Front. Energy Res. Frontiers in Energy Research Front. Energy Res. 2296-598X Frontiers Media S.A. 821098 10.3389/fenrg.2022.821098 Energy Research Original Research Design, Fabrication, and Thermal Evaluation of a Solar Cooking System Integrated With Tracking Device and Sensible Heat Storage Materials Komolafe and Okonkwo Evaluation of Solar Cooking System Komolafe Clement A. 1 * Okonkwo Clinton E. 2 1 Department of Mechanical Engineering, College of Engineering, Landmark University, Omu Aran, Nigeria 2 Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu Aran, Nigeria

Edited by: K Sudhakar, Universiti Malaysia Pahang, Malaysia

Reviewed by: Abhishek Saxena, Moradabad Institute of Technology, India

Hafiz Muhammad Ali, King Fahd University of Petroleum and Minerals, Saudi Arabia

*Correspondence: Clement A. Komolafe, clemkunle@yahoo.co.uk

This article was submitted to Solar Energy, a section of the journal Frontiers in Energy Research

07 03 2022 2022 10 821098 23 11 2021 07 02 2022 Copyright © 2022 Komolafe and Okonkwo. 2022 Komolafe and Okonkwo

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Energy need for cooking in both the rural and urban areas all over the world is increasing every day as a result of an increase in population. The consequence of global warming due to the usage of fuels such as fossil fuel, firewood, and other biomass products for cooking necessitates innovative techniques that will improve the standard of living of people. In this study, the design, fabrication, and thermal evaluation of a solar cooking system integrated with an Arduino-based tracking device and sensible heat storage (SHS) materials was investigated. During the water boiling trials with black oil sensible material (BOSHSM), the obtained maximum temperatures for water, cooking box, and sensible heat storage material at 14:00 h when the solar radiation attained its peak value of 881.2 W/m2 were 64,52, and 54°C, respectively, while at 14:00 h with Black coated granite sensible heat storage material (BCGSHSM) at the solar radiation peak value of 890.4 W/m2, the maximum temperatures for water, cooking box, and sensible heat storage material were 73.5, 76, and 59°C, respectively. The maximum cooking power and thermal efficiency obtained from the water boiling trials were 48.4 and 56.4 W, and 31.6 and 35.8% respectively. Also, the results from the cooking of edibles revealed that the cooking power values ranged between 42.5 and 58.2, while that of efficiency ranged between 34.5 and 40.3% respectively. The maximum solar radiation during the cooking trial period was 986, 975, 956, and 953 W/m2. In general, from the results, the developed solar cooking system is a viable alternative to cooking with traditional/open burning of wood or other biomass products that pose a serious environmental and health-related threat to the people living in developing countries.

design cooking cooking power thermal efficiency heat storage materials modelling energy

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1 Introduction

      Cooking is one of the major domestic activities that require energy for human sustenance. All over the world, energy for cooking is being sourced for using different types of cooking fuels such as fossil fuels, firewood, charcoal, etc. are in use. Due to the increase in the cost of cooking gas, fossil fuel, and also the epileptic nature of power supplies in developing countries, the majority of people in the rural and urban areas still use firewood for cooking (Komolafe and Awogbemi, 2010). Burning of firewood, charcoal, or crop residue, slash and burn agriculture, and deforestation account for 5–20% of all carbon emissions worldwide (Smith et al., 1993). Energy experts all over the world have recently become more conscious of the adverse effects of global warming as a result of the usage of non-environmental and eco-friendly fuels such as fossil fuel, firewood, charcoal, etc. Harnessing the abundant potentials in the freely given renewable energy source (Sun) which is clean, safe, and readily available for cooking has become a burning issue and most attractive alternative. History made it clear that the idea of using solar energy for cooking started in 1,650 as a result of fuel shortages and rationing arising from the second world war (Wentzel and Pouris, 2007). Using solar cooking would not only eliminate or at least reduce the respiratory illness arising from the exposure to smoke but could also be used to defeat another scourge of the developing world, contaminated water (Tucker, 1999). Solar cookers are classified broadly into two categories, the box, and the concentrating type. The box-type permits solar radiation directly through the glass window for cooking while the concentrating type uses parabolic or spherical, linear fresnel reflectors and a central receiver tower with the cooking pot positioned at the focal point where the Sun rays are focussed (Kumaresan et al., 2016; Noman et al., 2019).

      Several studies on various configurations of the box and concentrating types of solar cookers have been reported (Kumar et al., 2008; Akoy and Ahmed, 2015; Hafez et al., 2016; Noman et al., 2019). However, in an attempt to increase the performance of solar cooking systems, researchers have suggested the use of thermal storage materials (sensible, latent heat, and thermochemical). Sensible and latent thermal energy storage has become a critical feature of energy management, with prominence in the effective use and reuse of waste heat and solar energy not only in manufacturing and buildings but also for cooking (Goldstein et al., 2006). The use of thermal energy storage is crucial whenever there is a mismatch between the supply and demand for energy. Based on the cost of the three identified types of thermal storage materials, sensible thermal storage materials is cheaper and readily available for people in rural areas and some urban areas of developing countries like Nigeria. Table 1 presents the summary of studies on solar cooker with thermal storage materials (Hussein et al., 2008; Saxena et al., 2013a; Saxena et al., 2013b; Kumaresan et al., 2016; Saxena and Karakilcik, 2017; Yadav et al., 2017; Bhave and Thakare, 2018; Coccia et al., 2018; Saxena and Agarwal, 2018; Keith et al., 2019; Khallaf et al., 2020; Omara et al., 2020; Saxena et al., 2020; Hosseinzadeh et al., 2021; Kanyowa et al., 2021). Some authors have reported integration of tracking device (Sun tracker) (Roth et al., 2005; Regin et al., 2008; Skouri et al., 2016; Herez et al., 2018; Babu et al., 2019). (Roth et al., 2005; Regin et al., 2008; Skouri et al., 2016; Herez et al., 2018; Babu et al., 2019). However, heating of the cooking pot/vessel through the parabolic dish and cooking box at the same time has not been reported.

