Front. Ecol. Evol. Frontiers in Ecology and Evolution Front. Ecol. Evol. 2296-701X Frontiers Media S.A. 10.3389/fevo.2021.727471 Ecology and Evolution Original Research Unraveling the Olfactory Biases of Male Euglossine Bees: Species-Specific Antennal Responses and Their Evolutionary Significance for Perfume Flowers Brandt Katharina 1 * Dötterl Stefan 2 Ramírez Santiago R. 3 Etl Florian 4 Machado Isabel Cristina 5 Navarro Daniela Maria do Amaral Ferraz 6 Dobler Daniel 7 Reiser Oliver 7 Ayasse Manfred 1 Milet-Pinheiro Paulo 5 8 1Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany 2Department of Biosciences, Paris Lodron University Salzburg, Salzburg, Austria 3Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States 4Division of Structural and Functional Botany, University of Vienna, Vienna, Austria 5Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil 6Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil 7Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany 8Laboratório de Ecologia Ciências Biológicas, Universidade de Pernambuco, Petrolina, Brazil

Edited by: Johannes Spaethe, Julius Maximilian University of Würzburg, Germany

Reviewed by: David Roubik, Smithsonian Tropical Research Institute, Panama; Johannes Stökl, University of Bayreuth, Germany; Bjorn Bohman, Swedish University of Agricultural Sciences, Sweden

*Correspondence: Katharina Brandt, katjbrandt@gmail.com

This article was submitted to Behavioral and Evolutionary Ecology, a section of the journal Frontiers in Ecology and Evolution

15 10 2021 2021 9 727471 18 06 2021 16 09 2021 Copyright © 2021 Brandt, Dötterl, Ramírez, Etl, Machado, Navarro, Dobler, Reiser, Ayasse and Milet-Pinheiro. 2021 Brandt, Dötterl, Ramírez, Etl, Machado, Navarro, Dobler, Reiser, Ayasse and Milet-Pinheiro

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Male euglossine bees exhibit unique adaptations for the acquisition and accumulation of chemical compounds from “perfume flowers” and other sources. During courtship display, male bees expose perfume mixtures, presumably to convey species-specific recognition and/or mate choice signals to females. Because olfaction regulates both signal production (in males) and signal detection (in females) in this communication system, strong selective pressures are expected to act on the olfactory system, which could lead to sensory specialization in favor of an increased sensitivity to specific chemical compounds. The floral scents of euglossine-pollinated plants are hypothesized to have evolved in response to the preexisting sensory biases of their male euglossine bee pollinators. However, this has never been investigated at the peripheral olfactory circuitry of distinct pollinating genera. Here, we present a comparative analysis using electroantennography (EAG) of males across the phylogeny of 29 euglossine bee species, among them Euglossa and Eulaema species. First, we tested whether antennal responses differ among different euglossine genera, subgenera and species. Secondly, we conducted a comparative phylogenetic analysis to investigate the macroevolutionary patterns of antennal responses across the euglossine bee phylogeny. We found that antennal response profiles are very unique on the species level and differ on the subgenus and the genus level. The differences can be explained by chemical compounds typically found in the floral scent bouquets of perfume flowers and specific compounds of species either pollinated by Euglossa (e.g., ipsdienol) or Eulaema bees (e.g., (−)-(E)-carvone epoxide). Also, we detected a phylogenetic signal in mean antennal responses and found that especially at the species level of our simulation the overall antennal responses exhibit greater disparity relative to a null model of pure Brownian-motion across the phylogeny. Altogether, our results suggest that (1) euglossine bee species exhibit species-specific antennal responses that differ among euglossine genera and subgenera, (2) antennal responses diverge early after speciation events, and (3) scent composition of perfume flowers evolved in response to pollinator-mediated selection imposed by preexisting sensory biases in euglossine bees.

antennal responses electroantennography (EAG) Eufriesea Euglossa Eulaema Exaerete euglossine bees perfume flowers Deutsche Forschungsgemeinschaft10.13039/501100001659 Deutscher Akademischer Austauschdienst10.13039/501100001655 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior10.13039/501100002322 Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco10.13039/501100006162 Conselho Nacional de Desenvolvimento Científico e Tecnológico10.13039/501100003593

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      For most insects, just like for the majority of animals across phyla, the ability to detect a diversity of airborne molecules in their environment is critically important for survival (Hildebrand and Shepherd, 1997; Hansson and Stensmyr, 2011). Olfaction plays a pivotal role in the detection of food, hosts, predators, and kin (Olsson and Hansson, 2013), as well as in the attraction, location and identification of potential mates (Birch and Haynes, 1982; Cardé and Baker, 1984; Roelofs, 1984; Ayasse et al., 2001). The importance of olfaction in insects is apparent by looking at the elaborate antennal structures that exist in a diversity of shapes (Hansson and Stensmyr, 2011). Insect antennae are covered with different types of olfactory sensilla (Schneider and Steinbrecht, 1968), which contain the sensitive dendrites of the olfactory sensory neurons (Zacharuk, 1980; Couto et al., 2005). Olfactory stimulation occurs when odor molecules enter through pores or slits on the antenna surface (Steinbrecht, 1997) and are directed by odorant binding proteins (OBPs) that bind together with the volatile to olfactory receptors (ORs) situated in the membrane of these dendrites (Hallem and Carlson, 2006; Robertson and Wanner, 2006). These olfactory receptors vary in the type of molecules that activate them, their chemical tuning spectrum and the molecular receptive ranges (Hallem and Carlson, 2006; Getahun et al., 2013). Therefore, the olfactory periphery plays an important role in compound discrimination and represents the first step of specificity in olfactory sensitivity (Shields and Hildebrand, 2001; Hallem and Carlson, 2006; Brand et al., 2015) prior higher-level neural processing in the insects brain (see e.g., Renou, 2014).

      Specificity in olfactory signals can be achieved either through complex molecules that are rare in nature (Chow and Wang, 1981; Ayasse et al., 2003; Schäffler et al., 2015) or by specific blends of relatively simple and ubiquitous compounds (Knudsen et al., 2006; Ayasse et al., 2011; Ayasse and Dötterl, 2014). While most insects synthesize such specific olfactory signals (e.g., pheromones) de novo or modify precursors found in their diet (Roelofs, 1984), male euglossine bees (Apidae, Euglossini) are known to harvest volatile compounds directly from flowers (Vogel, 1966; Dodson et al., 1969) as well as from non-floral sources (e.g., rotting plant material, bark, leaves and feces; Whitten et al., 1993). A set of morphological, biochemical and behavioral adaptations thereby enable the location, collection and storage of volatile compounds (Eltz et al., 2005b) forming complex species-specific blends that are stored in tibial organs on the hindlegs and exposed by male euglossine bees during courtship in the forest understory (Eltz et al., 2005a,b). The blends are presumedly used to communicate species affiliation (Eltz et al., 2006; Zimmermann et al., 2006) and/or to demonstrate genetic fitness to conspecific females (Zimmermann et al., 2009b). However, the precise function of perfume blends in mediating mating decision by females awaits experimental support.

      The perfume collection behavior of male euglossine bees has the unique feature that the olfactory system is involved in determining both signal production (i.e., the collection of volatile compounds) and signal detection (e.g., during mating) by female bees. Therefore, a strong selection pressure is expected to act on the olfactory system which could lead to sensory specialization in favor of an increased sensitivity to specific single volatiles or volatile blends in different species of euglossine bees (Eltz et al., 2006). In addition to the higher-level neural processing that takes place in the insect brain (see e.g., Renou, 2014), olfactory specialization can be achieved through changes in the peripheral sensory system, for example, by the presence/absence and abundance of specific types of ORs or by divergent chemical tuning of individual ORs (Hallem and Carlson, 2006; Renou, 2014). So far, more than 40 different chemical compounds are known to attract male euglossine bees (Williams and Whitten, 1983; Ramírez et al., 2002; Roubik and Hanson, 2004). Although there is a broad overlap in the range of compounds collected by different species, subgenera or genera of euglossine bees (Ackerman, 1983; Pearson and Dressler, 1985), several studies support a scenario of high species-specific preferences (Ackerman, 1989) as illustrated by the species-specific chemical blends stored in the hind-legs (Eltz et al., 2003, 2005a; Zimmermann et al., 2006; Weber et al., 2016).

