunção et al., 2013). Nonetheless, as evidenced by the rush of national governments seeking to receive REDD+ funds, PES programs can provide a strong incentive to conserve forests (Kissinger et al., 2012). The REDD+ program and other multilateral funding programs that exchange cash for commitments to conserve forests offer promising ways to conserve IFs, but program criteria need to be adjusted to explicitly include IFs (Watson et al., 2018). In summary, given low payment prices, PES programs will work best to conserve IFs when land-use alternatives have low economic value. Also, effective law enforcement and stable public institutions are needed, which frequently excludes IF landscapes in developing countries.

      Agricultural Reforms

      Because PAs are insufficient to conserve all species and landscapes (Soares-Filho et al., 2006) and because agricultural expansion is a leading cause of IF loss and forest loss worldwide (Kissinger et al., 2012), reforming the agricultural sector and including private lands in landscape-level conservation strategies is a key priority. Agricultural policies and programs designed to reduce deforestation include approaches known as “supply chain interventions” (Lambin et al., 2018), which aim to create market incentives to conserve forests and disincentives for deforestation. Transformation of the agricultural sector to conserve forests has increased rapidly in recent years due to consumer demand and the limited effect of public policies in slowing deforestation (Nepstad et al., 2013). Key efforts underway to transform agricultural supply chains include commodity roundtables, crop certification schemes, and corporate procurement policies, such as “no-deforestation” pledges (Nepstad et al., 2013; Rainforest Foundation Norway, 2018). A major downside to supply chain interventions is that they require other supporting policies because they are vulnerable to leakage and spillover effects (Schielein and Börner, 2018). Also, for local producers, crop certification schemes often have low returns because of high certification costs and low-price premiums (Nepstad et al., 2013). In areas of the landscape where PAs and PES payments are less effective due to weak governance or existing private land, agricultural reforms may be useful in all regions of the world studied. Also, while deforestation caused by smallholder shifting cultivation appears to be decreasing in relative terms compared to industrial agriculture (Austin et al., 2017), in Africa, Asia, and Latin America this form of farming remains a threat to IFs (Geist and Lambin, 2002; Potapov et al., 2017). Thus, efforts to reduce the impacts of smallholder agriculture are also needed. Overall, the major related policy challenge is how to pair agricultural reforms with other multi-sectoral efforts that together ensure IF conservation, food security, and local income generation.

      Enabling Conditions for IF Conservation

      Enabling conditions are necessary for the efficacy of the core IF conservation interventions described above and include cooperative landscape management, enforcement, and political advocacy. These three conditions were selected based on the high frequency of interventions recommended related to law enforcement and multi-sectoral actions, as well as their ability to increase political will for IF conservation.

      Cooperative Landscape Management

      The diversity of cross-sectoral deforestation drivers and proposed inter-sectoral conservation interventions reported in this study highlight the necessity of cooperative landscape management. Cooperative landscape management involves collaborative management of mixed-use landscapes by land-users and institutions with management authority at the landscape-scale (Jacobson and Robertson, 2012), including combinations of PAs, working forests, and agricultural landscapes. The strength of this approach is that landscape-level collaborative efforts can break down sectoral silos, increase co-learning, and create shared responsibility to solve natural resource issues (Jacobson and Robertson, 2012; Kissinger et al., 2012). Various IF conservation interventions can be applied through cooperative landscape management, or “territorial approaches” (Nepstad et al., 2014), including strategic road planning (Laurance et al., 2014), deforestation bans and moratoriums (Fagan et al., 2013), forest zoning (Potapov et al., 2008), and land tenure reforms (Busch and Ferretti-Gallon, 2017).

      Enforcement

      This study found that weak or absent law enforcement was the most frequently reported institutional failure in Latin America, Africa, and Asia. This situation is problematic because enforcement of the rules and laws underlying natural resource management is a prerequisite for conservation success (Ostrom, 1990). In general, effective law enforcement is associated with positive forest conservation outcomes (Agrawal et al., 2014). However, law enforcement can be economically costly and may present opportunity costs to land-users (Börner et al., 2014). Effective law enforcement also has the potential to exacerbate rural poverty and can raise questions about social justice and the legitimacy of force (Brechin et al., 2002). If used inhumanely or without policies to offset its opportunity costs to land-users, law enforcement will be politically unpopular and increasingly difficult to maintain (Brechin et al., 2002). These challenges may be overcome through community-based conservation efforts where local communities make and enforce their own rules (Ostrom, 1990; Cox et al., 2010). Relatedly, corruption threatens IFs worldwide and related law enforcement efforts are essential.

