Front. Conserv. Sci. Frontiers in Conservation Science Front. Conserv. Sci. 2673-611X Frontiers Media S.A. 10.3389/fcosc.2021.727517 Conservation Science Original Research Threats to Neglected Biodiversity: Conservation Success Requires More Than Charisma Costante Delaney M. 1 Haines Aaron M. 2 Leu Matthias 1 * 1Applied Conservation and Ecological Research Lab, Biology Department, William & Mary, Williamsburg, VA, United States 2Applied Conservation Lab, Biology Department, Millersville University, Millersville, PA, United States

Edited by: Krithi K. Karanth, Centre for Wildlife Studies, India

Reviewed by: Matthew Grainger, Norwegian Institute for Nature Research (NINA), Norway; Courtney Hughes, Government of Alberta, Canada

*Correspondence: Matthias Leu mleu@wm.edu

This article was submitted to Human-Wildlife Dynamics, a section of the journal Frontiers in Conservation Science

14 01 2022 2021 2 727517 18 06 2021 29 11 2021 Copyright © 2022 Costante, Haines and Leu. 2022 Costante, Haines and Leu

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Our planet is home to an incredible array of species; however, relatively few studies have compared how anthropogenic threats impact taxonomic groups over time. Our objective was to identify temporal trends in threats facing the four most speciose phyla protected by the United States Endangered Species Act: angiosperms, arthropods, chordates, and mollusks. We determined presence or absence of threats for each species in these phyla by reviewing Final Rule listing decisions. For each phylum, we evaluated whether there was a linear, quadratic, or pseudo-threshold association between year of listing and the presence of 24 anthropogenic threats. We identified temporal trends for 80% of the 96 threat-phylum combinations. We classified threats as topmost (probability of being included in a species' listing decision peaking at ≥ 0.81) and escalating (probability of being included in a listing decision increasing by ≥ 0.81 between a species' first and most recent years of listing). Angiosperms, arthropods, and mollusks each had more topmost and escalating threats than chordates. Percentages of topmost threats were 42.9% (N = 21) for mollusks, 36.4% (N = 22) for angiosperms, and 33.3% (N = 21) for arthropods. Percentages of escalating threats were 22.7% (N = 22) for angiosperms and 14.3% (N = 21) for arthropods and mollusks. In contrast, percentages of topmost and escalating threats were only 4.2% (N = 24) for chordates, this one threat being climate change. Our research suggests potential conservation successes; some overutilization and pollution threats showed only gradually increasing or declining trends for certain phyla. We identified authorized take impacting angiosperms as the sole threat-phylum combination for which the threat had been consistently decreasing since the phylum's first year of listing. Conversely, species interactions, environmental stochasticity, and demographic stochasticity threats have seen drastic increases across all phyla; we suggest conservation efforts focus on these areas of increasing concern. We also recommend that resources be allocated to phyla with numerous topmost and escalating threats, not just to chordates.

angiosperms arthropods chordates endangered species act mollusks temporal threats Virginia Space Grant Consortium10.13039/100005766

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Our planet harbors a rich suite of species, each with unique life histories and habitat requirements. Given this wide variation, it is to be expected that anthropogenic changes to the environment do not impact each species in the same manner (Leclerc et al., 2018). However, current research focuses on evaluating threats at the biodiversity level rather than accounting for variability among taxa. Additionally, the “charismatic” endothermic vertebrates have been studied far more thoroughly than other species; this information gap makes it difficult to assess relative extinction risk among taxa (McKinney, 1999). Because of the alarming rate at which extinctions are occurring (Barnosky et al., 2011; Pimm et al., 2014), it is important to identify how factors of endangerment differ among taxa (Ducatez and Shine, 2017). Doing so will help to ensure that extant biodiversity can be preserved, maintained, and recovered.

