Front. Ecol. Evol. Frontiers in Ecology and Evolution Front. Ecol. Evol. 2296-701X Frontiers Media S.A. 10.3389/fevo.2021.727602 Ecology and Evolution Original Research Do Incubation Temperatures Affect the Preferred Body Temperatures of Hatchling Velvet Geckos? Abayarathna Theja Webb Jonathan K. * School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia

Edited by: J. Sean Doody, University of South Florida, United States

Reviewed by: Anindita Bhadra, Indian Institute of Science Education and Research Kolkata, India; Richard Anthony Peters, La Trobe University, Australia

*Correspondence: Jonathan K. Webb, Jonathan.webb@uts.edu.au

This article was submitted to Behavioral and Evolutionary Ecology, a section of the journal Frontiers in Ecology and Evolution

08 12 2021 2021 9 727602 19 06 2021 16 11 2021 Copyright © 2021 Abayarathna and Webb. 2021 Abayarathna and Webb

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

In many lizards, a mother’s choice of nest site can influence the thermal and hydric regimes experienced by developing embryos, which in turn can influence key traits putatively linked to fitness, such as body size, learning ability, and locomotor performance. Future increases in nest temperatures predicted under climate warming could potentially influence hatchling traits in many reptiles. In this study, we investigated whether future nest temperatures affected the thermal preferences of hatchling velvet geckos, Amalosia lesueurii. We incubated eggs under two fluctuating temperature treatments; the warm treatment mimicked temperatures of currently used communal nests (mean = 24.3°C, range 18.4–31.1°C), while the hot treatment (mean = 28.9°C, range 20.7–38.1°C) mimicked potential temperatures likely to occur during hot summers. We placed hatchlings inside a thermal gradient and measured their preferred body temperatures (Tbs) after they had access to food, and after they had fasted for 5 days. We found that hatchling feeding status significantly affected their preferred Tbs. Hatchlings maintained higher Tbs after feeding (mean = 30.6°C, interquartile range = 29.6–32.0°C) than when they had fasted for 5 d (mean = 25.8°C, interquartile range = 24.7–26.9°C). Surprisingly, we found that incubation temperatures did not influence the thermal preferences of hatchling velvet geckos. Hence, predicting how future changes in nest temperatures will affect reptiles will require a better understanding of how incubation and post-hatchling environments shape hatchling phenotypes.

heatwave nest temperature regulation reptile developmental plasticity climate change School of Life Sciences, University of Technology Sydney10.13039/501100014582

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Developmental plasticity, the changes in the phenotype induced by the environment experienced by the developing embryo, is an important source of variation for many organismal traits that can influence individual fitness (West-Eberhardt, 2003). In most species of oviparous reptiles, females abandon their eggs after laying them in nests (Reynolds et al., 2002). In the absence of parental care, the thermal and hydric conditions inside reptile nests can vary markedly throughout the incubation period. For example, nest temperatures often fluctuate widely on a daily basis (Shine and Harlow, 1996; Andrews and Warner, 2002), and can vary depending on local weather conditions (Shine, 2004). In the last few decades, a large body of experimental research has demonstrated that incubation temperatures can influence a multitude of offspring traits, including sex, morphology, behavior, performance, and cognitive abilities (Deeming and Ferguson, 1991; Deeming, 2004; Noble et al., 2018; While et al., 2018). Some of these developmental effects can be long lasting, and can influence the growth and survival of offspring (Qualls and Andrews, 1999; Andrews et al., 2000; Dayananda et al., 2016) and may influence lifetime reproductive success (Warner and Shine, 2008). Thus, an understanding of thermal developmental plasticity can provide insights into how reptiles may cope with changing environments (Mitchell et al., 2008; Angilletta, 2009; Carlo et al., 2018).

      Most research on thermal developmental plasticity has focused on how incubation temperatures affect morphological traits, physiology, sex ratios and incubation duration (While et al., 2018). By contrast, few studies have investigated whether incubation temperatures can also influence the thermal preferences or thermal tolerances of hatchlings (Lang, 1987; Blumberg et al., 2002; Du et al., 2010; Dayananda et al., 2017; Abayarathna et al., 2019; Refsnider et al., 2019). Most lizards maintain their body temperature (hereafter, Tb) within a preferred range by carefully selecting suitable microhabitats, altering their behavior, or by adjusting their posture, shape, or color (Huey, 1982). In turn, selected Tbs influence the physiology, behavior, performance, activity budgets, and growth of individuals, which can influence their survival and reproduction (Huey, 1982; Angilletta, 2009). Thus, incubation-induced plasticity in preferred body temperatures (Tpref) may have important fitness consequences for hatchling lizards. More broadly, an understanding of how incubation temperatures influence the Tpref of lizards is important for predicting how species may fare under future climates (Huey et al., 2012).