      Previously designed solar cooking systems.

      References Design Results
      Hussein et al. (2008) Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit The results indicated that the deeveloped cooker could be used to cook different meal at noon and evening time
      Kumaresan et al. (2016) Performance assessment of a solar domestic unit integrated with thermal energy storage system The maximum temperature reached by the olive oil during the cooking experiment was 152°C within a duration of 15 min
      Yadav et al. (2017) Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking The results revealed that PCM-stone pebbles cases stored 3 to 3.5 times heat compared to PCM-iron gritd and PCM-ron ball cases
      Bhave and Thakare (2018) Development of a solar thermal storage cum cooking device using salt hydrate The developed cooking device was able to store a charge of heat in about and cook about 140 gm of rice with stored heat in 50 and 30 min Respectively
      Saxena and Karakilcik (2017) A solar box cooker for thermal performance evaluation with low cost thermal storage (sand and grannular carbon) The thermal efficiency, cooking power and overall heat loss coefficient were 37.1%, 44.81 W, and 3.01 W/m2°C respectively
      Coccia et al. (2018) A high-temperature solar box cooker with solar-salt-based thermal storage unit It was found that when the solar radiation was unavialable, the PCM thermal storage improved significantly thermal stabilization of the load
      Saxena and Agarwal (2018) A new hybrid solar cooker with air duct performance characteristics The thermal efficiency, cooking power and overall heat loss coefficient were 45.11%, 60.20 W, and 6.01 W/m2 oC respectively. Capable of cooking edibles with 200 W under poor ambient condition
      Keith et al. (2019) A parabolic solar cooker incorporating phase change material The proposed solar cooker was capable of providing meals for refugee at reasonable cooking times
      Omara et al. (2020) Solar cooking performance using phase change materials The paper indicated the feasibility of phase change materials for improving the cookeer’s perfomance evaluation and thermal parameters
      Saxena et al. (2020) Design and investigation of thermal performance of a box cooker with flexible solar collector tubes The designed cooker perfomed better than solar box cooker and otherdesigns using thermal energy materials in terms of efficiency, overall heat overall loss coefficient, cooking power, and heat transfer coefficent values of 53.81%, 5.11 W/m2 oC, 68.81 and 56.78 W/m2 oC respectively
      Khallaf et al. (2020) Mathematical modelling and experimental validation of thermal performance of a novel design solar cooker The proposed design used water and glycerin as cooking fluids with maximum efficiencies of 35 and 92%
      Hosseinzadeh et al. (2021) The performance improvement of an indirect solar cooker using multi-walled carbon nano tube-oil nanofluid From the results, the overall energy efficiency of the cooker with 0.5 w% was 20.08%, while the relative improvement of the overall exergy efficiency of cookers with 0.2 and 0.5 wt% in comparison with cooker wit thermal oil were 37.30 and 65.87% respectively

      In this study, therefore, design, fabrication, and thermal evaluation of a solar cooking system integrated with a photovoltaic controlled Arduino-based data logging cum tracking device and sensible heat storage materials (Black coated granite and used engine oil) for both the rural and urban areas are presented.

      2 Materials and Methods 2.1 Material Selection

      Locally sourced and eco-friendly materials such as aluminum sheet, angle iron, mild steel pipes, plywood, reflective glass, Rockwool, aluminum foil, etc. were selected for the fabrication solar cooking system based on design consideration, preliminary investigation, etc. Also, black coated granite and used black engine oil (black) were used as sensible heat storage materials. Fresh and clean samples of sweet potato and plantain purchased from the neighbouring market were used for the performance evaluation of the cooking system. The measuring instruments and thermophysical properties of SHS are shown in Tables 24 respectively.

      Measuring instruments specifications.

      S/N Parameter Measuring device Range
      1 Temperature DS18B20 sensor −55 to +225
      2 Humidity DHT22 sensor 0–100%
      3 Wind speed Digital Thermo-anemometer Lutrom 4201A 0.4–45 m/s
      4 Solar radiation Solar power meter (Pyranometer) 0–2000 W/m2
      5 Weighing balance Digital weighing balance (Model no:D0630/30 Max.) 0.1–30 kg

      Thermo-physical properties of engine oil (Sharma et al., 2009).

      Properties Value
      Density 888 kg/m3
      Specific heat capacity 1.88 kJ/kg/kgK
      Thermal conductivity 0.144 W/mK
      Thermal diffusivity 8.53 × 10–8 m2/s/

      Thermo-physical properties of granite (Bejan and Kraus, 2003).

      Properties Value
      Density 2,750 kg/m3
      Specific heat capacity 0.89 kJ/kg/kgK
      Thermal conductivity 2.9 W/mK
      Thermal diffusivity 0.012 cm2/s
      2.2 Description of the Parabolic Solar Cooker

      The experimental set-up of the fabricated solar cooking system is presented schematically and pictorially as shown in Figures 1, 2 respectively. It comprises mainly four components namely: the parabolic solar reflector, cooking box, data acquisition and tracking device and supporting frame.

      (a) Parabolic reflector: The reflector was fabricated from an aluminum sheet. It is 110 mm in diameter and 150 mm deep. It was cut and glued to the parabolic reflector’s surface.