      Political Advocacy

      Absent policies or political will was the most frequently documented political failure on all continents besides Asia. Political advocacy is necessary to conserve IFs in a democratic society to generate political will, challenge powerful actors, win political debates, and ensure government transparency. An engaged citizenry is also needed to conserve IFs because the ultimate cause of most conservation challenges is human behavior (Schultz, 2011), which manifests through politically negotiated outcomes and government institutions (Dietz et al., 2003; Fischer et al., 2012). Social movements and grassroots advocacy whose agendas are to influence environmental politics have long been instrumental in the legal protection of IFs, including wilderness protection in the United States (Turner, 2012) and the recent soy moratorium in the Brazilian Amazon (Rainforest Foundation Norway, 2018). Maintaining and expanding the protection of IFs will thus require increasingly effective political advocacy. Such advocacy should emphasize persuasive storytelling and building influential and diverse political constituencies, including corporations, politicians, young people, and forest-dependent communities.

      Conclusion

      This study demonstrates that the synthesis of case studies of IF loss worldwide can be used to identify distinct continental patterns of indirect and direct drivers. This knowledge can be used to inform the design of place-based conservation interventions. A key finding from this study is the diversity of reported drivers of IF loss external to the forest-conservation sector. This reality implies that many of the most effective policy interventions will be extra-sectoral (Wunder, 2004). Critical non-forest sectors identified in this research include infrastructure, finance, and education and science. Ultimately, the inter-sectoral nature of IF loss implies the need to shift from a linear conservation dominated approach to a holistic multi-sectoral approach. Similarly, gaps in the recommended conservation interventions in the case studies include a lack of recommendations to address corruption, insufficient political will, and institutional weakness. Whether this issue is restricted to the case study literature or is a broader problem facing IF conservation efforts requires further analysis, but additional efforts are surely needed to increase political support, eliminate subsidies and tax incentives, and address corruption.

      This meta-analysis shows that IFs face a variety of direct and indirect threats around the world. Successful IF conservation efforts require holistic, place-based, and multi-scale approaches focused on priority IF landscapes. Conservation efforts at the landscape-scale cross jurisdictional borders which creates challenges and opportunities for public-private partnerships (Scarlett and McKinney, 2016). Ultimately, the current paradigm of economic development must shift to make IF conservation the preferred policy option and not a trade-off that must be made. This approach requires the concerted efforts of scientists, policymakers, corporations, NGOs, and engaged citizens operating in governance regimes that link actors and institutions across global-to-local scales. To conserve IFs locally and globally thus requires many different actors to work together and for governance regimes to account for the telecoupled nature of resource flows and collective decision-making (Munroe et al., 2019). The structure for such collaborations is multi-scale governance whereby global and domestic institutions provide guidance, coordination, and monitoring and local and regional institutions ensure policies are fit to local conditions and include local stakeholders. Developing these polycentric governance systems (Nagendra and Ostrom, 2012) focused on landscape-level IF conservation will take generations, but the effort is surely worthwhile.

      Author Contributions

      JS devised and directed the project. JS, BD, SW-S, and ML extracted the data and conducted the analysis of the results. JS and KV wrote the article. All authors discussed the results and commented on the manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      This research was made possible through the research support of Beth Lang, Mary D'Amato, Zach Carnegie, Rachael Fox, Jackie Farenholz, Samson Grunwald, Amanda Rasmussen, Russell Tess, and Sam Scullion. A special thanks to the two reviewers whose hard work and comments significantly improved the original manuscript.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/ffgc.2019.00062/full#supplementary-material