      In response to accelerating biodiversity losses, several nations have enacted laws with the purpose of protecting the imperiled species within their countries, such as the Endangered Species Protection Act (1992) in Australia, the Species at Risk Act (2002) in Canada, the Conservation Act (1987) in New Zealand, and the Wildlife and Countryside Act (1981) in the United Kingdom. In the United States, the legislation tasked with mitigating biodiversity loss is the Endangered Species Act (ESA) (1973). Signed into law in 1973, its aim has been to list imperiled species as “Threatened” or “Endangered” and subsequently provide regulations and resources to promote their recovery. As with conservation efforts in general, there are several taxa-based differences in how the ESA has been implemented. The first of these is reflected in the taxonomic composition of species protected by the ESA. Only 20% of the U.S. species NatureServe considered to be imperiled have been listed under the ESA; while birds, mammals, and reptiles were well-represented, there were far fewer protected amphibians, fishes, invertebrates, and plants (Evans et al., 2016). A second difference is apparent in the distribution of resources. Over 60% of the funding allotted for all listed species in 2012 went to fishes, primarily the economically important salmon and sturgeon species which are harvested despite their imperiled status (Evans et al., 2016). Conversely, plants, which comprised over half of all listed species, only received 3% of 2012's total funds (Evans et al., 2016). Taxa also plays a role in how quickly a species is listed under the ESA; plant and invertebrate species had a longer wait between their first consideration to be protected and their final listing compared to vertebrates (Puckett et al., 2016). Haines et al. (2021) found that both the amount of financial support a species received and the length of time it had been listed were important factors in its recovery. Accordingly, only 26% of the species that had been delisted due to recovery as of January 2020 were plants and invertebrates, even though these taxa comprised 72% of all listed species (Haines et al., 2021).

      In addition to these taxonomic differences in ESA implementation, there is also variation among the stressors which impact taxa. Leidner and Neel (2011) found that a larger percentage of plants had extirpations without range reductions, while a larger percentage of vertebrates had range reductions without extirpations; important distinctions to identify for effective management. In addition, Wilcove et al. (1998) examined differences in anthropogenic threats to ESA listed species and found that: 1) broad-scale habitat modification threats impacted several taxonomic groups, 2) alien species affected birds, fishes, and plants more than other animal groups, and 3) pollution was one of the most prevalent threats for fishes, mussels, and crayfish, while this threat had a lesser impact on non-aquatic species. While this research has provided an important benchmark, there have been 22 additional years of species listings since its publication during which new trends may have emerged.

      Given that taxa are treated differently in the implementation of the ESA and that they are susceptible to different threats, it is important to consider taxonomic differences when analyzing factors of species endangerment. Doing so could improve conservation efforts by allowing recovery strategies to be more effective for newly listed species (Foin et al., 1998). In addition to taxonomic differences, understanding temporal variation of threats is also valuable to conservation efforts. Threats that have been increasing in prevalence should be the focus of resources to mitigate their impacts, while threats that have been decreasing in prevalence may provide insights on management strategies which have proven successful for certain threats and/or taxa. This temporal aspect is infrequently analyzed, with many studies considering threats in just one instance in time. Lack of information on temporal dynamics of threats makes them less likely to be properly addressed by recovery efforts (Lawler et al., 2002). Our objective was to identify and compare most prevalent threats and to evaluate temporal trends in the threats which impact taxa listed as Threatened and Endangered under the ESA.

      Materials and Methods Threatened and Endangered Species Analyzed

      We included every species listed as Threatened or Endangered by the U.S Fish and Wildlife Service (USFWS) or National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NMFS) in our analysis. Species that were delisted due to recovery or extinction were included, while species that were delisted due to original errors in the listing decision, revisions in taxonomy, or discovery of new information were omitted. We did not include species which were listed due to “similarity of appearance” to an already listed Threatened or Endangered species. Each Distinct Population Segment (DPS) was treated as its own species, as delineated in the ESA's definition of “species” [ESA section 3(16)]. We did not include foreign species (found only in areas outside of U.S. jurisdiction) listed under the ESA, as the U.S. holds no regulatory power for those species beyond trade restrictions. Final Rule documents of species listed prior to 1975 did not contain information on threats facing the species, so we only included species listed 1975–2020. Our sample size was 1,569 species.

      Taxonomic Groups

      As of 2020, the taxonomic groups represented by species listed under the ESA included amphibians, arachnids, birds, cephalopods, clams, conifers & cycads, corals, crustaceans, ferns & allies, fish, flowering plants, insects, lichen, mammals, and reptiles. These groups had widely varying sample sizes, ranging from 910 flowering plants to a single cephalopod. Because many of these taxa lacked sufficient replication, we broadened our resolution to the phylum level. Members of eight phyla were protected by the ESA as of 2020: angiosperms (flowering plants; N = 910), arthropods (arachnids, crustaceans, and insects; N = 128), ascomycotans (lichen; N = 2), chordates (amphibians, birds, fish, mammals, and reptiles; N = 350), cnidarians (corals; N = 13), gymnosperms (conifers & cycads; N = 4), mollusks (cephalopods, clams, and snails; N = 124), and pteridophytes (ferns & allies; N = 38).

