Front. Energy Res. Frontiers in Energy Research Front. Energy Res. 2296-598X Frontiers Media S.A. 756311 10.3389/fenrg.2021.756311 Energy Research Original Research Can Machine Learning be Applied to Carbon Emissions Analysis: An Application to the CO2 Emissions Analysis Using Gaussian Process Regression Ma et al. Machine Learning and Carbon Emissions Ma Ning 1 Shum Wai Yan 2 Han Tingting 1 Lai Fujun 3 * School of Financial Management, Hainan College of Economics and Business, Haikou, China Department of Economics and Finance, The Hang Seng University of Hong Kong, Hong Kong, SAR China School of Finance, Yunnan University of Finance and Economics, Kunming, China

Edited by: Xunpeng (Roc) Shi, University of Technology Sydney, Australia

Reviewed by: Manman Yuan, University of Science and Technology Beijing, China

JunCheng Li, Chinese Academy of Social Sciences, China

*Correspondence: Fujun Lai, lfjlfj999@163.com

This article was submitted to Sustainable Energy Systems and Policies, a section of the journal Frontiers in Energy Research

24 09 2021 2021 9 756311 10 08 2021 08 09 2021 Copyright © 2021 Ma, Shum, Han and Lai. 2021 Ma, Shum, Han and Lai

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

In this paper, a nonparametric kernel prediction algorithm in machine learning is applied to predict CO2 emissions. A literature review has been conducted so that proper independent variables can be identified. Traditional parametric modeling approaches and the Gaussian Process Regression (GPR) algorithms were introduced, and their prediction performance was summarized. The reliability and efficiency of the proposed algorithms were then demonstrated through the comparison of the actual and the predicted results. The results showed that the GPR method can give the most accurate predictions on CO2 emissions.

Gaussian process regression CO2 emissions energy consumption economics growth industralization Scientific Research Foundation of Yunnan University of Finance and Economics (No. 2020B03) Yunnan University of Finance and Economics10.13039/501100004514

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      As the population of the earth is being exponentially increasing, the exhaustion of carbon dioxide is increasing day by day resulting in the extreme overheating of the environment, which has become a significant reason for climate change. Global efforts to mitigate climate change were focused on the reduction of future days with extreme overheating of the environment. There are many research and surveys that have been conducted by various scientists, students, and other officials which were about the reasons for the high emission of CO2 in different countries. Most of the empirical studies took the parametric modeling approach to analyze the factors that initiate and support the emission of CO2. However, the traditional parametric approach optimizes a function to a known form with a set of finite and pre-determined parameters. This rigidity limits the predictive power of the parametric models. In recent years, nonparametric machine learning techniques have played dominantly with the enhancement of the forecast.

      In this paper, a Bayesian nonparametric kernel prediction algorithm in machine learning is applied to predict CO2 emissions. A literature review has been conducted so that the proper independent variables have been identified. Classical least squares, robust least squares, and algorithms of the GPR were introduced and their prediction performance, including the evaluation criteria that are effective in the measurements for model performance, were summarized. The reliability and efficiency of the proposed algorithms were then demonstrated through the comparison between the actual data and the predicted results. It is found that GPR can give the most accurate predictions on CO2 emissions.

      Literature Review

      The growth of the economy, energy utilization, and CO2 emissions are deeply related to each other. Kolstad and Krautkraemer (1993) point out that while the use of resources like the energy has a bright side on growth, it has negative environmental impacts. Traditional growth theories like the Solow growth model failed to consider the environmental impacts of growth (Solow, 1956). More modern growth theories study the interrelationship among energy, the environment, and economic growth (see, for example, Kolstad and Krautkraemer (1993), Jorgenson and Wilcoxen (1993) or Xepapadeas (2005) for a brief review).