      Experimental studies on lizards have found that incubation temperatures may affect the thermoregulatory behavior of hatchlings of some species, but not others (Du et al., 2010; Refsnider et al., 2019). For example, incubation temperatures did not affect the selected Tbs of hatchling veiled chameleons Chamaeleo calyptratus (Andrews, 2008), three lined skinks Bassiana duperreyi (Du et al., 2010), or Cuban rock iguanas Cyclura nubila (Alberts et al., 1997). By contrast, other studies reported the opposite effect. For example, in the Madagascar ground gecko, Paroedura pictus, hatchlings from hot incubation temperatures had higher dorsal temperatures prior to crossing between the cold and hot sides of a thermal shuttle apparatus (Blumberg et al., 2002). In Sceloporus virgatus, hatchlings from cold temperature incubation (15–25°C) selected higher Tbs, and maintained Tbs more precisely than hatchlings from hot temperature (20–30°C) incubation (Qualls and Andrews, 1999). In a study on Jacky dragons (Amphibolurus muricatus) using constant temperature incubation, hatchlings from the 28.1°C treatment had lower Tbs after 2 h in a thermal gradient than hatchlings from 25 or 32°C treatments (Esquerre et al., 2014). Despite evidence that incubation temperatures can affect the Tpref of hatchlings, it is unclear whether such incubation induced shifts are ecologically relevant, particularly if the effects are short lived or are masked by interactions with the post-hatching environment (Andrews et al., 2000; Buckley et al., 2007). For example, incubation-induced differences in Tpref of hatchlings might have little effect on subsequent growth or survival if lizards shift Tpref in response to food availability. In some lizards, individuals may elevate their Tpref after feeding, or may select cooler Tpref when food is scarce (Brown and Griffin, 2005). Such thermophilic responses to feeding might mask or swamp developmental shifts in thermoregulatory behavior. Hence, to understand the ecological significance of incubation-induced shifts in Tpref, we also need to assess whether other sources of variation such as feeding influence the Tpref of hatchlings.

      In this study, we carried out an experiment to test whether thermal conditions during incubation affected the thermal preferences of hatchling velvet geckos, Amalosia lesueurii. Velvet geckos lay eggs communally in nest crevices, and maximum daily nest temperatures are positively correlated with maximum daily air temperatures (Dayananda et al., 2016). Thermal data collected from 21 nests in 2018–2019 revealed that the slope of the relationship between air temperature and nest temperature was greater than one in 24% of nests (Cuartas-Villa and Webb, 2021). Because the frequency and intensity of heatwaves is predicted to increase in future (Cowan et al., 2020; Trancoso et al., 2020), it is likely that some nests will become hotter in future. To determine how such changes might affect phenotypic traits of hatchlings, we incubated eggs under a “cold” (mean = 24.3°C, range 18.4–31.1°C) and “hot” treatment (mean = 28.9°C, range 19.1–38.1°C) to mimic current vs. potential future nest temperatures. We predicted that hatchlings from hot incubation should have higher Tpref than hatchlings from cold incubation; i.e., local adaptation hypothesis (Levinton, 1983). Our null hypothesis was that incubation temperature would not influence Tpref. However, it is possible that developmental shifts in Tpref might not be detectable if Tpref is influenced by environmental conditions in the post-hatching environment. To explore these hypotheses, we measured the preferred body temperatures of hatchlings in a cost-free thermal gradient. To assess whether feeding influenced gecko body temperatures, we measured the hatchling’s body temperatures after feeding and fasting.

      Materials and Methods Study Species

      The velvet gecko, Amalosia lesueurii, is a small (up to 65 mm snout to vent length), nocturnal lizard that inhabits sandstone rock outcrops from south eastern New South Wales to south-eastern Queensland (Cogger, 2014). By day the geckos thermoregulate under small, sun-exposed stones (Schlesinger and Shine, 1994; Webb et al., 2008). At dusk, they venture from their rocks or crevices to forage in leaf litter (Cogger, 2014). Female velvet geckos lay eggs in communal nests located in rock crevices in late spring, and the eggs hatch from February to March (Webb et al., 2008). After emergence, hatchlings settle under small stones located near the communal nests, and they spend the first eight months of life sheltering beneath one or two rocks (Webb, 2006). Annual observations of communal nests at three study sites in Morton National Park, NSW, have revealed that gravid geckos have laid eggs inside the same communal nests since 1992 (Webb, unpublished data). Previous studies have shown that maximum daily nest temperatures are positively correlated with maximum daily air temperatures (Dayananda et al., 2016). In some nests, the slope of the relationship between nest and air temperature is greater than one (Cuartas-Villa and Webb, 2021). Thus, temperatures inside some communal nests may increase in the future if the frequency and duration of summer heatwaves increases.

