Front. Endocrinol. Frontiers in Endocrinology Front. Endocrinol. 1664-2392 Frontiers Media S.A. 10.3389/fendo.2025.1475822 Endocrinology Original Research Diabetes burden attributable to air pollution from 1990~2021 and the future trends: a population-based study Mao Qingsong 1 Zhu Xiaoyi 2 Zhang Xinyi 3 Kong Yuzhe 2 * 1 Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated of Chongqing Medical University, Chongqing, China 2 Xiangya School of Medicine, Central South University, Changsha, China 3 College of Education, Wenzhou University, Wenzhou, China

Edited by: Pedro M. Baptista, Health Research Institute of Aragon (IIS Aragon), Spain

Reviewed by: Luca Rinaldi, University of Molise, Italy

Cosmin Mihai Vesa, University of Oradea, Romania

Jiaman Xu, Boston University, United States

Farhad Saravani, Tehran University of Medical Sciences, Iran

*Correspondence: Yuzhe Kong, csuyuzhekong@foxmail.com

08 04 2025 2025 16 1475822 04 08 2024 07 03 2025 Copyright © 2025 Mao, Zhu, Zhang and Kong 2025 Mao, Zhu, Zhang and Kong

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Background

This investigation explores the worldwide impact of diabetes burden associated with air pollution, drawing on data from the Global Burden of Disease Study 2021.

Method

The influence of air pollution on diabetes burden was analyzed at global, regional, and national levels. The study considered variations across age groups and genders and explored the relationship between disease impact and the Socio-Demographic Index (SDI). Additionally, an ARIMA model was employed to predict the future incidence of diabetes burden related to air pollution until 2050.

Result

In 2021, approximately 281.91 thousand fatalities and 12.90 million disability-adjusted life years were attributed to diabetes burden due to air pollution, featuring an age-standardized mortality rate (ASMR) of 3.3234 (95% UI, 1.9549–4.6634) and an age-standardized DALY rate (ASDR) of 148.9167 (95% UI, 86.5013–224.9116) per 100,000 individuals. There was a noticeable escalation in the disease burden over the period studied. The most severe effects were noted in individuals aged 60 and above. The data also revealed a higher disease burden among males. Forecasting suggests that while low SDI regions might see a decrease in death rates, lower-middle SDI areas could face an increase in standardized mortality rates. On a national scale, Russia, Mexico, and several African nations are predicted to experience rising diabetes burden attributable to air pollution mortality rates and age-standardized mortality rates from now to 2050. South Asia and Africa are anticipated to witness substantial growth in age-standardized death rates compared to other areas.

Conclusion

The results provide essential insights for developing preventive strategies for diabetes burden and measures to mitigate air pollution.

Graphical Abstract

diabetes air pollution mortality forecasting epidemiology disease burden section-in-acceptance Clinical Diabetes

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Diabetes, a persistent medical condition, interferes with how the body processes food into energy. It often emerges in individuals with obesity, which impairs glucose management and heightens insulin resistance, elevating diabetes risk (1). Approximately 90% of type 2 diabetes cases are linked to excess weight or obesity, and the prevalence of obesity-induced impaired glucose tolerance is projected to climb to 420 million globally by 2025 (2). The simultaneous presence of diabetes and obesity, known as diabesity, can intensify cardiometabolic disorders and is emerging as a significant global health challenge amid the obesity crisis (3). Understanding the modifiable risk factors is essential for the large-scale control and prevention of diabesity.

      Environmental hazards, particularly fine particulate matter (PM2.5), pose significant global health risks. Research indicates that PM2.5 exposure correlates with higher risks of both obesity (4, 5) and diabetes (6, 7). Yet, the impact of PM2.5 on diabesity remains unexplored. Animal studies suggest that PM2.5 exposure can trigger insulin resistance and systemic inflammation (8, 9), leading to obesity (10) and disrupted glucose tolerance, changes in adipokine levels, and mitochondrial dysfunction, eventually causing diabetes (11). Recent findings from the UK Biobank also demonstrate a more pronounced link between PM2.5 exposure and diabetes among obese individuals. Despite this, global studies specifically addressing the impact of air pollution on diabetes mellitus are lacking.

      While well-established risk factors like obesity, lack of physical activity, and hereditary traits are recognized (12, 13), emerging evidence suggests a critical impact of environmental contributors, particularly air pollution, on the development of type 2 diabetes mellitus (T2DM). A comprehensive review and meta-analysis involving over 1.7 million individuals from 16 different studies has identified a robust link between sustained exposure to fine particulate matter (PM2.5) and a heightened risk of T2DM. Notably, an increase of 10 µg/m3 in PM2.5 levels corresponds to a 9% rise in the incidence of T2DM (14, 15). This highlights the urgency of exploring the underlying mechanisms connecting air pollution and T2DM, and the imperative to devise effective preventive measures.

      However, previous studies didn’t analyze the overall disease burden of diabetes burden attributable to air pollution. Thus, this study assesses how air pollution affects the global burden of diabetes burden by analyzing mortality and disability-adjusted life years (DALYs) trends across various demographics and socio-economic indicators from 1990 to 2021. Future trends are also projected using the autoregressive integrated moving average (ARIMA) model, supported by earlier studies (12, 13). These insights aim to support the prevention of diabetes burden and the management of environmental pollution.

      Method Study population

      Our research utilized data from the Global Burden of Disease Study (GBD) 2021, available at http://ghdx.healthdata.org/gbd-results-tool. The GBD 2021 encompasses a comprehensive assessment of 369 diseases and injuries, along with 87 risk factors, spanning 204 countries from 1990 to 2021 (14).