      Empirical studies depict that the growth of the economy and the ingestion of energy incorporates with the process of CO2 emission. Recently, Hu et al. (2020) study the dominant reasons for carbon emission among the Belt and Road countries and find that CO2 emissions have increased significantly due to economic growth. Similarly, Shabaz et al. (2013) found that in Indonesia, the emission of CO2 increased for the extreme boost of the economic zone, while Shahbaz et al. (2016) found that economic growth led to CO2 emissions in Bangladesh and Egypt. Meanwhile, other studies discovered a bilateral causal relationship among the three variables. Munir et al. (2020) prove the fact that there is a relation of aftermaths and economy between GDP and energy ingestion in the major countries of the ASEAN (Association of Southeast Asian Nations), while Liu and Hao (2018) find that in energy-exporting countries, there is a bilateral relationship which may be a full-duplex connection between CO2 emissions, energy utilization, and GDP per capita. Similarly, a repeating loop effect is observed between energy ingestion, CO2 emission, and the advancement of the economy by Kahouli (2018). Accordingly, Mohmannd et al. (2020) observed the working principle of the causal relationship among transportation infrastructure, economic growth, and transportation emissions from 1971 to 2017 in Pakistan. The results show short-term causality from transportation infrastructure, economic growth, fuel consumption to CO2 emissions, and the long-run relationship between economic advancement and infrastructure.

      Apart from the growth and energy consumption, industrialization, population growth, and income level also contributed a great share in global carbon emissions. Minx et al. (2011) found that “industrialization” can be taken into consideration for the rapid increase of carbon dioxide emission in China from 2002 to 2007 while Zhang et al. (2014) found that the growth of the tertiary industry can decrease the CO2 exhalation intensity. Nasir et al. (2021) examined the connection between the factors which are the exhalation of CO2, industrialization, growth of the economy, energy ingestion, and several connecting factors from 1980 to 2014 in Australia. The observations of those involved say that all variables affect CO2 emissions. Li et al. (2021) discussed the effect of the growth and structure of the economy on per capita CO2 emissions in 147 countries from 1990 to 2015. The results show that at the global level, economic growth and economic structure are the most significant positive and positive effects, respectively.

      Studies on population have thus far concentrated on the relationship between population growth and emission increase. The effect of population growth on CO2 emissions can be summarized as follows (Birdsall, 1992): On one side, the energy demand was increased for power generation, industry, and transport. On the contrary, it increased deforestation emissions due to population growth. Empirically, Knapp and Mookerjee (1996) conducted a Granger causality test on annual data from 1880 to 1989 to determine the connecting clauses between global population expansion and carbon dioxide exhaustion. The results show there is a short-term dynamic relationship between the exhaustion of carbon dioxide and population growth. Very recently, Zhang et al. (2020) analyzed the knot between CO2 emissions, GDP, and fuel ingestion in China and ASEAN countries. It was found that carbon density, energy intensity, GDP, and population are positively correlated with CO2 emissions. Empirical findings also show that the developing countries are facing the effect of overpopulation and that’s why, they are facing more of a carbon emissions record per year other than the developed countries (Shi, 2003).

      In the past decade, the theory and methodology of the Environmental Kuznets Curve (EKC) have been used to analyze the relationship between the net income and exhaustion of carbon of an area (Dinda, 2004; Williams and Rasmussen, 1996). According to the EKC, at relatively low-income levels, emissions increase as income increases. After a certain point, emissions will decline with income. Thus, the emission of CO2 varies concerning the level of income. Luo et al. (2021) investigated the influencing factors of Shanghai’s CO2 emissions from 1995 to 2017. They found that personal disposable income is one of the top drivers of CO2 emissions. Yuan et al. (2014) examined the long-term relationship between China’s per capita income, ingestion of energy, and the emission of CO2 from 1953 to 2008. They found out, there is a unilateral Granger inter-relation between the gross national income and the emission of CO2.

      Based on the literature above, it concludes that economic up-gradation, energy utilization, manpower density, industrialization, and income can be classified as the predominant factors affecting CO2 emissions. Other factors might also affect CO2 emissions in China. For example, R&D (Nguyen et al., 2020; Jones, 1995), financial development (Bhattacharya et al., 2017; Zaidi et al., 2019; Wang et al., 2020), the degree of foreign direct investment (Essandoh et al., 2020; Le et al., 2020; Khan and Rana, 2021. etc). This paper limits the focus on how well the different prediction models perform based on the information set which includes only the most predominant driver of CO2 emissions and excludes those unimportant ones to be captured by the stochastic terms in the models.