      (b) Cooking box: The cooking box has an overall dimension of 1,376 × 1203 × 1,203 mm. It has three of its sides made of wood (lagged with Rockwool for insulation) and the other three reflective glass. The three glasses were located at the top, bottom, and one of the sides of the box to allow the Sun rays into the cooking pot. Inside the cooking box, were a cooking pot made of aluminum sheet and a compartment for heat storage material as shown in Figure 3.

      (c) Data acquisition and tracking device: The data acquisition and tracking device consists of eight major components namely; micro-controller, Bluetooth module, SD card, real-time clock, temperature sensors (DS18B20), Humidity sensor (DHT22), battery, solar panel, and stepper motor.

      Schematic diagram (Orthographic and Isometric) of the solar cooking system.

      Pictorial view of the experimental set-up.

      The plot of solar radiation and the temperature of the water, cooking box, SHS material, and air against time.

      2.3 Experimental Procedure

      Water boiling and cooking tests were carried out in November 2019 between 8:00 and 17:00 h to evaluate the performance of the tracking device integrated cooking system using black-coated gravel and used engine oil. The experimentation site was Teaching and Research Farm, Landmark University, Omu Aran, Nigeria which is located at latitude 8.8oN, longitude 5.5oE. Prior to the cooking tests, water boiling trials were conducted in order to ascertain the thermal response of the system with SHS materials. Thereafter, two edibles (Rice and plantain) were used for the cooking tests. The time, date, relative humidity and temperature of water in the pot and other locations within the cooking system data were programmed to be collected by the micro-controller (Atmeg) from the real-time clock chip (DS1307) and stores it in the SD card at intervals of 10 min. The stored temperature solar radiation, data were retrieved from the solar cooker via the Bluetooth connection without any physical contact with the SD card or device. Data for solar radiation, relative humidity, wind speed and ambient temperature were also monitored and recorded for comparison with readings from the installed Campbell Scientific Ltd. made metrological station at Landmark University Teaching and Research Farm which is just a few centimetres away from where the solar cooking system was positioned. The solar tracking device tracks the Sun with the help of two light sensors and a stepper motor. The two LDR (Light dependent renters) were used to monitor the light rays at opposite sides of the parabolic dish. The microcontroller was also configured and programmed to monitor the direction of light rays and to move the parabolic collector with the aid of a stepper motor towards the direction of the sensor with higher light rays. However, when the light ray sensors on both sides sense an equal ray of light, the stepper motor adjusts and position the parabolic reflector at the centre. Specification of measuring device is shown in Table 1.

      2.4 Theory and Analysis 2.4.1 Parabolic Concentrator

      Various components of the solar cooking system were designed using the following parameters (Stine and Diver, 1994; Sup et al., 2015; Hafez et al., 2016; González-Avilés et al., 2018; Babu et al., 2019; Noman et al., 2019; Ahmed et al., 2020).

      Parabolic concentrator’s aperture area.

      The concentrator aperture area, which according to Affandi et al. (Affandi et al., 2014) is defined as the area that receives the solar radiation is given by (Hafez et al., 2016; Yahuza et al., 2016)   A p c =   π D p c 2 4

      Receiver’s aperture area.

      The aperture area of the receiver is given by Eq. 2 (Hafez et al., 2016) as:   A r c =   π D r c 2 4

      Area concentration ratio.

      The area concentration ratio is defined as the ratio of concentrator aperture area to the receiver aperture area (Affandi et al., 2014) C r = A p c A r c

      Parabolic dish surface area.

      The surface area of the parabolic dish can be determined by Eq. 4 (El Ouederni et al., 2009) A s = 8 π 3 f 2 [ ( 1 + ( D a p 4   f )   2 )   3 2 1 ]

      Parabolic dish focal length.

      The focal length of the focal point from the parabolic dish concentrator can be expressed as Eqs 5, 6 (Hafez et al., 2016) f =   D p c 4 tan ( Φ r i m 2 ) h =   D p c 2 16 f

      Rim angle.

      The rim angle according to Stine (Stine and Diver, 1994), is the angle measured at the focus from the axis to the rim of the solar parabolic truncated. It can be determined using [7] φ r i m = t a n 1 [ 8 f D r 16 ( f D a p ) 2 1 ]

      2.4.2 Design Theory for Solar Radiation

      Total solar radiation on tilted surface.

      The total incident solar radiation on the tilted surface ( I T c ) which is the sum of the three components of beam radiation ( I b c ) , radiation from the sky diffuse ( I d c ) , and ground reflected solar radiation   ( I r c   ) can be obtained as (Goswami et al., 2000; Duffie et al., 2020): I T c = I b c +   I d c +   I r c  

      The instantaneous beam radiation on the surface per unit area can be calculated as: I b c = I b N cos θ

      The angle of incidence ( θ ) which is the angle between the normal to the surface and a line collinear with the Sun’s ray) is related to the solar angle (Goswami et al., 2000): cos θ = cos α   c o s ( a s   a w ) s i n β + sin α   c o s β where α = solar altitude angle, a s = solar azimuth angle, a w = panel azimuth angle, β = panel tilt angle.

      The surface diffuse radiation ( I d c ) can be expressed as the product of sky diffuse radiation on the horizontal surface ( I d h   ) and the view factor between the sky and the surface:   I d c =   I d h   ( 1 + c o s β ) / 2  

      The ground reflected solar radiation can be calculated by multiplying the total solar radiation from the total solar incident on the horizontal surface by the ground reflectance ( σ ) as: I r c   =   I h   σ

      2.4.3 Thermal Modelling

      The available energy is absorbed by the cooking fluid while the unavailable is lost to the surrounding by convection and radiation. The energy balance equations for various components of the cooking system namely; the parabolic reflector, Vessel (cooking pot), vessel fluid, energy storage material, cooking box glass cover and the enclosed air cover were written (Mbodji and Hajji, 2017; Yettou et al., 2019; Khallaf et al., 2020; Bhavani et al., 2021). The following assumptions were made:

      a. Thermo-physical properties of air, glass, and reflector/absorber remain constant within the cooker temperature range.

      b. Proper thermal contact between cooking pot and reflector/absorber surface of the cooker.

      c. Negligible heat transfer by reflection between the sidewalls and cooking pot.

      d. Exchange of heat as a result of air within the lid covered pot not considered.