      The methodologies adopted to evaluate the diabetes burden are described in external references (15, 16). This summary outlines the methods employed in the GBD 2021. Data on diabetes mellitus mortality were sourced from vital registration systems, surveillance systems, and verbal autopsy reports. Adjustments were made to this vital registration data to enhance precision and to correct data deficiencies and misclassification issues (17). These corrections were incorporated into the Cause of Death Ensemble model (CODEm), which generated localized, annual estimates of diabetes-related deaths by age and gender (16, 18). A comparative risk assessment was also conducted to identify principal risk factors for diabetes mellitus. The population attributable fraction (PAF) was computed to assess the extent of air pollution’s contribution to the diabetes burden. The estimates of diabetes mellitus mortality and disability-adjusted life years (DALYs) related to air pollution were derived by applying these specific PAFs to the mortality and DALY statistics by location, year, age, and gender (14). DALYs represent an aggregate measure of disease burden, integrating years of life lost due to premature death (YLLs) and years lived with disability (YLDs). YLLs were calculated by multiplying the number of deaths due to lower respiratory infections (LRIs) within each age group by the group’s residual life expectancy. YLDs were calculated by multiplying the prevalence of LRIs by the disability weights adjusted for severity (17). The Socio-Demographic Index (SDI), ranging from 0 (lowest) to 100 (highest), was determined based on factors such as the total fertility rate for those under 25 years old (TFU25), average educational level for those over 15 (EDU15+), and adjusted per capita income. Based on the SDI, the 204 nations and territories were classified into five categories: low SDI, low-middle SDI, middle SDI, high-middle SDI, and high SDI (17).

      Statical analysis

      Age-standardized rates (ASR) were employed to adjust mortality and DALY figures for countries with diverse age structures and demographic profiles. We applied a linear regression to the natural logarithm of these rates, expressed as y = α+βx+ϵ, where x denotes the year, and y is the natural log of the rate. The estimated annual percentage change (EAPC) was calculated using the formula 100 * (e^β − 1), accompanied by a 95% confidence interval (95% CI). An upward trend in ASR was determined if both the EAPC and the lower limit of the 95% CI were positive, whereas a decline was noted if the EAPC and the upper limit of the 95% CI were negative. Stability in ASR was inferred if neither condition was met (19, 20). The correlation between ASR and the Socio-demographic Index (SDI) was investigated using a Gaussian process regression model with Loess smoothing, assessed via Spearman rank correlation tests (19, 21). Decomposition analysis was performed to assess the effects of aging, population growth, and epidemiological changes on DALY variations from 1990 to 2021, as elaborated in earlier studies (22).

      Moreover, the ARIMA (Autoregressive Integrated Moving Average) model was utilized to examine the effects of air pollution on diabetes mellitus trends and to project these trends globally, regionally, and nationally from 2020 to 2050. In the ARIMA model configuration (p, d, q), ‘AR’ indicates the autoregressive part with p representing the number of lag observations included in the model; ‘MA’ denotes the moving average segment with q indicating the number of lag forecast errors; and d specifies the degree of differencing required for data stabilization (23). The model’s selection was refined based on the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

      Uncertainty intervals (UI) of 95% were determined for all calculated figures (24). The rates were presented per 100,000 population. Data management, analysis, and visualization tasks were executed using R software, version 4.3.2 (2529).

      Result Spatiotemporal patterns of diabetes burden attributable to air pollution

      In 2021, air pollution was responsible for roughly 281.91 thousand deaths and 12.90 million disability-adjusted life years (DALYs) related to diabetes mellitus, featuring an age-standardized mortality rate (ASMR) of 3.3234 (95% UI, 1.9549–4.6634) and an age-standardized DALY rate (ASDR) of 148.9167 (95% UI, 86.5013–224.9116) per 100,000 individuals. Over the past three decades, there has been a marked rise in the diabetes burden attributable to air pollution ( Table 1 , Supplementary Table S1 ).

      In terms of the Socio-demographic Index (SDI), while high SDI and high-middle SDI regions have experienced a decrease in the diabetes burden due to air pollution, other regions have observed an increase. Additionally, an increase in the overall burden was noted across all SDI regions ( Table 1 , Supplementary Table S1 , Figure 1

      (a) Temporal trends of ASMR of diabetes mellitus attributable to air pollution from 1990 to 2021 in different SDI regions. (b) Temporal trends of ASDR of diabetes mellitus attributable to air pollution from 1990 to 2021 in different SDI regions.

      Global and regional deaths and DALYs of diabetes mellitus attributable to air pollution in 1990 and 2021 in 27 global regions.

