Front. Earth Sci. Frontiers in Earth Science Front. Earth Sci. 2296-6463 Frontiers Media S.A. 10.3389/feart.2019.00091 Earth Science Review Morphological Biosignatures in Volcanic Rocks – Applications for Life Detection on Mars Ivarsson Magnus 1 2 * Sallstedt Therese 2 Carlsson Diana-Thean 2 3 1Department of Biology, University of Southern Denmark, Odense, Denmark 2Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden 3Department of Earth Sciences, University of Hamburg, Hamburg, Germany

Edited by: Bradley M. Tebo, Oregon Health and Science University, United States

Reviewed by: Kai Waldemar Finster, Aarhus University, Denmark; Nancy Hinman, University of Montana, United States

*Correspondence: Magnus Ivarsson, magnus.ivarsson@nrm.se

This article was submitted to Microbiological Chemistry and Geomicrobiology, a section of the journal Frontiers in Earth Science

01 05 2019 2019 7 91 14 09 2018 11 04 2019 Copyright © 2019 Ivarsson, Sallstedt and Carlsson. 2019 Ivarsson, Sallstedt and Carlsson

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The exploration of Mars is largely based on comparisons with Earth analog environments and processes. The up-coming NASA Mars mission 2020 and ExoMars 2020 has the explicit aim to search for signs of life on Mars. During preparations for the missions, glaring gaps in one specific field was pointed out: the lack of a fossil record in igneous and volcanic rock. Earth’s fossil record is almost exclusively based on findings in sedimentary rocks, while igneous rocks have been considered barren of life, including a fossil record of past life. Since martian volcanic rocks will be targeted in the search for biosignatures, the lack of a terrestrial analog fossil record is an obvious impediment to the scientific aim of the mission. Here we will briefly review the knowledge of microscopic life in deep rock and deep time. Focus will be on underexplored environments in subseafloor crustal rocks, and on ancient environments harboring early prokaryotic and eukaryotic lineages. We will highlight some of the aspects that need immediate attention and further investigations to meet the scientific goals of the missions. The current paper is a first step toward the long-term aim to establish an atlas of the fossil record in volcanic rocks, which can be of use for the up-coming space missions.

deep biosphere biosignature astrobiology microfossils Mars 2007-4483 2012-4364 2013-4290 2017-04129 16518 Vetenskapsrådet10.13039/501100004359 Villum Fonden10.13039/100008398

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      NASAs Mars mission 2020 is planned for launch in 2020 (National Research Council, 2011). One of the main scientific goals of the mission is to search for biosignatures including signs of past life on the planet (Farley and Williford, 2017). Previous missions have investigated the habitability of the planet and conditions favorable for life, but this will be the first mission dedicated to the search for actual signs of life, extant or fossil. The mission rover will search in situ and also assemble cache of samples to be returned to Earth by a later mission (McLennan et al., 2012). The landing site options are now down to three, and in 2018 the final destination will be selected. Beside the NASA mission, ESA is planning the ExoMars mission with the overall goal to establish if life ever was present on Mars, which is tentatively planned for launch 2020 (Vago et al., 2017). Thus, two major missions to Mars with astrobiological aims are planned for the next decade.

      Discussions regarding the most promising landing sites and what geological environments that are most favorable from a context of harboring life, has preceded the planning- and are still on-going. In both Mars programs, an analogous terrestrial fossil record has been used to prepare for where geographically, the search should be focused, and what to search for (Westall et al., 2015; Farley and Williford, 2017; Vago et al., 2017). However, the fossil record on Earth is almost exclusively based on fossils from sedimentary rocks and represents aquatic environments. Though aquatic environments did exist on Mars in Noachian times (∼4.1 to 3.7 Ga), and sedimentary rocks from that period still remain (Mustard et al., 2008; Ehlmann et al., 2009; Fassett and Head, 2011; Carter et al., 2013; Ehlmann and Edwards, 2014; Grotzinger et al., 2015; Goudge et al., 2016), an overwhelming fraction of the potential habitats on Mars consists of volcanic igneous rocks (Des Marais, 2010; Ehlmann et al., 2011; Cockell, 2014a,b). In both Mars programs, a terrestrial fossil record of volcanic rocks as an analog to a potential martian fossil record is missing (Westall et al., 2015).

      The exploration of life in deep environments has during the last two decades significantly enhanced our understanding of the distribution, abundance and diversity of life on Earth. This has also opened up the question for potential life beyond our own planet (Onstott, 2016). The continental crust, the marine sediments and the igneous oceanic crust represents together a vast volume, encompassing the largest microbial habitat on Earth (Schrenk et al., 2009; Orcutt et al., 2011). The organisms of the deep biosphere dwell within rocks and sediments in an endolithic life style, but can also occupy exposed parts of the ocean floor and hydrothermal vents. Life has been found throughout deep habitats to a maximum of ∼5 km depths in the continental crust, in the deepest marine sediments at ∼11,000 m water depth, and as fossilized remains at ∼1 km depths in igneous oceanic crust, thus expanding, by magnitudes, previous notions of the limits of life (McMahon and Parnell, 2014; Ivarsson et al., 2015c; Magnabosco et al., 2018).

      The igneous oceanic crust consists exclusively of volcanically erupted basalts, geochemically very similar to the volcanic rocks that dominate the Martian geology. It is only recently that the igneous oceanic crust has been recognized as the largest aquifer on Earth and, with that, also potentially the world’s largest microbial habitat (Schrenk et al., 2009; Ivarsson et al., 2015c, 2016). As investigations of the microbial communities with traditional molecular methods have proven difficult due to contamination of seawater, paleontological material have been used as an alternative to explore this deep, hidden biosphere (Ivarsson et al., 2015c). However, the fossil record of the oceanic crust is far from comparable to the fossil record of sedimentary rocks, and it is somewhat of a paradox that the longevity of Earths most voluminous microbial habitat is more or less unexplored.

      Endolithic (rock-dwelling) microorganisms use micro-fractures in the host rock for migration and colonization and grow complex and extended communities on the fracture walls (Bengtson et al., 2014; Ivarsson et al., 2015a,b,c,d). Upon death, the microbial communities become fossilized and preserved as microfossils in situ on the fracture walls. Fossilized microorganisms are to be seen as snapshots of the microbial habitats in which they once lived, and information on how they interacted with their surrounding is thus “frozen” in situ. The igneous oceanic crust contains a record of trace fossils in volcanic glass known from present to 3.5 Ga (Furnes et al., 2008; Staudigel et al., 2008) but such fossils are strongly debated, especially the ancient ones, and abiotic explanations have been put forward (Grosch and McLoughlin, 2014). Additionally, a patchy record of fossilized microorganisms from fractures, veins and open pore space in subseafloor basalts and ophiolites, stretching from present to Devonian, represent a more valid record and supports the continuum of deep life in those settings (Peckmann et al., 2008; Eickmann et al., 2009; Ivarsson et al., 2015c). Recent, evidence shows that this biosphere was active already at 2.4 Ga, and probably before that (Bengtson et al., 2017).

      To be able to use the fossil record in volcanic rocks as an analogous system in Martian exploration, a more comprehensive understanding of the deep life is needed, as well as more information of how this life is fossilized and preserved. We need to establish a fossil record coherent over time, ranging from the Archean to present, in the form of an atlas to better classify fossil findings but also to show where and what to search for. Firm protocols are needed on how to study and prove biogenicity of such fossils. By doing this we will enhance our understanding of early and present life on Earth, but also how to approach the task of searching for signs of life on other planets. Thus, exploring the deep life of our planet is one of the great challenges of our time and will lead to a better understanding of the distribution of life on Earth and beyond.

      The Deep Biosphere

      The definition of the deep biosphere comprises ecosystems in both oceanic and continental deep settings, and the habitability with respect to depth is restricted by rock porosity, water availability and maximum temperature, depending on the local geothermal gradient (Heim, 2011). In this paper, we will focus on the volcanic portions of the subsurface and subseafloor (Figure 1).

      Conceptual image modified after Ivarsson et al. (2016), showing a cross section of the oceanic crust. Fungal hyphae colonize veins and vesicles in pillow basalts and form extensive three-dimensional mycelia [this is visualized in the dark-green box marked (A) and the enclosed stereomicroscope image]. The image is under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

      Rock dwelling microorganisms are termed endoliths, and can be divided into sub-categories depending on their occurrence in, and interaction with, the host rock. Microorganisms that actively create habitable cavities through chemical and/or physical processes are called euendoliths. Microorganisms that colonize pre-existent fissures and cracks are called chasmoendoliths, and microorganisms that colonize pre-existent structural cavities such as vesicles in basalts are called cryptoendoliths (Golubic et al., 1981; Ivarsson et al., 2015c).

      A number of reviews of the continental and the oceanic deep realm have been published, the latter usually focused on sediments (Heim, 2011; Orcutt et al., 2011; Colwell and D’Hondt, 2013). Our understanding of the deep biosphere has substantially increased since the first investigations of cells collected from oil wells in the 1920s (Bastin et al., 1926), or from the first obtained drilled cores from the seafloor (Zobell and Anderson, 1936). During the last 30 years we have experienced a steady increase in literature much due to the construction of underground facilities for, i.e., nuclear waste repository, or through the work of international deep drilling programs such as the International Continental Scientific Drilling Program (ICDP) and the Deep Sea Drilling Project (DCDP), later Ocean Drilling Program (ODP), and International Ocean Discovery Program (IODP).