      Energy balance for the parabolic reflector: ( m C p a ) r e f d T r e f d t = α r e f A r e f I N + Q r ,   r e f     p o t Q c , r e f a Q r , r e f s

      Energy balance for the vessel (cooking pot): ( m C p a ) p o t d T p o t d t = α p o t A s p o t A R Q c , p o t   w a t Q c , p o t   a Q r ,   r e f   p o t Q r , p o t s

      Energy balance for fluid in the vessel: ( m C p a ) w a t d T w a t d t = Q c , p o t   w a t

      Energy balance for the storage material: ( m C p a ) s t d T s t d t = Q r , r e f   s t

      Energy balance for the cooking box glass cover ( m C p a ) g l s d T g l s d t = τ g l s α g l s A g l s I S + Q c , i g l s     + Q r , v , g l s Q r , p g l s       Q c , g l s a Q r , g l s s Q r , p s

      Energy balance for the air inside the cooking box ( m C p a ) i d T i d t = Q c , p i     + Q c , v , i Q c , i g l s where Q c , i   g l s = h c , i g l s A g l s ( T i T g l s ) Q c , g l s   a = h c , g l s a A g l s ( T g l s T a ) Q c , p   i = h c , p i ( A p o t n A v b ) ( T p o t T i ) Q c , v   i = h c , v i n A v ( T v T i ) Q r , g l s   s = h r , g l s s A g l s ( T g l s T s ) Q r , p   g l s = h r , p o t g l s ( A p n A v b )   ( T p o t T g l s ) Q r , v   g l s = h r , v g l s n A v b ( T v T g l s ) Q c , r e f a = h c , r e f a A r e f ( T r e f T a ) Q c , p o t   a = h c , p o t a A p o t ( T p o t T a ) Q c , p o t   w a t =   h c , p o t w a t A p f ( T p o t T w a t ) Q r ,   r e f     p o t = h r , p o t r e f A r e f ( T p o t T r e f ) Q r , p o t s = h r , p o t s A p o t ( T p o t T s ) Q r , r e f s = h r , r e f s A r e f ( T r e f T s ) Q r , r e f   s t = h r , r e f s A r e f ( T r e f T s )

      Substituting the heat transfer flux, the energy balance model Eqs 1318 can be written as follows:

      - For glass cover

      ( m C p a ) g l s d T g l s d t = τ g l s α g l s A g l s I S + h c , i g l s A g l s ( T i T g l s ) + h r , v g l s n A v b ( T v T g l s ) +   h r , p g l s ( A p n A v b )   ( T p T g l s ) h c , g a A g l s ( T g l s T a ) h r , g l s s A g ( T g l s T s )

      - For the air inside the cooking box

      ( m C p a ) i d T i d t = h c , p i ( A p o t n A v b ) ( T p o t T i ) + h c , v i n A v ( T v T i )   h c , i g l s A g l s ( T i T g l s )

      - For Parabolic reflector:

      ( m C p a ) r e f d T r e f d t = α r e f A r e f I N + h r , p o t r e f A r e f ( T p o t T a ) h c , r e f a A r e f ( T r e f T a ) h r , r e f s A r e f ( T r e f T s )

      - For the vessel (cooking pot):

      ( m C p a ) p o t d T p o t d t = C R α p o t A s p o t I N h c , p o t w a t A p f ( T p o t T w a t ) h c , p o t a A p o t ( T p o t T a ) h r , p o t r e f A r e f ( T p o t T r e f ) h r , p o t s A p o t ( T p o t T s )

      - For the vessel fluid:

      ( m C p a ) w a t d T w a t d t = h c , p o t w a t A p f ( T p o t T w a t )

      - For the storage material

      ( m C p a ) s t d T s t d t = h r , r e f s A r e f ( T r e f T s )

      The coefficient of heat transfer for cooker can be expressed as (Duffie et al., 2020): h =   Q u A a p ( T p T f ) =   τ I a v A a p A a p ( T p T f )

      Assume the side losses are negligible, the overall heat loss can be obtained as (Channiwala and Doshi, 1989): U L =   [ 2.8 1 ϵ p ( 1 N c 0.025 + ϵ c 1 ) + 0.825 ( x m ) 0.21 + a V w i n b 0.5 ( N c 0.025 1 ) ] ( T p m T a m b ) 0.2 + k i + t i

      2.4.4 Standard Cooking Power

      The amount of heat that enters the container of the solar cooking system to raise the temperature of a given quantity of water in a certain time interval is known as standard cooking power ( P s c ) . It can be obtained as (Akoy and Ahmed, 2015; González-Avilés et al., 2018): P s c =   m C p T f T i T where m is the mass of water (kg); C p is the specific heat of water (4.182 kJ/kg ); Tf is the final water temperature ( ) ; Tw is the initial water temperature ( ) ; T is the time (s).