      This behavior evolved at least 38 million years ago (Engel, 1999; Ramírez et al., 2011) and various neotropical plants, mainly orchids, have adapted to attract male euglossine bees as pollinators by offering volatile compounds as floral reward (i.e., perfume-rewarding plants; Vogel, 1966; Dressler, 1982; Williams and Whitten, 1983; Ramírez et al., 2002). The mutualistic system between euglossine males and perfume-rewarding flowers involves diverse bee genera, which differ considerably in size/morphology, olfactory preferences and behavior (Dressler, 1982; Ramírez et al., 2002). Some of the plants pollinated by male euglossine bees attract many distinct species from all genera, irrespective of their body size (e.g., Anthurium spp. and Spathiphyllum spp.; Montalvo and Ackerman, 1986; Hentrich et al., 2010). However, mutualistic interactions can also be very specific if pollinator size is essential to ensure successful pollinarium removal and subsequent deposition. This is often the case in perfume-producing orchids (e.g., Dodson, 1962, 1978; Dressler, 1968; Meeuse and Morris, 1984).

      The orchid genus Catasetum is mainly pollinated by species of Euglossa and Eulaema, but for a few species also pollination by Eufriesea (Hills et al., 1972; Peruquetti et al., 1999; Milet-Pinheiro et al., 2018) and Exaerete (Cancino and Damon, 2007) is reported. Species that are pollinated by Euglossa are usually visited by two or more congeneric pollinator species, but rarely by species of Eulaema, and vice versa (Frankie et al., 1983; Whitten et al., 1986, 1988). Chemical analysis of floral scents emitted by Catasetum orchids suggest that they differ among pollinator genera and subgenera (i.e., Eufriesea, Euglossa or Eulaema; Milet-Pinheiro and Gerlach, 2017; Brandt et al., 2019) but are also highly specific on the species level. Based on these findings, together with the fact that perfume as floral reward has evolved after perfume-gathering behavior, it has been hypothesized that preexisting sensory biases of each euglossine genus and the resulting behavioral preferences for distinct compounds among euglossine bees shaped the evolution of floral scent of perfume-rewarding plants (Ramírez et al., 2011). Experimental evidence for the possible influence of sensory biases on the evolution of floral scents of perfume-rewarding plants from the pollinator perspective, however, is missing. In the present study, we used electroantennography (EAG) to investigate, in a comparative approach, whether bees of the distinct genera Eufriesea, Euglossa, Eulaema, and Exaerete respond differently to chemical compounds that are most representative in the floral perfumes of euglossinophilous plants, particularly in the genus Catasetum (Milet-Pinheiro and Gerlach, 2017). We expect the antennal response profiles of euglossine species to differ among distinct genera thereby reflecting differences in the olfactory periphery of euglossine species that could have influenced the evolution of the floral scents in perfume flowers. Moreover, we conducted a comparative phylogenetic analysis to test whether antennal responses can be explained by bee phylogeny.

      Materials and Methods Tested Bee Species

      In total, we tested the antennal sensitivity in males of all 29 euglossine bee species we were able to attract in the field, 19 occurring in Costa Rica and 10 in NE-Brazil, among them three species of Eufriesea (N = 12 individuals), 16 species of Euglossa (N = 154), eight species of Eulaema (N = 80), and two species of Exaerete (N = 16; Figure 1). The tested species of Eulaema belong to the subgenus Apeulaema and Eulaema s. st. (Nemésio, 2009; Melo, 2014; Table 1), whereas those of Euglossa belong to the subgenera Euglossa s. st., Glossura and Glossurella (Nemésio, 2009; Ramírez et al., 2010b; Table 1).

      Overview of the four tested euglossine genera (A) Eufriesea, (B) Euglossa, (C) Eulaema, and (D) Exaerete. Scale bar: 1 cm. Photos by Paulo Milet-Pinheiro.

      Tested euglossine species of Brazil (BR) and Costa Rica (CRC) belonging to the genera Eufriesea, Euglossa (subgenera: Euglossa s. st., Glossura, and Glossurella), Eulaema (subgenera: Apeulaema and Eulaema s. st.), and Exaerete and known chemical compounds used in this study attracting male bees of these species.

      Species N of individuals Area Known attractants References
      Eufriesea
      Ef. chrysopyga (Mocsáry, 1898) N = 1 CRC C* 1, 10, 15
      Ef. lucifera Kimsey, 1977 N = 1 CRC C, E, G, I, MB, MS* 1, 10, 15
      Ef. pulchra (Smith, 1854) N = 10 CRC C, E*, G, L, MB, MS*, T 1, 10, 15
      Euglossa
      Euglossa s. st.
      Eg. carolina Nemésio, 2009 N = 10 BR BA, C, DB, E, G, MS, TB, VT Brandt pers. obs.
      Eg. championi Cheesman, 1929 N = 10 CRC C*, M, MS* 1, 8, 9, 15
      Eg. cognata Moure, 1970 N = 11 CRC C*, BA, E, MB, MS* 1, 9, 13, 15
      Eg. erythrochlora Moure, 1968 N = 10 CRC C, E, MS* 9, 15
      Eg. hansoni Moure, 1965 N = 10 CRC C*, E 1, 9, 15
      Eg. mixta Friese, 1899 N = 10 CRC BA, C*, E, L, MB, MS* 1, 12, 13, 15, 19
      Eg. nanomelanotricha Nemésio, 2009 N = 10 BR BA, C, DB, E, G, MS, TB, VT Brandt pers. obs.
      Eg. securigera Dressler, 1982 N = 2 BR C, E 15, 16, 17
      Eg. tridentata Moure, 1970 N = 10 CRC APH, BA, C*, E*, I, IP, L, M, MB, MS, T 1, 9, 15, 18, 19, 20
      Eg. villosiventris Moure, 1968 N = 10 CRC C, MS* 9, 15
      Glossura
      Eg. flammea Moure, 1969 N = 10 CRC BA, C*, COX, E, MS, IP, VT 5, 9, 15, 18
      Eg. ignita Smith, 1874 N = 10 BR BA, BH, C*, COX, E, IP, M, MS* 13, 15, 18, 19, 20
      Eg. imperialis Cockerell, 1922 N = 10 CRC BA, C*, E, MB, MS* 1, 13, 15, 19, 20
      Glossurella
      Eg. dodsoni Moure, 1965 N = 11 CRC BA*, C*, E*, I, MS, T 1, 5, 9, 15
      Eg. gorgonensis Cheesman, 1929 N = 10 CRC C*, COX* E, I, MS 5, 9, 15, 18
      Eg. sapphirina Moure, 1968 N = 10 CRC BA, C*, E, I, L, MB, MS* 1, 9, 14, 15
      Eulaema
      Apeulaema
      El. cingulata (Fabricius, 1804) N = 10 CRC BA*, C, COX, DB, E*, I, MB, MS 1, 9, 13, 15, 18, 19
      El. marcii Nemésio, 2009 N = 10 BR BA, C, E, MS 4
      El. nigrita Lepeletier, 1841 N = 10 BR BA, C*, COX, E, IP, L, MS 1, 4, 14, 15, 18, 19
      El. polychroma (Mocsáry, 1899) N = 10 CRC BA, C*, COX, E, I*, T 1, 2, 7, 11, 15, 18
      Eulaema s. st.
      El. atleticana Nemésio, 2009 N = 10 BR BA, C, COX*, E, MS* 4
      El. bombiformis (Packard, 1869) N = 10 CRC BA*, C, COX, DB, E, G*, MB, MS* 1, 12, 13, 15, 18, 19
      El. meriana (Olivier, 1789) N = 10 CRC BA*, BH, C* COX, E, I, G, MB, MS*, T 1, 6, 13, 15, 18, 19
      El. niveofasciata (Friese, 1899) N = 10 BR BA, C*, COX, E, MS 4, 13, 15
      Exaerete
      Ex. frontalis (Guérin-Méneville, 1845) N = 6 BR BA, C* E, MS 13, 15
      Ex. smaragdina (Guérin-Méneville, 1845) N = 10 BR BA, C*, E, MB, MS, T 1, 3, 13,15, 19

      Full names of compounds given in Table 2. *Chemicals acting as strong attractants. References: 1Ackerman (1983), 2Armbruster and McCormick (1990), 3Armbruster et al. (1989), 4Brandt et al. (2019), 5Dressler (1982), 6Eltz et al. (1999), 7González (1996), 8Hills (1968), 9Janzen et al. (1982), 10Kimsey (1982), 11López (1963), 12Morato et al. (1992), 13Pearson and Dressler (1985), 14Peruquetti et al. (1999), 15Ramírez et al. (2002), 16Rebelo and Moure (1995), 17Silva and Rebêlo (1999), 18Whitten et al. (1988), 19Williams and Dodson (1972), and 20Williams and Whitten (1983).

      Tested compounds in the study.