      Methodology

      Gaussian Process Regression (GPR) method can be introduced as a non-parametric Bayesian regression method (Gershman and Blei, 2012). It captures a wide variety of relations between inputs and outputs and lets the data determine the complexity of the underlying functions through the means of Bayesian inference (Williams, 1998). Considering the output   y of a function w at input x with independent and identically distributed random noise ε N ( 0 , σ n 2 ) . The function accompanied with the distributed random noise can be presented as: y = w ( x ) + ε  

      In classical linear regression, w ( x ) is deterministic whereas the noise term is random. In Gaussian process regression, however, w ( x ) is assumed to be random and follows a Gaussian process. A Gaussian process is an extension of multivariant Gaussian distribution to infinite dimensions; any finite subset sampled from the Gaussian process follows multiple Gaussian distributions (MacKay, 1998). The distribution over functions can be described with the help of the Gaussian process, w ( x ) = GP ( m ( x ) , k ( x , x ' ) ) where x is applied as the input variable, m ( x ) is denoted as the mean function, finally, k ( x , x ' ) is known as covariance function. These two functions are defined respectively as: m ( x ) = E [ w ( x ) ] k ( x , x ' ) = c o v [ w ( x ) , w ( x ' ) ] .

      A finite collection of function values sampled from the Gaussian process follows multiple Gaussian distributions: [ w ( x ( 1 ) ) , w ( x ( 2 ) ) , , w ( x ( n ) ) ] T N ( μ , K ) where K is a n × n (n by n) matrix with the entries K i j = k ( x ( i ) , x ( j ) ) and μ has entries μ i = m ( x ( i ) ) . Given a training set that contains observation points y = [ y ( x ( 1 ) ) , y ( x ( 2 ) ) , , y ( x ( n ) ) ] T and function values w = [ w ( x ( 1 ) ) , w ( x ( 2 ) ) , , w ( x ( n ) ) ] T , it follows that the conditional distribution p ( y | w ) and the Gaussian prior p ( w ) are N ( w , σ ε 2 I ) and N ( μ , K ) , respectively. By definition, the set of observations y and the set of function values w follow a joint multivariate Gaussian distribution. The join distribution p ( w ( x ) ,   y ) is defined as [ w ( x ) y ] N ( [ μ μ ] , [ k ( x , x ) k T k K + σ ε 2 I ] )

      Here, I will be considered as the identity matrix, σ ε 2 is the unknown variance of the random noise and ( k ) i = k ( x , x ( i ) ) for i = 1,2 , , N . Using the Bayesian rule, the predictive posterior, p ( w ( x ) | y ) N ( w ¯ , Σ ) , can be obtained, and the mean w ¯ and variance Σ are defined by w ¯ = μ + ( k ) T [ K + σ ε 2 I ] 1 ( y μ ) Σ = k ( x , x ) ( k ) T [ K + σ ε 2 I ] 1 ( k )

      The covariance function determines the characteristics of the Gaussian method that can be expressed as k ( x ( i ) , x ( j ) ) . The covariance function models the dependence between the function values at different input points x ( i ) and x ( j ) . The covariance function is often called the kernel of the Gaussian process. There are many possible options for the prior covariance function. A popular kernel is the exponential covariance function which allows the model to general a non-negative definite covariance matrix for any set of input points (Williams and Rasmussen, 1996). The exponential covariance function is defined as k ( x ( i ) , x ( j ) ) = σ f 2 e x p ( x ( i ) x ( j ) 2 2 I 2 ) + σ ε 2 δ i j where I is the characteristic length scale, σ f 2 is the signal variance, and δ i j is a Kronecker delta. The Gaussian process regression employs a set of hyperparameters θ including I , σ f 2 and σ n 2 to increase or reduce the priority correlation between points and consequentially the variability of the resulting function. The hyperparameters θ can be optimized based on the log-likelihood framework: L = log p ( y | w , θ ) = 1 2   y T C 1 y 1 2 log | C | n 2 log 2 π ,     C = K + σ ε 2 I

      More details about the regression process of Gaussian can be researched and acknowledged in the book of Williams and Rasmussen (2006), available free online and is accessible via the link: www.GaussianProcess.org/gpml.

      Empirical Results

      A literature review has been conducted so that five independent variables; namely: economic growth, energy consumption, population, industrialization, and income, have been identified. In this study, the GPR method and the other proposed algorithms are applied to study carbon emissions in China. Economic growth is approximated by GDP (100 million RMB), energy consumption is approximated by per capita energy consumption (tons of standard coal), the population is approximated by population size (10,000 people), industrialization is weighted by the percentage of secondary industry in China, and income is measure by the average annual salary (RMB).

      The data of GDP, population size, energy consumption, percentage of secondary industry, and average annual salary are collected from the China City Statistical Yearbook. CO2 emissions data come from four main sources of energy consumption. These are electricity, fuel, heating, and transportation. Those data can be obtained and calculated through the China Urban Construction Statistical Yearbook, the China City Statistical Yearbook, and the submerged government Panel on the change of weather and climate. Since some of those data is not available after 2014, the data in this paper range from the year 2002–2014.