      2.4.5 Thermal Efficiency

      Thermal efficiency is obtained as (Komolafe and Waheed, 2018; Komolafe et al., 2019; Komolafe et al., 2021): η =   m ˙ C p ( T c     o u t T a   i n ) I c A c

      2.5 Uncertainty Analysis

      Implementation of the uncertainty analysis is necessary in order to investigate the reliability of the results. The total uncertainty for a measured parameter (P) can be calculated using the following equation (Zamani et al., 2015; Hosseinzadeh et al., 2020): Some measured parameters are shown in Table 5. δ P T O T =   ( δ p e q u ) 2 + ( δ p r e p ) 2 where ( δ p e q u ) 2   a n d   ( δ p r e p ) 2 represent the equipment and repetition uncertainties respectively.

      The uncertainty of some measure parameters during the experiments.

      S/N Measured parameters Uncertainty
      1 Solar radiation   ± 3.42   W / m 2
      2 Ambient temperature ±   0.48   ° C
      3 Wind velocity ±   0.17   ° C
      4 Thermal efficiency   ±   0.89 %
      5 Heat transfer   ±   5.1   W / m 2 ° C
      6 overall heat loss ± 2.2   W / m 2 ° C C
      7 Plate temperature   ±   5.2   ° C

      The uncertainty function C = C ( p 1 , p 2 . p n ) which is a function of independent linear parameters can be expressed as (Hosseinzadeh et al., 2021): δ C =   ( δ C δ p 1 δ p 1 ) 2 +     ( δ C δ p 2 δ p 2 ) 2 +   ( δ C δ p n δ p n ) 2

      3 Results and Discussion

      Figure 3 shows the plot of solar radiation and the temperature of the water, cooking box, sensible heat storage material, and air against time with used engine oil as sensible heat storage material. It is evident from the figure that the temperature of the water and that of other locations within the cooking system were almost the same in the early hour of the experiment and began to vary from 11:00 h. The observed temperature profile follows the same pattern with the solar radiation. Thus, an increase in solar radiation resulted in to increase in temperature. The obtained maximum temperatures for water, cooking box, and sensible heat storage material at 14:00 h when the solar radiation attained its peak value of 881.2 W/m2 were 64,52, and 54°C, respectively. The figure further revealed that at 17:00 h when the lowest solar radiation value of 80 W/m2 was attained, the temperatures of water and the cooking box were 50 and 53°C, respectively. This could be attributed to the incorporation of insulating and heat storage materials into the cooking box.

      The variation of relative humidity and the temperature of the water, cooking box, sensible heat storage material, and air against time with used engine oil (black) as heat storage material is shown in Figure 4. It can be seen that the relative humidity decreased with time as the temperatures increased. The relative humidity minimum and maximum values of 57.2 and 88.6% were attained at 15:00 and 17:00 h respectively. When compared with Figure 3, solar radiation and temperatures decreased as the relative humidity increased and vice versa.

      The plot of humidity and the temperature of the water, cooking box, SHS material, and air against time.

      Figure 5 depicts the variation of solar radiation and the temperature of the water, cooking box, sensible heat storage material, and air with time. From the graph, it is evident that the temperature profile follows the same pattern with the solar radiation in a similar manner to Figure 3. However, the maximum temperatures for water, cooking box, and sensible heat storage material at 14:00 h when the solar radiation attained its peak value of 890.4 W/m2 were 73.5, 76, and 59°C, respectively. The difference in these temperature values and those reported in Figure 3 could be attributed to the irregular intensity of solar radiation or the thermal conductivity of the sensible heat storage materials used. Similar reports have been presented by (Komolafe and Waheed, 2018).

      The plot of solar radiation and the temperature of the water, cooking box, SHS material, and air against time.

      Figure 6 presents the plot of humidity and the temperature of the water, cooking box, sensible heat storage material, and air against time using black coated gravel as heat storage material. It can be seen that the relative humidity decreased with time as the temperatures increased. The relative humidity minimum and maximum values of 49.8 and 94.6% were attained at 17:00 and 8:00 h respectively. When compared with Figure 5, solar radiation and temperatures decreased as the relative humidity increased and vice versa.

      The plot of humidity and the temperature of the water, cooking box, SHS material, and air against time.

      Figure 7 represents the plots of temperature and solar radiation versus cooking duration of rice using black coated granite as SHS material. With water as cooking fluid, 0.8 kg of rice was boiled between 18 and 20th of November 2019. Each experiment was conducted between 10:30 and 13:30 h. From the graph, the average minimum and maximum temperature of water and ambient which occurred at 10: 30 and 13:00 h were 49.7 and 102°C respectively. The average solar radiation at these periods were 600 and 986 W/m2 respectively.

      The graph of temperature and solar radiation versus cooking duration of rice using granite as SHS.

      Figure 8 shows the plots of temperature and solar radiation versus cooking duration of rice using as granite as SHS material. With water as cooking fluid, 0.8 kg of rice was boiled between 21st–23rd of November 2019. Each experiment commenced at 10:30 h and terminated at 13:30 h. It was observed that the average minimum and maximum temperature of water and ambient which occurred at 10: 30 and 13:00 h were 55.5 and 101.5°C respectively, while the average solar radiation at these periods were 680 and 975 W/m2 respectively.

      The graph of temperature and solar radiation versus cooking duration of rice using engine oil as SHS material.

      Figure 9 reveals the plots of temperature and solar radiation versus cooking duration of rice using black engine oil as SHS material. With water as cooking fluid, 0.95 kg of plantain was boiled between 24th–26th of November 2019. Each experiment was conducted between 10:30 and 13:30 h. It was observed that the average minimum and maximum temperature of water and ambient which occurred at 10:30 and 13:00 h were 54 and 100.8°C respectively, while the average solar radiation at these periods were 635 and 956 W/m2 respectively.

      The graph of temperature and solar radiation versus cooking duration Plantain using engine oil as SHS material.