      References Acheson J. M. (2006). Institutional failure in resource management. Annu. Rev. Anthropol. 35, 117134. 10.1146/annurev.anthro.35.081705.123238 Agrawal A. Wollenberg E. Persha L. (2014). Governing agriculture-forest landscapes to achieve climate change mitigation. Glob. Environ. Change 29, 270280. 10.1016/j.gloenvcha.2014.10.001 Angelsen A. Rudel T. K. (2013). Designing and implementing effective REDD+ policies: a forest transition approach. Rev. Environ. Econ. Policy 7, 91113. 10.1093/reep/res022 Ascher W. (1999). Why Governments Waste Natural Resources: Policy Failures in Developing Countries. Baltimore, MD: JHU Press. Assunção J. Gandour C. Rocha R. Rocha R. (2013). Does Credit Affect Deforestation? Evidence From a Rural Credit Policy in the Brazilian Amazon. Climate Policy Initiative Technical Report. San Francisco, USA. Austin K. G. González-Roglich M. Schaffer-Smith D. Schwantes A. M. Swenson J. J. (2017). Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12:054009. 10.1088/1748-9326/aa6a88 Baylis K. Honey-Rosés J. Börner J. Corbera E. Ezzine-de-Blas D. Ferraro P. J. . (2016). Mainstreaming impact evaluation in nature conservation. Conserv. Lett. 9, 5864. 10.1111/conl.12180 Betts M. G. Wolf C. Ripple W. J. Phalan B. Millers K. A. Duarte A. . (2017). Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441444. 10.1038/nature2328528723892 Blackman A. Corral L. Lima E. S. Asner G. P. (2017). Titling indigenous communities protects forests in the Peruvian Amazon. Proc. Natl. Acad. Sci. U.S.A. 114, 41234128. 10.1073/pnas.160329011428373565 Börner J. Wunder S. Wertz-Kanounnikoff S. Hyman G. Nascimento N. (2014). Forest law enforcement in the Brazilian Amazon: costs and income effects. Glob. Environ. Change 29, 294305. 10.1016/j.gloenvcha.2014.04.021 Bradshaw C. J. Craigie I. Laurance W. F. (2015). National emphasis on high-level protection reduces risk of biodiversity decline in tropical forest reserves. Biol. Conserv. 190, 115122. 10.1016/j.biocon.2015.05.019 Brandon K. (1998). Chapter 13. Comparing cases. A review of findings, in Parks in Peril: People, Politics, and Protected Areas, eds Brandon K.H. Redford K. Sanderson S. E. (Washington, DC: Island Press). Brechin S. R. Wilshusen P. R. Fortwangler C. L. West P. C. (2002). Beyond the square wheel: toward a more comprehensive understanding of biodiversity conservation as social and political process. Soc. Nat. Resour. 15, 4164. 10.1080/089419202317174011 Brislin R. (1993). Understanding Culture's Influence on Behavior. Chicago, IL: Harcourt Brace Jovanovich. Bruner A. G. Gullison R. E. Rice R. E. Da Fonseca G. A. (2001). Effectiveness of parks in protecting tropical biodiversity. Science 291, 125128. 10.1126/science.291.5501.12511141563 Busch J. Ferretti-Gallon K. (2017). What drives deforestation and what stops it? A meta-analysis. Rev. Environ. Econ. Policy 11, 323. 10.1093/reep/rew013 Caldas M. M. Goodin D. Sherwood S. Campos Krauer J. M. Wisely S. M. (2015). Land-cover change in the Paraguayan Chaco: 2000–2011. J. Land Use Sci. 10, 118. 10.1080/1747423X.2013.807314 Carrasco L. R. Chan J. McGrath F. L. Nghiem L. T. P. (2017). Biodiversity conservation in a telecoupled world. Ecol. Soc. 22:24. 10.5751/ES-09448-220324 Cox M. Arnold G. Tomás S. V. (2010). A review of design principles for community-based natural resource management. Ecol. Soc. 15, 119. 10.5751/ES-03704-150438 DeFries R. Herold M. Verchot L. Macedo M. N. Shimabukuro Y. (2013). Export-oriented deforestation in Mato Grosso: harbinger or exception for other tropical forests?. Philos. Trans. R. Soc. B 368:20120173. 10.1098/rstb.2012.017323610176 Del Gatto F. Ortiz-von Halle B. Buendía B. Keong C. H. (2009). Trade liberalization and forest verification: learning from the US-Peru trade promotion agreement. VERIFOR Briefing Paper. Dewi S. van Noordwijk M. Ekadinata A. Pfund J. L. (2013). Protected areas within multifunctional landscapes: squeezing out intermediate land use intensities in the tropics?. Land Use Policy 30, 3856. 