      Location Deaths Number in 1990 Deaths Number in 2021 ASMR in 2021 DALY Number in 1990 DALY Number in 2021 ASDR in 2021
      Global 117055.1981 (165962.1725, 69992.0516) 281908.8380 (395527.8182, 165678.1738) 3.3234 (4.6634, 1.9549) 4568390.0872 (6604453.5510, 2676365.0738) 12904493.5493 (19485253.9069, 7501414.2293) 148.9167 (224.9116, 86.5013)
      Region
      East Asia 14727.5217 (20911.7647, 8881.8319) 37751.9552 (55167.0425, 23300.1518) 1.8276 (2.6631, 1.1295) 824439.0782 (1245827.7639, 479151.7348) 2387936.4267 (3684560.5727, 1386920.5967) 112.2851 (172.9835, 64.9136)
      Southeast Asia 12791.3861 (18293.7769, 7899.1202) 36436.1704 (51043.5376, 22147.5947) 6.1075 (8.5699, 3.7109) 459576.2404 (668999.6680, 277287.7965) 1476712.3687 (2172697.5502, 874644.3192) 220.6117 (324.8253, 130.7635)
      Oceania 492.4595 (745.7360, 291.5631) 1286.6016 (1966.6874, 706.3905) 19.0845 (29.0002, 10.4003) 17177.2223 (25830.7760, 10427.4353) 52693.2245 (79851.8979, 30148.2945) 621.3560 (945.7589, 355.1970)
      Central Asia 746.4653 (1117.9430, 418.5825) 2488.6182 (3591.7984, 1462.0006) 3.0928 (4.4446, 1.8212) 35798.5655 (56922.9462, 19624.6453) 138518.8492 (207337.2660, 81459.3424) 155.8100 (233.2900, 91.5154)
      Central Europe 3489.8882 (4995.3647, 2124.1619) 5438.4075 (7873.7798, 3135.5907) 2.3089 (3.3464, 1.3302) 159701.0535 (240033.3917, 87915.7510) 255097.4515 (395129.1260, 143860.4285) 120.2278 (186.5299, 67.3995)
      Eastern Europe 1897.4284 (2748.8987, 1052.1553) 5028.5939 (8058.7657, 2530.9493) 1.3850 (2.2185, 0.6970) 125712.8564 (195719.1721, 67706.9107) 227548.2176 (365162.8899, 112777.5481) 66.4575 (106.6777, 32.5307)
      High-income Asia Pacific 2581.6019 (4063.8218, 892.7968) 3441.3828 (4974.9071, 1989.7310) 0.6391 (0.9257, 0.3723) 135720.6213 (235118.5005, 44485.9463) 352888.8077 (571645.6177, 186920.1218) 96.6851 (157.4390, 50.3967)
      Australasia 162.9260 (411.7248, 6.3782) 436.2037 (721.2144, 217.3460) 0.7295 (1.2000, 0.3631) 5404.8024 (14309.8875, 184.7536) 18748.2949 (32384.6249, 8877.3381) 36.7258 (63.6792, 17.2853)
      Western Europe 14159.5754 (21006.8980, 7611.4867) 9966.1210 (14953.0625, 5532.3714) 0.8670 (1.3018, 0.4886) 394566.4027 (594536.6140, 212282.0242) 413144.0819 (671273.1168, 213306.2754) 49.8410 (82.8157, 25.3066)
      Southern Latin America 1550.7860 (2406.7956, 829.1138) 1912.1466 (2911.1477, 1041.4349) 2.1255 (3.2410, 1.1598) 49491.6721 (77674.6896, 25784.0562) 93484.2589 (152262.4287, 50637.3706) 108.9616 (177.1198, 58.9048)
      High-income North America 6881.3038 (11016.2108, 2741.3070) 4475.0174 (8056.9680, 1817.8266) 0.6633 (1.1933, 0.2694) 246151.2045 (402247.6676, 96027.9795) 301055.3128 (562699.8736, 117266.5579) 49.3951 (92.3140, 19.2403)
      Caribbean 1695.2934 (2534.4880, 890.8865) 3069.0994 (4680.7284, 1750.6287) 5.6684 (8.6432, 3.2373) 58820.3235 (90973.0032, 30474.7866) 140828.8269 (218925.6747, 77559.0644) 262.9395 (409.4020, 144.7345)
      Andean Latin America 782.2747 (1112.6003, 466.7733) 2565.3712 (3724.1001, 1459.6133) 4.4561 (6.4632, 2.5362) 28148.1111 (40902.9454, 16680.9748) 105561.3220 (158662.8863, 59919.8403) 176.2803 (264.6323, 100.1207)
      Central Latin America 7081.5374 (10037.6700, 4398.2229) 18235.8409 (27256.0315, 10856.8972) 7.4408 (11.1154, 4.4297) 270263.3370 (395222.0916, 160774.5611) 719122.7417 (1087740.2597, 413501.1583) 280.3022 (423.2255, 161.6501)
      Tropical Latin America 4139.9958 (6413.2387, 1915.8542) 8304.6454 (13268.1751, 4179.8888) 3.3167 (5.3095, 1.6702) 158441.0346 (250641.1484, 76699.0603) 338172.2017 (567838.6979, 173090.7017) 130.2282 (218.3913, 66.6377)
      North Africa and Middle East 6552.4805 (9291.4332, 3949.1182) 22388.3259 (31732.6698, 13338.5734) 5.7063 (8.0298, 3.3953) 254835.1041 (372106.4090, 152680.9399) 1230289.9345 (1852439.9446, 720894.9538) 255.6159 (383.5728, 150.0744)
      South Asia 22522.9288 (31817.3960, 13753.1357) 82661.2192 (117963.7517, 48643.2485) 6.4430 (9.1718, 3.8023) 874625.7825 (1270423.1982, 521885.8734) 3346802.8601 (4919034.9482, 1987992.7285) 220.4004 (321.6524, 130.8132)
      Central Sub-Saharan Africa 1929.6030 (2815.4227, 1174.9889) 4639.7403 (6893.6914, 2693.5834) 10.2495 (14.9176, 6.0600) 64505.7477 (93396.5765, 39294.4031) 188123.2643 (280297.8027, 108997.9301) 313.9963 (463.5407, 181.9338)
      Eastern Sub-Saharan Africa 6022.3026 (8679.7887, 3625.4875) 11640.4778 (16705.6779, 6745.2431) 8.2715 (11.7470, 4.7620) 185740.6114 (268457.1093, 109893.0197) 400931.7369 (578903.7322, 234032.2020) 226.2891 (324.8920, 131.4685)
      Southern Sub-Saharan Africa 1997.5890 (2844.1628, 1217.2715) 7016.5256 (10225.8838, 4254.8601) 13.7259 (19.9942, 8.2911) 62084.9723 (89645.7421, 37454.4042) 221361.0138 (320787.4753, 134034.4476) 379.2860 (548.2145, 229.6119)
      Western Sub-Saharan Africa 4849.8507 (6998.6712, 2934.7707) 12726.3741 (18335.8386, 7562.4411) 7.9127 (11.4000, 4.7694) 157185.3437 (229960.0314, 92654.1773) 495472.3529 (721787.9051, 291548.7828) 239.8894 (345.9861, 142.4705)
      SDI
      High-middle SDI 20173.3690 (28802.9125, 12103.6235) 38951.2947 (56060.0623, 23560.4730) 1.9804 (2.8529, 1.1989) 871726.0750 (1311374.9800, 510336.5721) 2080648.5439 (3196593.9305, 1180843.7641) 108.4117 (167.7089, 61.6624)
      High SDI 21821.4335 (32583.3718, 11950.2465) 21695.3443 (32950.6270, 12189.9508) 0.9546 (1.4458, 0.5400) 776220.5040 (1194573.3961, 411469.9721) 1339270.3990 (2192458.4179, 698466.1025) 72.6476 (119.2426, 37.7252)
      Low-middle SDI 26232.9461 (37438.1812, 15932.0077) 84425.6851 (118940.2042, 50251.1953) 6.6191 (9.3593, 3.9587) 972904.8319 (1418692.0810, 589820.0050) 3433414.7602 (5056634.7496, 2033882.2760) 231.3510 (338.4636, 136.3710)
      Low SDI 13613.2478 (19515.6433, 8247.1861) 31013.1188 (44159.4322, 18332.8679) 7.2531 (10.2497, 4.2973) 465812.1450 (673243.1667, 281964.2837) 1263109.0667 (1828692.8957, 753685.6540) 234.4284 (342.1238, 139.5443)
      Middle SDI 35031.1495 (49607.8278, 20775.8184) 105491.6752 (149953.5829, 62747.3338) 4.1866 (5.9240, 2.4868) 1474810.6300 (2128310.7871, 883136.3560) 4773270.5045 (7165713.8618, 2774297.9443) 173.7644 (260.5925, 101.1816)