      The subsurface realm is a highly variable environment with steep physical and chemical gradients. Ecologically distinct, specialized macro- and micro-niches are orchestrated by geological prerequisites such as plate tectonics, and confined by geochemical conditions like the composition of hydrothermal fluids. The ecological composition of microbial populations vary depending on if they live in an ultramafic environment subjected to serpentinization, a geothermal area, or in a subseafloor basalt. In the dark subsurface, microorganisms gain energy from coupling of thermodynamically favorable redox reactions. The basis of the deep ecosystems consist of chemoautotrophs; organisms that gain energy through the oxidation of electron donating molecules, as opposed to photoautotrophs, which use solar energy. Lithoautotrophs, in turn, utilize inorganic substrates like minerals to gain energy and heterotrophs feed on the organic biomass produced by, or available in, other organisms, such as chemoautotrophic communities and their extracellular substances.

      H2, CH4, H2S, S0, S2O32−, Fe2+, Mn2+, NH4+, NO2 and organic matter are the most accessible electron donors in subsurface settings, and CO2, SO42−, or O2 are the most likely electron acceptors (Figure 1, inserted box). Microbial metabolic pathways vary substantially between different types of host rock. Basalt, the most common rock type within the oceanic crust, consists of roughly 9% FeO and 0.1% MnO and S, respectively. Serpentinization (alteration of ultramafic rocks), on the other hand, gives rise to fluids poor in Fe and S but enriched in H2, CH4, and hydrocarbons, while alteration of basalt results in fluids with reduced Fe and S compounds, and less H2 and CH4 (Bach and Edwards, 2004). In basalt-hosted systems reduced Fe, Mn, and S components are, therefore, the major energy sources for microorganisms, while H2 and CH4 are the most bio-available compounds in ultra-mafic environments. This is also reflected in molecular analyses and cultivation approaches on seafloor-exposed basalt (Ivarsson et al., 2015c).

      Volcanic Rocks as Microbial Habitats

      Endolithic microorganisms use interconnected networks of open pore space to migrate and colonize the host rock. The upper layers of oceanic crust (Figure 1) are characterized by extensive fracturing, about 10% porosity, and permeabilities ranging between 10−12 and 10−15 m2 (Bach and Edwards, 2004; Orcutt et al., 2011). Tension release and quick cooling creates fractures with varying size and frequency, while pressure release during magma extrusion produce vesicles. As a result, subseafloor volcanic rocks are characterized by coherent micro-fracture systems in which fluids of seawater and hydrothermal solutions circulate. The oceanic igneous crust is the largest aquifer system on Earth holding a total fluid volume that corresponds to 2% of the total ocean (Fisher and Becker, 2000; Orcutt et al., 2011). Wherever pore space and fluid flow permit, microorganisms are passively transported or actively migrating through this interconnected system. The fracture walls are used for colonization and anchoring of microbial communities, and the various minerals and host rock are scavenged by lithoautotrophic microorganisms for energy.

      In contrast, the continental crystalline bedrock is of low porosity. Here, interconnected networks of fractures are formed and re-activated episodically by tectonic forces, surficial pressure release, and cooling (Drake et al., 2009).

      In both oceanic and continental igneous crust, the initial stages of microbial colonization are characterized by a biofilm that is laid down on the inner walls of the open pore space and usually cover the entire surface (e.g., Figure 2A). Such biofilms are formed either by fungi or by prokaryotes (Ivarsson et al., 2015c). The fungal biofilms (Figure 2B) range between 10 and 30 μm in thickness, and generally have a smooth appearance, from which fungal sporophores or hyphae protrude. As hyphae grow further, complex mycelia will form (Figure 2C,D), which sometimes fill the entire pore space. Prokaryotic biofilms are different in nature, as they form in cycles overgrowing each other, resulting in micro-scale laminated stromatolitic structures (Figure 2A–D). Bacterial biofilms are usually overgrown by fungal biofilms and mycelia that scavenge the prokaryotic biomass (Ivarsson et al., 2015a).

      Conceptual image from Ivarsson et al. (2015c) showing the stepwise colonization of prokaryotic and fungal biofilms in an open crack formed in subsurface pillar basalt. (A) Initial establishment of a prokaryotic biofilm, presumably consisting of iron-oxidizing prokaryotes, which form iron, manganese and silica rich laminated crusts, or microstromatolites. (B) A heterotrophic fungal biofilm is established, over the prokaryotic base film, where fungal filaments protrude and form complex mycelia within the open pore spaces. (C) Secondary minerals in the form of zeolites form within with the fungal biofilm which eventually becomes partly buried. (D) Partly buried fungal filaments bore into a zeolite crystal, presumably as a survival strategy or for trophic reasons. The copyright holder has approved re-publishing and the image is under the terms of the Creative Commons Attribution License.

      The microbial communities are clearly influenced by the physical nature of their habitats, since host rock and secondary mineralizations control the habitable space. At the same time, the microorganisms shape their own habitable environment by active bio-mediated weathering. Fungal hyphae frequently dissolve and penetrate secondary minerals (Figure 2D) like zeolites and carbonates, forming tunnel-like cavities (Bengtson et al., 2014; Ivarsson et al., 2015a; Drake et al., 2017). Carbonates have also been shown to dissolve passively by the growth of microstromatolites since the formation of iron oxides results in a lowered ambient pH (Bengtson et al., 2014). In contrast, fossilization of microbial consortia mediates mineralization of iron oxides and clays and will eventually contribute to the filling of pore space.

      Micro-Fossils in Subseafloor Volcanic Rocks Ichnofossils

      Conspicuous granular and tubular cavities in volcanic glass are a widespread phenomenon in the oceanic crust, often attributed to microbial activity and etching (Furnes et al., 2008; Staudigel et al., 2008). These etch-marks are trace fossils, correctly referred to as ichnofossils (McLoughlin et al., 2007, 2009), after Greek ikhnos which translates to trace or track.

      Already in 1986 Ross and Fisher (1986) reported etched grooves in glass shards from a Miocene tephra, which they compared to fungal borings in carbonate grains. During the 1990s, observations of granular and tubular microstructures were made in volcanic glass of drilled and dredged samples from the ocean floor (Thorseth et al., 1992, 1995; Furnes and Staudigel, 1999). Their biogenic origin were argued based on four criteria: (1) enrichments of C, N, and P in association with the etched cavities (2) C isotope values indicative of biologic activity (Furnes et al., 2001) (3) the presence of partially fossilized and encrusted microbial cells in the cavities, with forms and sizes matching those of the granular and tubular etch-marks, and (4) presence of nucleic acids and DNA from both bacteria and archaea in close association with the etch-marks (Giovannoni et al., 1996; Thorseth et al., 2001).

      The direction of ichnofossils is perpendicular to a glass surface and inward into the glass. The granular type is made up of micron-sized, near-spherical cavities etched into the glass and later filled with authigenic minerals such as clays and Fe-oxides/hydroxides. The granular ichnofossils usually occur in clusters and are irregularly distributed on both sides of a fracture. The tubular ichnofossils consists of smoothly curved tubes, with varying morphologies including branching, spiraling, or segmented textures. Diameters are normally between one to a few microns, and ten to hundreds of microns in length. The traces usually occurs in assemblages irregularly distributed with respect to the opposing side of any cracks and are commonly associated with granular cavities. A comprehensive photographic atlas of the ichnofossils has been produced by Fisk and McLoughlin (2013).

      The biogenicity of ichnofossils has lately been challenged, especially ichnofossils in ancient ophiolites and greenstone belts (Schopf, 2006; Grosch and McLoughlin, 2014). Alternative abiotic formation processes have been suggested involving the remains of fluid inclusion trails, radiation damage trails, or ambient inclusion trails (AITs) (Lepot et al., 2009; McLoughlin et al., 2010). One major issue is that the microorganisms responsible for the production of these structures have not yet been identified in modern micro-borings. Despite the on-going debate, establishing biogenicity of ichnofossils in volcanic glass is crucial for understanding early life on Earth but also since they may be potential biosignatures on Mars (McLoughlin et al., 2007, 2010; Sapers et al., 2014).

      Fossilized Microorganisms

      Encrusted or fossilized coccoidal microorganisms have been observed in dredged samples of seafloor-exposed basalt (Thorseth et al., 2003), and in drilled subseafloor basalt (Ivarsson et al., 2015c). Fossilized filamentous microorganisms have been identified in veins and vesicles in ocean floor basalts (Ivarsson et al., 2015c), and in ophiolites of Devonian age (Peckmann et al., 2008; Eickmann et al., 2009). They are both attributed to an endolithic lifestyle, using the walls of the open pore space for anchoring and subsequent outwards growth into the open voids. The fossils either occur as single microbial or fungal filaments or, more often, in large groups, filling the entire pore space of a vein system (Figure 1, inserted box, Figure 2, 3A–D). Their morphology can be highly varied, comprising curvi-linear segmented and branched filaments that may form complex mycelium-like networks. Sometimes they are characterized by central swellings, a turgid appearance or bean shaped structures. The diameters vary excessively, ranging between 2 and ∼30 μm with lengths between 10 μm and <1 mm. The thinnest filaments often have the most basic morphologies, resembling simple bacterial trichomes. The thicker filaments on the other hand, can vary in complexity, and usually have conspicuous septa-like segmentation (Ivarsson et al., 2015c).