      Chemical compound Abbreviation# Purity Provider
      Alkanes
      n-Hexane* ≥99% Sigma-Aldrich
      Aromatics
      Benzyl acetate BA ≥99% Sigma-Aldrich
      Benzyl alcohol BH ≥99% Alfa Aesar
      1,4-Dimethoxy benzene DB ≥99% Sigma-Aldrich
      Eugenol E ≥98% Merck
      Methyl benzoate MB 99% Alfa Aesar
      Methyl salicylate MS ≥99% Sigma-Aldrich
      Methyl o-anisate ≥97% Sigma-Aldrich
      1,2,4-Trimethoxy benzene TB ≥97% Sigma-Aldrich
      Veratrole VT 99% Sigma-Aldrich
      Monoterpenes
      (−)-(E)-Carvone epoxidea COX 98% b
      Eucalyptol C 99% Merck
      Geraniol G ≥97% SAFC
      Ipsdienol IP ≥99% Merck
      Limonene DL ≥99% Fluka Analytical
      Linalool L ≥99% Sigma-Aldrich
      β-Myrcene M >75% Sigma-Aldrich
      Nerol 97% Sigma-Aldrich
      α-Phellandrene APH ≥75% Sigma-Aldrich
      α-Pinene AP 98% Sigma-Aldrich
      Terpinen-4-ol (sum of enantiomers) T ≥95% Sigma-Aldrich
      Sesquiterpenes
      α-Copaene ≥90% Merck
      α-Humulene ≥96% Sigma-Aldrich
      Irregular terpene
      β-Ionone I ≥96% Sigma-Aldrich

      #Abbreviation also used in Ramírez et al. (2002). *Negative control. a(1S,4R,6S)-1-Methyl-4-(prop-1-en-2-yl)-7-oxabicyclo[4.1.0]heptan-2-one, in the following text referred to as: (−)-(E)-Carvone epoxide. bSynthetized (after Garver et al., 1976; Yasuda et al., 1979; Wang et al., 2006; Takita et al., 2011); see Supplementary Figure 1.

      In Costa Rica bees were collected at the surroundings of Piedras Blancas National Park (320 m a.s.l; 8°41′37.6″N 83°12′51.7″W) and the Tropical Field Station La Gamba (76 m a.s.l; 8°42′03.6″N 83°12′05.7″W). Sampling of bees in Costa Rica was authorized by the Ministerio de Ambiente y Energía Sistema Nacional de Áreas de Conservacíon (permit numbers SINAC-ACOSTA-PI-PC-001-19 and SINAC-ACOSTA-PI-PC-002-19). In Brazil, bees were either collected at the surroundings of the “Mata do Curado” (10 m a.s.l; 8°02′30.5″S, 34°57′54.1″W), municipality of Recife (Pernambuco), or at the surroundings of the farm “Agua Fria” (600 m a.s.l; 8°11′19.0″S, 35°28′13.6″W), located in the municipality of Chã-Grande (Pernambuco). Sampling of bees in Brazil was authorized by the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) of the Ministério Brasileiro do Meio Ambiente (permit number 53545–1).

      Bees were collect using entomological nets at scent baits (Gruber et al., 2008), i.e., filter papers (10 × 10 cm) impregnated with 100 μL of the following pure synthetic compounds: eucalyptol (99%; Merck), benzyl acetate (≥99%; Merck), eugenol (≥98%; Merck), methyl salicylate (≥99%; Merck), skatole (98%; Merck), veratrole (99%; Sigma-Aldrich). After analyses (see below), bees were mounted with entomological pins and deposited either at the collection of the Tropical Field Station La Gamba (Costa Rica) or at the UFPE (Brazil).

      Electroantennographic Measurements (EAGs)

      The physiological measurements were performed either at the facilities of the Tropical Field Station La Gamba or the Departamento de Química Fundamental (DQF) of the Universidade Federal of Pernambuco (UFPE). For the measurements, we used micro-scissors (Castroviejo, Fine Science tools; 69121 Heidelberg, Germany) to excise one antenna of each tested bee at the scape. Using a stereomicroscope (Stemi 2000-CS, ZEISS, Oberkochen, Germany) and a razor blade, the excised antenna was cut at the tip (last segment of flagellum) and at the base (first segment of flagellum). The antenna was mounted between two glass capillaries filled with insect Ringer solution (1 L demineralized water containing 5 g of NaCl, 0.42 g of KCl and 0.19 g of CaCl), which were connected to gold-electrodes. The electrode connected with the base of the antenna was grounded, while the electrode connected to the tip transmitted changes of the potential within the antenna to a signal acquisition controller (IDAC-2 Signal acquisition controller; Syntech, Hilversum, Netherlands). The preparation was placed in front of a glass tube, through which a constant humidified airflow (25 mL/s) was blown.

      We tested the antennal sensitivity of the different species to compounds that are typically found in perfume-rewarding plants pollinated by different genera of euglossine bees. Based on a data set on floral scent chemistry of 60 euglossinophilous species (Milet-Pinheiro and Gerlach, 2017; Milet-Pinheiro, unpublished) we prepared testing solutions for 23 compounds (Table 2) in a concentration of 10 μL/mL using n-hexane as the solvent (Table 2). Testing solutions were applied to each antennal preparation in a randomized order using the Android App “Who’s Next?!” (v.0.8.0; Martin Philippi 2017) starting and ending with the negative control n-hexane. To avoid decreased antennal responses as a result of prolonged or repetitive stimulation (Strausfeld and Kaissling, 1986), we allowed a resting phase of 60 s between stimuli. For each stimulus, we added 5 μL of testing solution onto a v-shaped strip of filter paper (ca. 0.5 × 1 cm) located inside a Pasteur pipette (15 cm, VWR International, Darmstadt, Germany). After the solvent was allowed to evaporate for 1 min, the Pasteur pipettes were connected to a stimulus controller (CS-05; Syntech, Hilversum, Netherlands) that delivered an air-puff to the antenna for 0.3 s with a pulse flow of 25 ml/s. Antennal responses were analyzed by Syntech EAG software (EAG Pro, v. 2.2; Hilversum, Netherlands). Responses to n-hexane were used to normalize the data (using the option provided the software), and thus, to correct for a change in antennal sensitivity during measurements.

      For the statistical analyses we used a different standardization of antennal responses to compare the different species and genera. The strongest antennal response of each tested bee individual was set as 100%, and the responses to all other stimuli were expressed as percentages in relation to this reference. To test for differences in these multivariate standardized antennal responses to the compounds (excluding the negative control) among genera, subgenera and species of euglossine bees, we used a multivariate three-level nested PERMANOVA analysis [factors: genus, subgenus (nested in genus), and species (nested in subgenus)] with subsequent pair-wise comparisons based on fourth-root transformed Bray Curtis similarities. Further, we used non-metric multidimensional scaling (nMDS; Clarke and Gorley, 2006), based on the Bray Curtis similarities, to graphically depict variation in antennal responses among genera, subgenera and species (species-means were used for analyses), and SIMPER was used to determine the compounds to which the genera responded most differently. We performed PERMDISP (factor: genus or subgenus) to test for differences in variability (dispersion) among antennal responses. Results of these analyses provided information about the variation of antennal responses per se and indicated potential influences of dispersion on the PERMANOVA results (see Anderson et al., 2008).

      Absolute antennal responses were used to test, separately for each species and floral scent compound, whether responses were stronger than to the negative control, n-hexane. Therefore, we performed two-factorial PERMANOVA analyses [factors: bee individual and compound] with subsequent pair-wise comparisons (adjusted via Bonferroni correction) based on univariate (using single compounds) Euclidean distance matrices.

      The PERMANOVA analyses were ran using the software PRIMER 6 (version 6.1.15; PRIMER-E Ltd., 2012) in combination with the add-on PERMANOVA + (version 1.0.5; PRIMER-E Ltd., 2012). We used (1) sums of squares type III (partial), (2) fixed effects sum to zero for mixed terms, (3) a permutation of residuals under a reduced model, and (4) 9,999 permutations for all analyses. The level of significance was defined at α ≤ 0.05.

      Phylogenetic Analyses

      In order to investigate the evolutionary patterns of antennal responses across the euglossine bee phylogeny, we used the species-level phylogenetic tree estimated by Ramírez et al. (2010b). Briefly, the species-level phylogeny was built using ∼ 4.0 kb of nuclear (EF1-a, ArgK, and Pol-II) and mitochondrial (CO1) DNA available for 26 of our 29 tested euglossine species (no data available for El. atleticana, El. Marcii, and El. niveofasciata). Phylogenetic tree searches and fossil calibrated molecular clock analyses were estimated as described in Ramírez et al. (2010b).

      Comparative phylogenetic analyses were conducted in RStudio v.1.4.1103 (implemented R v.4.0.3) using the R packages “phytools” v.0.7-70 (Revell, 2012) and “geiger” v.2.0.7 (Pennell et al., 2014). For all phylogenetic analyses we used a Bray Curtis similarity matrix based on standardized mean antennal responses (in percent, see above). We computed a phylogenetic signal for continuous traits on multivariate antennal responses of tested euglossine species using Blomberg’s K-statistic test (Blomberg et al., 2003) based on 1,000 randomizations (“phylosig” function). Blomberg’s K measures phylogenetic signal by quantifying the amount of observed trait variance relative to trait variance expected under a Brownian motion model (simulating evolution conditions similar to genetic drift; Kamilar and Cooper, 2013).