      Region-wise, East Asia, Southeast Asia, and South Asia registered the highest impact with the most deaths and DALYs, whereas Oceania, Central Asia, and Australasia recorded the lowest. Conversely, in terms of ASMR and ASDR, Oceania, Central Sub-Saharan Africa, and Southern Sub-Saharan Africa demonstrated the highest burden ( Table 1 ).

      At the national level, in 2021, there was significant variability in ASMR across countries, with populous nations like China and India showing the highest rates, reflecting major health challenges linked to environmental and public health issues ( Figure 2 ). From 1990 to 2021, some countries, especially in Western Europe and North America, saw a decline in ASMR, indicating improvements in health metrics. However, countries such as Honduras and Libya experienced increases, primarily due to PM2.5 pollution and other environmental concerns, underscoring unique regional health challenges that differ from the global trend toward better health outcomes ( Table 1 , Supplementary Table S1 , Figure 3 ). The geographical and chronological trends of ASDR mirrored those of ASMR.

      Age–specific rates of global deaths (a) and DALYs (b) of diabetes mellitus attributable to air pollution, by sex, in 2021 and the corresponding EAPC of global deaths (c) and DALYs (d) from 1990 to 2021.

      (a) Age-specific rates of global deaths of diabetes mellitus attributable to air pollution, by sex, in 2021. (b) Age-specific rates of global DALYs (b) of diabetes mellitus attributable to air pollution, by sex, in 2021. (c) Corresponding EAPC of global deaths from 1990 to 2021. (d) Corresponding EAPC of global DALYs (d) from 1990 to 2021.

      Age and sex patterns

      Figure 2 illustrates the age-specific global mortality and DALY rates for diabetes mellitus in 2021, along with changes from 1990. These rates reveal a J-shaped pattern, indicating an increase in mortality and DALYs among individuals below 60, with a significant surge observed in the 60+ age groups. Across all age brackets, males demonstrated consistently higher mortality rates from air pollution than females. Similarly, the DALY rates associated with air pollution were elevated for all age groups. In every SDI region, males exhibited higher mortality and DALY rates, with this gender difference being consistent across the regions ( Figure 4 ).

      (a) ASMR in diabetes mellitus Burden Attributable to Air Pollution across Global Regions. (b) ASMR in diabetes mellitus Burden Attributable to Air Pollution across High-middle SDI Regions. (c) ASMR in diabetes mellitus Burden Attributable to Air Pollution across High SDI Regions. (d) ASMR in diabetes mellitus Burden Attributable to Air Pollution across Low-middle SDI Regions. (e) ASMR in diabetes mellitus Burden Attributable to Air Pollution across Low SDI Regions. (f) ASMR in diabetes mellitus Burden Attributable to Air Pollution across Middle SDI Regions. (g) ASDR in diabetes mellitus Burden Attributable to Air Pollution across Global Regions. (h) ASDR in diabetes mellitus Burden Attributable to Air Pollution across High-middle SDI Regions. (i) ASDR in diabetes mellitus Burden Attributable to Air Pollution across High SDI Regions. (j) ASDR in diabetes mellitus Burden Attributable to Air Pollution across Low-middle SDI Regions. (k) ASDR in diabetes mellitus Burden Attributable to Air Pollution across Low SDI Regions. (l) ASDR in diabetes mellitus Burden Attributable to Air Pollution across Middle SDI Regions.