      Threat Data Collection

      We used Final Rule listing decisions as the source of our threat data collection. These documents are published in the U.S. Federal Register when a species is listed under the ESA, providing justification for why the species needs federal resources. In instances when a Final Rule was missing or incomplete, we reviewed the Proposed Rule for listing. These documents were accessed through the USFWS's Environmental Conservation Online System (ECOS; ecos.fws.gov) and the United States Federal Register (federalregister.gov). Within each document, we focused on parts A, B, C, and E of the “Summary of Factors Affecting the Species” section as well as the “Determination” section if present. We recorded any threats facing the species from these sections if the threats were (1) affecting the species at the time of its listing (i.e., not historical threats) and (2) written with “certain,” not “potential” language. Refer to Leu et al. (2019) for further details of threat language collection protocols.

      We sorted the threat language collected from the species' listing documents into 147 preliminary threat categories (Appendix 1). Upon review of the types of threats frequently encountered in the listing decisions, we grouped related threats into 24 fine-resolution categories for analysis. Refer to Appendix 1 for the preliminary threats included in each fine-resolution threat category and the number of species in each phylum they impacted.

      Statistical Analysis

      We used general linear models (GLM) with a binomial error structure and logit link to relate year of listing to the probability that a threat impacted a given phylum at time of listing. We constructed three predictor models per threat-phylum combination, each with a different form of year: linear, quadratic, and pseudo-threshold (log year; Scherer et al., 2012). For each threat-phylum combination, we also included a null model (no year effect). The best model out of each set of four was selected based on Akaike information criterion adjusted for small sample sizes (AICc; Burnham and Anderson, 2002; Appendices 2, 3), which we calculated using the MuMIn package (version 1.43.17; Barton, 2020). If a simpler model (with fewer terms) was within 2 AICc of the best performing model, we selected the simpler model (Burnham and Anderson, 2002). If the best-fitting model was within 2 AICc of the null model (Burnham and Anderson, 2002), we determined that year did not explain temporal variation in that threat-phylum combination. We used R (version 3.6.2; R Core Team, 2019) to perform all analyses.

      To highlight important threats, we classified them into two categories. First, we defined threats as topmost if their probability of being included in a phylum's listing decision peaked at ≥ 0.81. Second, we defined threats as escalating if their probability of being included in a phylum's listing decision increased by ≥ 0.81 between their first and most recent years of listing.

      Results

      Our analysis was based on 24 fine-resolution threats evaluated across four phyla. We combined the majority of our 147 preliminary threats into these fine-resolution categories, but eliminated nine preliminary threats because they were too vague (Appendix 1). Leu et al. (2019) had already examined temporal trends among broad-resolution threats, so no value would be added by including them in our analysis. In addition, we omitted five threats due to small sample sizes (representation in analyzed phyla) and/or because they did not fit into any of our categories (Appendix 1). The phyla impacted by these five threats were predominantly chordates (offshore development, light pollution, noise pollution, and unfavorable environmental conditions) and angiosperms (unfavorable environmental conditions and volcanoes; Appendix 1). We also omitted four phyla with sample sizes too small for our analysis: cnidarians, ascomycotans, gymnosperms, and pteridophytes. The latter three phyla were faced predominantly by the same threats that impacted the angiosperms. The cnidarians, however, faced a unique set of threats. All 13 listed coral species were impacted by offshore development and sea level rise, and 11 were impacted by ocean acidification - all threats which were relatively rare among the other phyla. These four omitted phyla constituted only 57 (3.6%) of the 1,569 listed species we considered in this study.