      The fossilized microorganisms comprise crypto-, chasmo-, and euendoliths and they can be divided into two main types, depending on preservation; (1) microorganisms enclosed and preserved in vein-filling minerals, commonly carbonate, or (2) fossilized communities mineralized and preserved directly into an open pore space (thus not entombed in secondary minerals). The first type consists of live microorganisms that have been instantly petrified in secondary mineral phases due to hydrothermal activity or alteration of the crust. They are usually permineralized by poorly crystalline clay phases and iron oxides with a high organic content, including elevated carbon levels, phosphates, hydrocarbons, lipids and occasionally even chitin (Ivarsson et al., 2012, 2015c). The second type, consist of microorganisms fossilized and mineralized in open systems where organic matter are easily oxidized and scavenged by other microorganisms. Thus, the second fossil-type rarely contains organics and are usually mineralized by a clay phase and/or iron oxides, similar to that of (1) above.

      Microbial colonization occurs relatively early after cooling of the volcanic rock, presumably while fluid-flow is still active, and prior to substantial formation of secondary minerals. Colonization is initiated by the formation of a pioneer-type biofilm lining the pore space interiors (Figure 2A), which can be seen today as a mineralized crust of various hematite, hematite-carbon, and clay layers (Ivarsson et al., 2013, 2015a; Bengtson et al., 2014). The mineralized biofilm can be either smooth or botryoidal in appearance due to assimilated spherical and cell-like aggregates (Figure 3E,F). Filamentous structures protrude from the basal film into the open pore space, either solely, or more commonly in great abundance, and form complex, mycelium-like networks. Thus, the fossils are always rooted at the fracture- or vesicle-wall, where they became permineralized upon death (Figure 3G).

      Eukaryotic and prokaryotic fossils found in deep subsurface basaltic habitats. Panels (A,E) are ODP sample 197-1205-34R-5 from Nintoku Seamount. Panel (F) is sample 197-1205-34R-5, 33 also from Nontoku Seamount. Panels (B,D) are ODP sample 197-1206-4R-2 from Koko Seamount, and (C) ODP sample 197-1206-4R-2 from Koko Seamount. Panel (G) is ODP sample 197-1204B-16R-01, 145 from Detroit Seamount. (A) Stereomicroscope image of one side of an open fracture that has mechanically been split open. The fracture wall is covered by fossilized fungal mycelium mineralized by clays, which becomes partly buried by secondary zeolite mineralization. (B) Backscatter electron micrograph (ESEM-BSE) showing the symbiotic relationship between clay permineralized fungal mycelia and cauliflower-like microstromatolites (arrow) from subsurface basalt. (C) Microtomographic (SRXTM) surface rendering showing a symbiotic relationship between three-dimensional fungal mycelium, globular microstromatolites (filled arrow) and unicellular prokaryotes suspended in a cobweb-like manner between the hyphae (hollow arrow). (D) Partly translucent microtomographic (SRXTM) volume rendering of unicellular prokaryotes (arrow) suspended in cobweb-like layers, or sheets, in between fungal hyphae. (E) Backscatter electron micrograph (ESEM-BSE) showing clay permineralized globular yeast cells in subsurface basalt. (F) Partly translucent microtomographic (SRXTM) volume rendering of a fossil fungal biofilm consisting of fungal hyphae and globular yeast-cells. Note that the biofilm has been partly overgrown by zeolite. (G) Backscatter electron micrograph (ESEM-BSE) showing clay permineralized fungal biofilm and attached hyphae.

      Filamentous fossils in the deep crust, have almost exclusively been interpreted as the remains of fungal hyphae, and when found in complex extensive networks, as fungal mycelia. They commonly have characteristic fungal morphologies such as repetitive septa, anastomoses between branches, a central pore and, though rarely, chitin in the cell walls (Ivarsson et al., 2012, 2015c). Associated conglomerates of coccoidal fossils with diameters of ∼10 μm have been recognized as yeast-like growth states (Figure 3E,F) and transitions between hyphae- and yeast-like stages are common. The fungal fossils also contain sporophores, fruiting bodies and resting structures like sclerotia. Based on morphological traits and the presence of chitin, fungi fossils from the Emperor Seamounts in the Pacific Ocean were interpreted as Ascomycetes or stem-group Dikarya (Ivarsson et al., 2012). Other fossilized fungi collected at the Vesteris Seamount, the Greenland Basin, were interpreted as Zygomycetes based on the presence of zygospores and various morphological stages of the Zygomycetes reproduction cycle (Ivarsson et al., 2015d). Molecular studies of extant fungi in subseafloor igneous crust are rare with the exception of one fungal isolate from drill cores from North Pond, Mid-Atlantic Ridge. The isolate was affiliated to the genus Exophiala of the order Chaetothyriales (Hirayama et al., 2015). Eight yeast-like fungal species belonging to Ascomycetes and Basidiomycetes were isolated from seafloor-exposed basalt at Vailulu’u Seamount, Pacific Ocean (Connell et al., 2009). Fungal strains of Ascomycetes and Basidiomycetes were also reported from vent fluids at the Lost City, the Mid-Atlantic Ridge (López-García et al., 2007), and have been isolated from marine sediments (Orsi et al., 2013a,b) including some of the deepest sediments on Earth at the Mariana Trench (Takami et al., 1997). Chytridiomycota has been detected in hydrothermal vents (Le Calvez et al., 2009) and methane seeps (Nagahama et al., 2011). Thus, the fungal diversity seems to be high in both marine sediments and in subseafloor-exposed basalts, with representatives from all major fungal divisions.

      A close ecological association between heterotrophic fungi and chemoautotrophic prokaryotes has been identified in fossilized material. The symbiotic nature of this relationship may be a prerequisite for eukaryotic colonization and persistence in the subseafloor crust (Bengtson et al., 2014; Ivarsson et al., 2015c,a). Fossilized fungal mycelia have been shown to function as a framework on which syngenetic prokaryotic communities grow. Microstromatolitic Frutexites with a characteristic cauliflower-like appearance are often seen attached to hyphae, while cell-like structures forming suspended sheeths of strings in between hyphae may be affiliated with iron-oxidizing bacteria, such as Pyrodictium or Euryarchaeon SM1 (Figure 3C,D). Microstromatolites (Frutexites), have also been observed lining the walls of veins and vesicles, often in close association with fungal hyphae. Frutexites usually consist of laminated iron, or occasional manganese, oxides and silica-rich phases (Figure 4). The overall interpretation is that they are the result of iron- or manganese-oxidizing bacterial activity (Bengtson et al., 2014; Ivarsson et al., 2015c,a). Bacterial biofilms with Frutexites can be overgrown by fungal biofilms and mycelia that graze on the prokaryotic biomass, thus enabling fungal colonization of oligotrophic subseafloor voids (Ivarsson et al., 2015a).

      Ocean drilling program sample 197-1204A-7R4, 1 from Detroit Seamount. EDS-elemental map of a microstromatolite shown in cross section. The large image (A) represents a layered map of a laminated subseafloor microstromatolite from the Emperor seamount, Pacific Ocean. The layered map indicates the presence of silica (green), Iron (pink), and Ca (light blue). The following images show (B) the single-distribution of Ca (light blue), (C) Mg (yellow), (D) Fe (pink), (E) Si (green), (F) O (red), and (G) Al (orange) within the stromatolite. All scale bars are 50 μm.

      The chemical and mineralogical composition of fossilized microorganisms in deep crustal habitats is often dominated by a poorly crystalline mix of Si, Fe, Al, Mg, and C with minor amounts of Na, K, Ti, and Ca, usually corresponding to smectite or montmorillonite-like clays (Ivarsson et al., 2015c), chamosite and illite (Peckmann et al., 2008). The clay permineralization is probably a result of microbial clay authigenesis (Peckmann et al., 2008). While filament exteriors are permineralized by clays, the interiors are usually characterized by iron oxides/oxyhydroxides (Bengtson et al., 2014; Ivarsson et al., 2015c,a). The carbon content of the fossils, ranging from ∼10 to 50 wt % C, varies greatly both between closely associated filaments as well as within the same filament. When the organic content is high, it may contain the presence of phosphates, hydrocarbons and lipids (Ivarsson et al., 2015c). Fossils have also successfully been stained by propidium iodide (PI), a dye that binds to cells with damaged cell membranes and traces of DNA (Ivarsson et al., 2008).