      Association with the socio-demographic index

      Figure 5 presents a comparison of the observed and forecasted age-standardized DALY (ASDR) and mortality rates (ASMR) due to air pollution, juxtaposed with Socio-Demographic Index (SDI) values at both regional and national levels from 1990 to 2021. A negative correlation was observed between ASDR and SDI, indicating a reduction in burden with increasing SDI. Areas such as Oceania, southern sub-Saharan Africa, and central Latin America recorded higher ASDR than anticipated during this timeframe. Moreover, the observed ASDR figures were higher than projected in western sub-Saharan Africa and Australia. The trends for observed versus projected ASMR based on SDI at regional levels were consistent with the ASDR results. Figure 5 also illustrates the observed versus projected ASDR and ASMR at the national level for 2021, revealing a similar inverse relationship between these rates and SDI, both regionally and nationally.

      Correlations between ASMR (a, c) and ASDR (b, d) of diabetes mellitus attributable to air pollution and SDI at the regional level (a, b) and the national level (c, d).

      Forecasts for the mortality, DALYs rate, ASMR and ASDR of diabetes burden attributable to air pollution in global (2022–2050)

      Projections for mortality rates, DALY rates, ASMR, and ASDR related to CVDs due to air pollution are detailed in Figures 6 8 . Regionally, the mortality rate is expected to decline only in the low SDI region. However, age-standardized assessments indicate that the low-middle SDI region is likely to see an increase. For DALY rates and ASDR, all SDI regions, with the exception of the high SDI, are anticipated to experience significant increases in the future ( Figure 6 ).

      Estimated Trends of Mortality Rate (a), DALYs Rate (b), ASMR (c) and ASDR (d), 1990–2050 at the Regional Level.

      Estimated Trends of Mortality Rate (a, b) and ASMR (c, d) in 2030 (a, c) and 2050 (b, d) at the National Level.

      Estimated Trends of DALYs Rate (a, b) and ASDR (c, d) in 2030 (a, c) and 2050 (b, d) at the National Level.

      On a national scale, the patterns are expected to stay stable in both 2030 and 2050. However, the projected death rates and ASMR from diabetes mellitus due to air pollution are notably higher in Russia, Mexico, and most African countries compared to others for both 2030 and 2050. In terms of ASDR, nations in South Asia and Africa are expected to witness more significant increases than other countries ( Figures 7 , 8 ).

      Discussion

      This study examined the diabetes burden worldwide resulting from air pollution between 1990 and 2021, identifying a significant upward trend during this timeframe. The most impacted demographic included individuals over the age of 60, with males showing higher rates. Projections indicate that while mortality rates might decrease in regions with a low Social Development Index (SDI), standardized mortality rates are expected to rise in lower-middle SDI areas. Moreover, diabetes mortality and age-standardized death rates associated with air pollution are projected to remain elevated in Russia, Mexico, and many African nations, with a notably sharper increase in age-standardized mortality rates expected in South Asia and Africa compared to other regions. To our knowledge, this research is the first to thoroughly assess diabetes burden from air pollution.

      In 2017, PM2.5 exposure contributed to 4.58 million deaths and 142.52 million DALYs worldwide (30). While age-standardized rates (ASRs) of deaths and DALYs saw a decline, the decrease was modest on a global scale, with certain regions like Latin America, Africa, South Asia, the Middle East, and Oceania experiencing an increase in the absolute burden as the global population rose from 5.3 billion in 1990 to 7.6 billion in 2017. With rapid industrialization and urbanization, the health impact of ambient PM2.5 in low- and middle-income areas has become increasingly apparent. Concurrently, Cookstove Intervention Programs expanded, reducing household PM2.5 burdens in developing nations, though only 60% of the global population had access to clean fuels (3134). Significantly, five Asian nations (India, China, Pakistan, Indonesia, and Bangladesh) represented the highest burdens, accounting for over 50% of all deaths and DALYs related to PM2.5.

      According to the World Health Organization, as economic conditions and sanitation improved, non-communicable diseases (NCDs) represented over 60% of the global disease burden and contributed to more than 70% of deaths in 2017 (35). Major diseases linked to PM2.5 were among the top 10 causes of death worldwide in 2016 (36). The leading three conditions for PM2.5-associated DALYs were ischemic heart disease (IHD), cerebrovascular disease, and lower respiratory infections (LRI), followed by chronic obstructive pulmonary disease (COPD), diabetes, and lung cancer, all of which ranked in the top 20 causes of global DALYs (37). Our findings indicated an increase in deaths and DALYs from PM2.5-related NCDs particularly among those over 70, while the 14-69 age group largely contributed to DALYs in conditions like stroke, IHD, and diabetes, posing significant challenges for public health and socio-economic development by impacting the labor force.