      Statistical Analysis of Prediction Results

      The commonly used criteria in prediction performance are used in this study to evaluate the validity of the fitting. In Table 1, the root means squared error (RMSE), the mean squared error (MSE), the R-square, and the mean absolute error (MSE) are shown, where a well-fitted model should have R-square close to 1, whereas the RMSE, the MSE, and the MAE should be as small as possible. As per the observation from Table 1, Exponential GPR provides the best fit data as it has the smallest RMSE, MSE, and MAE, and an R-square closest to 1.

      Statistical Analysis of Prediction Results.

      Classical least squares Robust least squares Exponential GPR
      RMSE 0.10964 0.11045 0.083734
      R-Squared 0.95 0.94 0.97
      MSE 0.012022 0.012198 0.0070114
      MAE 0.08049 0.079101 0.059303
      Data Visualization

      Since the data set is large, which made it difficult to demonstrate and view the whole set of data, visualization methods are typically needed especially for representative scenarios. The prediction results were analyzed at the model level to see the allover authenticity of the three models and at the individual component level to get a picture of the estimates produced by the three models over the range of some particular variable.

      At the overall level, the comparison and deviation of the actual value and the predicted dimension of the emission of carbon dioxide are determined. Figure 1 demonstrates the comparison of actual value and prediction of CO2 emissions predicted by the three models; for each model, the predicted value is plotted against the actual value. To have a good fit, each plot should resemble a straight line at 45°. However, compare with the exponential GPR model, for the classical least squares model and the robust least-squares model, the predicted values are larger than the actual values over the range of 3.5–4 logarithm units of CO2 emissions. This means that the classical least squares model and the robust least-squares model are overestimating CO2 emissions over a particular range compare with the exponential GPR model. The same issue can be observed from Figure 2 which shows the deviation of actual value and prediction of CO2 emissions for the three models. Figure 2 shows that, compare with the other two models, the deviations for the exponential GPR model cluster more closely around the horizontal line which represents no deviations. It suggests that the exponential GPR model provides a much better fit than the other two models.

      Comparison of actual value and prediction of CO2 emissions between the selected models. (A) Classical Least Squares. (B) Robust Least Squares. (C) Exponential GPR. Notes: 1) The horizontal axis represents actual CO2 emissions in logarithm, and the vertical axis represents predicted CO2 emissions in logarithm. 2) CO2 emissions are measured in ten thousand tons of standard coal.

      The deviation of actual value and prediction of CO2 emissions between the selected models. (A) Classical Least Squares, Robust Least Squares, Exponential GPR. Notes: 1) The horizontal axis represents actual CO2 emissions in logarithm, and the deviation of the actual extremity of the CO2 emission from the predicted value is represented by the vertical axis. 2) CO2 emissions are measured in ten thousand tons of

      Apart from analyzing the prediction results at the overall model level, the all over performance of the three models is also be evaluated at an individual component level. At the individual component level, the estimates produced by the selected models are analyzed over the extended range of some particular variables. Figures 37 below plot the actual and predicted values of CO2 emissions against each of the most predominant factors of the models.

      Comparing actual and predicted CO2 emissions against GDP of the selected models. (A) Classical Least Squares. (B) Robust Least Squares. (C) Exponential GPR. Notes: 1) The vertical axis denotes the value of CO2 emissions in the logarithm. 2) The horizontal axis denotes the value of GDP in logarithm. 3) CO2 emissions are measured in 10,000  tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent the predicted values. (5) GDP is measured in 100 million Chinese Yuan.

      Comparing actual and predicted CO2 emissions against population size of the selected models. Classical Least Squares, Robust Least Squares, Exponential GPR. Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the population size in logarithm. 3) CO2 emissions are measured in 10,000 tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent the predicted values. 5) The unit of population is 10,000 people.

      Comparing actual and predicted CO2 emissions against energy consumption of the selected models. Classical Least Squares, Robust Least Squares, Exponential GPR. Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the value of per capita energy consumption in a logarithm. 3) CO2 emissions are measured in 10,000  tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent the predicted values. 5) Per capita energy consumption is measured in tons of standard coal.