      Egg Incubation Experiment

      We carried out an egg incubation experiment to mimic thermal regimes inside currently used nests (hereafter, “cold”) and thermal conditions that could occur inside nests during hot summers in 2,050 (“hot”). We programmed two identical incubators (Panasonic MIR 154, 10 step functions) to mimic the cycling temperatures that occur in natural nests at our study sites, in which nest temperatures cycle on a daily basis, but get hotter during summer heatwaves (Figure 1). Temperatures inside each incubator were recorded with four miniature data loggers (Thermochron DS1922L-F5#, accuracy of ± 0.5°C) that were placed inside100 ml glass jars filled with egg incubation media (see below), and sealed with cling wrap. These were positioned at the front and rear of the top and bottom shelves of each incubator. Temperatures in the cold treatment (mean = 24.3°C, range 18.4–31.1°C, SD = 3.2°C) were similar to those recorded inside sun-exposed communal nests (Dayananda et al., 2016). Temperatures in the hot treatment (mean = 28.9°C, range 20.7°C–38.1°C, SD = 4.3°C) cycled in exactly the same way as the “cold” treatment (Figure 1), except that mean temperatures were 4.6°C higher. Temperatures in the hot treatment were on average, 2°C higher than the temperatures recorded inside four sun-exposed communal nests from Morton National Park over the period 23 November 2018 to 28 January 2019 (mean nest temperature = 26.9°C range 15.8–36.7°C, Cuartas-Villa and Webb, 2021). This treatment simulated the potential future nest temperatures that could occur in 2,050, based on the predicted increases in air temperatures between 2.9 and 4.6°C that are forecast for southeast Australia by climate modelers (Dowdy et al., 2015).

      Thermal regimes that we programmed for the (A) cold incubation treatment and (B) hot incubation treatment. The temperature regimes of the cold treatment mimicked thermal regimes that we have recorded inside the communal nests of our focal species Amalosia lesueurii under the current climate (Cuartas-Villa and Webb, 2021). Temperature regimes of the hot treatment are potential nest temperatures likely to occur under future climates. Note that in both treatments, temperatures fluctuated daily, and increased during the incubation period, to simulate the thermal regimes that occur in natural nests over spring and summer. The three elevated spikes in temperature (at around days 35, 55, and 80 of incubation) correspond to heatwaves of varying durations.

      After programming the incubators, we brought gravid females into the lab, and after oviposition, we placed eggs singly inside 100 mL glass jars filled with moist vermiculite (water potential of 200 KPa) and covered each jar with plastic food wrap to prevent the eggs from desiccating. We randomly allocated one egg from each clutch of two eggs produced by each female to each of two programmable incubators. Full details of collection of geckos, husbandry, incubation regimes, and incubation periods and hatching success, are presented elsewhere (Abayarathna et al., 2019).

      Measurement of Preferred Body Temperatures

      After hatching, we housed hatchlings individually in plastic containers (Sistema NZ 2.0 L, 220 × 150 × 60 mm) with a paper substrate, a plastic half pipe and a water dish. We placed the hatchling cages on timer-controlled heating cables set to 32°C, which created a thermal gradient (23–32°C) inside the cages during the day, while night time temperatures matched the room temperature of 23°C. We fed hatchlings with five pinhead crickets twice weekly, and cleaned their cages at weekly intervals. We recorded the Tbs of 22 four-week old hatchlings (10 hot-incubated and 12 cold-incubated hatchlings, all from Dharawal) inside a thermal gradient. We did not measure the lizards’ preferred body temperatures prior to this age as the hatchlings were used in another study in which we measured their learning abilities using a Y maze apparatus (Abayarathna and Webb, 2020). We recognize that testing hatchlings at 4 weeks of age is a limitation of our study; however, if incubation temperatures induce biologically meaningful shifts in hatchling preferred body temperatures, such effects should be detectable in the first eight weeks of life (Buckley et al., 2007).

      The thermal gradient consisted of a wooden enclosure (1.5 m long × 0.5 m wide × 0.5 m high) with a mesh lid and a clear glass front at one end (Figure 2). We partitioned the enclosure into 8 lanes, each 1.5 m long and 6 cm wide, each of which contained a 1.4 m long white plastic half pipe as a shelter, with a water dish in the middle. To create the thermal gradient, we placed the cage on a wooden base that contained heating cables at one end, and plastic tubes connected to a water bath (Haake F3 K Circulating Water Bath) carrying chilled water (5°C) at the other end (Figure 2). Two 250-watt infrared lamps provided additional heating at the hot end. The substrate temperatures within the thermal gradient ranged from 10 to 40°C. To measure the substrate temperature within the gradient, we placed miniature data loggers (Thermochron i-buttons, factory calibrated and accurate to ± 0.1°C) along the floor of each lane. The data loggers recorded the temperature every 60 min.

      Photograph of the thermal gradient used to measure preferred body temperatures of hatchling velvet geckos. Each gecko was placed in a separate runway, which contained a plastic half pipe for shelter, and a water dish. Two 250-watt infrared lamps provided additional heating at the hot end (not shown in the photo).