      We found that the 24 fine-resolution threats did not impact the phyla equally (Figure 1). For angiosperms, arthropods, and mollusks, both species interactions threats, two out of the three environmental stochasticity threats, and all three of the demographic stochasticity threats were topmost threats. Mollusks had the greatest number of topmost threats (42.9%, N = 21), followed by angiosperms (36.4%, N = 22) and arthropods (30%, N = 21; Figure 1). For chordates, the only topmost and escalating threat was climate change (Figures 1, 2). The arthropods and mollusks each had three escalating threats, whereas angiosperms had five (Figure 2). However, angiosperms were also the only phylum for which threat probabilities had decreased in intensity: mining and oil/gas by 0.05 and authorized take by a more substantial 0.25. The latter was the only threat we identified to have been constantly decreasing through time (Figure 2). We also found differences among the phyla when considering broad-resolution threat categories of habitat modification, overutilization, pollution, species interactions, environmental stochasticity, and demographic stochasticity (Figures 1, 2).

      Peak probabilities of being impacted by a threat. Mollusks had the greatest number of topmost threats (peaking at ≥ 0.81). Category corresponds to the broad-resolution threats of habitat modification (HM), overutilization (OU), pollution (PO), species interactions (SP), environmental stochasticity (ES), and demographic stochasticity (DS). Year not important denotes that there was no year effect for a particular threat/phyla combination (the null model was the best fit). Not analyzed (N < 10) is noted for phyla for which a given threat was not analyzed due to insufficient sample size. The 1.00 probability indicates we were unable to model the data because of perfect fit.

      Differences in probabilities of a threat impacting a phylum between their first and most recent years of listing. Angiosperms had both the greatest number of escalating threats (increased by ≥ 0.81) and the only threats which had decreased in probability. Category corresponds to the broad-resolution threats of habitat modification (HM), overutilization (OU), pollution (PO), species interactions (SP), environmental stochasticity (ES), and demographic stochasticity (DS). Year not important denotes that there was no year effect for a particular threat/phyla combination (the null model was the best fit). Not analyzed (N < 10) is noted for phyla for which a given threat was not analyzed due to insufficient sample size. The 1.00 probability indicates we were unable to model the data because of perfect fit.

      Habitat Modification

      Seven threats fell within the category of habitat modification: human disturbances, harvested renewable resources, aquatic development, mining & oil/gas, non-developmental habitat alteration, development, and anthropogenic ecosystem modification (for threat classifications see Appendix 1). In all phyla, year related to each of these threats (Figure 3; Appendix 4), except for arthropods for development (null model) and arthropods and mollusks for anthropogenic ecosystem modification (N < 10).

      Probability (±95% CI) of threats impacting angiosperm, arthropod, chordate, and mollusk phyla at the time of their listing. Year of listing was scaled and centered for the models.

      Of all the threat categories considered in this study, the only one for which a phylum showed a convex quadratic trend over all their years of listing was human disturbances (Figure 3). The probability that mollusks were impacted by this threat was 0.45 in 1977, decreased to 0.11 in 1997, and increased to 0.58 in 2018 (Figure 3; Appendix 5). Aquatic development impacting mollusks was the only topmost habitat modification threat (Figure 1). There were no escalating threats in the habitat modification category.

      While it had always had a relatively low magnitude, the probability of mining & oil/gas affecting angiosperms decreased between their first and most recent years of listing (Figure 2; Appendix 6). This was one of only two threats in our study where we documented a net decrease in the probability of a threat impacting a phylum, and the only habitat modification threat to do so.

      Overutilization

      Overutilization encompasses three of our fine-resolution threats: authorized take, unauthorized take, and unintentional take (see Appendix 1 for threat classifications). Overall, these were the least frequently occurring threats in our analysis (Figure 3; Appendix 7). Overutilization was also the threat category with the greatest number of phyla omissions due to small sample size (33%) and was one of two categories with the greatest proportion of models for which year was not a predictor of threat occurrence (25%).

      Chordates were the only phylum to be impacted by all three overutilization threats. The probability that chordates were affected by these threats increased between 0.10 and 0.45 since their first year of listing (Appendix 8). Conversely, the probability of authorized take affecting angiosperms decreased from 0.28 in 1977 to 0.03 in 2017 (Figure 3). Notably, this was the only threat-phylum combination for which the threat peaked in the earliest year of listing and constantly decreased thereafter. We also identified one overutilization threat for which year of listing was a predictor for mollusks: unauthorized take, which peaked in 2000 (Appendices 4, 5). Year of listing was not a predictor of any overutilization threats facing arthropods.