      Comparing actual and predicted CO2 emissions against the industrialization of the selected models. Classical Least Squares, Robust Least Squares, Exponential GPR. Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the percentage of secondary industry in China. 3) The blue dots represent actual values whereas the yellow dots represent the predicted values. 4) CO2 emissions are measured in 10,000 tons of standard coal.

      Comparing actual and predicted CO2 emissions against average annual salary of the selected models. Classical Least Squares Robust Least Squares Exponential GPR Notes: 1) The vertical axis represents the value of CO2 emissions in logarithm. 2) The horizontal axis represents the average annual salary in logarithm. 3) CO2 emissions are measured in 10,000 tons of standard coal. 4) The blue dots represent actual values whereas the yellow dots represent the predicted values. 5) Average annual salary is measured in the Chinese Yuan.

      Figure 3 plots the predicted values of CO2 emissions against the logarithm of the GDP measured in 10,000 Chinese Yuen. Ideally, it’s convenient if the predicted values are as much closer possible to the actual values for all conducted observations. As shown in Figure 3C predicted CO2 emissions are quite close to the actual values predicted by using the logarithm of GDP. Even though a small number of deviations can be observed. On the contrary, Figures 3A,B revealed that the classical least squares and the robust least-squares overestimate the CO2 emissions over the range of 3.2–3.7 logarithm units of GDP. It implies that conditioning on GDP, the Exponential GPR model provides more accurate CO2 emissions predictions compare with the other two models.

      Figures 46 show similar results. The predicted CO2 emissions by using the exponential GPR model are tensed to the actual values over the entire range of population size (see Figure 4), the energy consumption (see Figure 5), and the level of industrialization (see Figure 6). However, when the classical least squares and the robust least-squares model are used, extreme deviations between the actual value and predicted value can be observed. In Figures 4A,B, it is determined that the classical least squares and the robust least-squares model overestimate the CO2 emissions over the range of 2.7–2.8 logarithm units of population size. Similarly, in Figures 5A,B, CO2 emissions are overestimated by the classical least squares and the robust least squares models over the range of 0.5–1 logarithm units of per capita energy consumption. In Figure 6, although not obvious, CO2 emissions are overestimated by the classical least squares and the robust least squares models over the range of 40–50% of secondary industry in China.

      Figure 7 shows how the predicted values deviate from the actual values when the independent variable is non-Gaussian for the presence of threshold data points from extreme references. As with the evidence presented above, extreme upward bias over a particular range can be observed when the classical least squares and the robust least squares are used; the models overestimated CO2 emissions over the range of 4.5– to 4.75 logarithm units of average annual salary. The extreme bias disappears when the exponential GPR model is used. Moreover, when the exponential GPR model is used, the deviations between the actual values and the predicted values are smaller for the extreme data values observed over the range of 1– to 1.5 and 5 to 5.5 logarithm units of average annual salary.

      In summary, Figures 37 show that predicted CO2 emissions conditional on individual components (i.e., GDP, population size, energy consumption, and industrialization) are quite close to the actual values predicted using the exponential GPR model. Even the underlying distribution of the independent variable is non-Gaussian. Meanwhile, extreme upward bias per component in the technique can be observed when the classical least squares and the robust least squares models are used. Thus, a conclusion may be drawn upon the study that the exponential GPR model gives the most accurate predictions on CO2 emissions compared with the remaining models.

      Conclusion and Future Works

      In this paper, the Gaussian process regression method is proposed for CO2 emissions analysis in China. The traditional linear regression approach is limited by its rigid functional form and the approach often encounters an over-fitting problem. The Gaussian progress regression approach relaxes the parametric assumption by applying the Bayesian nonparametric inference approach. The preciseness and exactitude of the prediction of the exponential GPR were compared and discussed with the classical least squares and the robust least-squares model. Based on the outcome of the whole study, it is proved that the Gaussian progress regression algorithms can give the most accurate predictions on CO2 emissions compared with the other two traditional models and thus is applicable for CO2 emissions prediction analysis to enhance forecast performance.

      The prediction performances of the selected methods discussed only focus on the six predominant factors affecting carbon emissions. Future research should focus on further reviewing the completeness of the set of driving factors and the effectiveness of model predictions, compared them with other commonly used models.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Author Contributions

      NM proposed the conceptualization, methodology and funding acquisition. WS gave the formal data analysis and wrote the original formal draft. TH performed the data collection and original arrangement. FL gave formal methodology, writing-review and editing.