      We also examined the phylogenetic patterns of antennal responses across species when stimulated with individual compounds. To this end, we fitted and compared two different models of trait evolution. First, we fitted a single-rate multivariate Brownian Motion (BM) model that corresponds to a random walk process, in which the probability of divergence in antennal responses increases uniformly over time. Second, we fitted a single-optimum Orenstein-Uhlenbeck (OU) model, in which the variance in antennal responses decreased over time as trait values converge around a global phenotypic optimum. The OU model has a global evolutionary rate parameter (σ2), a global phenotypic optimum parameter (θ), and a global strength of selection (α) parameter. Parameter estimates and the associated likelihood values for continuous character evolution in univariate datasets (i.e., responses to a specific compound) were calculated using the “fitContinuous” function, which we compared using the corrected Akaike information criterion (AICc). Lower AICc values (AICc ≤ 10) thereby indicate better evidence for a given model. We estimated models without (AICc) and with standard errors (AICc_SE).

      Additionally, we calculated disparity through time (DTT) plots (“dtt” function) to investigate how antennal responses occupy trait space throughout the evolutionary history of the lineages included in our study. To do this, we compared the observed DTT trajectory across the phylogeny relative to antennal responses simulated via a pure Brownian motion model of trait evolution (random-walk model; see also Harmon et al., 2003). We assessed the difference between the observed disparities and the simulated disparities using the morphological diversity index (MDI) statistics after Harmon et al. (2003), a measure of the area between the mean observed and simulated DTT. Significance of MDI expectation was assessed according to the 95% confidence interval of 100 simulations with a level of significance defined at α ≤ 0.05.

      For graphical representation of the combined data, we plotted a phylogenetic tree with a heatmap reflecting the standardized mean antennal responses (in percent, see above; “phylo.heatmap” function).

      Results Electroantennographic Measurements (EAGs)

      The statistical analyses comparing the antennal response profiles of tested bees revealed a significant difference among euglossine genera (PERMANOVA: Pseudo-F3,233 = 8.31, P < 0.001; Figure 2). Pair-wise comparisons showed that antennal responses of the two genera Euglossa and Eulaema differed significantly from each other and also from the other genera (P < 0.05 each). The only genera that did not significantly differ were Eufriesea and Exaerete (P = 0.19). Also, the dispersion of antennal response profiles differed among the genera (PERMDISP: F3,258 = 9.33, P < 0.001; Figure 2). The responses of Euglossa were most diverse, followed by Eulaema, Eufriesea and finally Exaerete. Thus, the dispersion is related with the number of species sampled per genus. The SIMPER analysis revealed that antennal responses to the chemical compounds, methyl o-anisate, α-copaene, eugenol separated Eufriesea and Exaerete bees from the other two genera, while the responses to β-ionone, ipsdienol, methyl salicylate and (−)-(E)-carvone epoxide seem to be mostly responsible for the dissimilarity between Euglossa and Eulaema bees (Figure 2).

      Non-metric multidimensional scaling (nMDS) representation of antennal responses of different euglossine genera to 23 compounds, based on a Bray Curtis similarity matrix (standardized responses in percent). The single dots represent single bee individuals. Vectors represent the Pearson correlations for compounds most responsible for the dissimilarity in antennal response profiles between genera as indicated in a SIMPER analysis: (1) methyl o-anisate, (2) α-copaene, (3) eugenol, (4) β-ionone (5) ipsdienol, (6) methyl salicylate, (7) (−)-(E)-carvone epoxide.

      There was also a significant difference between antennal responses when comparing species within the subgenera (nested in genus) (PERMANOVA: Pseudo-F3,233: 8.87, P < 0.001). Pair-wise comparisons within Euglossa showed that antennal responses of Euglossa s. str. species, Glossurella species and Glossura species differed from each other (P < 0.01 each). Antennal responses to the chemical compounds α-humulene, α-copaene, terpinen-4-ol, α-pinene, (−)-(E)-carvone epoxide and ipsdienol were mainly responsible for the differences among all three subgenera (Figure 3A). Within the genus Eulaema antennal responses differed significantly among the two subgenera Eulaema s. str. and Apeulaema (P < 0.001). The responses to α-phellandrene, eugenol, ipsdienol, eucalyptol and (−)-(E)-carvone epoxide explained most of the response differences between these two subgenera (Figure 3B).

      Non-metric multidimensional scaling (nMDS) representation of antennal responses of different euglossine genera to 23 compounds, based on a Bray Curtis similarity matrix (standardized responses in percent). The single dots represent single bee individuals. Vectors represent the Pearson correlations for compounds most responsible for the dissimilarity in antennal response profiles between genera as indicated in a SIMPER analysis. (A) Subgenera within Euglossa (i.e., Euglossa s. str., Glossurella, and Glossura); (1) α-humulene, (2) α-copaene, (3) terpinen-4-ol, (4) α-pinene, (5) (−)-(E)-carvone epoxide, (6) ipsdienol. (B) Subgenera within Eulaema (i.e., Eulaema s. str. and Apeulaema); (1) α-phellandrene, (2) eugenol, (3) ipsdienol, (4) eucalyptol, (5) (−)-(E)-carvone epoxide.

      We also found a significant difference in antennal responses when comparing distinct species (nested in subgenera) among each other (PERMANOVA: Pseudo-F22,233: 3.03, P < 0.001; Figure 4).

      Non-metric multidimensional scaling (nMDS) representation of mean antennal responses of different euglossine bees to 23 compounds, based on a Bray Curtis similarity matrix (standardized responses in percent). Vectors represent the Pearson correlations for compounds most responsible for the dissimilarity in antennal response profiles between species as indicated in a SIMPER analysis: (1) (−)-(E)-carvone epoxide, (2) ipsdienol, (3) β-ionone, (4) α-pinene, (5) α-humulene, (6) α-copaene, (7) methyl o-anisate. Eg. carolina (CAR), Eg. championi (CHA), Eg. cognata (COG), Eg. dodsoni (DOD), Eg. erythrochlora (ERY), Eg. flammea (FLA), Eg. gorgonensis (GOR), Eg. hansoni (HAN), Eg. ignita (IGN), Eg. imperialis (IMP), Eg. mixta (MIX), Eg. nanomelanotricha (NAN), Eg. securigera (SEC), Eg. sapphirina (SAP), Eg. tridentata (TRI), Eg. villosiventris (VIL), Ef. chrysopyga (CRY), Ef. lucifera (LUC), Ef. pulchra (PUL), El. atleticana (ATL), El. bombiformis (BOM), El. cingulata (CIN), El. marcii (MAR), El. meriana (MER), El. nigrita (NIG), El. niveofasciata (NIV), El. polychroma (POL), Ex. frontalis (FRO), and Ex. smaragdina (SMA).

      The comparisons of absolute EAG responses to n-hexane and each chemical compound at the tested concentration of 10–2 revealed significant differences in all tested species (P < 0.01 each; Supplementary Figure 2). Generally, all tested species, irrespective of genus, showed strong antennal responses to benzyl acetate, 1,4-dimetoxy-benzene and veratrole. In addition, benzyl alcohol, eugenol, linalool, methyl benzoate and methyl salicylate elicited strong responses in most species. Weak antennal responses were found to the compounds α-copaene, α-humulene, methyl o-anisate, α-pinene, and 1,2,4-trimethoxy benzene and cannot be perceived by all tested bee species.

      Phylogenetic Analyses

      The Blomberg’s K test revealed a significant level of phylogenetic signal in antennal response profiles of euglossine bees (n = 624, K = 0.68, P < 0.01), indicating that close relatives are more similar in their antennal response profiles than random pairs of species. These findings were supported by the calculated parameter estimates and the likelihood for continuous character evolution in a BM model (sigSq < 0.001, log-likelihood = 116.56, AICc < 1) as well as by the OU model (sigSq < 0.001, log-likelihood = 116.69, AICc < 1). Optimal antennal responses in all tested euglossine species were suggested for the chemical compounds benzyl alcohol (sigSq < 0.01, log-likelihood = −1.46, AICc ≤ 10; BM and OU model), 1,4-dimetoxybenzene (sigSq < 0.01, log-likelihood = −0.63, AICc ≤ 10; OU model), eugenol (sigSq < 0.01, log-likelihood = −2.22, AICc < 10; BM model), linalool (sigSq < 0.01, log-likelihood = −1.6, AICc ≤ 10; BM model), methyl benzoate (sigSq < 0.01, log-likelihood = 1.91, AICc < 5; BM and OU model), methyl salicylate (sigSq < 0.01, log-likelihood = −0.99, AICc < 10; OU model) and veratrole (sigSq < 0.01, log-likelihood = 1.85, AICc < 1; BM model). These compounds offer best evidence to the given models and are also reflected by the strong antennal responses of euglossine species shown in the heatmap of Figure 5.