      Studies have shown that economic growth has often led to substantial environmental pollution which adversely affects glucose metabolism, promoting insulin resistance and Type 2 Diabetes Mellitus (T2DM, 39). Meta-analyses have established a positive association between significant air pollutants (like PM2.5, PM10, NO2, and NOX) and T2DM (38). From 2000 to 2015, PM2.5 levels escalated from 31.2 μg/m3 to 97.0 μg/m3 in 15 Chinese provinces and regions (39). Additionally, research has linked a 10 μg/m3 increase in PM2.5 exposure to a 10% heightened risk of developing T2DM (40). Consequently, there is an urgent need to address the issue of diabetes mellitus caused by air pollution.

      Furthermore, our studies have shown that East Asia, Southeast Asia, and South Asia bear the greatest burden, with the highest numbers of deaths and DALYs, highlighting that densely populated and rapidly industrializing countries like India and China face disproportionately high disease burdens from PM2.5, exacerbated by significant rural-urban economic disparities and uneven public health resources. Between 2000 and 2010, health welfare costs and losses in labor productivity due to air pollution accounted for 6.5% of China’s GDP annually, and 8.5% of India’s GDP in 2013, while Bangladesh incurs around $6.5 billion annually in related costs. In response, the Chinese government implemented the Air Pollution Prevention and Control Action Plan, revised the Law on the Prevention and Control of Atmospheric Pollution, and took steps such as switching to natural gas for heating, regulating power plants, and limiting vehicle emissions (4143). Similarly, the Indian government initiated the National Clean Air Program aimed at enhancing air quality monitoring, boosting pollution control capabilities, and reducing PM2.5 and PM10 levels by 20–30% by 2024. These proactive measures toward eco–friendly development are expected to mitigate public health losses from PM2.5, enhance economic dynamism through improved labor productivity and energy efficiency, and assist these countries in breaking out of detrimental cycles toward sustainable development.

      Air pollution, especially PM2.5, ozone (O₃), and nitrogen oxides (NOx), can reduce vitamin D synthesis by blocking UVB radiation necessary for its production in the skin. This effect is particularly pronounced in highly polluted urban areas, where low UV exposure contributes to higher rates of vitamin D deficiency. Additionally, pollution–induced inflammation and oxidative stress can impair insulin sensitivity, increasing the risk of diabetes. Both reduced vitamin D levels and increased systemic inflammation from air pollutants may synergistically elevate the risk of type 2 diabetes, highlighting the need for effective environmental and health interventions (44).

      Building on our findings, actionable policy recommendations are essential to mitigate the diabetes burden attributable to air pollution. Governments should prioritize stricter air quality regulations and promote cleaner energy alternatives to reduce particulate matter exposure, particularly in high–risk regions. Integrating air pollution mitigation strategies with existing public health programs targeting diabetes prevention could amplify their impact. Additionally, improving urban planning to decrease air pollution in densely populated areas and raising public awareness about the health risks associated with air pollution are critical. Future policies should also emphasize tailored interventions for vulnerable populations, such as the elderly and individuals in lower SDI regions.

      In the context of our study findings, the recent public health measures and policy developments in countries like China and India provide insightful examples. China’s Air Pollution Prevention and Control Action Plan and India’s National Clean Air Program (NCAP) aim to significantly reduce PM2.5 and PM10 levels. These initiatives demonstrate a proactive approach to mitigating air pollution and its associated health impacts, including diabetes mellitus. By incorporating these national efforts into our discussion, we can better illustrate the potential for public health policies to influence and possibly reduce the burden of diseases exacerbated by environmental pollutants (4547).

      Our research encounters several notable constraints. Primarily, there is a deficiency of primary data from less developed areas, particularly in Sub–Saharan Africa, where assessments are predominantly based on mathematical modeling, leading to wide ranges of uncertainty. Additionally, air pollution comprises a complex mixture of various components, each possessing unique physicochemical properties and toxic effects that vary significantly across different regions and seasons.

      Conclusion

      This study offers an in–depth analysis of the global burden of diabetes mellitus attributed to air pollution from 1990 to 2021, observing a significant increase over the years. Individuals aged over 60 were the most impacted, with men facing a greater burden. Looking ahead, only regions with a low Socio–Demographic Index (SDI) are expected to see a decrease in mortality rates, whereas those in lower–middle SDI regions will likely witness an increase in standardized mortality rates. On a national scale, countries such as Russia, Mexico, and most of Africa are anticipated to continue experiencing elevated diabetes mortality rates and ASMR due to air pollution up to 2030 and 2050. Both South Asia and Africa are projected to encounter substantial rises in ASDR compared to other areas.

      This underscores the urgent necessity for policymakers to devise and refine preventive measures tailored to specific populations to reduce the diabetes burden associated with air pollution in the future.

      Data availability statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Author contributions

      QM: Formal analysis, Writing – original draft. XioZ: Data curation, Investigation, Writing – original draft. XinZ: Visualization, Writing – original draft. YK: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

      Funding

      The author(s) declare that no financial support was received for the research and/or publication of this article.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fendo.2025.1475822/full#supplementary-material