      Figure 10 depicts the plots of temperature and solar radiation versus cooking duration of rice using black engine oil as SHS material. With water as cooking fluid, 0.95 kg of plantain was boiled between 27th–30th of November 2019. Each experiment was conducted between 10:30 and 13:30 h. It was observed that the average minimum and maximum temperature of water and ambient which occurred at 10:30 and 13:00 h were 51.5 and 99.5°C respectively, while the average solar radiation at these periods were 635 and 953 W/m2 respectively. Generally from the graphs, it can be seen that the increase in solar radiation resulted to increase in temperature.

      The graph of temperature and solar radiation versus cooking duration of plantain using engine oil as SHS material.

      3.1 Cooking Duration

      The cooking time, heat capacity, and efficiency obtained from cooking trials are shown in Table 6.

      Cooking duration for two edibles using SHS materials.

      SHS material Edible material Mass (kg) Amb. Temp. (oC) Time (Min.) Efficiency (%) Remark
      Granite Rice 0.8 30.3 144 40.3 Boiled
      Engine oil Rice 0.8 30.4 147 38 Boiled
      Granite Plantain 0.95 30.3 150 36 Boiled
      Engine oil Plantain 0.95 31.5 151 34.5 Boiled
      3.2 Cooking Power and Thermal Efficiency

      The maximum cooking power and thermal efficiency for the water boiling tests under solar cooking system integrated with both black engine oil and black coated gravel were 48.4 and 56.4 W, and 31.6 and 35.8% respectively. However, for the edibles cooking, the cooking power values ranged between 42.5 and 58.2, while that of efficiency ranged between 34.5 and 40.3% respectively.

      4 Conclusion

      In the current study, the design, fabrication, and thermal evaluation of a solar cooking system integrated with tracking device and sensible heat storage materials (granite and engine oil) has been presented. The objective was to address majorly health challenge that is predominant among the people living in the rural area who in most cases use firewood and other biomass product for cooking. Locally sourced materials were used to fabricate the cooker. Thereafter, water boiling and cooking trials were adopted to evaluate the performance of the cooking system. From the results, the following major conclusions were drawn:

      1. The obtained maximum solar radiation and water temperature during the water boiling tests with black engine oil as sensible heat storage material at 14:00 h were 881.2 W/m2 and 64 respectively, while with black coated gravel at this period were 890.4 W/m2 and 73.5°C.

      2. The average cooking duration of rice and plantain with cooking system ranged between 144 and 151 min using black coated granite and black engine oil SHS materials respectively.

      3. The maximum cooking power and thermal efficiency obtained from the cooking trials of rice and plantain were 58.2 W and 40.3% respectively.

      4. The developed cooker is expected to perform better when the solar intensity is higher

      5. Adoption of the developed solar cooking system will reduce environmental pollution that occur when firewood, fossil fuel etc. are used.