      Phylogenetic relationships of euglossine bee species based on data available for 26 of our 29 tested euglossine species (Ramírez et al., 2010b) included in this study along with a heatmap of the standardized antennal response profiles (standardized responses in percent). Colors indicate relative values of antennal strength to different chemical compounds, ranging from weak (bright yellow) to strong (deep red) responses. *Chemicals known to act as attractants for species; see also Table 1.

      Our analyses on the disparity of antennal response profiles through time show that the observed disparity in antennal responses was higher than expected under a neutral Brownian motion model of trait evolution (MDI: Average square = 0.24; Figure 6). In fact, we found that the relative disparity was most pronounced towards recent times (equivalent to the tips of the phylogeny in Figure 5).

      Disparity through time (DDT) based on 100 simulations of phenotypic evolution of antennal response profiles (standardized responses in percent) based on data available for 26 of our 29 tested euglossine species. The relative time ranges from the beginning of the simulated evolution (0.0) to recent times (1.0; equivalent to the tips of the phylogeny in Figure 5). The dashed line represents the mean change in disparity across 100 replicates of simulated diversification and trait evolution as expected under a Brownian motion model with a 95% confidence interval of DDT range (orange area). The solid black line represents the actual mean change in disparity as calculated across the trees.

      Discussion

      In support to our hypothesis, the data revealed that antennal responses differ among euglossine genera, subgenera and species. Antennal responses to the chemical compounds methyl o-anisate, α-copaene, eugenol, β-ionone, ipsdienol, methyl salicylate and (−)-(E)-carvone epoxide were most responsible for these differences. Our phylogenetic analyses revealed that antennal response profiles to some compounds exhibit a phylogenetic signal and the variation in responses across the phylogeny are congruent with a Brownian motion model of trait evolution. This was the case with the antennal responses to benzyl alcohol, 1,4-dimetoxy-benzene, eugenol, linalool, methyl benzoate, methyl salicylate and veratrole. Our data also demonstrates that throughout the evolutionary history of the species we tested, the overall disparity in response between species was greater than expected under a null model of Brownian evolution.

      The observed variation among antennal response profiles of tested euglossine bee species and taxonomic groups suggest that the antennae of the different bee species possess distinct types of ORs for different chemical compounds or different amounts of specific ORs. However, previous studies have shown that the sensitivity of ORs can also be influenced by further processes, such as tuning via metabotropic auto-regulation (Getahun et al., 2013) or variability in molecular receptive ranges (Hallem and Carlson, 2006), demonstrating the complexity of the olfactory periphery that could be responsible for the different antennal responses among tested species. Neural processing in the insect brain could also influence the olfactory perception in euglossine bees (e.g., Renou, 2014). To investigate the antennal responses of euglossine bees to specific compounds on the neuronal level, several approaches can be taken, including assaying individual olfactory receptors or measuring neural activity of brain regions in vivo (see e.g., Renou, 2014). For example, methods like single sensillum recording (SSR), the empty neuron system (Brand et al., 2020), or calcium imaging of glomerular responses in the antennal lobe (Galizia and Vetter, 2004) could further contribute to the understanding of the complexity of olfactory tuning, processing and encoding in euglossine bees to chemical compounds that are used during courtship display and that several plants lineages, including orchids, have exploited for pollination services. In addition, sequences of the genome of all tested species could be used in further phylogenetic investigations to study the diversity of OR genes.

      The results of our electroantennographic analyses revealed a clear difference among the antennal response profiles among euglossine bee genera (especially between Euglossa and Eulaema). Our study offers the first experimental evidence for the assumption that properties of the sensory equipment assort according to major taxonomic groups of euglossine bees. Bees of different genera respond differently to compounds, such as α-copaene, eugenol, ipsdienol, and (−)-(E)-carvone epoxide. In agreement to these patterns, the chemical composition of floral scents of perfume-rewarding orchids has been shown to differ among Euglossa- and Eulaema-pollinated species. Several chemical compounds which seem to be typically found in the floral scent bouquets of either Euglossa- (i.e., ipsdienol and myrcene; Milet-Pinheiro and Gerlach, 2017; Brandt et al., 2020) or Eulaema-pollinated species (e.g., α-pinene and (−)-(E)-carvone epoxide; Whitten et al., 1986; Milet-Pinheiro and Gerlach, 2017) coincide with the compounds most responsible for the separation of antennal response profiles among tested euglossine genera in our study. Altogether, these findings underline the finding of Ramírez et al. (2011) suggesting that distinct sensory biases between euglossine bee lineages have shaped the evolution of floral scents in perfume-rewarding plants. Under such scenario, floral scent bouquets evolve to target the compounds with strong sensory responses and behavioral attraction (Milet-Pinheiro and Gerlach, 2017) and lead to a genus specific attraction of pollinators. This is important because of the highly specialized pollination mechanisms exhibited by some perfume-producing orchids (see Dodson, 1962; Vogel, 1966; Romero and Carnevali, 2009) in which the morphological properties (i.e., the size) of euglossine bees, which typically differ among genera, ensure successful pollinarium transfer from male to female flowers (Dodson, 1962, 1978). For example, Catasetum species that are pollinated by Euglossa bees (8–18 mm in size; Dressler, 1982; Carvalho and Machado, 2002; Ramírez et al., 2002) are usually visited by two or more congeneric species, but rarely by species of Eulaema with a larger body size (20–35 mm in size; Dressler, 1982; Ramírez et al., 2002), and vice versa (Whitten et al., 1986, 1988; Ramírez et al., 2002). In fact, a similar pattern has also been reported in the orchid genus Gongora, which is also exclusively pollinated by euglossine bees (Hetherington-Rauth and Ramírez, 2015).

      Within the tested euglossine bee genera, we found that the antennal response profiles are also specific at the subgenera and species levels. This observation provides further evidence for the idea of sensory niche partitioning provided by Zimmermann et al. (2009a). In areas where many different euglossine species of the same genus occur sympatrically, species-specific attraction of pollinators to perfume-rewarding flowers is not only essential to ensure pollinator fidelity and avoid pollinator competition but also to ensure reproductive isolation among closely related orchid species. Appropriate mixtures of chemical compounds or the presence of specific major compounds in the floral scents enable the attraction of only few out of many different euglossine species (Dodson, 1970; Whitten et al., 1986). Together with further isolating mechanisms (see e.g., Hills et al., 1972; Williams and Whitten, 1983) the resulting highly specific attraction of pollinators in euglossinophilous plants can act as an effective reproductive barrier among otherwise interfertile plant species (Milet-Pinheiro and Gerlach, 2017). This is possible due to compound-specific differences in antennal perception even among closely related euglossine species, as we report here. For example, Eltz et al. (2008) showed how males of Eg. dilemma are strongly attracted to hydroxy-6-nona-1,3-dienyl-benzaldehyde (HNDB) and show strong antennal responses, while bees of the closely related and morphologically (Eltz et al., 2011) as well as ecologically (Villanueva-Gutierrez et al., 2013) similar species Eg. viridissima neither responds to this compound behaviorally nor electroantennographically. Brand et al. (2015, 2020) found that this divergence can be explained by a different selection among one single olfactory receptor gene (i.e., OR41), proving that (1) changes in the chemosensory gene family occur among closely related species and that (2) strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of the olfactory system in euglossine bees. The high species-specificity in antennal response profiles among species could be explained by the patterns of evolution of chemical sexual signaling. For example, the study of Cardé and Baker (1984) suggests that female preferences for a signal (receiver) impose strong stabilizing selection on male signal traits (sender), favoring the stability of the signal among populations and leading to a high species-specificity of chemical traits even across large geographic distances (Ord and Stamps, 2009). In this context, Zimmermann et al. (2006) and Ramírez et al. (2010a) revealed a qualitative consistency in perfume composition of tibial organs within euglossine bee species even when comparing populations from distant geographic regions that harbor different perfume sources.