      To measure the preferred Tb of the hatchlings, we placed each hatchling in the middle of each lane of the thermal gradient at 0900 h. We estimated thermal preferences of hatchlings during the day because the geckos thermoregulate under rocks during the day time, as do other geckos (Kearney and Predavec, 2000). After 1 h of acclimation, we observed the location of each hatchling though the front glass wall, and recorded the numbers of the data loggers nearest to the lizard. If we could not see the hatchling, we confirmed its position by gently lifting the half pipe without disturbing the animal. In such cases, we recorded the lizard’s Tb with an infrared thermometer (Cool Tech, CT663, spot diameter = 13 mm). We repeated this procedure every hour from 1,000 to 1,700 h. We used substrate temperature as a proxy for lizard Tb (Buckley et al., 2007; Goodman and Walguarnery, 2007) because the hatchlings small body size (SVL < 30 mm, mass < 0.55 g) precluded the use of cloacal probes. In addition, the Tb of small lizards can change rapidly within seconds of handling, so aside from the risk of injuring the lizard, cloacal probes may not provide accurate estimates of hatchling Tbs. In addition, the capture of lizards could affect their subsequent behavior within the thermal gradient, which could affect their Tb. Although our method was crude, substrate temperatures recorded from data loggers near lizards were positively correlated with lizard temperatures that were measured with the IR thermometer (r2 = 0.94, P < 0.001). To assess whether feeding influenced the Tb of hatchling geckos, we tested lizards under their normal feeding regime. The order of feeding was counterbalanced across each cohort to avoid any possibility of an order effect influencing results. For the fasted treatment, lizards were not fed for 5 days prior to placement in the thermal gradient, which allowed us to compare our results with other studies on lizards (Brown and Griffin, 2005).

      Statistical Analyses

      For each individual lizard, we calculated the mean body temperature (Tb) in the thermal gradient, and the 25 and 75% quartiles, after feeding, and prior to feeding (Hertz et al., 1993). These metrics allowed us to compare the preferred body temperatures of hatchlings before and after feeding. To determine whether incubation treatment or feeding status affected hatchling body temperatures, we used repeated-measures ANOVA. In this analysis, hatchling body temperature was the dependent variable, while hour of day, and feeding status were the within subjects effects, and incubation treatment was the between subjects effect. Although we used a split-clutch design, and placed one egg from each clutch of two eggs into each incubator, only two hatchlings had the same mother. For this reason, we did not include maternal ID as a factor in our analyses. Prior to carrying out the analysis, we checked that data met the assumptions of homogeneity of variances (Levene’s test, P = 0.31) and were normally distributed (Shapiro-Wilks tests). As data transformations did not solve the problem of non-normality, we elected not to transform raw data prior to the analysis, as ANOVA is robust to departures of normality (Schmider et al., 2010). However, because the data did not meet the assumptions of sphericity for hour (Mauchley’s W = 0.038, P = 0.001) or feeding × hour (Mauchley’s W = 0.066, P = 0.01), we used the Greenhouse-Geisser correction for determining the significance of F-tests (Field, 2013). We ran statistical analyses using SPSS version 26.

      Results

      Lizards from both hot and cold incubation treatments showed very similar patterns of thermoregulation (Figure 3), and had similar preferred Tbs before feeding (mean Tbs = 25.9 and 25.7°C, respectively) and after feeding (mean Tbs = 30.7 and 30.4°C, respectively). Both cold-incubated and hot-incubated lizards showed similar patterns of thermoregulation, with hatchlings maintaining higher body temperatures (Tbs) after midday than during the morning (Fig. 3). Lizard body temperatures varied significantly with hour of day [F(3.4, 68.6) = 20.73, P < 0.01], but there was no interaction between hour and incubation treatment [F(3.4, 85.4) = 2.25, P = 0.08] nor between feeding status, incubation treatment and hour [F(3.4, 85.4) = 0.99, P = 0.42]. However, lizard feeding status significantly affected body temperatures, with lizards maintaining higher Tbs after feeding than prior to feeding [F(1,20) = 206.78, P = 0.0001, Figure 3]. There was also a significant interaction between feeding status and hour [F(4.3, 85.4) = 3.97, P = 0.004], reflecting the fact that at 10 a.m., 1 h after being placed in the gradient, body temperatures of fed and unfed lizards were similar (Figure 3). Thereafter, body temperatures of recently-fed lizards were higher than those of fasted lizards during each hour of the day (Figure 3). Lizards selected higher body temperatures in the thermal gradient after feeding (mean Tb = 30.6°C, IQR = 29.6–32.0°C, range = 23.5–35.5°C) than before feeding (mean Tb = 25.8°C, IQR = 24.7–26.9°C, range = 20.0–32.5°C). Overall, there was no significant effect of incubation treatment on hatchling Tbs [F(1, 20) = 0.13, P = 0.73] and no interaction between feeding status and incubation treatment [F(1,20) = 0.04, P = 0.84].

      Mean Tbs of cold-incubated and hot-incubated hatchling velvet geckos that were placed inside a thermal gradient between 0900 and 1,500 h. Figure shows the temperature profiles of recently fed lizards and lizards that were fasted for 5 days. Error bars denote standard errors.