      The fossilization process can be described as a transition in which the primary organic material of the organisms matures to a carbonaceous material prior to final mineralization by clays and Fe-oxides (Ivarsson et al., 2018). The negatively charged carbonaceous material attracts positively charged Si, Al, Mg, Fe (and minor Na, and Ca) cations dissolved in the fluids, which initiates subsequent adsorption and clay mineralization. Eventually, this can lead to complete mineralization by clays and Fe-oxides. Such a fossilization process is supported by the presence of partly mineralized fungal hyphae in deep granite settings (Drake et al., 2017). The fungal-precipitated clay may furthermore be altered to chlorite, if the fossils are subjected to metamorphosis (Bengtson et al., 2017).

      The enrichment of C and the high degree of organic remains present in microbial fossils may be due to the distribution of elements within the fossils. Silicification is known to preserve microbial morphologies and cell content to some extent (Toporski et al., 2002). Metal cations, on the other hand, inhibit the autolysis (self-destruction of cells) and may thus preserve dead bacterial cells (Leduc et al., 1982). Ferric ions have been suggested to inhibit autolysis of bacterial cells and result in intact cellular preservation (Ferris et al., 1988). Iron is also known to form complexes, and stabilize organic compounds over geological time scales (Parenteau and Cady, 2010; Lalonde et al., 2012). Therefore, the high iron content of fossilized microorganisms in deep oceanic crust is most likely responsible for the high concentration of C and organic remains, such as lipids and chitin, found within many fossils.

      The fossils in deep crystalline basement is not an exception and are, as all microfossils, tested against biogenicity criteria to exclude a possible abiotic explanation (Ivarsson, 2006). Filamentous biomorphs are known to form in laboratory experiments (Garcia-Ruiz et al., 2003), but still today, there are no reports of abiotic morphological equivalents produced within geological and geochemical conditions similar to that of subseafloor basalts. Microstromatolites occur on a morphological and structural continuum from bacterially mediated “shrubs” to abiotically precipitated dendrites (Chafetz and Guidry, 1999). The structures at the biological end of the spectrum are morphologically identical to Frutexites found in subseafloor environments (Bengtson et al., 2014), but it is important to stress that all fossil findings needs to be individually tested for biogenicity.

      Martian Conditions

      The most abundant rock type on Mars is mafic in composition with a volcanic origin, similar to terrestrial basalts (McSween and Treiman, 1998; Squyres et al., 2004; Poulet et al., 2009; Edwards et al., 2017). Most Martian meteorites have a distinct range in chemistry and are characterized by relatively Fe-rich, alkali-poor, undifferentiated basaltic rocks (Musselwhite et al., 2005; McSween et al., 2009). In situ investigations by Mars rovers have indicated a wider range in chemistry, showing a Fe-rich basaltic signature but with a more alkali-rich composition (McSween and Ruff, 2006; McSween et al., 2009). In Pre-Noachian and Noachian times, the martian basalts were subject to circulating groundwater. In places, they were covered by standing sea-like water-bodies, which permitted water percolation and fluid–rock interactions similar to ocean-covered basalts on Earth (Mustard et al., 2008; Ehlmann et al., 2009; Fassett and Head, 2011; Carter et al., 2013; Ehlmann and Edwards, 2014; Grotzinger et al., 2015; Goudge et al., 2016). Succeeding the Noachian eon, the “wet period” of Mars ended (Westall et al., 2015). However, parts of the martian bedrock were at times exposed to, and circulated by water due to ice melting associated with volcanic eruptions and meteorite impacts, occasional melting of ice at depths, and seasonal ice melting (Laskar et al., 2002; Tanaka et al., 2003; Velbel, 2012; Tornabene et al., 2013). Even though the martian surface was dry and cold the martian subsurface was subject to groundwater flow (Osinski et al., 2013; Grotzinger et al., 2015; Yen et al., 2017). Since the composition and alteration of martian basalts is similar to terrestrial counterparts (McSween and Ruff, 2006; Mustard et al., 2008; Ehlmann et al., 2009; McSween et al., 2009; Fassett and Head, 2011; Carter et al., 2013; Ehlmann and Edwards, 2014; Grotzinger et al., 2015; Goudge et al., 2016) it is reasonable to assume that any potential carbon-based life forms living in the deep martian rocks, would have the same geochemical and energetic prerequisites as life in basalts on Earth, and would be fossilized in a similar manner. If we assume the metabolic pathways and mode of life to be similar to that of life on Earth, the fossil record of volcanic rocks on Earth provide a valid analog to a potential martian fossil record.

      A Fossil Record on Mars

      Establishing an atlas of fossils in volcanic rocks on Earth seems a viable strategy for the search of fossils in martian volcanic rocks. However, it should be pointed out that the means to the search and detection of fossils on Mars is hugely different from that of Earth. Most analytical work on the terrestrial microfossil record is being done in laboratories while the fossils on Mars will be investigated, to a high degree, in situ. This means that the analytical accuracy and resolution on Mars differs by magnitudes to that of the Earth. The instruments of the Mars mission payload sets the boundaries for what is detectable and possible to analyze. Thus, when establishing a microfossil atlas, the resolution and analytical capabilities of the payload instruments needs to be considered. If the resolution is not high enough it might be necessary to formulate a strategy to identify macro-accumulations of fossilized microorganisms (millimeter sized microbial communities) and/or common mineral phases of fossilization. Later Mars sample return missions may increase the chances to perform more detailed micro-analytical investigations but are instead restricted by the limited number of samples (McLennan et al., 2012).

      To finalize a microfossil atlas for Mars missions, the fossil record of volcanic rocks on Earth should be investigated and described as detailed as possible. We need to enhance the current knowledge of fossilized microorganisms in deep igneous rock and in deep time. The ambition should be to establish a fossil record from the present and backward, in order to trace microbial components of the deep biosphere in time. This will involve samples from different subsurface and subseafloor settings; using samples from mines, subsurface research facilities and drill cores from IODP and ICDP. New analytical approaches need to be tested and evaluated to be able to extract as much paleobiological information as possible from fossils. This knowledge could be used for in situ detection on Mars, but also for investigations of returned samples. We suggest that fossil samples here on Earth are investigated by microanalytical and microimaging instrumentation, simulating a sample return scenario. In situ measurements of detailed microbial morphology, combined with chemical mapping and detection, as well as characterization of biomarkers indicative of life should be developed, tested and evaluated. All with the aim to produce firm protocols for handling of future Mars sample return missions.

      In a second step, the acquired knowledge needs to be approached in such a way that it is possible to repeat on Mars, and thus adapted for Martian conditions and payload. Parameters such as camera resolution, minimum point detection by instrumentation and selection of the most prominent rock sample must be considered. Aspects like geological context, microbial morphology, mineralogy, chemical composition, fossilization conditions and the presence of biomarkers should also be taken into consideration in a final evaluation.

      The current scientific aims in deep biosphere research can thus be summarized as follows:

      Establish a fossil record in volcanic rocks on Earth ranging from present to the Archaean. What microorganisms are most easily preserved? What geochemical conditions control fossilization? How is the fossil record altered over time?

      Can we detect and select samples of biological interest with the instrumentation available on the Mars 2020 rover and ExoMars? Is the resolution of the payload instruments enough? What parameters should protocols for biosignature detection be based on; mineralogy, textures, organic compounds?

      What would be the most ideal approach for Mars sample return? What samples should be targeted for sample return? What Earth-based methods are most suitable?

      To address these aims and formulate an exploration strategy for microfossils in volcanic rocks we need to consider:

      Optical assessment and macro-studies of samples (simulation of mars rover conditions).

      In situ detection and characterization of mineralogy and biomolecules.

      In situ detection of isotopes as biomarkers.

      Ex situ microimaging of martian samples on Earth.

      Establishing a microfossil atlas of volcanic rocks.

      Optical Assessment

      The first step in the identification of possible in situ biosignatures, will be to optically recognize textures with a possible biological origin. Focus here should be on fossilized microbial colonies in open veins and vesicles, easily accessible for rover instrumentation. The NASA Mars mission 2020 will be equipped with 23 cameras, of which most cameras are for landing, driving and landscape monitoring, thus visualizing large geological features (Farley and Williford, 2017). Of specific interest for high-resolution investigations such as these, are the cameras MASTCAM-Z, SUPERCAM, PIXL, and WATSON on SHERLOC. MASTCAM-Z is a camera pair that provide color images and videos, three-dimensional stereo images, equipped with a powerful zoom lens. It has a pixel scale of ∼0.5 mm/pixel to ∼0.15 mm/pixel at 2 m, which is sufficient to resolve ∼1 mm features in the near-field (robotic arm workspace) and ∼3–4 cm features approximately 100 m away. SUPERCAM and PIXL are both combined instrument set-ups including cameras with resolution similar to MASTCAM-Z1.

      SHERLOC (The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) is an arm-mounted, Deep UV (DUV) resonance Raman and fluorescence spectrometer capable of analysis at <100 μm spot size. The laser is integrated to an autofocusing/scanning optical system, and co-boresighted to a context imager, which at the most typical use has a resolution of 15 μm/pixel corresponding to a spatial resolution of approximately 50–60 μm (Kenneth Williford, personal communication). In addition to the combined spectroscopic and macro imaging component, SHERLOC also includes a near-field-to-infinity imaging component called WATSON (Wide Angle Topographic Sensor for Operations and eNgineering), which enables science operations and imaging. WATSON captures the larger context images for the very detailed information that SHERLOC collects.