      The results of the Blomberg’s K test indicate the presence of a phylogenetic signal in the antennal response profiles of euglossine bee species. More specifically, there seems to be a tendency for species within a lineage to resemble each other more in their antennal responses than they resemble other lineages or random pairs of species, indicating that the diversification of the olfactory system of euglossine bee clades (genera) is phylogenetically conserved. Some chemical compounds (i.e., benzyl alcohol, 1,4-dimetoxy benzene, eugenol, linalool, methyl benzoate, methyl salicylate and veratrole) revealed an optimal level of antennal responses in the Brownian motion or Orenstein-Uhlenbeck model. A similar pattern was already described by Mitko et al. (2016) comparing the antennal responses of males belonging to 15 sympatric Euglossa species stimulated with compounds present in the hind tibiae. The results of this study suggest that sensory specialization has occurred within multiple lineages due to strong antennal responses for some chemicals that are present as major compounds in the perfume of the same species. Such a pattern is congruent with strong stabilizing selection acting to maintain antennal responses to specific compounds across the phylogeny (Hansen, 1997). The compounds affected by that pattern in our study have been frequently reported, not only within the floral scents of perfume-rewarding pollination systems (e.g., Montalvo and Ackerman, 1986; Gerlach and Schill, 1991; Hentrich et al., 2010), but in a variety of angiosperms worldwide (Knudsen et al., 2006). Therefore, we can assume that the selection on antennal response profiles of euglossine bee species could not only be driven by the association of perfume-rewarding plants but also by other aspects. For example, the compounds promoting an optimal level of antennal responses, as suggested by our phylogenetic analysis, could be important signal traits in the discrimination of sex partners by female orchid bees (see also Cardé and Baker, 1984) or in the search for nectar (see e.g., Borrell, 2005). Since perfume-rewarding flowers seem to contribute only little to the aromatic richness found in the tibial organs of male euglossine bees (Whitten et al., 1993; Ramírez et al., 2010a), we also cannot exclude, for example, the influence of non-floral perfume sources for male euglossine bees, such as rotting plant material, bark, leaves, and feces (Whitten et al., 1993).

      At the same time, the results derived from the DDT plots indicate that closely related euglossine diverge more quickly on their antennal response profiles than expected under a Brownian motion model of neutral trait evolution, especially at the species level underlining the specificity of antennal responses on the species level of euglossine bees found in our electroantennographic analyses. Generally, these results resemble the patterns that have already been described on the macroevolution of perfume signaling in euglossine bees (i.e., perfumes collected in the tibial organs of males). For example, the study of Weber et al. (2016) revealed both high species-specificity and elevated rates of evolution in perfume signals found in extracts of the tibial organs of distinct Euglossa species and stated that perfume evolution may be tied to the high number of orchid bee species coexisting together in neotropical communities. Furthermore, they described a rapid divergence at speciation and character displacement (see also Zimmermann et al., 2009b). Because of the high diversity of antennal response profiles on the species level, we cannot totally exclude the possibility that there might exist co-evolutionary adaptations between perfume flowers and euglossine bees, especially during the latest stage of evolution. Earlier studies have, indeed, suspected a (rather loose) coevolution for perfume rewarding orchids and their euglossine pollinators (e.g., Kiester et al., 1984). However, the already mentioned findings that (1) floral scent of perfume flowers developed much later than the collection behavior in euglossine bees (Ramírez et al., 2011) and that (2) a great part of chemical compounds collected by euglossine bees to build their unique tibial blends derive from non-floral rather than floral sources (Whitten et al., 1993; Ramírez et al., 2010a), suggest that sexual selection/changes in mating ecology might influence the evolution of the olfactory equipment of distinct euglossine bee species rather than the floral sources or their availability.

      Altogether, the results of our study offer an overview of antennal responses for many different euglossine bee species belonging to distinct genera. The differences in antennal responses between distinct euglossine genera and subgenera, as well as species-specific patterns, reinforce the findings for the floral scent compositions in different species of perfume-rewarding flowers and offer first experimental evidence for the hypothesis of pollinator-mediated selection of floral scents driven by preexisting sensory biases in euglossine bees (Ramírez et al., 2011). The findings of our phylogenetic analyses indicate that a diversification of the olfactory system between euglossine bee genera could be (at least partly) phylogenetically conserved. Moreover, our results are congruent with a scenario of stabilizing selection acting on antennal responses to individual compounds, in particular to chemical compounds commonly found in perfume-rewarding flowers. At the same time, closely related species within taxonomic groups can differ considerably in their olfactory system due to a rapid evolution and a high level of disparity (Brand et al., 2020). Further phylogenetic investigations, for example on chemosensory genes of euglossine species (similar to the work of Brand et al., 2015) in combination with electroantennographic comparisons could shed more light into the evolution of the sensory periphery of euglossine bees and, consequently, in the evolution of floral scents in perfume-rewarding flowers.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Author Contributions

      KB, SD, PM-P, and MA developed the experimental design and the idea. OR and DD synthetized the tested compound carvone epoxide. KB and PM-P conducted all experiments and collected the data. KB wrote the first draft of the manuscript and analyzed the results of the electroantennography. SR was mainly responsible for the phylogenetic analyses. All authors contributed to the revision of the manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Funding

      This work was supported by the Deutsche Forschungsgemein schaft (AY 12/12-1), the Fundaçao de Apoio ao Desenvolvimento da Universidade Federal de Pernambuco (FADE-UFPE), the Deutscher Akademischer Austauschdienst (DAAD grant number 57210526 to KB), the “Ulrike Goldschmid-Grant” (grant to KB), the Coordenação de Aperfeiçoamento de Nível Superior (CAPES, Brazil – Finance Code 001 – grant to PM-P), the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (grant number FACEPE/BCT-0288-2.05/17 to PM-P), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant number CNPq/PDJ-152077/2016-2 to PM-P).

      We thank the staff of the field station La Gamba in Costa Rica for providing research facilities, accommodation and personal care. We further thank Ulrike Goldschmid and all responsible people for awarding the private “Ulrike Goldschmid-Grant” in cooperation with the University of Vienna.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fevo.2021.727471/full#supplementary-material