      Discussion

      We predicted that hatchlings from the hot incubation treatment would select higher preferred body temperatures (Tpref) than hatchlings from the cold treatment. Contrary to our prediction, we found no evidence that incubation temperatures affected the thermal preferences of 4-week old hatchlings. Indeed, mean selected Tbs of cold- and hot-incubated hatchlings were very similar, as was the precision of thermoregulation (Figure 3). Although we measured body temperatures of hatchlings at age four weeks, our findings agree with the results of previous studies, which found no effect of incubation temperatures on selected Tbs of hatchlings during the 2 months of life in veiled chameleons Chamaeleo calyptratus (Andrews, 2008), and western fence lizards Sceloporus occidentalis (Buckley et al., 2007). Other studies reported no effect of incubation on selected Tbs of 1-week old three lined skinks Bassiana duperreyi (Du et al., 2010) or 14–16 month old Cuban rock iguanas Cyclura nubila (Alberts et al., 1997). By contrast, other studies have reported that incubation temperatures can influence the thermoregulatory behavior of hatchlings. For example, in western fence lizards hatchlings from a warm-incubation treatment thermoregulated more precisely than lizards from a cool-incubation treatment, and this effect persisted for at least seven weeks post hatching (Buckley et al., 2007). In the Madagascar ground gecko, Paroedura pictus, hatchlings from a hot incubation treatment maintained higher dorsal temperatures prior to crossing between the cold and hot sides of a thermal shuttle apparatus at night, and this effect persisted for several weeks after hatching (Blumberg et al., 2002). Studies on other ectotherms suggest that as for reptiles, the effects of developmental temperatures on preferred body temperatures are mixed (Dillon et al., 2009). For example, in some Drosophila species, flies reared at 25°C had higher Tpref than those reared at 20°C (Yamamoto and Ohba, 1984). In Drosophila melanogaster, adults selected lower temperatures when reared at 28°C than when reared at 19 or 25°C (Krstevska and Hoffmann, 1994). These mixed results suggest that like other traits, reaction norms for thermal preferences may be non-linear (Noble et al., 2018). Hence, we cannot rule out the possibility that intermediate incubation temperatures might affect preferred Tbs of velvet geckos. Future studies, using intermediate temperatures, and larger sample sizes, would help resolve this issue.

      Ultimately, the biological relevance of incubation-induced shifts in preferred Tbs will depend on the magnitude and duration of such effects relative to other sources of environmental variation (Booth, 2018). Notably, several studies have shown that incubation-induced shifts in Tb are transitory, so are unlikely to influence traits linked to fitness (Buckley et al., 2007; Goodman and Walguarnery, 2007). In the present study, hatchlings maintained significantly higher Tbs after feeding (fed: mean Tb = 30.6°C; fasted mean Tb = 25.8°C), demonstrating that food availability has large effects on hatchling Tbs. Thermophilic responses to feeding are widespread in snakes (Blouin-Demers and Weatherhead, 2001) but are less common in lizards (Wall and Shine, 2008; Schuler et al., 2011). Notably, the 4.8°C increase in mean Tb of hatchling geckos after feeding is similar to that reported for snakes in thermal gradients (typically, increases of 2–6°C (Lysenko and Gillis, 1980; Slip and Shine, 1988; Tsai and Tu, 2005), but is higher than the 3.1°C increase reported for adults of our study species (Dayananda and Webb, 2020), or the modest increases (typically, <2°C), reported for lizards such as Heloderma suspectum (Gienger et al., 2013) and Anolis carolinensis (Brown and Griffin, 2005). Future studies on hatchlings of other lizard species in this respect, particularly geckos, would help to evaluate the generality of our results.

      Why do fasted hatchlings select lower Tbs than recently fed individuals? After feeding, selection of higher Tbs likely maximizes digestive efficiency and rates of energy assimilation (Harlow et al., 1976; Beaupre et al., 1993). However, because metabolic rates scale with Tb, maintenance of high Tbs increases energy expenditure (Angilletta, 2009). Therefore, in the absence of food, hatchlings may select lower Tbs to reduce energy expenditure. Conserving energy might be particularly important for hatchlings, as they may lack sufficient energy reserves in their tails to survive long periods in the absence of food (Greer, 1989). Ultimately, shifts in Tb in response to food availability may represent a trade-off between energy conservation vs. maintenance of other fitness related behaviors (Huey, 1982). For example, adults of Yarrow’s spiny lizard Sceloporus jarrovi that were deprived of food for five days maintained high Tbs, presumably so they could maximize important fitness related behaviors such as territory defense (Schuler et al., 2011). In the wild, hatchling velvet geckos congregate under rocks near communal nest sites, and hatchlings often share rocks with conspecifics during the first few months of life (Webb, 2006), so territory defense may be unimportant during this period.

      Irrespective of feeding status, hatchling geckos displayed diel variation in preferred Tbs. Hatchlings selected low Tbs in the morning, and thereafter they raised their Tb and maintained elevated temperatures throughout the afternoon (Figure 3). Similar diel patterns of thermoregulation were reported for individuals of two gecko species, Eublepharis macularius and Oedura marmorata, that were fasted for 3 days before being placed in a thermal gradient (Angilletta et al., 1999). Similarly, individuals of the gecko Tarentola mauritanica increased their Tbs during the day (Gill, 1994). The underlying cause for this pattern of thermoregulation in geckos is not known, but we note that Tbs of hatchling A. lesueurii follow the same pattern as rock temperatures; i.e., delayed heating, reaching a peak in early afternoon (Webb and Shine, 1998). Potentially, this pattern might represent an entrained circadian rhythm for activity or thermoregulation (Refinetti and Susalka, 1997; Tawa et al., 2014). Because hatchling geckos commence foraging shortly after dusk, maintaining high Tbs around dusk would aid in prey capture and potentially, escape from predators (Christian and Tracy, 1981). As for diurnal lizards, maintenance of high Tbs during daylight hours would facilitate physiological processes such as digestion, growth and sloughing (Huey, 1982; Angilletta et al., 1999).