      ExoMars Panoramic camera (PanCam) (Coates et al., 2012, 2017; Cousins et al., 2012; Yuen et al., 2013) will perform digital terrain mapping for the mission rover. It is a suite that consists of a fixed-focus, wide-angle, stereoscopic, color camera pair (WAC) complemented by a focusable, high-resolution, color camera (HRC). PanCam will enable characterization of the geological environment, from panoramic (tens of meters) to millimeter scale, at the sites the rover will visit. It will be used for detailed investigations of outcrops, rocks, and soils, and to image samples collected by the drill before they are delivered to the analytical laboratory. For more detailed investigations, the ExoMars is equipped with the close-up imager (CLUPI) that will obtain high-resolution color images for exploration of the depositional environments, but also detailed textural features in the form of morphological biosignatures such as biolamination (Josset et al., 2017). CLUPI will be mounted on the drill box and be equipped with several viewing modes, allowing the study of outcrops, the fines produced during drilling, and also imaging collected samples in high resolution before delivering them to the analytical laboratory. Imaging resolution varies with distance to target; it is, 8 μm/pixel at 11.5 cm distance with view area 2.0 cm × 1.4 cm, 39 μm/pixel at 50 cm distance with view area 10 cm × 7 cm, and 79 μm/pixel at 100 cm distance with view area 21 cm × 14 cm (Vago et al., 2017).

      PanCam and CLUPI can be used simultaneously to visualize outcrops and rocks at progressively higher resolution. PanCam and CLUPI can also view drilling operations. As the drill penetrates into the ground, fines will be collected of which CLUPI can obtain high resolution images at 39 and 13 (drill lowered) μm/pixel (Josset et al., 2017). Furthermore, borehole wall data can be obtained by the Ma_MISS IR spectrometer (Mars multispectral imager for subsurface studies) (De Angelis et al., 2013; De Sanctis et al., 2017), integrated in the drill tip. The PanCam HRC and CLUPI are capable of imaging samples placed by the drill on the Core Sample Transport Mechanism (CSTM), and finally CLUPI can obtain high-resolution images (∼8 μm/pixel) of the sample.

      Resolution of the payload cameras controls the possible detection limit. Therefore, because of size limitations, identification and characterization of individual filaments and cell structures will not be possible with the current optical instrumentation. This also includes the detection of narrow ichnofossils and similar microbial traces. Instead, an approach involving structures <50–60 μm have to be developed. This includes fossilized communities with an internal morphological variation that may be detectable, or with a diagnostic mineralogy/geochemistry. Examples of possible targets are three-dimensional fungal mycelium with diameters exceeding 1 mm (Figure 5A). These mycelium often form a network of filamentous and/or yeast cells that grow perpendicular and markedly from a mineral or host rock surface. Another target can for example be extensive microstromatolites with well-defined and visible laminations that vary in color due to differences in mineralogy.

      Stereomicroscopic images of fossilized fungal mycelia in a subseafloor basalt-vesicle (A–C). ODP sample 197-1206A- 4R-2, 0, from Koko Seamount. Panel (A) shows the original, high resolution, stereomicroscopic image, and Panel (B) shows how the same image would look with a resolution of 8 μm/pixel, which is the highest possible resolution by ESA’s ExoMars 2020 mission. In turn, (C) illustrates how this image would look using the optical resolution of 16 μm/pixel, which represent the possible resolution using NASAs’s Mars 2020 mission equipment. Panels (B,C) thus represents purposefully pixelated images of (A) to show how the same sample would look, with either the cameras used by ExoMars 2020 (B) or NASA Mars 2020 missions (C).

      Figure 5A shows a vesicle ∼5 mm in diameter, with fossilized fungal mycelium lining the walls. Microstromatolitic Frutexites, ∼30–100 μm in diameter, have grown and become fossilized on the fungal hyphae as orange or yellow accumulations. Figure 5B is modified to 8 μm/pixel, the resolution of CLUPI on ExoMars, indicating a decrease in resolution compared with the original image. It is, however, still high enough resolution for details like hyphae and even Frutexites to be identified. Figure 5C is modified to 15 μm/pixel, the best possible resolution of SHERLOCK on NASAs Mars mission 2020 (Kenneth Williford, personal communication), and shows a substantially decreased resolution and image quality, which makes identification of individual hyphae or microstromatolites difficult. It is, however, possible to see that the vesicle in whole carries interesting morphological features along the vein walls that should be analyzed in situ for mineralogy and organic content or targeted for later Mars sample return.

      <italic>In situ</italic> Detection of Mineralogy and Biomolecules

      During mineralization and fossilization of microorganisms, organic remains are incorporated and bound by mineral phases, especially iron oxides and clays. If the fossils only experience moderate taphonomic alterations during diagenesis, the organic content will remain more or less unaltered and easy to detect by in situ measurements. The organic content can be used as a strong argument when proving biogenicity of a putative microfossil or biomineral, but also, if complex biomolecules are preserved as biomarkers, to constrain the taxonomic affiliation of a fossil organism. Lipids and proteins, for instance, can be preserved during long periods of time and are usually specific for organismal affinity.

      As discussed above, the optical system on SHERLOC is coupled with a Deep UV (DUV) resonance Raman and fluorescence spectrometer, utilizing a 248.6-nm DUV laser with <100 μm spot size. Deep UV-induced native fluorescence is very sensitive to condensed carbon and aromatic organics, with a detection-capacity at, or below, 10–6 w/w (1 ppm) at <100 μm. SHERLOC’s deep UV resonance Raman therefore enables detection and classification of aromatic and aliphatic organics with sensitivities of 10–2 to below 10–4 w/w at <100 μm spatial scales. Additionally, the deep UV Raman allows detection and classification of aqueous minerals with grain sizes below 20 μm.

      The fungal hyphae and the Frutexites in Figure 5 have been analyzed by Raman and shown to contain carbonaceous matter (Bengtson et al., 2014). The spot size for these analysis were ∼1–3 μm, thus the analysis were done with higher precision than the instrumentation coupled to SHERLOCK will be. However, with a <100 μm spot size the overall mineralogy will be analyzed and give a composite spectrum including clays, iron oxides and carbonaceous matter, thus a comparable sample on Mars would be possible to analyze and detect organic remains within.

      Pancam on ExoMars is coaligned with an IR-spectrometer (ISEM) that enables identification of mineral phases in bulk rock- or soil samples at a distance. As mentioned above, the Ma_MISS is a miniaturized IR spectrometer integrated in the drill tool for imaging of the borehole wall as the drill is being operated. Ma_MISS has a spectral range of 0.4–2.2 mm with spatial resolution of 120 μm. CLUPI, however, is not coupled with any instruments for chemical detection. When samples have been selected by Pancam, ISEM, and CLUPI, they are deposited in the core sample transport mechanism (CSTM) where PanCam HRC and CLUPI can image the sample during a few minutes. After the imaging exercise, the CSTM move the sample into the analytical laboratory where a rock crusher produce particulate matter having a Gaussian size distribution, with a median value of 250 μm. The implications of this maneuver is that any identified morphological structures of interest will be destroyed, and correlation between morphological biosignatures and molecular fossils will thus thereafter be impossible.

      <italic>In situ</italic> Detection of Isotopes

      Microorganisms continually interact with their environment through their metabolism, which itself fosters mineralization and may favor fossilization. Secondary minerals resulting from metabolic activity are commonly of intermediate to high specificity for the actual metabolism. Detailed in situ analysis at a micro scale can be performed on mineralized fossils and associated biominerals by laser ablation inductively coupled mass spectrometry (LA-ICP-MS). Such instruments are optimized to analyze isotopic contents of individual microorganisms and microbial associations on a micro-scale. Examining the elemental and isotopic composition of the mineralized microbial remains, will allow a constraint of primary and secondary metabolites and bioavailable energy sources, information that can be used to determine the biological affinity of microfossils. For example, δ13C values of authigenic calcite will indicate the presence, or past presence of anaerobic methane oxidation, or methanogenesis, while δ34S values in pyrite will indicate potential fractionation due to bacterial sulfate reduction (Drake et al., 2015, 2017). Isotopic investigations will therefore help to constrain metabolic pathways and can clarify the microbial involvement in the cycling of elements between rocks, microorganisms and water.

      Miniaturized laser ablation ionization mass spectrometry (LIMS)-time-of-flight mass spectrometer for space missions capable of performing in situ isotope measurements of minerals at planet surfaces in vacuum have been developed and tested, but not included, in the payloads of ExoMars or NASAs mars mission 2020 (Wiesendanger et al., 2018). Isotope measurement thus have to be targeted for the subsequent Mars sample return mission.

      <italic>Ex situ</italic> Microimaging of Martian Samples on Earth

      Drill cores and other kind of samples retrieved from Mars offer the opportunity of a considerably more detailed chemical and morphological sample investigation. As long as the payload instrumentations enable sampling of material with a high potential for biosignature preservation, the chances of identifying and characterizing morphological and/or molecular fossils in a piece of rock is therefore higher by magnitudes in laboratories on Earth compared to in situ on the surface of Mars.