      References Ackerman J. D. (1983). Diversity and seasonality of male euglossine bees (Hymenoptera: Apidae) in Central Panama. Ecology 64 274283. 10.2307/1937075 Ackerman J. D. (1989). Geographic and seasonal variation in fragrance choices and preferences of male euglossine bees. Biotropica 21 340347. 10.2307/2388284 Anderson M. J. Gorley R. N. Clarke K. R. (2008). PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. Plymouth: PRIMER-E. Armbruster W. S. McCormick K. D. (1990). Diel foraging patterns of male euglossine bees: ecological causes and evolutionary responses by plants. Biotropica 22 160171. 10.2307/2388409 Armbruster W. S. Keller S. Matsuki M. Clausen T. (1989). Pollination of Dalechampia magnoliifolia (Euphorbiaceae) by male euglossine bees. Am. J. Bot. 76 12791285. 10.1002/j.1537-2197.1989.tb15109.x Ayasse M. Dötterl S. (2014). The role of preadaptations or evolutionary novelties for the evolution of sexually deceptive orchids. New Phytol. 203 710712. 10.1111/nph.12914 25040730 Ayasse M. Paxton R. J. Tengö J. (2001). Mating behavior and chemical communication in the order Hymenoptera. Annu. Rev. Entomol. 46 3178. 10.1146/annurev.ento.46.1.31 11112163 Ayasse M. Schiestl F. P. Paulus H. F. Ibarra F. Francke W. (2003). Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc. R. Soc. Lond. B Biol. Sci. 270 517522. 10.1098/rspb.2002.2271 12641907 Ayasse M. Stökl J. Francke W. (2011). Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry 72 16671677. 10.1016/j.phytochem.2011.03.023 21497864 Birch M. C. Haynes K. F. (1982). Insect Pheromones. London: Edward Arnold. Blomberg S. P. Garland T. Jr. Ives A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57 717745. 10.1111/j.0014-3820.2003.tb00285.x 12778543 Borrell B. J. (2005). Long tongues and loose niches: evolution of euglossine bees and their nectar flowers 1. Biotropica 37 664669. 10.1111/j.1744-7429.2005.00084.x Brand P. Hinojosa-Díaz I. A. Ayala R. Daigle M. Obiols C. L. Y. Eltz T. (2020). The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 11:244. 10.1038/s41467-019-14162-6 31932598 Brand P. Ramírez S. R. Leese F. Quezada-Euan J. J. G. Tollrian R. Eltz T. (2015). Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol. Biol. 15:176. 10.1186/s12862-015-0451-9 26314297 Brandt K. Dötterl S. Fuchs R. Navarro D. M. D. A. F. Machado I. C. S. Dobler D. (2019). Subtle chemical variations with strong ecological significance: stereoselective responses of male orchid bees to stereoisomers of carvone epoxide. J. Chem. Ecol. 45 464473. 10.1007/s10886-019-01072-6 31111291 Brandt K. Machado I. C. Navarro D. M. D. A. F. Dötterl S. Ayasse M. Milet-Pinheiro P. (2020). Sexual dimorphism in floral scents of the neotropical orchid Catasetum arietinum and its possible ecological and evolutionary significance. AoB Plants 12:laa030. 10.1093/aobpla/plaa030 Cancino A. D. M. Damon A. (2007). Fragrance analysis of euglossine bee pollinated orchids from Soconusco, south-east Mexico. Plant Species Biol. 22 129134. 10.1111/j.1442-1984.2007.00185.x Cardé R. T. Baker T. C. (1984). “Sexual communication with pheromones,” in Chemical Ecology of Insects, eds Bell W. J. Cardé R. T. (Boston, MA: Springer), 355383. 10.1007/978-1-4899-3368-3_13 Carvalho R. Machado I. (2002). Pollination of Catasetum macrocarpum (Orchidaceae) by Eulaema bombiformis (Euglossini). Lindleyana 17 8590. Chow Y. Wang S. (1981). Attraction responses of the American cockroach to synthetic periplanone-B. J. Chem. Ecol. 7 265272. 10.1007/BF00995749 24420472 Clarke K. R. Gorley R. N. (2006). PRIMER V6: User Manual / Tutorial. Plymouth: PRIMER-E, Ltd. Couto A. Alenius M. Dickson B. J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15 15351547. 10.1016/j.cub.2005.07.034 16139208 Dodson C. (1970). “The Role of Chemical Attractants in Orchid Pollination,” in Biochemical Co-Evolution, ed. Chambers K. L. (Corvallis: Oregon State University Press), 83107. Dodson C. (1978). The catasetums (Orchidaceae) of tapakuma, Guyana. Selbyana 2 159168. Dodson C. H. (1962). Pollination and variation in the subtribe Catasetinae (Orchidaceae). Ann. Mo. Bot. Gard. 49 3556. 10.2307/2394740 Dodson C. H. Dressler R. L. Hills H. G. Adams R. M. Williams N. H. (1969). Biologically active compounds in orchid fragrances. Science 164 12431249. 10.1126/science.164.3885.1243 17772561 Dressler R. L. (1968). Pollination by euglossine bees. Evolution 22 202210. 10.1111/j.1558-5646.1968.tb03463.x 28564982 Dressler R. L. (1982). Biology of the orchid bees (Euglossini). Annu. Rev. Ecol. Syst. 13 373394. 10.1146/annurev.es.13.110182.002105 Eltz T. Ayasse M. Lunau K. (2006). Species-specific antennal responses to tibial fragrances by male orchid bees. J. Chem. Ecol. 32 7179. 10.1007/s10886-006-9352-0 16525871 Eltz T. Fritzsch F. Pech J. R. Zimmermann Y. Ramirez S. R. Quezada-Euan J. J. G. (2011). Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zool. J. Linn. Soc. 163 10641076. 10.1111/j.1096-3642.2011.00740.x Eltz T. Roubik D. W. Whitten M. W. (2003). Fragrances, male display and mating behaviour of Euglossa hemichlora: a flight cage experiment. Physiol. Entomol. 28 251260. 10.1111/j.1365-3032.2003.00340.x Eltz T. Roubik D. W. Lunau K. (2005a). Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behav. Ecol. Sociobiol. 59:149. 10.1007/s00265-005-0021-z Eltz T. Sager A. Lunau K. (2005b). Juggling with volatiles: exposure of perfumes by displaying male orchid bees. J. Comp. Physiol. A 191 575581. 10.1007/s00359-005-0603-2 15841385 Eltz T. Whitten W. Roubik D. Linsenmair K. (1999). Fragrance collection, storage, and accumulation by individual male orchid bees. J. Chem. Ecol. 25 157176. 10.1023/A:1020897302355 Eltz T. Zimmermann Y. Pfeiffer C. Pech J. R. Twele R. Francke W. (2008). An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr. Biol. 18 18441848. 10.1016/j.cub.2008.10.049 19062287 Engel M. S. (1999). The First Fossil Euglossa and Phylogeny of Orchid Bees (Hymenoptera, Apidae, Euglossini). American Museum novitates; No. 3272. New York, NY: American Museum of Natural History. Frankie G. Haber W. Opler P. Bawa K. (1983). “Characterstics and organization of the large bee pollination system in the Costa Rican dry forest,” in Handbook of Experimental Pollination Biology, eds Jones C. E. Little R. J. (Berkeley, CA: University of California), 411447. Galizia C. G. Vetter R. S. (2004). “Optical methods for analyzing odor-evoked activity in the insect brain,” in Methods in Insect Sensory Neuroscience, ed. Christensen T. A. (Boca Raton, FL: CRC-Press), 349392. Garver L. Van Eikeren P. Byrd J. E. (1976). A facile synthesis of (+)-pinol from (−)-carvone. J. Org. Chem. 41 27732774. 10.1021/jo00878a030 Gerlach G. Schill R. (1991). Composition of orchid scents attracting euglossine bees. Bot. Acta 104 379384. 10.1111/j.1438-8677.1991.tb00245.x Getahun M. N. Olsson S. B. Lavista-Llanos S. Hansson B. S. Wicher D. (2013). Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLoS One 8:e58889. 10.1371/journal.pone.0058889 23554952 González J. (1996). Fauna of the Henri Pittier national park: Euglossini (Hymenoptera: Apidae: Bombinae). Keys and preliminary list. Mem. Soc. Cien. Nat. Salle 56 4554. Gruber M. H. Morawetz L. Wiemers M. (2008). Diversidad de Euglossini (Hymenoptera, Apidae) en bosques lluviosos de tierras bajas primarios y secundarios en el sudoeste de Costa Rica. Katal. Oberösterreichischen Landesmuseen Neue Ser. 80 257266. Hallem E. A. Carlson J. R. (2006). Coding of odors by a receptor repertoire. Cell 125 143160. 10.1016/j.cell.2006.01.050 16615896 Hansen T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution 51 13411351. 10.1111/j.1558-5646.1997.tb01457.x 28568616 Hansson B. S. Stensmyr M. C. (2011). Evolution of insect olfaction. Neuron 72 698711. 10.1016/j.neuron.2011.11.003 22153368 Harmon L. J. Schulte J. A. Larson A. Losos J. B. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Science 301 961964. 10.1126/science.1084786 12920297 Hentrich H. Kaiser R. Gottsberger G. (2010). Floral biology and reproductive isolation by floral scent in three sympatric Aroid species in French Guyana. Plant Biol. 12 587596. 10.1111/j.1438-8677.2009.00256.x 20636901 Hetherington-Rauth M. C. Ramírez S. R. (2015). Evolutionary trends and specialization in the euglossine bee-pollinated orchid genus Gongora. Ann. Mo. Bot. Gard. 100 271299. 10.3417/2014035 Hildebrand J. G. Shepherd G. M. (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20 595631. 10.1146/annurev.neuro.20.1.595 9056726 Hills G. (1968). Fragrance Analysis in Chemotaxonomy of the Genus Catasetum (Orchidaceae) Ph. D. Thesis. Coral Gables, FL: University of Miami. Hills H. G. Williams N. H. Dodson C. H. (1972). Floral fragrances and isolating mechanisms in the genus Catasetum (Orchidaceae). Biotropica 4 6176. 10.2307/2989728 Janzen D. H. DeVries P. J. Higgins M. L. Kimsey L. S. (1982). Seasonal and site variation in Costa Rican euglossine bees at chemical baits in lowland deciduous and evergreen forests. Ecology 63 6674. 