      Pollution

      Pollution included six threat categories: sedimentation, pesticide pollution, chemical pollution, nutrient pollution, object pollution, and non-point pollution (classifications in Appendix 1). Pollution tied with overutilization for the greatest proportion of phyla (25%) for which year was not an important predictor. There were also two threats, non-point pollution and object pollution, for which angiosperms and mollusks, respectively, could not be analyzed due to small sample size (N < 10).

      Of the six pollution threats, year was an important predictor only for sedimentation and pesticides across all four phyla (Appendix 9). There were three topmost pollution threats: sedimentation for angiosperms and mollusks and chemical pollution for mollusks (Figure 1). The only escalating threat within pollution was angiosperms impacted by sedimentation (Appendix 6). This small number of escalating threats was likely because half of the pollution threat-phylum combinations had a concave quadratic association with year (Figure 3; Appendix 9). Because this model form occurred so frequently, 75% of pollution threat-phylum combinations increased by a probability of ≤ 0.40 between a phylum's first and most recent year of listing (Figure 2).

      Species Interactions

      We broke species interactions into two threats: direct species interactions and indirect species interactions (refer to Appendix 1 for classifications). For both threats, we identified year of listing as a predictor for all four phyla (Figure 3; Appendix 9). Direct and indirect species interactions were topmost threats for angiosperms, arthropods, and mollusks (Figure 1). There were also several escalating threats: direct species interactions for angiosperms and arthropods and indirect species interactions for angiosperms and mollusks (Figure 2). Exceptions to the overall trend of escalating threats were chordates and arthropods, for which direct and indirect species interactions, respectively, decreased after 2006 (Appendices 8, 10). For mollusks, the threat of direct species interactions decreased from a probability of 0.32 in 1977 to 0.16 in 1989, and subsequently increased more than 6-fold by 2018 (Appendix 5).

      Environmental Stochasticity

      Three threat categories fell under the scope of environmental stochasticity: fire, severe weather, and climate change (for classifications see Appendix 1). Year was an important predictor of environmental stochasticity threats for all phyla, except for climate change with mollusks (Figure 3; Appendix 7). For this threat-phylum combination, all forms of year yielded a perfect model fit because all but one mollusk species was listed with climate change after 2012, and none had this threat before 2011.

      Climate change was a topmost and escalating threat for all phyla modeled, increasing drastically after 2000 (Figures 2, 3). Severe weather was also a topmost and escalating threat for angiosperms, arthropods, and mollusks (Figures 1, 2; Appendix 7). Fire had a relatively lesser impact compared to the other two environmental stochasticity threats (Appendix 7). It was most prevalent among angiosperms, peaking at a probability of 0.77 in 2017 (Appendix 6). Fire impacting arthropods was the only environmental stochasticity threat which did not peak in a phyla's most recent year of listing (Appendix 10).

      Demographic Stochasticity

      Our analysis included three threats which relate to demographic stochasticity: few individuals, small range, and genetic/life history limitations (see Appendix 1 for classifications). The threat of few individuals was the only one to have been increasing for all phyla over time (Figure 3). Chordates were the only phylum for which small range and genetic/life history limitations did not peak in their most recent year of listing, their maximum probabilities occurring in 2004 and 2013, respectively (Appendix 8). All three demographic stochasticity threats were topmost for angiosperms, arthropods, and mollusks (Figure 1); however, most of these phyla started off with a relatively high probability of these threats. The only escalating threat was genetic/life history limitations impacting mollusks (Figure 2).

      Discussion

      In total, we analyzed 96 threat-phylum combinations in our study, of which we were able to identify a temporal trend for 80%. We found that angiosperms, arthropods, and mollusks each had a far greater number of topmost and escalating threats than chordates. Topmost threats that impacted all three of these phyla included both species interactions threats (direct and indirect species interactions), two out of the three environmental stochasticity threats (severe weather and climate change), and all three of the demographic stochasticity threats (few individuals, small range, and genetic/life history limitations). Additionally, aquatic development and chemical pollution were topmost threats for mollusks, and sedimentation was a topmost threat for angiosperms and mollusks. Escalating threats consisted of three for the arthropods (direct species interactions, severe weather, and climate change) and mollusks (indirect species interactions, severe weather, & genetic/life history limitations), whereas angiosperms had five (direct and indirect species interactions, severe weather, and climate change). For chordates, the only topmost and escalating threat was climate change.