      Conclusion

      In conclusion, we found no effects of incubation temperature on the thermal preference of hatchling velvet geckos. However, there was a strong effect of feeding status on the hatchlings thermal preference, suggesting that food availability may influence thermoregulation by hatchlings in the wild. To evaluate the role of thermal developmental plasticity on the thermal preferences of hatchling lizards, future studies should not only estimate the duration of such effects, but also, their magnitude relative to plasticity caused by the post-hatching environment.

      Data Availability Statement

      The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

      Ethics Statement

      The animal study was reviewed and approved by University of Technology Animal Care and Ethics Committee.

      Author Contributions

      TA and JW contributed to conception, design of the study, contributed to manuscript revision, read, and approved the submitted and revised versions. TA carried out the experiments, wrote the first draft of the manuscript, and organized the database. JW performed the statistical analysis and edited the manuscript. Both authors contributed to the article and approved the submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Funding

      This research was supported by a postgraduate research support grant from the University of Technology Sydney (to TA).

      We thank Reannan Honey and our volunteers for their help with fieldwork and Gemma Armstrong, Paul Brooks, and Susan Fenech for their technical support in the laboratory. Rowena Morris (NSW National Parks and Wildlife Service) kindly provided us with access to study sites in Dharawal National Park. Graham Alexander and Dan Warner, and two reviewers provided constructive comments and suggestions that helped to improve an earlier version of the manuscript. The procedures described herein were approved by the UTS Animal Care and Ethics Committee (protocol # 2012000256 to JW), and were carried out under a NSW National Parks and Wildlife Service scientific license (SL 101013 to JW).

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fevo.2021.727602/full#supplementary-material