      Funding

      This study was supported by Hainan College of Economics and Business (Project Reference Number: hnjmk2021301) and the Scientific Research Foundation of Yunnan University of Finance and Economics (No. 2020B03).

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Bhattacharya M. Rafiq S. Lean H. H. Bhattacharya S. (2017). The Regulated Coal Sector and CO2 Emissions in Indian Growth Process: Empirical Evidence over Half a century and Policy Suggestions. Appl. Energ. 204, 667678. 10.1016/j.apenergy.2017.07.061 Birdsall N. (1992). Another Look at Population and Global Warming. In Policy Research Working Papers ; No. WPS 1020. Population, Health, and Nutrition, 1020. Retrieved from http://documents.worldbank.org/curated/en/985961468766195689/Another-look-at-population-and-global-warming . Dinda S. (2004). Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 49 (4), 431455. 10.1016/j.ecolecon.2004.02.011 Essandoh O. K. Islam M. Kakinaka M. (2020). Linking International Trade and Foreign Direct Investment to CO2 Emissions: Any Differences between Developed and Developing Countries?. Sci. Total Environ. 712, 136437. 10.1016/j.scitotenv.2019.136437 Gershman S. J. Blei D. M. (2012). A Tutorial on Bayesian Nonparametric Models. J. Math. Psychol. 56 (1), 112. 10.1016/j.jmp.2011.08.004 Hu M. Li R. You W. Liu Y. Lee C.-C. (2020). Spatiotemporal Evolution of Decoupling and Driving Forces of CO2 Emissions on Economic Growth along the Belt and Road. J. Clean. Prod. 277, 123272. 10.1016/j.jclepro.2020.123272 Jones C. I. (1995). R & D-Based Models of Economic Growth. J. Polit. Economy 103 (4), 759784. 10.1086/262002 Jorgenson D. W. Wilcoxen P. J. (1993). Reducing U.S. Carbon Dioxide Emissions: an Assessment of Different Instruments. J. Pol. Model. 15 (5-6), 491520. 10.1016/0161-8938(93)90003-9 Kahouli B. (2018). The Causality Link between Energy Electricity Consumption, CO2 Emissions, R&D Stocks and Economic Growth in Mediterranean Countries (MCs). Energy 145, 388399. 10.1016/j.energy.2017.12.136 Khan M. Rana A. T. (2021). Institutional Quality and CO2 Emission-Output Relations: The Case of Asian Countries. J. Environ. Manage. 279, 111569. 10.1016/j.jenvman.2020.111569 Knapp T. Mookerjee R. (1996). Population Growth and Global CO2 Emissions. Energy Policy 24 (1), 3137. 10.1016/0301-4215(95)00130-1 Kolstad C. D. Krautkraemer J. A. (1993). “Natural Resource Use and the Environment,”. In Handbook of Natural Resource and Energy Economics. Editors Kneese A. V. Sweeney J. L. . 1st ed. Amsterdam North Holland, 3, 12191265. 10.1016/s1573-4439(05)80013-2 Li R. Wang Q. Liu Y. Jiang R. (2021). Per-capita Carbon Emissions in 147 Countries: The Effect of Economic, Energy, Social, and Trade Structural Changes. Sustainable Prod. Consumption 27, 11491164. 10.1016/j.spc.2021.02.031 Liu Y. Hao Y. (2018). The Dynamic Links between CO2 Emissions, Energy Consumption and Economic Development in the Countries along "the Belt and Road". Sci. Total Environ. 645, 674683. 10.1016/j.scitotenv.2018.07.062 Luo Y. Zeng W. Hu X. Yang H. Shao L. (2021). Coupling the Driving Forces of Urban CO2 Emission in Shanghai with Logarithmic Mean Divisia index Method and Granger Causality Inference. J. Clean. Prod. 298, 126843. 10.1016/j.jclepro.2021.126843 Mackay D. J. C. (1998). Introduction to Gaussian Processes. In Neural Networks and Machine Learning. Berlin: Springer. Minx J. C. Baiocchi G. Peters G. P. Weber C. L. Guan D. Hubacek K. (2011). A "Carbonizing Dragon": China's Fast Growing CO2 Emissions Revisited. Environ. Sci. Technol. 45 (21), 91449153. 10.1021/es201497m Mohmand Y. T. Mehmood F. Mughal K. S. Aslam F. (2020). Investigating the Causal Relationship between Transport Infrastructure, Economic Growth and Transport Emissions in Pakistan. Res. Transportation Econ., 100972. 