      References Lingvay I Sumithran P Cohen RV le Roux CW . Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet. (2022) 399:394405. doi: 10.1016/S0140–6736(21)01919–X Hossain P Kawar B El Nahas M . Obesity and diabetes in the developing world–a growing challenge. N Engl J Med. (2007) 356:213–5. doi: 10.1056/NEJMp068177 Ng ACT Delgado V Borlaug BA Bax JJ . Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. (2021) 18:291304. doi: 10.1038/s41569–020–00465–5 Li Q Liu F Huang K Liang F Shen C Liao J . Physical activity, long–term fine particulate matter exposure and type 2 diabetes incidence: A prospective cohort study. Chronic Dis Transl Med. (2024) 10:205–15. doi: 10.1002/cdt3.128 Liu M Tang W Zhang Y Wang Y Kangzhuo B Li Y . Urban–rural differences in the association between long–term exposure to ambient air pollution and obesity in China. Environ Res. (2021) 201:111597. doi: 10.1016/j.envres.2021.111597 Chen S Liu D Huang L Guo C Gao X Xu Z . Global associations between long–term exposure to PM2.5 constituents and health: A systematic review and meta–analysis of cohort studies. J Hazard Mater. (2024) 474:134715. doi: 10.1016/j.jhazmat.2024.134715 Li X Wang M Song Y Ma H Zhou T Liang Z . Obesity and the relation between joint exposure to ambient air pollutants and incident type 2 diabetes: A cohort study in UK Biobank. PloS Med. (2021) 18:e1003767. doi: 10.1371/journal.pmed.1003767 Chen H Burnett RT Kwong JC Villeneuve PJ Goldberg MS Brook RD . Risk of incident diabetes in relation to long–term exposure to fine particulate matter in Ontario, Canada. Environ Health Perspect. (2013) 121:804–10. doi: 10.1289/ehp.1205958 Hotamisligil GS . Inflammation and metabolic disorders. Nature. (2006) 444:860–7. doi: 10.1038/nature05485 Sun Q Yue P Deiuliis JA Lumeng CN Kampfrath T Mikolaj MB . Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet–induced obesity. Circulation. (2009) 119:538–46. doi: 10.1161/CIRCULATIONAHA.108.799015 Si H Gao T Yang J Zhu J Han Y Li C . Multi–omics reveals hypertrophy of adipose tissue and lipid metabolism disorder via mitochondria in young mice under real–ambient exposure to air pollution. Front Pharmacol. (2023) 14:1122615. doi: 10.3389/fphar.2023.1122615 Hassan F Hatah E Chong WW Ali AM . Impact of attendance to a pharmacist–managed medication adherence clinic on glycemic control and risk factors for non–completion among persons with type 2 diabetes mellitus in selangor, Malaysia. Ther Clin Risk Manage. (2024) 20:495503. doi: 10.2147/TCRM.S442026 Khobrani FM Alzahrani AM Binmahfoodh DS Hemedy RA Abbas SI . Risk factors and diagnostic performance of predictors as a screening technique for gestational diabetes mellitus: a retrospective cross–sectional study. Ann Med Surg (Lond). (2024) 86:4384–8. doi: 10.1097/MS9.0000000000002247 Liang W Zhu H Xu J Zhao Z Zhou L Zhu Q . Ambient air pollution and gestational diabetes mellitus: An updated systematic review and meta–analysis. Ecotoxicol Environ Saf. (2023) 255:114802. doi: 10.1016/j.ecoenv.2023.114802 Goldney J Henson J Edwardson CL Khunti K Davies MJ Yates T . Long–term ambient air pollution exposure and prospective change in sedentary behaviour and physical activity in individuals at risk of type 2 diabetes in the UK. J Public Health (Oxf). (2024) 46:e32–42. doi: 10.1093/pubmed/fdad263 Safiri S Mahmoodpoor A Kolahi AA Nejadghaderi SA Sullman MJM Mansournia MA . Global burden of lower respiratory infections during the last three decades. Front Public Health. (2023) 10:1028525. doi: 10.3389/fpubh.2022.1028525 GBD 2019 Diseases and Injuries Collaborators . Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. (2020) 396:1204–22. doi: 10.1016/S0140–6736(20)30925–9 Foreman KJ Lozano R Lopez AD Murray CJ . Modeling causes of death: an integrated approach using CODEm. Popul Health Metr. (2012) 10:1. doi: 10.1186/1478–7954–10–1 Jin X Ren J Li R Gao Y Zhang H Li J . Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine. (2021) 37:100986. doi: 10.1016/j.eclinm.2021.100986 Lu H Tan Z Liu Z Wang L Wang Y Suo C . Spatiotemporal trends in stroke burden and mortality attributable to household air pollution from solid fuels in 204 countries and territories from 1990 to 2019. Sci Total Environ. (2021) 775:145839. doi: 10.1016/j.scitotenv.2021.145839 Safiri S Kolahi AA Hoy D Buchbinder R Mansournia MA Bettampadi D . Global, regional, and national burden of neck pain in the general population, 1990–2017: systematic analysis of the Global Burden of Disease Study 2017. BMJ. (2020) 368:m791. doi: 10.1136/bmj.m791 Hu J Ke R Teixeira W Dong Y Ding R Yang J . Global, regional, and national burden of CKD due to glomerulonephritis from 1990 to 2019: A systematic analysis from the global burden of disease study 2019. Clin J Am Soc Nephrol. (2023) 18:6071. doi: 10.2215/CJN.0000000000000017 Zhu B Wang Y Zhou W Jin S Shen Z Zhang H . Trend dynamics of gout prevalence among the Chinese population, 1990–2019: A joinpoint and age–period–cohort analysis. Front Public Health. (2022) 10:1008598. doi: 10.3389/fpubh.2022.1008598 Mao Q Zhu X Zhang X Kong Y . Effect of air pollution on the global burden of cardiovascular diseases and forecasting future trends of the related metrics: a systematic analysis