      We identified both direct and indirect species interactions as topmost threats for angiosperms, arthropods, and mollusks. However, there has been some debate (Boltovskoy et al., 2018) as to whether invasive species are a threat of great concern to biodiversity (McGeoch et al., 2010; Early et al., 2016), or if their impacts are lesser compared to those of other threats (Ricciardi and Ryan, 2017; Dueñas et al., 2018). While our direct and indirect species interactions threats encompassed all non-human species, including those designated as native, non-native, domestic, or unspecified, they were largely driven by invasive species. Our findings were in agreement with studies which have identified invasive species as problematic for angiosperms (Wilcove et al., 1998; Hernández-Yáñez et al., 2016), arthropods (Wilcove et al., 1998; Sánchez-Bayo and Wyckhuys, 2019; Wagner et al., 2021), and mollusks (Lydeard et al., 2004; Johnson et al., 2013; Lopes-Lima et al., 2014; Böhm et al., 2020). While the species interaction threats were not escalating and topmost for chordates as they were for the other three phyla, there is evidence that they are still having noteworthy impacts on this phylum (Wilcove et al., 1998; Ducatez and Shine, 2017; Currie and Marconi, 2020). One reason our findings may have differed from the literature was that we considered chordates as a phylum as opposed to breaking them down into classes as is common for comparative studies (e.g., Ducatez and Shine, 2017). For example, while invasive species impact a greater proportion of birds than mammals (Wilcove et al., 1998; Ducatez and Shine, 2017), our analysis would not account for among-class differences. Additionally, while our analysis did not examine differences in threats based on species' geography, it is widely known that invasive species disproportionately impact insular over mainland species (Wilcove et al., 1998; Hernández-Yáñez et al., 2016; Ducatez and Shine, 2017). An avenue of further research would be to quantify the difference between invasive species' impacts on these two groups. We did identify two threat-phylum combinations that have been declining since 2006: direct species interactions for chordates and indirect species interactions for arthropods. While this may indicate some success in mitigating invasive species threats, certain invasive species, such as insular vertebrate populations, are far easier to eradicate compared to large invasive plant populations (Rejmánek and Pitcairn, 2002; Keitt et al., 2011). Preventing future invasions and identifying effective techniques to remove species which have already invaded will be key to reducing species interaction threats for every phylum.

      Topmost threats we found to be prevalent among all four phyla, and which have been widely acknowledged as a major concern to biodiversity, are those relating to the broad-resolution threat of environmental stochasticity (Thomas et al., 2004; Javeline et al., 2013; Evans et al., 2016). Topmost threat intensity differed among phyla, with severe weather being prevalent only in angiosperms, arthropods and mollusks whereas climate change was prevalent across all four phyla. While we were not able to model temporal changes in climate change for mollusks, all but one mollusk species was listed with climate change after 2012, and none had this threat before 2011. Our findings confirm those of several studies which have identified climate change as an important threat for arthropods (Sánchez-Bayo and Wyckhuys, 2019; Wagner et al., 2021) and chordates (Ducatez and Shine, 2017). Not only is climate change a threat in itself, but it also intensifies other forms of severe weather, such as storms, fires, and drought (IPCC, 2014). We found severe weather to have a similar impact as climate change, being topmost and escalating for angiosperms, arthropods, and mollusks. Reviews of threats to mollusks (Lydeard et al., 2004; Johnson et al., 2013; Böhm et al., 2020) cite habitat alteration, pollution, and invasive species as the threats of greatest concern; however, our results indicate that severe weather and climate change should be included as top threats as well. The environmental stochasticity threat typically cited as having the greatest impact on angiosperms is fire (Wilcove et al., 1998; Hernández-Yáñez et al., 2016); however, we found both climate change and severe weather to be greater threats to this phylum. As climate change and environmental stochasticity continue to intensify, we expect them to threaten every species listed in the coming years in some capacity.