10.1016/j.landusepol.2012.02.006 Dietz T. Ostrom E. Stern P. C. (2003). The struggle to govern the commons. Science 302, 19071912. 10.1126/science.109101514671286 Donald P. F. Arendarczyk B. Spooner F. Buchanan G. M. (2019). Loss of forest intactness elevates global extinction risk in birds. Anim. Conserv. 22, 341347. 10.1111/acv.12469 Dourojeanni M. J. (1999). The Future of the Latin American Natural Forests. Washington, DC: Inter-American Development Bank. Estrada A. Garber P. A. Chaudhary A. (2019). Expanding global commodities trade and consumption place the world's primates at risk of extinction. PeerJ 7:e7068. 10.7717/peerj.7068 Fagan M. E. DeFries R. S. Sesnie S. E. Arroyo J. P. Walker W. Soto C. . (2013). Land cover dynamics following a deforestation ban in northern Costa Rica. Environ. Res. Lett. 8:034017. 10.1088/1748-9326/8/3/034017 Ferraro P. J. Pattanayak S. K. (2006). Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biol. 4:e105. 10.1371/journal.pbio.004010516602825 Finer M. Jenkins C. N. Pimm S. L. Keane B. Ross C. (2008). Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 3:e2932. 10.1371/journal.pone.000293218716679 Fischer J. Dyball R. Fazey I. Gross C. Dovers S. Ehrlich P. R. . (2012). Human behavior and sustainability. Front. Ecol. Environ. 10, 153160. 10.1890/110079 Fisher B. Edwards D. P. Giam X. Wilcove D. S. (2011). The high costs of conserving Southeast Asia's lowland rainforests. Front. Ecol. Environ. 9, 329334. 10.1890/100079 Geist H. Lambin E. Palm C. Tomich T. (2006). Agricultural transitions at dryland and tropical forest margins: actors, scales and trade-offs, in Agriculture and Climate Beyond 2015, eds Brouwer F. McCarl B. A. (Dordrecht: Springer, 5373. Geist H. J. Lambin E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52, 143150. 10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2 Geldmann J. Barnes M. Coad L. Craigie I. D. Hockings M. Burgess N. D. (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230238. 10.1016/j.biocon.2013.02.018 Gibson L. Lee T. M. Koh L. P. Brook B. W. Gardner T. A. Barlow J. . (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378. 10.1038/nature1042521918513 Grieg-Gran M. Porras I. Wunder S. (2005). How can market mechanisms for forest environmental services help the poor? Preliminary lessons from Latin America. World Dev. 33, 15111527. 10.1016/j.worlddev.2005.05.002 Hansen M. C. Potapov P. V. Moore R. Hancher M. Turubanova S. A. A. Tyukavina A. . (2013). High-resolution global maps of 21st-century forest cover change. Science. 342, 850853. 10.1126/science.124469324233722 Heino M. Kummu M. Makkonen M. Mulligan M. Verburg P. H. Jalava M. . (2015). Forest loss in protected areas and intact forest landscapes: a global analysis. PLoS ONE 10:e0138918. 10.1371/journal.pone.013891826466348 Hirsch P. D. Adams W. M. Brosius J. P. Zia A. Bariola N. Dammert J. L. (2011). Acknowledging conservation trade-offs and embracing complexity. Conserv. Biol. 25, 259264. 10.1111/j.1523-1739.2010.01608.x21091769 Howlett M. (2004). Beyond good and evil in policy implementation: instrument mixes, implementation styles, and second generation theories of policy instrument choice. Policy Soc. 23, 117. 10.1016/S1449-4035(04)70030-2 Howlett M. Ramesh M. (2014). The two orders of governance failure: design mismatches and policy capacity issues in modern governance. Policy Soc. 33, 317327. 10.1016/j.polsoc.2014.10.002 International Union for the Conservation of Nature (2009). Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species, eds Vié J.-C. Hilton-Taylor C. Stuart S. N.. Gland. Jacobson C. Robertson A. L. (2012). Landscape conservation cooperatives: bridging entities to facilitate adaptive co-governance of social–ecological systems. Hum. Dimens. Wildl. 