from the Global Burden of Disease Study 2021. Front Med (Lausanne). (2024) 11:1472996. doi: 10.3389/fmed.2024.1472996 Mao Q Zhu X Zhang X Kong Y . Triglyceride–glucose Index and Its combination with obesity indicators mediating the association between 2–hydroxyfluorene and the prevalence of cardiovascular disease: Evidence from the NHANES (2005–2018). Ecotoxicol Environ Saf. (2024) 287:117283. doi: 10.1016/j.ecoenv.2024.117283 Mao Q Zhu X Kong Y . Sleep duration mediates the association between heavy metals and the prevalence of depression: an integrated approach from the NHANES (2005–2020). Front Psychiatry. (2024) :1455896. doi: 10.3389/fpsyt.2024.1455896 Kong Y Zhu X Yang Y Xu H Ma L Zuo Y . Knowledge, attitudes, practice, and public health education demand regarding PARI prevention: a cross–sectional study among Chinese undergraduates. Front Public Health. (2024) 12:1387789. doi: 10.3389/fpubh.2024.1387789 Kong Y Xu H Li C Yang Y Zhu X Zuo Y . Construction of PARI public health education programs for Chinese undergraduates: a Delphi study. Front Public Health. (2024) 12:1390011. doi: 10.3389/fpubh.2024.1390011 Cheng Z Kong Y Yang W Xu H Tang D Zuo Y . Association between serum copper and blood glucose: a mediation analysis of inflammation indicators in the NHANES (2011–2016). Front Public Health. (2024) 12:1401347. doi: 10.3389/fpubh.2024.1401347 Bu X Xie Z Liu J Wei L Wang X Chen M . Global PM2.5–attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ Res. (2021) 197:111123. doi: 10.1016/j.envres.2021.111123 Hystad P Larkin A Rangarajan S AlHabib KF Avezum Á Calik KBT . Associations of outdoor fine particulate air pollution and cardiovascular disease in 157 436 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet Planetary Health. (2020) 4(6):e235–45. doi: 10.1016/S2542-5196(20)30103-0 Arku RE Birch A Shupler M Yusuf S Hystad P Brauer M . Characterizing exposure to household air pollution within the Prospective Urban Rural Epidemiology (PURE) study. Environ Int. (2018) 114:307–17. doi: 10.1016/j.envint.2018.02.033 Qingsong M Xiao R Yang W Wang X Kong YZ . Global burden of pneumoconiosis attributable to occupational particulate matter, gasses, and fumes from 1990~2021 and forecasting the future trends: a population-based study. Front Public Health. (2025) 12:1494942. doi: 10.3389/fpubh.2024.1494942 WHO Chowdhury S . Dey World population prospects: the 2017 revision. Environ Int. (2016) 91:283–90. WHO . World population prospects: the 2017 revision . Available online at: http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/. WHO Global Health . Estimates 2016: disease burden by cause, age, sex, by country and by region, 2000–2016. Geneva: World Health Organization (2018). Global, regional, and national disability–adjusted life–years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. (2017) 390:1260–344. Balti EV Echouffo–Tcheugui JB Yako YY Kengne AP . Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta–analysis. Diabetes Res Clin Pract. (2014) 106:161–72. doi: 10.1016/j.diabres.2014.08.010 Huang K Liang F Yang X Liu F Li J Xiao Q . Long term exposure to ambient fine particulate matter and incidence of stroke: prospective cohort study from the China–PAR project. BMJ. (2019) 367:l6720. doi: 10.1136/bmj.l6720 Eze IC Hemkens LG Bucher HC Hoffmann B Schindler C Künzli N . Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta–analysis. Environ Health Perspect. (2015) 123:381–9. doi: 10.1289/ehp.1307823 Miller L Xu X . Ambient PM2.5 human health effects—findings in China and research directions. Atmosphere. (2018) 9:424. doi: 10.3390/atmos9110424 Zou B Li S Lin Y Wang B Cao S . Efforts in reducing air pollution exposure risk in China: state versus individuals. Environ Int. (2020) 137:105504. doi: 10.1016/j.envint.2020.105504 Yue H He C Huang Q Yin D Bryan BA . Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nat Commun. (2020) 11(1):1462. doi: 10.1038/s41467-020-15319-4 Trifan DF Tirla AG Moldovan AF Moș C Bodog F Maghiar TT . Can vitamin D levels alter the effectiveness of short–term facelift interventions? Healthcare (Basel). (2023) 11:1490. doi: 10.3390/healthcare11101490 Sasso FC Pafundi PC Caturano A Galiero R Vetrano E Nevola R . Impact of direct acting antivirals (DAAs) on cardiovascular events in HCV cohort with pre–diabetes. Nutr Metab Cardiovasc Dis. (2021) 31:2345–53. doi: 10.1016/j.numecd.2021.04.016 Sasso FC Pafundi PC Gelso A Bono V Costagliola C Marfella R . Relationship between albuminuric CKD and diabetic retinopathy in a real–world setting of type 2 diabetes: Findings from No blind study. Nutr Metab Cardiovasc Dis. (2019) 29:923–30. doi: 10.1016/j.numecd.2019.05.065 Sasso FC Pafundi PC Gelso A Bono V Costagliola C Marfella R . High HDL cholesterol: A risk factor for diabetic retinopathy? Findings from NO BLIND study. Diabetes Res Clin Pract. (2019) 150:236–44. doi: 10.1016/j.diabres.2019.03.028
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gemfilm.com.cn
      www.hunlizhe.com.cn
      www.hnbxly.com.cn
      lbchain.com.cn
      www.jxmhfjj.com.cn
      ugamenow.net.cn
      www.shuaqb.net.cn
      suomai.net.cn
      simxt.com.cn
      www.uefa2020.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p