      Another broad-resolution threat with topmost threats for angiosperms, arthropods, and mollusks was demographic stochasticity: few individuals, small range, and genetic/life history limitations. Interestingly, these demographic threats are not frequently included in taxa-wide assessments of threats, a few exceptions citing only a small or reduced range as a threat to arthropods (Bland, 2017) and mollusks (Johnson et al., 2013). One reason for these omissions may be that demographic stochasticity is not an “anthropogenic” threat, even though in most cases it results from anthropogenic pressures (Belovsky et al., 1994; Butchart et al., 2010). Another reason may be that research focusing on imperiled biodiversity may assume that their focal species are faced by some form of few individuals or small range, so they do not elaborate further on these threats. While there was only one escalating demographic stochasticity threat-phylum combination, genetic/life history limitations for mollusks, all three threats have all been increasing to some degree for all phyla. We would have expected these threats to decrease, as species with the fewest individuals and smallest populations were likely listed in the first years of the ESA. A potential explanation is the delay many species experience between their initial proposal for listing and their final listing. Puckett et al. (2016) found that the average time to listing across all species was 12.8 years; however, for chordate species, this average time was a substantially lower 7.3 years. This shorter time to listing may have resulted in less demographic peril for chordates. This is reflected in our results: while each demographic stochasticity threat was topmost for angiosperms, arthropods, and mollusks, none were topmost for chordates. Because the longer we wait to protect a species, the more likely they are to be faced by severe, synergistically acting threats from which recovery becomes more difficult (Gilpin and Soulé, 1986), it is important to promptly list all imperiled species, not just the charismatic ones.

      In addition to the disproportionate impact these topmost and escalating threats have on each phylum, there is also a discrepancy in the funding allocated toward their recovery. Gerber (2016) contrasted the funding allocated for the recovery of species listed under the ESA with the amount they actually received (Table 1). Chordates, faced by only one topmost and escalating threat, were not only allocated more funding per species than the other three phyla combined, but they received an average of 7% more funding than they required (Gerber, 2016). Conversely, mollusks, the phylum with the greatest number of topmost threats, had the least amount of funding allocated and received per species (Gerber, 2016). Angiosperms, which we found to have the greatest number of escalating threats, were the most underfunded phylum, receiving an average of only 38% of their allocated funds per species (Gerber, 2016). Several studies (Male and Bean, 2005; Evans et al., 2016; Haines et al., 2021) have identified a positive association between a species' recovery success and the amount of funding they were given. With complex threats of invasive species, environmental stochasticity, and demographic stochasticity escalating for the non-chordate phyla, it is important that limited conservation resources be allotted to the species in most dire need.

      Average allocated budget and proportion of budget received for each of the four phyla (se = standard error).

      Phylum Average allocated budget (se) Average proportion of budget received (se) Average amount received
      Mollusks $343,206 ($90,400) 0.48 (0.07) $164,739
      Angiosperms $575,567 ($54,101) 0.38 (0.03) $218,715
      Arthropods $890,176 ($194,590) 0.83 (0.26) $738,846
      Chordates $2,389,393 ($282,203) 1.07 (0.20) $2,556,651

      The chordates are allocated and receive far more funding than the other three phyla. Based on data from Gerber (2016).

      Our research points to several successes in biodiversity conservation. Of all the threat-phylum combinations analyzed, only authorized take decreased for angiosperms in every year since they were listed. This threat encompasses take for commercial, recreational, and scientific or educational purposes, but not illegal take or poaching. One reason for this decrease may be that these forms of legal take are relatively easy to manage. Plants occurring on protected state or federal lands are often provided regulations governing their take, thereby reducing the detrimental impact of legal take (Evans et al., 2016). The success of mitigating this threat with angiosperms mirrors the findings of Leu et al. (2019), who found that overutilization impacting ESA-listed species was the only broad-resolution threat to have always been decreasing over time. However, our results indicate that this success is limited to the angiosperms. For chordates, all three overutilization threats—authorized take, unauthorized take (illegal take, vandalism on the species), and unintentional take (accidental take, accidental collisions)—have been increasing. While none of these threats were near the magnitude of a topmost or escalating threat, their increasing presence in chordate listing decisions is cause for attention. To make matters more complex, the management strategies which have proven effective for angiosperms may not yield the same results for chordates. In addition to having drastically different characteristics, e.g., being motile vs. non-motile, there are also some chordate species which are widely disliked, such as snakes and wolves (Knight, 2008; Houston et al., 2010). Effectively conserving these species from overutilization will likely involve greater efforts to sway public opinion than were required for angiosperms. However, because exploitation is a prominent cause of plant endangerment and extinction worldwide (Leclerc et al., 2018), learning from the success with authorized take in the U.S. could benefit imperiled plants globally.