17, 333343. 10.1080/10871209.2012.709310 Joppa L. N. Pfaff A. (2011). Global protected area impacts. Proc. R. Soc. Lond. B 278, 16331638. 10.1098/rspb.2010.171321084351 Khan K. S. Ter Riet G. Glanville J. Sowden A. J. Kleijnen J. (2001). Undertaking Systematic Reviews of Research on Effectiveness: CRD's Guidance for Carrying Out or Commissioning Reviews. NHS Centre for Reviews and Dissemination. Kissinger G. M. Herold M. De Sy V. (2012). Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers. Lexeme Consulting. Kroner R. E. G. Qin S. Cook C. N. Krithivasan R. Pack S. M. Bonilla O. D. . (2019). The uncertain future of protected lands and waters. Science 364, 881886. 10.1126/science.aau5525 Lambin E. F. Geist H. J. Lepers E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 28, 205241. 10.1146/annurev.energy.28.050302.105459 Lambin E. F. Gibbs H. K. Heilmayr R. Carlson K. M. Fleck L. C. Garrett R. D. . (2018). The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8:109. 10.1038/s41558-017-0061-1 Lambin E. F. Meyfroidt P. Rueda X. Blackman A. Börner J. Cerutti P. O. . (2014). Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129140. 10.1016/j.gloenvcha.2014.06.007 Landry R. Varone F. (2005). The choice of policy instruments: confronting the deductive and the interactive approaches, in Designing Government: From Instruments to Governance, eds Eliadis P. Hill M. M. Howlett M. (Montreal, QC: McGill-Queen's Press), 106131. Laurance W. F. (2004). The perils of payoff: corruption as a threat to global biodiversity. Trends Ecol. Evol. 19, 399401. 10.1016/j.tree.2004.06.00116701292 Laurance W. F. Clements G. R. Sloan S. O'connell C. S. Mueller N. D. Goosem M. . (2014). A global strategy for road building. Nature 513, 229232. 10.1038/nature1371725162528 Laurance W. F. Useche D. C. Rendeiro J. Kalka M. Bradshaw C. J. Sloan S. P. . (2012). Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290294. 10.1038/nature1131822832582 Liu J. Li S. Ouyang Z. Tam C. Chen X. (2008). Ecological and socioeconomic effects of China's policies for ecosystem services. Proc. Natl. Acad. Sci. U.S.A. 105, 94779482. 10.1073/pnas.070643610518621700 Magliocca N. R. Rudel T. K. Verburg P. H. McConnell W. J. Mertz O. Gerstner K. . (2015). Synthesis in land change science: methodological patterns, challenges, and guidelines. Reg. Environ. Change 15, 211226. 10.1007/s10113-014-0626-825821402 Mascia M. B. Pailler S. (2011). Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 920. 10.1111/j.1755-263X.2010.00147.x Meyfroidt P. Lambin E. F. (2009). Forest transition in Vietnam and displacement of deforestation abroad. Proc. Natl. Acad. Sci. U.S.A. 106, 1613916144. 10.1073/pnas.090494210619805270 Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press. Min-Venditti A. A. Moore G. W. Fleischman F. (2017). What policies improve forest cover? A systematic review of research from Mesoamerica. Glob. Environ. Change 47, 2127. 10.1016/j.gloenvcha.2017.08.010 Miteva D. A. Pattanayak S. K. Ferraro P. J. (2012). Evaluation of biodiversity policy instruments: what works and what doesn't?. Oxf. Rev. Econ. Policy 28, 6992. 10.1093/oxrep/grs009 Munroe D. Batistella M. Friis C. Gasparri N. I. Lambin E. Liu J. . (2019). Governing flows in telecoupled land systems Curr. Opin. Environ. Sus. 38, 5359. 10.1016/j.cosust.2019.05.004 Nagendra H. Ostrom E. (2012). Polycentric governance of multifunctional forested landscapes. Int. J. Common. 6, 104133. 10.18352/ijc.321 Nelson G. C. Bennett E. Berhe A. A. Cassman K. DeFries R. Dietz T. . (2006). Anthropogenic drivers of ecosystem change: an overview. Ecol. Soc. 11, 131. 10.5751/ES-01826-110229 Nepstad D. McGrath D. Stickler C. Alencar A. Azevedo A. Swette B. . (2014). Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 11181123. 