10.2307/1937032 Kamilar J. M. Cooper N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B 368:20120341. 10.1098/rstb.2012.0341 23569289 Kiester A. R. Lande R. Schemske D. W. (1984). Models of coevolution and speciation in plants and their pollinators. Am. Nat. 124 220243. Kimsey L. S. (1982). Systematics of Bees of the Genus Eufriesea (Hymenoptera, Apidae). Berkeley, CA: University of California Press. Knudsen J. T. Eriksson R. Gershenzon J. Ståhl B. (2006). Diversity and distribution of floral scent. Bot. Rev. 72:1. 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 López D. F. (1963). Two attractants for Eulaema tropica L. J. Econ. Entomol. 56:540. 10.1093/jee/56.4.540 Meeuse B. Morris S. (1984). The Sex Life of Flowers. London: Faber and Faber. Melo G. A. (2014). Notes on the systematics of the orchid-bee genus Eulaema (Hymenoptera, Apidae). Rev. Bras. Entomol. 58 235240. 10.1590/S0085-56262014000300003 Milet-Pinheiro P. Gerlach G. (2017). Biology of the neotropical orchid genus Catasetum: a historical review on floral scent chemistry and pollinators. Perspect. Plant Ecol. Evol. Syst. 27 2334. 10.1016/j.ppees.2017.05.004 Milet-Pinheiro P. Silva J. B. F. Navarro D. M. Machado I. C. Gerlach G. (2018). Notes on pollination ecology and floral scent chemistry of the rare neotropical orchid Catasetum galeritum R chb. f. Plant Species Biol. 33 158163. 10.1111/1442-1984.12202 Mitko L. Weber M. G. Ramirez S. R. Hedenström E. Wcislo W. T. Eltz T. (2016). Olfactory specialization for perfume collection in male orchid bees. J. Exp. Biol. 219 14671475. 10.1242/jeb.136754 27207952 Montalvo A. M. Ackerman J. D. (1986). Relative pollinator effectiveness and evolution of floral traits in Spathiphyllum friedrichsthalii (Araceae). Am. J. Bot. 73 16651676. 10.1002/j.1537-2197.1986.tb09697.x Morato E. Campos L. D. O. Moure J. (1992). Abelhas euglossini (Hymenoptera, Apidae) coletadas na Amazônia central. Rev. Bras. Entomol. 36 767771. Nemesio A. (2009). Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic forest. Zootaxa 2041 1242. 10.11646/zootaxa.2041.1.1 Olsson S. B. Hansson B. S. (2013). “Electroantennogram and single sensillum recording in insect antennae,” in Pheromone Signaling, ed. Touhara K. (Berlin: Springer), 157177. 10.1007/978-1-62703-619-1_11 Ord T. J. Stamps J. A. (2009). Species identity cues in animal communication. Am. Nat. 174 585593. 10.1086/605372 19691435 Pearson D. L. Dressler R. L. (1985). Two-year study of male orchid bee (Hymenoptera: Apidae: Euglossini) attraction to chemical baits in lowland south-eastern Peru. J. Trop. Ecol. 1 3754. 10.1017/S0266467400000067 Pennell M. W. Eastman J. M. Slater G. J. Brown J. W. Uyeda J. C. FitzJohn R. G. (2014). geiger v2. 0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30 22162218. 10.1093/bioinformatics/btu181 24728855 Peruquetti R. C. Campos L. D. O. Coelho C. D. P. Abrantes C. V. M. Lisboa L. D. O. (1999). Abelhas Euglossini (Apidae) de áreas de Mata Atlântica: abundância, riqueza e aspectos biológicos. Rev. Bras. Zool. 16(Suppl. 2) 101118. 10.1590/S0101-81751999000600012 Ramírez S. R. Eltz T. Fritzsch F. Pemberton R. Pringle E. G. Tsutsui N. D. (2010a). Intraspecific geographic variation of fragrances acquired by orchid bees in native and introduced populations. J. Chem. Ecol. 36 873884. 10.1007/s10886-010-9821-3 20623328 Ramírez S. R. Roubik D. W. Skov C. Pierce N. E. (2010b). Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 100 552572. 10.1111/j.1095-8312.2010.01440.x Ramírez S. R. Eltz T. Fujiwara M. K. Gerlach G. Goldman-Huertas B. Tsutsui N. D. (2011). Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333 17421746. 10.1126/science.1209175 21940893 Ramírez S. Dressler R. L. Ospina M. (2002). Abejas euglosinas (Hymenoptera: Apidae) de la región Neotropical: listado de especies con notas sobre su biología. Biota Colomb. 3 7118. Rebelo J. M. M. Moure J. S. (1995). The species of Euglossa Latreille from the northeast of São Paulo, Brazil (Apidae, Euglossinae). Rev. Bras. Zool. 12 445466. 10.1590/S0101-81751995000300001 Renou M. (2014). “Pheromones and general odor perception in insects,” in Neurobiology of Chemical Communication, 1 Edn, ed. Mucignat-Caretta C. (Boca Raton, MA: CRC Press). 10.1201/b16511-3 Revell L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3 217223. 10.1111/j.2041-210X.2011.00169.x Robertson H. M. Wanner K. W. (2006). The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16 13951403. 10.1101/gr.5057506 17065611 Roelofs W. L. (1984). “Electroantennogram assays: rapid and convenient screening procedures for pheromones,” in Techniques in Pheromone Research, eds Hummel H. E. Miller T. A. (New York, NY: Springer), 131159. 10.1007/978-1-4612-5220-7_5 Romero G. A. Carnevali G. (2009). “Catasetum,” in Genera Orchidearum, Epidendroidea – Part II, eds Pridgeon A. M. Cribb P. J. Chase M. W. Rasmussen F. N. (New York: Oxford University Press), 1318. Roubik D. W. Hanson P. E. (2004). Abejas de Orquídeas de la América Tropical: Biología y Guía de Campo. Orchid Bees of Tropical America. Santo Domingo: Editorial Institutuo Nacional de Biodiversidad. Schäffler I. Steiner K. E. Haid M. van Berkel S. S. Gerlach G. Johnson S. D. (2015). Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci. Rep. 5:12779. 10.1038/srep12779 26245141 Schneider D. Steinbrecht R. A. (1968). Checklist of insect olfactory sensilla. Symp. Zool. Soc. Lond. 23 279297. Shields V. Hildebrand J. G. (2001). Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds. J. Comp. Physiol. A 186 11351151. 10.1007/s003590000165 11288825 Silva F. Rebêlo J. M. M. (1999). Euglossine bees (Hymenoptera: Apidae) of buriticupu, amazonia of Maranhão, Brazil1. Acta Amaz. 29 587599. 10.1590/1809-43921999294599 Steinbrecht R. A. (1997). Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect Morphol. Embryol. 26 229245. 10.1016/S0020-7322(97)00024-X Strausfeld C. Z. Kaissling K.-E. (1986). Localized adaptation processes in olfactory sensilla of Saturniid moths. Chem. Senses 11 499512. 10.1093/chemse/11.4.499 Takita S. Yokoshima S. Fukuyama T. (2011). A practical synthesis of (−)-kainic acid. Org. Lett. 13 20682070. 10.1021/ol200434a 21417456 Villanueva-Gutierrez R. Quezada-Euan J. Eltz T. (2013). Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidologie 44 440446. 10.1007/s13592-013-0194-9 Vogel S. (1966). Parfümsammelnde Bienen als Bestäuber von Orchidaceen und Gloxinia. Österr. Bot. Z. 113 302361. 10.1007/BF01373435 Wang Q. Huang Q. Chen B. Lu J. Wang H. She X. (2006). Total synthesis of (+)-machaeriol D with a key regio-and stereoselective SN2’ reaction. Angew. Chem. 118 37333735. 10.1002/ange.200600006 Weber M. G. Mitko L. Eltz T. Ramírez S. R. (2016). Macroevolution of perfume signalling in orchid bees. Ecol. Lett. 19 13141323. 10.1111/ele.12667 27581155 Whitten W. M. Hills H. G. Williams N. H. (1988). Occurrence of ipsdienol in floral fragrances. Phytochemistry 27 27592760. 10.1016/0031-9422(88)80657-5 Whitten W. M. Williams N. H. Armbruster W. S. Battiste M. A. Strekowski L. Lindquist N. (1986). Carvone oxide: an example of convergent evolution in euglossine pollinated plants. Syst. Bot. 11 222228. 10.2307/2418960 Whitten W. M. Young A. M. Stern D. L. (1993). Nonfloral sources of chemicals that attract male euglossine bees (Apidae: Euglossini). J. Chem. Ecol. 19 30173027. 10.1007/BF00980599 24248792 Williams N. H. Dodson C. H. (1972). Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long distance pollen flow. Evolution 26 8495. 10.1111/j.1558-5646.1972.tb00176.x 28555772 Williams N. H. Whitten W. M. (1983). Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol. Bull. 164 355395. 10.2307/1541248 Yasuda A. Yamamoto H. Nozaki H. (1979). A stereoselective 1, 3-transposition reaction of allylic alcohols. Bull. Chem. Soc. Jpn. 52 17571759. 10.1246/bcsj.52.1757 27682988 Zacharuk R. Y. (1980). Ultrastructure and function of insect chemosensilla. Annu. Rev. Entomol. 25 2747. 10.1146/annurev.en.25.010180.000331 Zimmermann Y. Roubik D. W. Eltz T. (2006). Species-specific attraction to pheromonal analogues in orchid bees. Behav. Ecol. Sociobiol. 60:833. 10.1007/s00265-006-0227-8 Zimmermann Y. Ramírez S. R. Eltz T. (2009a). Chemical niche differentiation among sympatric species of orchid bees. Ecology 90 29943008. 10.1890/08-1858.1 Zimmermann Y. Roubik D. Quezada-Euan J. Paxton R. Eltz T. (2009b). Single mating in orchid bees (Euglossa, Apinae): implications for mate choice and social evolution. Insectes Soc. 56 241249.
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.jjhgome.com.cn
      lixinvip.com.cn
      fzmjlrz.com.cn
      www.lhghhk.com.cn
      www.excled.com.cn
      kpchain.com.cn
      ew500.com.cn
      twoeci.com.cn
      wdclqz.org.cn
      nbfxj.net.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p