      6. With minor design modifications, there will be an improvement on the performance of the developed cooking system.

      Data Availability Statement

      The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

      Author Contributions

      CK: Conceived and design the experiment, performed the experiment, analysed and interpreted the data, wrote the paper. CO: Performed the experiment, wrote the paper.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Affandi R. Gan C. K. Ruddin M. ghani A. (2014). Development of Design Parameters for the Concentrator of Parabolic Dish (Pd) Based Concentrating Solar Power (Csp) under malaysia Environment. J. Appl. Sci. Agric. 9, 4248. Ahmed S. M. M. Al-Amin M. R. Ahammed S. Ahmed F. Saleque A. M. Abdur Rahman M. (2020). Design, Construction and Testing of Parabolic Solar Cooker for Rural Households and Refugee Camp. Solar Energy 205, 230240. 10.1016/j.solener.2020.05.007 Akoy E. O. Ahmed A. I. (2015). Design, Construction and Performance Evaluation of Solar Cookers. J. Agric. Sci. Eng. 1, 7582. Babu M. Raj S. S. Valan Arasu A. (2019). Experimental Analysis on Linear Fresnel Reflector Solar Concentrating Hot Water System with Varying Width Reflectors. Case Stud. Therm. Eng. 14, 100444. 10.1016/j.csite.2019.100444 Bejan A. Kraus A. D. (2003). Heat Transfer Handbook. John Wiley & Sons. Bhavani S. Shanmugan S. Chithambaram V. Essa F. A. E. Kabeel A.-E. Selvaraju P. (2021). Simulation Study on thermal Performance of a Solar Box Cooker Using Nanocomposite for Natural Food Invention. Environ. Sci. Pollut. Res. 1, 119. 10.1007/s11356-021-14194-w Bhave A. G. Thakare K. A. (2018). Development of a Solar thermal Storage Cum Cooking Device Using Salt Hydrate. Solar Energy 171, 784789. 10.1016/j.solener.2018.07.018 Channiwala S. A. Doshi N. I. (1989). Heat Loss Coefficients for Box-type Solar Cookers. Solar Energy 42, 495501. 10.1016/0038-092x(89)90050-9 Coccia G. Di Nicola G. Tomassetti S. Pierantozzi M. Chieruzzi M. Torre L. (2018). Experimental Validation of a High-Temperature Solar Box Cooker with a Solar-Salt-Based Thermal Storage Unit. Solar Energy 170, 10161025. 10.1016/j.solener.2018.06.021 Duffie J. A. Beckman W. A. Blair N. (2020). Solar Engineering of thermal Processes, Photovoltaics and Wind. John Wiley & Sons. El Ouederni A. Salah M. B. Askri F. Nasrallah M. B. Aloui F. (2009). Experimental Study of a Parabolic Solar Concentrator. Revue des Energies Renouvelables 12, 395404. Goldstein R. J. Ibele W. E. Patankar S. V. Simon T. W. Kuehn T. H. Strykowski P. J. (2006). Heat Transfer-A Review of 2003 Literature. Int. J. Heat Mass Transfer 49, 451534. 10.1016/j.ijheatmasstransfer.2005.11.001 González-Avilés M. Urrieta O. R. Ruiz I. Cerutti O. M. (2018). Design, Manufacturing, thermal Characterization of a Solar Cooker with Compound Parabolic Concentrator and Assessment of an Integrated Stove Use Monitoring Mechanism. Energ. Sustainable Development 45, 135141. Goswami D. Y. Kreith F. Kreider J. F. (2000). Principles of Solar Engineering. Phildelphia, PA: CRC Press. Hafez A. Z. Soliman A. El-Metwally K. A. Ismail I. M. (2016). Solar Parabolic Dish Stirling Engine System Design, Simulation, and thermal Analysis. Energ. Convers. Manag. 126, 6075. 10.1016/j.enconman.2016.07.067 Herez A. Ramadan M. Khaled M. (2018). Review on Solar Cooker Systems: Economic and Environmental Study for Different Lebanese Scenarios. Renew. Sustainable Energ. Rev. 81, 421432. 10.1016/j.rser.2017.08.021 Hosseinzadeh M. Faezian A. Mirzababaee S. M. Zamani H. (2020). Parametric Analysis and Optimization of a Portable Evacuated Tube Solar Cooker. Energy 194, 116816. 10.1016/j.energy.2019.116816 Hosseinzadeh M. Sadeghirad R. Zamani H. Kianifar A. Mirzababaee S. M. (2021). The Performance Improvement of an Indirect Solar Cooker Using Multi-Walled Carbon Nanotube-Oil Nanofluid: An Experimental Study with Thermodynamic Analysis. Renew. Energ. 165, 1424. 10.1016/j.renene.2020.10.078 Hussein H. M. S. El-Ghetany H. H. Nada S. A. (2008). Experimental Investigation of Novel Indirect Solar Cooker with Indoor PCM thermal Storage and Cooking Unit. Energ. Convers. Manag. 49, 22372246. 10.1016/j.enconman.2008.01.026 Kanyowa T. Victor Nyakujara G. Ndala E. Das S. (2021). Performance Analysis of Scheffler Dish Type Solar thermal Cooking System Cooking 6000 Meals Per Day. Solar Energy 218, 563570. 10.1016/j.solener.2021.03.019 Keith A. Brown N. J. Zhou J. L. (2019). The Feasibility of a Collapsible Parabolic Solar Cooker Incorporating Phase Change Materials. Renew. Energ. Focus 30, 5870. 10.1016/j.ref.2019.03.005 Khallaf A. M. Tawfik M. A. El-Sebaii A. A. Sagade A. A. (2020). Mathematical Modeling and Experimental Validation of the thermal Performance of a Novel Design Solar Cooker. Solar Energy 207, 4050. 10.1016/j.solener.2020.06.069 Komolafe C. A. Oluwaleye I. O. Awogbemi O. Osueke C. O. (2019). Experimental Investigation and thermal Analysis of Solar Air Heater Having Rectangular Rib Roughness on the Absorber Plate. Case Stud. Therm. Eng. 14, 100442. 10.1016/j.csite.2019.100442 Komolafe C. A. Waheed M. A. (2018). Design and Fabrication of a Forced Convection Solar Dryer Integrated with Heat Storage Materials. ACSM 1, 2339. 10.3166/acsm.42.22-39 Komolafe C. A. Waheed M. A. Kuye S. I. Adewumi B. A. Daniel Adejumo A. O. (2021). Thermodynamic Analysis of Forced Convective Solar Drying of cocoa with Black Coated Sensible thermal Storage Material. Case Stud. Therm. Eng. 26, 101140. 10.1016/j.csite.2021.101140 Komolafe C. Awogbemi O. (2010). Fabrication and Performance Evaluation of an Improved Charcoal Cooking Stove. Pac. J. Sci. Technology 11, 5158. Kumar N. Agravat S. Chavda T. Mistry H. N. (2008). Design and Development of Efficient Multipurpose Domestic Solar Cookers/dryers. Renew. Energ. 33, 22072211. 10.1016/j.renene.2008.01.010 Kumaresan G. Vigneswaran V. S. Esakkimuthu S. Velraj R. (2016). Performance Assessment of a Solar Domestic Cooking Unit Integrated with thermal Energy Storage System. J. Energ. Storage 6, 7079. 10.1016/j.est.2016.03.002 Mbodji N. Hajji A. (2017). Modeling, Testing, and Parametric Analysis of a Parabolic Solar Cooking System with Heat Storage for Indoor Cooking. Energ. Sustainability Soc. 7, 116. 10.1186/s13705-017-0134-z Noman M. Wasim A. Ali M. Jahanzaib M. Hussain S. Ali H. M. K. (2019). An Investigation of a Solar Cooker with Parabolic Trough Concentrator. Case Stud. Therm. Eng. 14, 100436. 10.1016/j.csite.2019.100436 Omara A. A. M. Abuelnuor A. A. A. Mohammed H. A. Habibi D. Younis O. (2020). Improving Solar Cooker Performance Using Phase Change Materials: A Comprehensive Review. Solar Energy 207, 539563. 10.1016/j.solener.2020.07.015 Regin A. F. Solanki S. C. Saini J. S. (2008). Heat Transfer Characteristics of thermal Energy Storage System Using PCM Capsules: a Review. Renew. Sustainable Energ. Rev. 12, 24382458. 10.1016/j.rser.2007.06.009 Roth P. Georgiev A. Boudinov H. (2005). Cheap Two axis Sun Following Device. Energ. Convers. Manag. 46, 11791192. 10.1016/j.enconman.2004.06.015 Saxena A. Agarwal N. (2018). Performance Characteristics of a New Hybrid Solar Cooker with Air Duct. Solar Energy 159, 628637. 10.1016/j.solener.2017.11.043 Saxena A. Cuce E. Tiwari G. N. Kumar A. (2020). Design and thermal Performance Investigation of a Box Cooker with Flexible Solar Collector Tubes: An Experimental Research. Energy 206, 118144. 10.1016/j.energy.2020.118144 Saxena A. Karakilcik M. (2017). Performance Evaluation of a Solar Cooker with Low Cost Heat Storage Material. Ijsge 6, 5763. 10.11648/j.ijrse.20170604.12 Saxena A. Lath S. Tirth V. (2013a). Solar Cooking by Using PCM as a thermal Heat Storage. MIT Int. J. Mech. Eng. 3, 9195. Saxena A. Lath S. Tirth V. (2013b). Solar Cooking by Using PCM as a thermal Heat Storage. MIT Int. J. Mech. Eng. 3, 9195. Sharma A. Tyagi V. V. Chen C. R. Buddhi D. (2009). Review on thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustainable Energ. Rev. 13, 318345. 10.1016/j.rser.2007.10.005 Skouri S. Ben Haj Ali A. Bouadila S. Ben Salah M. Ben Nasrallah S. (2016). Design and Construction of Sun Tracking Systems for Solar Parabolic Concentrator Displacement. Renew. Sustainable Energ. Rev. 60, 14191429. 10.1016/j.rser.2016.03.006 Smith K. R. Khalil M. A. K. Rasmussen R. A. Thorneloe S. A. Manegdeg F. Apte M. (1993). Greenhouse Gases from Biomass and Fossil Fuel Stoves in Developing Countries: a Manila Pilot Study. Chemosphere 26, 479505. 10.1016/0045-6535(93)90440-g Stine W. B. Diver R. B. (1994). A Compendium of Solar Dish/Stirling Technology. Albuquerque, NM (United States): Sandia National Labs. Sup B. A. Zainudin M. F. Ali T. Z. S. Bakar R. A. Ming G. L. (2015). Effect of Rim Angle to the Flux Distribution Diameter in Solar Parabolic Dish Collector. Energ. Proced. 68, 4552. 10.1016/j.egypro.2015.03.231 Tucker M. (1999). Can Solar Cooking Save the Forests? Ecol. Econ. 31, 7789. 10.1016/s0921-8009(99)00038-5 Wentzel M. Pouris A. (2007). The Development Impact of Solar Cookers: a Review of Solar Cooking Impact Research in South Africa. Energy policy 35, 19091919. 10.1016/j.enpol.2006.06.002 Yadav V. Kumar Y. Agrawal H. Yadav A. (2017). Thermal Performance Evaluation of Solar Cooker with Latent and Sensible Heat Storage Unit for Evening Cooking. Aust. J. Mech. Eng. 15, 93102. 10.1080/14484846.2015.1093260 Yahuza I. Rufai Y. Tanimu L. (2016). Design, Construction and Testing of Parabolic Solar Oven. J. Appl. Mech. Eng. 5. Yettou F. Gama A. Azoui B. Malek A. Panwar N. L. (2019). Experimental Investigation and thermal Modelling of Box and Parabolic Type Solar Cookers for Temperature Mapping. J. Therm. Anal. Calorim. 136, 13471364. 10.1007/s10973-018-7811-9 Zamani H. Moghiman M. Kianifar A. (2015). Optimization of the Parabolic Mirror Position in a Solar Cooker Using the Response Surface Method (RSM). Renew. Energ. 81, 753759. 10.1016/j.renene.2015.03.064 Nomenclature A