10.1126/science.124852524904156 Nepstad D. Schwartzman S. Bamberger B. Santilli M. Ray D. Schlesinger P. . (2006). Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conserv. Biol. 20, 6573. 10.1111/j.1523-1739.2006.00351.x16909660 Nepstad D. C. (2005). Governing the world's forests, in Conserving Biodiversity, eds Babbitt B. Sarukhan J. (Washington, DC: Aspen Institute), 3752. Nepstad D. C. Boyd W. Stickler C. M. Bezerra T. Azevedo A. A. (2013). Responding to climate change and the global land crisis: REDD+, market transformation and low-emissions rural development. Philos. Trans. R. Soc. B 368:20120167. 10.1098/rstb.2012.016723610173 Nolte C. Gobbi B. de Waroux Y. L. P. Piquer-Rodríguez M. Butsic V. Lambin E. F. (2017). Decentralized land use zoning reduces large-scale deforestation in a major agricultural frontier. Ecol. Econ. 136, 3040. 10.1016/j.ecolecon.2017.02.009 Olivero J. Fa J. E. Farfán M. A. Lewis J. Hewlett B. Breuer T. . (2016). Distribution and numbers of Pygmies in Central African forests. PLoS ONE 11:e0144499. 10.1371/journal.pone.014449926735953 Ostrom E. (1990). Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge: Cambridge University Press. Ostrom E. (2007). A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. U.S.A. 104, 1518115187. 10.1073/pnas.070228810417881578 Pacheco P. (2006). Agricultural expansion and deforestation in lowland Bolivia: the import substitution versus the structural adjustment model. Land Use Policy 23, 205225. 10.1016/j.landusepol.2004.09.004 Plumptre A. J. Baisero D. Je? drzejewski W. Kühl H. Maisels F. Ray J. C. . (2019). Are we capturing faunal intactness? A comparison of intact forest landscapes and the “last of the wild in each ecoregion”. Front. For. Glob. Change 2:24. 10.3389/ffgc.2019.00024 Porras I. T. Grieg-Gran M. Neves N. (2008). All That Glitters: A Review of Payments for Watershed Services in Developing Countries (No. 11). IIED. Potapov P. Hansen M. C. Laestadius L. Turubanova S. Yaroshenko A. Thies C. . (2017). The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3:e1600821. 10.1126/sciadv.160082128097216 Potapov P. Yaroshenko A. Turubanova S. Dubinin M. Laestadius L. Thies C. . (2008). Mapping the world's intact forest landscapes by remote sensing. Ecol. Soc. 13:51. 10.5751/ES-02670-130251 Press D. (2015). American Environmental Policy: The Failures of Compliance, Abatement and Mitigation. Cheltenham: Edward Elgar Publishing. Puri J. Nath M. Bhatia R. Glew L. (2016). Examining the evidence base for forest conservation interventions. International initiative for impact evaluation (3ie). Evid. Gap Map Rep. 4, 170. 10.23846/egm0004 Radel C. Jokisch B. D. Schmook B. Carte L. Aguilar-Støen M. Hermans K. . (2019). Migration as a feature of land system transitions. Curr. Opin. Environ. Sustain. 38, 103110. 10.1016/j.cosust.2019.05.007 Rainforest Foundation Norway (2018). Saving the Rainforest 2.0. Next Steps and Better Solutions for Efforts to Protect the Rainforest. Oslo. Rodrigues-Filho S. Verburg R. Bursztyn M. Lindoso D. Debortoli N. Vilhena A. M. (2015). Election-driven weakening of deforestation control in the Brazilian Amazon. Land Use Policy 43, 111118. 10.1016/j.landusepol.2014.11.002 Rudel T. (2005). Tropical Forests: Regional Paths of Destruction and Regeneration in the Late 20th Century. New York, NY: Columbia University Press. Rudel T. K. (2007). Changing agents of deforestation: from state-initiated to enterprise driven processes, 1970–2000. Land Use Policy 24, 3541. 10.1016/j.landusepol.2005.11.004 Rudel T. K. (2008). Meta-analyses of case studies: a method for studying regional and Global Environment Change. Glob. Environ. Change 18, 1825. 