      Microimaging techniques are central in all microfossil investigations, in order to resolve microbial morphology, variations in composition and relation to host rock and associated mineral phases. Methods and instrumentation can vary depending on access to equipment and facilities. For example, synchrotron-based X-ray tomographic microscopy (SRXTM) is a non-invasive technique that allows the study of rock and fossil structures in 3 dimensions, which has been decisive in the identification of deep-biosphere fossils of different ages (Ivarsson et al., 2012, 2013; Bengtson et al., 2014, Bengtson et al., 2015c,a). Recent identification of fungus-like fossils from 2.4 Ga vesicular basalts obtained by SRXTM (Bengtson et al., 2017) were instrumental in distinguishing pore-dwelling cryptoendoliths from rock-boring euendoliths. The physical interaction between microorganisms and minerals represented by either biomineralization or bioerosion structures have thus been successfully visualized and studied by SRXTM (Bengtson et al., 2014; Ivarsson et al., 2015c,a). So far, most tomographic work on deep biosphere fossils have been executed at the micro-tomography beamline TOMCAT at the Swiss Light Source synchrotron facility, Paul Scherrer Institute, Switzerland. The TOMCAT beamline has provided tomographic datasets with micron-sized sample resolution, which has resulted in increased insights into the spatial correlation between microbes and vein filling minerals as well as their association with vesicle/fracture surfaces within the basalt. In addition, new facilities such as the synchrotron Max IV in Lund, in particular the beamlines DanMAX and NanoMAX, will have the capacity to resolve nanometer-scale features, which will open a new path toward the investigation of cryptic microfossils and their ultrastructural features.

      For the examination of volcanic biosignatures and fossils, initial mineralogical and fossil identification should be performed using a combination of light and fluorescence microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray fluorescence (XRF). Further detection and characterization of organic material in fossils may be targeted by Raman spectroscopy and Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) (Ivarsson et al., 2015c).

      The above analysis should also be complemented by bulk analyses. The extraction/characterization of biomarkers may be performed using gas chromatography (GC), coupled gas chromatography/mass spectrometry (GC/MS), and coupled high-pressure liquid chromatography/mass spectrometry (HPLC/MS). For compound-specific stable carbon isotope compositions, gas chromatography-isotope ratio monitoring-mass spectrometry (GC-irm-MS) can be used.

      Toward the Establishment of a Microfossil Atlas for Mars Exploration

      To establish an atlas of volcanic-based microfossils for the upcoming Mars missions, we need to enhance the current knowledge of fossilized microorganisms in deep igneous rock and in deep time, as reviewed above. The ambition should be to establish a fossil record from the present and backward, to trace microbial components of the deep biosphere in time, and to establish an improved framework for the timing of major evolutionary lineages. The main goal is to apply this knowledge to future exploration missions on Mars, with the possibility of identifying extra-terrestrial fossilized microorganisms from volcanic habitats.

      Summary

      Based on the contents of this review and the research covered herein, we propose to establish a microfossil atlas, covering all known aspects of the ecology of volcanic habitats on Earth, including prevalent information about trace and body fossils of prokaryotic and eukaryotic nature. To accomplish this, we need the combining results from all working areas as reviewed above; including information about microbial morphology, organic microfossil-content (biomarkers) and elemental and isotopic content of igneous-dwelling fossils and their associated biominerals. A first rough classification will primarily be based on morphology, but biomarkers and relevant isotopic fractionations will be added to this scenario to enhance the classification and to make it taxonomically robust. A combination of biomarkers and isotopes will make it possible to discriminate between groups of microorganisms based on metabolisms such as, for example, methanogens and methanotrophs. Species discrimination is made possible by the presence and detection of different lipids and δ13C values within fossil microorganisms and/or associated biominerals (in the case of δ13C) (Drake et al., 2015). Ultimately, however, the volcanic microfossil atlas will be classified based on taxonomy. Rough discriminations between prokaryotes and eukaryotes will be possible, as will hopefully also more precise classifications, down to class-level.

      The current payloads of NASAs Mars 2020 and the ExoMars missions are capable of analyzing structures <60 μm, possibly somewhat smaller. Therefore, both missions will be able to target larger biogenic structures from volcanic rocks, such as mm-sized mineralized fungal mycelia, or larger microstromatolites in open vesicles. The ExoMars cameras with a resolution of 8 μm/px has a greater chance of identifying small features and individual hyphae, as seen in Figure 5B, but in turn, the NASA mission has the possibility of collecting samples for later ex situ investigation on Earth- a resolution of 15 μm/pixel may therefore be sufficient to resolve enough features to select samples with a high probability of containing biosignatures. Our hope with establishing a volcanic microfossil atlas is that it may act as a complement to more established sedimentary-based fossil charts by providing a robust assessment of microbial diversity in the igneous oceanic crust. Apart from providing general guidelines for microfossil studies on Earth, we envision the atlas to specifically aid in the search for relevant target-sites for planetary missions, such as the NASA Mars mission 2020 and ExoMars.

      Author Contributions

      MI designed and implemented the initial study, contributed with manuscript conception and manuscript writing. TS contributed with manuscript conception, manuscript writing, and ESEM-EDS analysis. D-TC contributed with manuscript conception and writing. All authors aware of, read and approved, the submitted version of the manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This work was funded by the Swedish Research Council (Contracts No. 2007-4483, 2012-4364, 2013-4290, and 2017-04129), a Villum Investigator Grant to Donald Canfield No. 16518, and a grant from Carl Tryggers Foundation (CTS 18: 167), to MI and TS.

      The authors wish to thank Stefan Bengtson and Veneta Belivanova, Swedish Museum of Natural History, for production of SRXTM, ESEM and optical microscopy images. Federica Marone, Swiss Light Source and Paul Scherrer Institute, Switzerland for synchrotron imaging and reconstruction. Anna Neubeck, Uppsala University, for contributing with the original image for Figure 1, and Pollyanna von Knorring, Swedish Museum of Natural History, for illustrating Figure 2.