      Area (m2)

      C

      Concentration ratio

      D

      Diameter (mm)

      f

      focal length (mm)

      h c,i−gls

      convective heat transfer coefficient from air to glass (W/m2 K)

      hc,gls−a

      convective heat transfer coefficient from glass to ambient (W/m2 K)

      hc,p−i

      convective heat transfer coefficient from cooking pot to enclosed air (W/m2 K)

      hc,v−i

      convective heat transfer coefficient from the cooking vessel to enclosed air (W/m2 K)

      hr,gls−s

      radiative heat transfer coefficient from glass to the pot surface (W/m2 K)

      hr,pot−gls

      radiative heat transfer coefficient from cooking pot to glass (W/m2 K)

      hr,v−gls

      radiative heat transfer coefficient from the cooking vessel to glass (W/m2 K)

      hc,ref−a

      radiative heat transfer coefficient from the reflector to ambient (W/m2 K)

      hc,pot−a

      convective heat transfer coefficient from the cooking pot to ambient (W/m2 K)

      hc,pot−wat

      convective heat transfer coefficient from the cooking pot to water (W/m2 K)

      hr,pot−ref

      radiative heat transfer coefficient from air to glass (W/m2 K)

      hr,pot−s

      radiative heat transfer coefficient from the pot to the cover surface (W/m2 K)

      hc,ref−s

      convective heat transfer coefficient from the reflector to the pot surface (W/m2 K)

      hr,ref−s

      radiative heat transfer coefficient from the reflector to the pot surface (W/m2 K)

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gxkgwx.com.cn
      www.gdhyzdh.org.cn
      www.koogdk.com.cn
      www.maxview.net.cn
      www.kedouwen.com.cn
      muweiliu.com.cn
      mjsnud.com.cn
      oxbzpt.com.cn
      myjinkou.org.cn
      www.wqliyj.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p