      References Abayarathna T. Webb J. K. (2020). Effects of incubation temperatures on learning abilities of hatchling velvet geckos. Anim. Cogn. 23 613620. 10.1007/s10071-020-01365-4 32130559 Abayarathna T. Murray B. R. Webb J. K. (2019). Higher incubation temperatures produce long-lasting upward shifts in cold tolerance, but not heat tolerance, of hatchling geckos. Biol. Open 8:bio042564. 10.1242/bio.042564 31000681 Alberts A. C. Perry A. M. Lemm J. M. Phillips J. A. (1997). Effects of incubation temperature and water potential on growth and thermoregulatory behavior of hatchling Cuban rock iguanas (Cyclura nubila). Copeia 1994 766776. 10.2307/1447294 Andrews R. M. (2008). Effects of incubation temperature on growth and performance of the veiled chameleon (Chamaeleo calyptratus). J. Exp. Zool. A Ecol. Genet. Physiol. 309 435446. 10.1002/jez.470 18512704 Andrews R. M. Warner D. A. (2002). Nest-site selection in relation to temperature and moisture by the lizard Sceloporus undulatus. Herpetologica 58 399407. Andrews R. M. Mathies T. Warner D. A. (2000). Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetol. Monographs 14 420431. 10.2307/1467055 Angilletta M. J. (2009). Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford: Oxford University Press. Angilletta M. J. Montgomery L. G. Werner Y. L. (1999). Temperature preference in geckos: diel variation in juveniles and adults. Herpetologica 55 212222. Beaupre S. J. Dunham A. E. Overall K. L. (1993). The effects of consumption rate and temperature on apparent digestibility coefficient, urate production, metabolizable energy coefficient and passage time in canyon lizards (Sceloporus merriami) from two populations. Funct. Ecol. 7 273280. Blouin-Demers G. Weatherhead P. J. (2001). An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsoleta. J. Anim. Ecol. 70 10061013. Blumberg M. S. Lewis S. J. Sokoloff G. (2002). Incubation temperature modulates post-hatching thermoregulatory behavior in the Madagascar ground gecko, Paroedura pictus. J. Exp. Biol. 205 27772784. Booth D. T. (2018). Incubation temperature induced phenotypic plasticity in oviparous reptiles: where to next? J. Exp. Zool. A Ecol. Integr. Physiol. 329 343350. 10.1002/jez.2195 29971954 Brown R. P. Griffin S. (2005). Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. J. Therm. Biol. 30 7983. 10.1016/j.jtherbio.2004.07.005 Buckley C. R. Jackson M. Youssef M. Irschick D. J. Adolph S. C. (2007). Testing the persistence of phenotypic plasticity after incubation in the western fence lizard, Sceloporus occidentalis. Evol. Ecol. Res. 9 169183. Carlo M. A. Riddell E. A. Levy O. Sears M. W. (2018). Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change. Ecol. Lett. 21 104116. 10.1111/ele.12877 29143493 Christian K. A. Tracy C. R. (1981). The effect of the thermal envrionment on the ability of hatchling land iguanas to avoid predation during dispersal. Oecologia 49 218223. 10.1007/BF00349191 28309312 Cogger H. G. (2014). Reptiles and Amphibians of Australia. Australia: Reed New Holland. Cowan T. Hegerl G. Harrington L. (2020). Present-day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves. Nat. Clim. Change 10 505510. Cuartas-Villa S. Webb J. K. (2021). Nest site selection in a southern and northern population of the velvet gecko (Amalosia lesueurii). J. Therm. Biol. 102:103121. 10.1016/j.jtherbio.2021.103121 Dayananda B. Webb J. K. (2020). Thermophilic response to feeding in adult female velvet geckos. Curr. Zool. 66 693694. 10.1093/cz/zoaa022 33391369 Dayananda B. Gray S. Pike D. Webb J. K. (2016). Communal nesting under climate change: fitness consequences of higher nest temperatures for a nocturnal lizard. Glob. Change Biol. 22 24052414. 10.1111/gcb.13231 26940852 Dayananda B. Murray B. R. Webb J. K. (2017). Hotter nests produce hatchling lizards with lower thermal tolerance. J. Exp. Biol. 220 21592165. 10.1242/jeb.152272 28615488 Deeming D. C. (2004). “Post-hatching phenotypic effects of incubation in reptiles,” in Reptilian Incubation: Environment, Evolution and Behaviour, ed. Deeming D. C. (Nottingham: Nottingham University Press), 229251. Deeming D. C. Ferguson M. W. J. (1991). “Physiological effects of incubation temperature on embryonic development in reptiles and birds,” in Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, eds Deeming D. C. Ferguson M. W. J. (Cambridge: Cambridge University Press), 147171. Dillon M. E. Wang G. Garrity P. A. Huey R. B. (2009). Thermal preference in Drosophila. J. Therm. Biol. 34 109119. 10.1016/j.jtherbio.2008.11.007 20161211 Dowdy A. Abbs D. Bhend J. Chiew F. Church J. Ekstrom M. (2015). East Coast Cluster Report, Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports, eds Ekstrom M. Whetton P. Gerbing C. Grose M. Webb L. Risbey J. (Melbourne, VIC: CSIRO and Bureau of Meteorology). Du W. Elphick M. Shine R. (2010). Thermal regimes during incubation do not affect mean selected temperatures of hatchling lizards (Bassiana duperreyi, Scincidae). J. Therm. Biol. 35 4751. 10.1016/j.jtherbio.2009.10.007 Esquerre D. Keogh J. S. Schwanz L. E. (2014). Direct effects of incubation temperature on morphology, thermoregulatory behaviour and locomotor performance in jacky dragons (Amphibolurus muricatus). J. Therm. Biol. 43 3339. 10.1016/j.jtherbio.2014.04.007 24956955 Field A. (2013). Discovering Statistics Using IBM SPSS Statistics, 4th Edn. Thousand Oaks, CA: SAGE Publications. Gienger C. M. Tracy C. R. Zimmerman L. C. (2013). Thermal responses to feeding in a secretive and specialized predator (Gila monster, Heloderma suspectum). J. Therm. Biol. 38 143147. 10.1016/j.jtherbio.2012.12.004 Gill M. (1994). Diel variation in preferred body temperatures of the Moorish gecko Tarentola mauritanica during summer. Herpetology 4 5659. Goodman R. M. Walguarnery J. W. (2007). Incubation temperature modifies neonatal thermoregulation in the lizard Anolis carolinensis. J. Exp. Zool. A Ecol. Genet. Physiol. 307 439448. 10.1002/jez.397 17577200 Greer A. E. (1989). The Biology and Evolution of Australian Lizards. Chipping Norton, NSW: Surrey Beatty and Sons. Harlow H. J. Hillman S. S. Hoffman M. (1976). Effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 111 16. Hertz P. E. Huey R. B. Stevenson R. D. (1993). Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am. Nat. 142 796818. 10.1086/285573 19425957 Huey R. B. (1982). “Temperature, physiology, and the ecology of reptiles,” in Biology of the Reptilia, eds Gans C. Pough F. H. (Cambridge, MA: Academic Press), 2591. Huey R. B. Kearney M. R. Krockenberger A. Holtum J. A. M. Jess M. Williams S. E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B Biol. Sci. 367 16651679. Kearney M. Predavec M. (2000). Do nocturnal ectotherms thermoregulate? A study of the temperate gecko Christinus marmoratus. Ecology 81 29842996. Krstevska B. Hoffmann A. A. (1994). The effects of acclimation and rearing conditions on the response of tropical and temperate populations of Drosophila melanogaster and D. simulans to a temperature gradient (Diptera: Drosophilidae). J. Insect Behav. 7 279288. Lang J. W. (1987). “Crocodilian thermal selection,” in Wildlife Management: Crocodiles and Alligators, eds Webb G. J. W. Manolis S. C. Whitehead P. J. (Chipping Norton, NSW: Surrey Beatty & Sons Pty Ltd), 301317. Levinton J. S. (1983). The latitudinal compensation hypothesis: growth data and a model of latitudinal growth differentiation based upon energy budgets. I. Interspecific comparison of Ophryotrocha (Polychaeta: Dorvilleidae). Biol. Bull. 165 686698. 10.2307/1541471 29324018 Lysenko S. Gillis J. E. (1980). The effect of ingestive status on the thermoregulatory behavior of Thamnophis sirtalis sirtalis and Thamnophis sirtalis parietalis. J. Herpetol. 14 155159. Mitchell N. J. Kearney M. R. Nelson N. J. Porter W. P. (2008). Predicting the fate of a living fossil: how will global warming affect sex determination and hatchling phenology in tuatara. Proc. R. Soc. B Biol. Sci. 275 21852193. 10.1098/rspb.2008.0438 18595840 Noble D. W. Stenhouse V. Schwanz L. E. (2018). Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta-analysis. Biol. Rev. 93 7297. 10.1111/brv.12333 28464349 Qualls C. P. Andrews R. M. (1999). Cold climates and the evolution of viviparity in reptiles: cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus. Biol. J. Linn. Soc. 67 353376. 10.1006/bijl.1998.0307 Refinetti R. Susalka S. J. (1997). Circadian rhythm of temperature selection in a nocturnal lizard. Physiol. Behav. 62 331336. 10.1016/s0031-9384(97)88989-5 Refsnider J. M. Clifton I. T. Vazquez T. K. (2019). Developmental plasticity of thermal ecology traits in reptiles: trends, potential benefits, and research needs. J. Therm. Biol. 84 7482. 10.1016/j.jtherbio.2019.06.005 31466792 Reynolds J. D. Goodwin N. B. Freckleton R. P. (2002). Evolutionary transitions in parental care and live bearing in vertebrates. Philos. Trans. R. Soc. B Biol. Sci. 357 269281. 10.1098/rstb.2001.0930 11958696 Schlesinger C. A. Shine R. (1994). Selection of diurnal retreat sites by the nocturnal gekkonid lizard Oedura lesueurii. Herpetologica 50 156163. Schmider E. Ziegler M. Danay E. Beyer L. Bühner M. (2010). Is it really robust? Methodology 6 147151. Schuler M. S. Sears M. W. Angilletta M. J. (2011). Food consumption does not affect the preferred body temperature of Yarrow’s spiny lizard (Sceloporus jarrovi). J. Therm. Biol. 36 112115. 10.1016/j.jtherbio.2010.12.002 Shine R. (2004). Seasonal shifts in nest temperature can modify the phenotypes of hatchling lizards, regardless of overall mean incubation temperature. Funct. Ecol. 18 4349. Shine R. Harlow P. S. (1996). Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77 18081817. Slip D. J. Shine R. (1988). Thermophilic response to feeding of the diamond python, Morelia s. spilota (Serpentes: Boidae). Comp. Biochem. Physiol A Physiol. 89 645650. 10.1016/0300-9629(88)90847-x Tawa Y. Jono T. Numata H. (2014). Circadian and temperature control of activity in Schlegel’s Japanese gecko, Gekko japonicus (Reptilia: Squamata: Gekkonidae). Curr. Herpetol. 33 121128. 10.5358/hsj.33.121 Trancoso R. Syktus J. Toombs N. Ahrens D. Wong K. K.-H. Pozza R. D. (2020). Heatwaves intensification in Australia: a consistent trajectory across past, present and future. Sci. Total Environ. 742:140521. 10.1016/j.scitotenv.2020.140521 32721721 Tsai T.-S. Tu M.-C. (2005). Postprandial thermophily of Chinese green tree vipers, Trimeresurus s. stejnegeri: interfering factors on snake temperature selection in a thigmothermal gradient. J. Therm. Biol. 30 423430. Wall M. Shine R. (2008). Post-feeding thermophily in lizards (Lialis burtonis Gray, Pygopodidae): laboratory studies can provide misleading results. J. Therm. Biol. 33 274279. 10.1016/j.jtherbio.2008.02.005 Warner D. A. Shine R. (2008). The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451 566568. 10.1038/nature06519 18204437 Webb J. K. (2006). Effects of tail autotomy on survival, growth and territory occupation in free-ranging juvenile geckos (Oedura lesueurii). Austral Ecol. 31 432440. 10.1111/j.1442-9993.2006.01631.x Webb J. K. Shine R. (1998). Using thermal ecology to predict retreat-site selection by an endangered snake species. Biol. Conserv. 86 233242. Webb J. K. Pike D. A. Shine R. (2008). Population ecology of the velvet gecko, Oedura lesueurii in south eastern Australia: implications for the persistence of an endangered snake. Austral Ecol. 33 839847. West-Eberhardt M. J. (2003). Developmental Plasticity and Evolution. Oxford: Oxford University Press. While G. M. Noble D. W. A. Uller T. Warner D. A. Riley J. L. Du W.-G. (2018). Patterns of developmental plasticity in response to incubation temperature in reptiles. J. Exp. Zool. A Ecol. Integr. Physiol. 329 162176. 10.1002/jez.2181 29806741 Yamamoto A. Ohba S. (1984). Temperature preferences of eleven drosophila species from japan: the relationship between preferred temperature and some ecological characteristics in their natural habitats. Zool. Sci. 1 631640.
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016mgchain.com.cn
      hsequi.com.cn
      www.ghchain.com.cn
      jrgdbf.com.cn
      meepao.com.cn
      gxwns.com.cn
      uberbank.com.cn
      teaers.com.cn
      www.voun.com.cn
      qeoiof.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p