10.1016/j.gloenvcha.2007.06.001 Salamon L. M. Lund M. S. (1989). The Tools Approach: Basic Analytics. Beyond Privatization: The Tools of Government Action, 2350. Washington, DC: Urban Institute. Scarlett L. McKinney M. (2016). Connecting people and places: the emerging role of network governance in large landscape conservation. Front. Ecol. Environ. 14, 116125. 10.1002/fee.1247 Schielein J. Börner J. (2018). Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon. Land Use Policy 76, 8194. 10.1016/j.landusepol.2018.04.052 Schultz P. W. (2011). Conservation means behavior. Conserv. Biol. 25, 10801083. 10.1111/j.1523-1739.2011.01766.x22070255 Scullion J. Thomas C. W. Vogt K. A. Pérez-Maqueo O. Logsdon M. G. (2011). Evaluating the environmental impact of payments for ecosystem services in Coatepec (Mexico) using remote sensing and on-site interviews. Environ. Conserv. 38, 426434. 10.1017/S037689291100052X Scullion J. Vogt K. Sienkiewicz A. Gmur S. Trujillo C. (2014). Assessing the influence of land-cover change and conflicting land-use authorizations on ecosystem conversion on the forest frontier of Madre de Dios, Peru. Biol. Conserv. 171, 257258. 10.1016/j.biocon.2014.01.036 Seymour F. Busch J. (2016). Why Forests? Why Now? The Science. Economics, and Politics of Tropical Forests and Climate Change. Washington, DC: Center for Global Development; Brookings Institutional Press. Shamseer L. Moher D. Clarke M. Ghersi D. Liberati A. Petticrew M. . (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P). BMJ 2015:349. 10.1136/bmj.g7647 Soares-Filho B. S. Nepstad D. C. Curran L. M. Cerqueira G. C. Garcia R. A. Ramos C. A. . (2006). Modelling conservation in the Amazon basin. Nature 440, 520523. 10.1038/nature0438916554817 Thaler G. M. Viana C. Toni F. (2019). From frontier governance to governance frontier: the political geography of Brazil's Amazon transition. World Dev. 114, 5972. 10.1016/j.worlddev.2018.09.022 Turner J. M. (2012). The Promise of Wilderness: American Environmental Politics Since 1964. Seattle: University of Washington Press. United Nations (2019). World Population Prospects: Highlights. United Nations, Department of Economic and Social Affairs, Population Division. United Nations Environmental Program (2016). Protected Planet Report. Cambridge; Gland: UNEP; WCMC; IUCN. Volante J. N. Mosciaro M. J. Gavier-Pizarro G. I. Paruelo J. M. (2016). Agricultural expansion in the Semiarid Chaco: poorly selective contagious advance. Land Use Policy 55, 154165. 10.1016/j.landusepol.2016.03.025 Watson J. E. Evans T. Venter O. Williams B. Tulloch A. Stewart C. . (2018). The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599610. 10.1038/s41559-018-0490-x29483681 Wells J. Schindler D. Pimm S. Courtois V. Smith K. Schaefer J. . (2015). Domestic policy focus highly important for protecting primary forests. Conserv. Lett. 8, 148149. 10.1111/conl.12165 World Resources Institute (1997). The Last Frontier Forests: Ecosystems and Economies on the Edge. Washington, DC: Forest Frontiers Initiative. Wunder S. (2004). Policy options for stabilising the forest frontier: a global perspective, in: Land Use, Nature Conservation and the Stability of Rainforest Margins in Southeast Asia, eds Gerold G. Fremerey M. Guhardja E. (Berlin; Heidelberg: Springer, 325. Wunder S. (2005). Payments for environmental services: some nuts and bolts. CIFOR Occasional Paper No. 42. Wunder S. (2013). When payments for environmental services will work for conservation. Conserv. Lett. 6, 230237. 10.1111/conl.12034 Wunder S. Verbist B. (2003). The Impact of Trade and Macroeconomic Policies on Frontier Deforestation. Bogor: World Agroforestry Center–ICRAF.
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.eilie.com.cn
      www.jtzher.com.cn
      www.hrpogg.com.cn
      lrchain.com.cn
      ijoclf.com.cn
      frchain.com.cn
      fixiapac.com.cn
      uigood.com.cn
      pzeegc.com.cn
      www.reyuu.net.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p