      References Bach W. Edwards K. J. (2004). Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67 38713887. 10.1016/s0016-7037(03)00304-1 Bastin E. S. Greer F. E. Merritt C. A. Moulton G. (1926). The presence of sulphate reducing bacteria in oil field waters. Science 63 2124. 10.1126/science.63.1618.21 17838563 Bengtson S. Ivarsson M. Astolfo A. Belivanova V. Broman C. Marone F. (2014). Deep-biosphere consortium of fungi and prokaryotes in Eocene sub-seafloor basalts. Geobiology 12 489496. 10.1111/gbi.12100 25214186 Bengtson S. Rasmussen B. Ivarsson M. Muhling J. Broman C. Marone F. (2017). Fungus-like mycelial fossils in 2.4 billion-year-old vesicular basalt. Nat. Ecol. Evol. 1:0141. 10.1038/s41559-017-0141 28812648 Carter J. Poulet F. Bibring J.-P. Mangold N. Murchie S. (2013). Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118 831858. 10.1029/2012JE004145 Chafetz H. S. Guidry S. A. (1999). Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation. Sed. Geol. 126 5774. 10.1016/s0037-0738(99)00032-9 Coates A. J. Griffiths A. D. Leff C. E. Schmitz N. Barnes D. P. Josset J.-L. (2012). Lunar PanCam: adapting ExoMars PanCam for the ESA Lunar Lander. Planet Space Sci. 74 247253. 10.1016/j.pss.2012.07.017 Coates A. J. Jaumann R. Griffiths A. D. Leff C. E. Schmitz N. Josset J.-L. (2017). The PanCam instrument for the ExoMars rover. Astrobiology 17 511541. 10.1089/ast.2016.1543 28731817 Cockell C. S. (2014a). “The subsurface habitability of terrestrial rocky planets: mars,” in Microbial Life of the Deep Biosphere, eds Kallmeyer J. Wagners D. (Berlin: DeGruyter), 225260. Cockell C. S. (2014b). Trajectories of martian habitability. Astrobiology 14 182203. 10.1089/ast.2013.1106 24506485 Colwell F. S. D’Hondt S. (2013). Nature and extent of the deep biosphere. Rev. Miner. Geochem. 75 547574. 10.2138/rmg.2013.75.17 Connell L. Barrett A. Templeton A. Staudigel H. (2009). Fungal diversity associated with an active deep sea volcano: vailulu’u Seamount, Samoa. Geomicrobiol. J. 26 597605. 10.1080/01490450903316174 Cousins C. R. Gunn M. Prosser B. J. Barnes D. P. Crawford I. A. Griffiths A. D. (2012). Selecting the geology filter wavelengths for the ExoMars panoramic camera instrument. Planet. Space Sci. 71 80100. 10.1016/j.pss.2012.07.009 De Angelis S. De Sanctis M. C. Ammannito E. Di Iorio T. Carli C. Frigeri A. (2013). VNIR spectroscopy of mars analogues with the ExoMars-Ma_miss instrument. Memorie della Societa Astronomica Italiana Supplement 26 121127. De Sanctis M. C. Altieri F. Ammannito E. Biondi D. De Angelis S. Meini M. (2017). Ma_MISS on ExoMars: mineralogical characterization of the martian subsurface. Astrobiology 17 612620. 10.1089/ast.2016.1541 Des Marais D. J. (2010). Exploring Mars for evidence of habitable environments and life. Proc. Am. Phil. Soc. 154 402421. Drake H. Åström M. E. Heim C. Broman C. Åström J. Whitehouse M. (2015). Extreme 13C-depletion of carbonates formed during oxidation of biogenic methane in fractured granite. Nat. Comm. 6:7020. 10.1038/ncomms8020 25948095 Drake H. Ivarsson M. Bengtson S. Heim C. Siljeström S. Whitehouse M. (2017). Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat. Comm. 8:55. 10.1038/s41467-017-00094-6 28676652 Drake H. Tullborg E.-L. Page L. (2009). Distinguished multiple events of fracture mineralisation related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden. Lithos 110 3749. 10.1016/j.lithos.2008.12.003 Edwards P. H. Bridges J. C. Wiens R. Anderson R. Dyar D. Fisk M. (2017). Basalt-trachybasalt samples in Gale Crater, Mars. Meteor. Planet. Sci. 52 23912410. Ehlmann B. L. Edwards C. S. (2014). Mineralogy of the martian surface. Annu. Rev. Earth Planet. Sci. 42 291315. 10.1146/annurev-earth-060313-55024 Ehlmann B. L. Mustard J. F. Murchie S. L. Bibring J. P. Meunier A. Fraeman A. A. (2011). Subsurface water and clay mineral formation during the early history of Mars. Nature 479 5360. 10.1038/nature10582 22051674 Ehlmann B. L. Mustard J. F. Swayze G. A. Clark R. N. Bishop J. L. Poulet F. (2009). Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nilli Fossae and implications for aqueous alteration. J. Geophys. Res. Planets 114:E00D08. Eickmann B. Bach W. Kiel S. Reitner J. Peckmann J. (2009). Evidence for cryptoendolithic life in Devonian pillow bas-alts of Variscan orogens, Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 283 120125. 10.1016/j.palaeo.2009.09.006 Farley K. A. Williford K. H. (2017). Seeking signs of life, and more: NASA’s Mars 2020 mission. EOS 98. 10.1029/2017EO066153 Fassett C. I. Head J. W. (2011). Sequence and timing of conditions on early Mars. Icarus 211 12041214. 10.1016/j.icarus.2010.11.014 12629222 Ferris F. G. Fyfe W. S. Beveridge T. J. (1988). Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16 153157. Fisher A. T. Becker K. (2000). Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403 7174. 10.1038/47463 10638753 Fisk M. McLoughlin N. (2013). Atlas of alteration textures in volcanic glass from the ocean basins. Geosphere 9 317341. 10.1130/ges00827.1 Furnes H. McLoughlin N. Muehlenbachs K. Banerjee N. Staudigel H. Dilek Y. (2008). “Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time-A review,” in Links Between Geological Processes, Microbial Activities and Evolution of Life, eds Dilek Y. Furnes H. Muehlenbachs K. (Berlin: Springer), 168. 10.1007/978-1-4020-8306-8_1 Furnes H. Muehlenbachs K. Tumyr O. Torsvik T. Xenophontos C. (2001). Biogenic alteration of volcanic glass from the Trodoos ophiolite. Cyprus J. Geol. Soc. Lond. 158 7584. 10.1089/ast.2014.1259 26496528 Furnes H. Staudigel H. (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet. Sci. Lett. 166 97103. 10.1016/s0012-821x(99)00005-9 Garcia-Ruiz J. M. Hyde S. T. Carnerup A. M. Christy A. G. van Kranendok M. J. Welham N. J. (2003). Self-assembled silica-carbonate structures and deoetction of ancient microfossils. Science 302 11941197. 10.1126/science.1090163 14615534 Giovannoni S. J. Fisk M. R. Mullins T. D. Furnes H. (1996). Genetic evidence for endolithic microbial life colonizing basaltic glass-seawater interfaces. Proc. Ocean Drill. Prog. Sci. Res. 148 207214. Golubic S. Friedmann I. Schneider J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. J. Sed. Res. 51 475478. Goudge T. A. Fassett C. I. Head J. W. Mustard J. F. Aureli K. L. (2016). Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44 419422. 10.1130/g37734.1 Grosch E. G. McLoughlin N. (2014). Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. PNAS 111 83808385. 10.1073/pnas.1402565111 24912193 Grotzinger J. P. Gupta S. Malin M. C. Rubin D. M. Schieber J. Siebach K. (2015). Deposition, exhumation, and paleoclimate of an ancient lake deposit. Gale Crater, Mars. Science 350:aac7575. 10.1126/science.aac7575 26450214 Heim C. (2011). “Terrestrial deep biosphere,” in Encyklopedia of Geobiology, eds Reitner J. Thiel V. (Berlin: Springer), 871876. 10.1007/978-1-4020-9212-1_65 Hirayama H. Abe M. Miyazaki J. Sakai S. Nagano Y. Takai K. (2015). Data report: cultivation of microorganisms from basaltic rock and sediment cores from the North Pond on the western flank of the Mid-Atlantic Ridge. IODP Expedition 336. Proc. Int. Oc. Drill. Prog. 336 10.2204/iodp.proc.336.204.2015 Ivarsson M. (2006). Advantages of doupbly polished thin sections for the study of microfossils in volcanic rock. Geochem. Trans. 7:5. 16759373 Ivarsson M. Bengtson S. Belivanova V. Stampanoni M. Marone F. Tehler A. (2012). Fossilized fungi in subseafloor Eocene basalts. Geology 40 163166. 10.1111/gbi.12100 25214186 Ivarsson M. Bengtson S. Drake H. Francis W. (2018). Fungi in deep subsurface environments. Adv. Appl. Microbiol. 102 83116. 10.1016/bs.aambs.2017.11.001 29680127 Ivarsson M. Bengtson S. Neubeck A. (2016). The igneous oceanic crust – Earth’s largest fungal habitat? Fung. Ecol. 20 249255. 10.1016/j.funeco.2016.01.009 Ivarsson M. Bengtson S. Skogby H. Belivanova V. Marone F. (2013). Fungal colonies in open fractures of subseafloor basalt. Geo Mar. Lett. 33 233243. 10.1007/s00367-013-0321-7 Ivarsson M. Bengtson S. Skogby H. Lazor P. Broman C. Belivanova V. (2015a). A fungal-prokaryotic consortium at the basalt-zeolite interface in subseafloor igneous crust. PLoS One 10:e014016. 10.1371/journal.pone.0140106 26488482 Ivarsson M. Broman C. Gustafsson H. Holm N. G. (2015b). Biogenic Mn-oxides in subseafloor basalts. PLoS One 10:e0128863. 10.1371/journal.pone.0128863 26107948 Ivarsson M. Holm N. G. Neubeck A. (2015c). “The deep biosphere of the subseafloor igneous crust,” in Trace Metal Biogeochemsitry and Ecology of Deep-Sea Hydrothermal Vent Systems, eds Demina L. L. Galkin S. V. (Berlin: Springer), 143166. 10.1007/698_2015_5014 Ivarsson M. Peckmann J. Tehler A. Broman C. Bach W. Behrens K. (2015d). Zygomycetes in vesicular basanites from Vesteris Seamount, Greenland Basin – a new type of cryptoendolithic fungi. PLoS One 10:e01333368. 10.1371/journal.pone.01333368 26181773 Ivarsson M. Lindblom S. Broman C. Holm N. G. (2008). Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments. Geobiology 6 155170. 10.1111/j.1472-4669.2007.00139.x 18380878 Josset J.-L. Westall F. Hofmann B. A. Spray J. Cockell C. Kempe S. (2017). The Close-Up Imager onboard the ESA ExoMars Rover: objectives, description, operations, and science validation activities. Astrobiology 17 595611. 