10.1016/j.retrec.2020.100972 Munir Q. Lean H. H. Smyth R. (2020). CO2 Emissions, Energy Consumption and Economic Growth in the ASEAN-5 Countries: A Cross-Sectional Dependence Approach. Energ. Econ. 85, 104571. 10.1016/j.eneco.2019.104571 Nasir M. A. Canh N. P. Lan Le T. N. (2021). Environmental Degradation & Role of Financialisation, Economic Development, Industrialisation and Trade Liberalisation. J. Environ. Manage. 277, 111471. 10.1016/j.jenvman.2020.111471 Nguyen T. T. Pham T. A. T. Tram H. T. X. (2020). Role of Information and Communication Technologies and Innovation in Driving Carbon Emissions and Economic Growth in Selected G-20 Countries. J. Environ. Manage. 261, 110162. 10.1016/j.jenvman.2020.110162 Shahbaz M. Hye Q. M. A. Tiwari A. K. Leitão N. C. (2013). Economic Growth, Energy Consumption, Financial Development, International Trade and CO2 Emissions in Indonesia. Renew. Sustain. Energ. Rev. 25, 109121. 10.1016/j.rser.2013.04.009 Shahbaz M. Mahalik M. K. Shah S. H. Sato J. R. (2016). Time-varying Analysis of CO2 Emissions, Energy Consumption, and Economic Growth Nexus: Statistical Experience in Next 11 Countries. Energy Policy 98, 3348. 10.1016/j.enpol.2016.08.011 Shi A. (2003). The Impact of Population Pressure on Global Carbon Dioxide Emissions, 1975-1996: Evidence from Pooled Cross-Country Data. Ecol. Econ. 44 (1), 2942. 10.1016/s0921-8009(02)00223-9 Solow R. M. (1956). A Contribution to the Theory of Economic Growth. Q. J. Econ. 70 (1), 6594. 10.2307/1884513 Wang R. Mirza N. Vasbieva D. G. Abbas Q. Xiong D. (2020). The Nexus of Carbon Emissions, Financial Development, Renewable Energy Consumption, and Technological Innovation: What Should Be the Priorities in Light of COP 21 Agreements?. J. Environ. Manage. 271, 111027. 10.1016/j.jenvman.2020.111027 Williams C. K. (1998). Learning in Graphical Models. Dordrecht ; Boston: Kluwer Academic Publishers. 10.1007/978-94-011-5014-9_23 Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and beyond Williams C. K. Rasmussen C. E. (2006). Gaussian Processes for Machine Learning. Cambridge, Mass: Mit Press. Williams C. K. Rasmussen C. E. (1996). Gaussian Processes for Regression. In Advances in Neural Information Processing Systems. Cambridge, MassLondon: Mit Press. Xepapadeas A. (2005). “Chapter 23 Economic Growth and the Environment,”. Economywide and International Environmental Issues. Editors Karl-GöranM. Vincent J. R. (Amsterdam: North Holland), 3, 12191271. 10.1016/s1574-0099(05)03023-8 Yuan J. Xu Y. Zhang X. (2014). Income Growth, Energy Consumption, and Carbon Emissions: The Case of China. Emerging Markets Finance and Trade 50, 169181. Zaidi S. A. H. Zafar M. W. Shahbaz M. Hou F. (2019). Dynamic Linkages between Globalization, Financial Development and Carbon Emissions: Evidence from Asia Pacific Economic Cooperation Countries. J. Clean. Prod. 228, 533543. 10.1016/j.jclepro.2019.04.210 Zhang J. Fan Z. Chen Y. Gao J. Liu W. (2020). Decomposition and Decoupling Analysis of Carbon Dioxide Emissions from Economic Growth in the Context of China and the ASEAN Countries. Sci. Total Environ. 714, 136649. 10.1016/j.scitotenv.2020.136649 Zhang Y.-J. Liu Z. Zhang H. Tan T.-D. (2014). The Impact of Economic Growth, Industrial Structure and Urbanization on Carbon Emission Intensity in China. Nat. Hazards 73 (2), 579595. 10.1007/s11069-014-1091-x
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jdlyuch.com.cn
      ipkoo.org.cn
      www.etxyse.com.cn
      www.kkpwui.com.cn
      kpchain.com.cn
      kjfafa.com.cn
      www.epaychain.com.cn
      fmlpjs.com.cn
      www.nbapeilu.com.cn
      xashyx.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p