10.1089/ast.2016.1546 28731819 Lalonde K. Mucci A. Ouellet A. Gélinas Y. (2012). Preservation of organic matter in sediments promoted by iron. Nature 483 198200. 10.1038/nature10855 22398559 Laskar J. Levrard B. Mustard J. F. (2002). Orbital forcing of the martian polar layered deposits. Nature 419 375377. 10.1038/nature01066 12353029 Le Calvez T. Burgaud G. Mahé S. Barbier G. Vandenkoornhuyse P. (2009). Fungal diversity in deep sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75 64156421. 10.1128/AEM.00653-09 19633124 Leduc M. Kasra R. Van Neijenoort J. (1982). Induction and control of the autolytic system of Escherichia coli. J. Bacteriol. 152 2634. 6181050 Lepot K. Philippot P. Benzerara K. Wang G.-Y. (2009). Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology 7 393402. 10.1111/j.1472-4669.2009.00208.x 19656217 López-García P. Vereshchaka A. Moreira D. (2007). Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost-City hydrothermal field. Environ. Microbiol. 9 546554. 10.1111/j.1462-2920.2006.01158.x 17222152 Magnabosco C. Lin L.-H. Dong H. Bomberg M. Ghiorse W. Stan-Lotter H. (2018). The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11 707717. 10.1038/s41561-018-0221-6 McLennan S. M. Sephton M. A. Allen C. Allwood A. C. Barbieri R. Beaty D. W. (2012). Planning for Mars Returned Sample Science: Final Report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). Available at: https://www.liebertpub.com/doi/10.1089/ast.2011.0805 (accessed April 02, 2012). McLoughlin N. Brasier M. D. Wacey D. Green O. R. Perry R. S. (2007). On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7 1026. 10.1089/ast.2006.0122 17407401 McLoughlin N. Furnes H. Banerjee N. R. Muehlenbachs K. Staudigel H. (2009). Ichnotaxonomy of microbial trace fossils in volcanic glass. J. Geol. Soc. Lond. 166 159169. 10.1144/0016-76492008-049 McLoughlin N. Staudigel H. Furnes H. Eichmann B. Ivarsson M. (2010). Mechanisms of microtunneling in rock substrates – Distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8 245255. 10.1111/j.1472-4669.2010.00243.x 20491948 McMahon S. Parnell J. (2014). Weighing the deep biosphere. FEMS Microbiol. Ecol. 87 113120. 10.1111/1574-6941.12196 23991863 McSween H. Y. Ruff S. W. (2006). Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. J. Geophys. Res. Plan. 111 115. McSween H. Y. Taylor G. J. Wyatt M. B. (2009). Elemental composition of the Martian crust. Science 324 736739. 10.1126/science.1165871 19423810 McSween H. Y. Treiman A. H. (1998). Martian meteorites. Rev. Mineral. Geochem. 36 6.16.53. Musselwhite D. S. Dalton H. A. Kiefer W. S. Treiman A. H. (2005). Experimental petrology of the basaltic shergottite Yamato-980459: implications for the thermal structure of the Martian mantle. Meteorit. Planet. Sci. Arch. 41 12711290. 10.1111/j.1945-5100.2006.tb00521.x Mustard J. F. Murchie S. L. Pelkey S. M. Ehlmann B. L. Milliken R. E. Grant J. A. (2008). Hydrated silica minerals on Mars observed by the mars reconnaissance orbiter CRISM instrument. Nature 454 305309. 10.1038/nature07097 18633411 Nagahama T. Takahashi E. Nagano Y. Abdel-Wahab M. A. Miyazaki M. (2011). Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ. Microbiol. 13 23592370. 10.1111/j.1462-2920.2011.02507.x 21605311 National Research Council (2011). Vision and Voyages for Planetary Science in the Decade 2013–2022. Washington, DC: The National Academies Press, 10.17226/13117 Onstott T. C. (2016). Deep Life: The Hunt for the Hidden Biology of Earth, Mars and Beyond. Princeton, NJ: Princeton University Press. Orcutt B. N. Sylvan J. B. Knab N. J. Edwards K. J. (2011). Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75 361422. 10.1128/MMBR.00039-10 21646433 Orsi W. D. Biddle J. F. Edgcomb V. D. (2013a). Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335. 10.1371/journal.pone.0056335 23418556 Orsi W. D. Edgcomb V. D. Christman G. D. Biddle J. F. (2013b). Gene expression in the deep biosphere. Nature 499 205208. 10.1038/nature12230 23760485 Osinski G. Tornabene L. Banerjee N. Cockell C. Flemming R. Izawa M. (2013). Impact-generated hydrothermal systems on Earth and Mars. Icarus 224 347363. 10.1038/srep03487 24336641 Parenteau M. N. Cady S. L. (2010). Microbial biosignatures in iron-mineralized phototrophic mats at chocolate pots hot springs, Yellowstone national park, United States. Palaios 25 97111. 10.2110/palo.2008.p08-133r Peckmann J. Bach W. Behrens K. Reitner J. (2008). Putative cryptoendolithic life in devonian pillow basalt, rheinisches schiefergebirge, Germany. Geobiology 6 125135. 10.1111/j.1472-4669.2007.00131.x 18380875 Poulet F. Mangold N. Platevoet B. Bardintzeff J.-M. Sautter V. Mustard J. F. (2009). Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data. Icarus 201 84101. 10.1016/j.icarus.2008.12.042 Ross K. A. Fisher R. V. (1986). Biogenic grooving on glass shards. Geology 14 571573. Sapers H. M. Osinski G. R. Banerjee N. R. Preston L. J. (2014). Enigmatic tubular features in impact glass. Geology 42 471474. 10.1130/g35293.1 Schopf J. W. (2006). Fossil evidence of Archaean life. Philos. Trans. R. Soc. B 361 869885. 10.1098/rstb.2006.1834 16754604 Schrenk M. O. Huber J. A. Edwards K. J. (2009). Microbial provinces in the subseafloor. Ann. Rev. Mar. Sci. 2 279304. 10.1146/annurev-marine-120308-081000 21141666 Squyres S. W. Arvidson R. E. Bell J. F. Brückner J. Cabrol N. A. Calvin W. (2004). The Spirit Rover’s Athena science investigation at Gusev Crater, Mars. Science 305 794799. 10.1126/science.1100194 15297657 Staudigel H. Furnes H. McLoughlin N. Banerjee N. R. Connell L. B. Templeton A. (2008). 3.5 billion years of glass bioal-teration: volcanic rocks as a basis for microbial life? Earth Sci. Rev. 89 156176. 10.1016/j.earscirev.2008.04.005 Takami H. Inoue A. Fuji F. Horikoshi K. (1997). Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152 279285. 10.1016/s0378-1097(97)00211-5 9231422 Tanaka K. L. Skinner J. A. Jr. Hare T. M. Joyal T. Wenker A. (2003). Resurfacing history of the Northern Plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res. 108:8043. 10.1029/2002JE00190 Thorseth I. H. Furnes H. Heldal M. (1992). The importance of microbiological activity in the alteration of natural basaltic glass. Geochim. Cosmochim. Acta 56 845850. 10.1016/0016-7037(92)90104-q Thorseth I. H. Pedersen R. B. Christie D. M. (2003). Microbial alteration of 0-30-Ma seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet. Sci. Lett. 215 237247. 10.1016/s0012-821x(03)00427-8 Thorseth I. H. Torsvik T. Furnes H. Muehlenbachs K. (1995). Microbes play an important role in the alteration of oceanic crust. Chem. Geol. 126 137146. 10.1016/0009-2541(95)00114-8 Thorseth I. H. Torsvik T. Torsvik V. Daae F. L. Pedersen R. B. (2001). Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett. 194 3137. 10.1016/s0012-821x(01)00537-4 Toporski J. K. W. Steele A. Westall F. Thomas-Keprta K. L. McKay D. S. (2002). The simulated silicification of bacteria – new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2 126. 10.1089/153110702753621312 12449852 Tornabene L. L. Osinski G. R. McEwan A. S. Wray J. J. Craig M. A. Sapers H. M. (2013). An impact origin for hydrated silicates on Mars: a synthesis. J. Geophys. Res. Planet. 118 9941012. 10.1002/jgre.20082 Vago J. L. Westall F. Pasteur Instrument Teams Pasteur Landing Team Coates A. J. Jaumann R. (2017). Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology 17471510. Velbel M. A. (2012). “Aqueous alteration in martian meteorites: comparing mineral relations in igneous-rock weathering of martian meteorites and in the sedimentary cycle of Mars,” in Sedimentary Geology of Mars, eds Grotzinger J. P. Milliken R. E. (Tulsa: SEPM special publication), 97117. 10.2110/pec.12.102.0097 Westall F. Foucher F. Bost N. Bertrand M. Loizeau D. Vago J. L. (2015). Biosignatures on mars: what, where, and how? Implications for the search for martian life. Astrobiology 15 9981029. 10.1089/ast.2015.1374 26575218 Wiesendanger R. Grimaudo V. Moreno P. Cedeño López A. Riedo A. Tulej M. (2018). Chemical and optical identification of micrometer sized 1.9 Ga old fossils with a miniature LIMS system combined with an optical microscope. Astrobiology 18 10711080. 10.1089/ast.2017.1780 30095994 Yen A. S. Ming D. W. Vaniman D. T. Gellert R. Blake D. F. Morris R. V. (2017). Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth Planet. Sci. Lett. 471 186198. 10.1016/j.epsl.2017.04.033 Yuen P. Gao Y. Griffiths A. Coates A. Muller J.-P. Smith A. (2013). ExoMars Rover PanCam: autonomous and computational intelligence [application notes]. IEEE Comp. Int. Mag. 8 5261. 10.1109/mci.2013.2279561 Zobell C. E. Anderson D. Q. (1936). Vertical distribution of bacteria in marine sediments. Bull. Am. Assoc. Petrol. Geol. 20 258269.

      https://mars.nasa.gov/mars2020/mission/rover/cameras/#Science-Cameras

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016mimalm.org.cn
      goldbeauty.com.cn
      imlark.com.cn
      meepao.com.cn
      gettop.net.cn
      www.laimaiche.com.cn
      ijoclf.com.cn
      www.rhiwip.com.cn
      www.webmethod.com.cn
      nu1.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p