      A second threat category in which we have identified conservation success is pollution. Mollusks are known to be highly susceptible to pollution, and multiple studies (Lydeard et al., 2004; Johnson et al., 2013; Lopes-Lima et al., 2014; Böhm et al., 2020) have cited pollutants such as sedimentation, chemicals, nutrients, and non-point pollution as top threats to this phylum. However, we found that the probabilities of each of those four threats being included in mollusk listing decisions have been decreasing since the mid-2000s. Similarly, two out of the three pollution threats for which year was a predictor for arthropods and two out of the six pollution threats for which year was a predictor for chordates have also been decreasing since the mid-2000s, even though pollution was regarded to be a prominent threat for these phyla (Wilcove et al., 1998; Sánchez-Bayo and Wyckhuys, 2019; Currie and Marconi, 2020; Wagner et al., 2021). Our findings supported those of Leu et al. (2019), who found the broad-resolution threat of pollution shifted from increasing to decreasing in the mid-2000s. This reduction of detrimental pollutants is in large part due to legislation such as the U.S. Clean Air Act (CAA; 1970) and the U.S. Clean Water Act (CWA; 1972). In those three decades since their enactment, sufficient progress had been made to both reduce the amount of pollutants put into the environment and to clean up areas which had been severely degraded by pollution (McKitrick, 2007; Gibson-Reinemer et al., 2017). Haines et al. (2021) found that regulations on pollution, such as the CWA, CAA, and other actions such as the banning of DDT in 1972, played an essential role in the recovery of nine species that formerly required the ESA's protection. The CWA alone was cited as protecting 24% of the recovered species even after they had been delisted by the ESA (Haines et al., 2021). Our findings support the conclusion of Haines et al. (2021) that strong policies outside of the ESA are effective tools in mitigating threats to imperiled species.

      A third threat category in which we have identified potential conservation success is habitat modification. While there was no universal trend, 11 out of the 25 habitat modification threat-phylum combinations for which year was a predictor had decreased around the early 2000s: aquatic development for angiosperms, chordates, and mollusks; development for angiosperms; harvested renewable resources for chordates; human disturbances for angiosperms and arthropods; mining & oil/gas for angiosperms and chordates, and non-developmental habitat alteration for angiosperms and mollusks. Notably, mining & oil/gas impacting angiosperms was one of two threat-phylum combinations for which we saw a decrease in the threat's probability between the phylum's first and most recent years of listing. It was the only habitat modification threat to do so. While this threat has always had a low prevalence for angiosperms, peaking at just 0.14 in 1993, we are not sure why it has declined. We recommend further research into factors which have caused mining and oil/gas to be less of a threat to this phylum over time. Additionally, factors which have recently caused the other habitat modification threats to decrease warrant further investigation to better understand mechanisms that may help reduce habitat modification threats.

      Understanding the dynamic nature of threats is imperative to developing effective conservation strategies. We were able to identify several threats relating to habitat modification, overutilization, and pollution which have been declining in recent years for some phyla, with authorized take constantly declining for angiosperms. However, we also identified threats which were topmost and escalating for most phyla, primarily those in species interactions, environmental stochasticity, and demographic stochasticity categories. Not only are these threats causing the most endangerment, but they are more difficult to manage. To mitigate these escalating threats, we recommend that conservation efforts focus on invasive species management and preserving habitat and corridors so that species can move into suitable habitat as the climate changes (Bernazzani et al., 2012). Additionally, adequately funding all phyla, or at least providing need-based funding for phyla with the greatest number of topmost and escalating threats, will be crucial to providing all species the opportunity to recover. By understanding the temporal nature of threats which have impacted protected phyla, we can increase the effectiveness with which we preserve our biodiversity.

      Data Availability Statement

      The data and R code is publicly available at: https://osf.io/w9k5b/, further inquiries can be made to the corresponding author.

      Author Contributions

      DC contributed writing, data analysis, and overall construction of this manuscript. ML and AH contributed writing, data analysis, and figure development. All authors contributed to the article and approved the submitted version.

      Funding

      Funding for this project came from the Virginia Space Grant Consortium Graduate Student Fellowship and the Broderick Family/Goldman Sachs Associate Professor of Biology.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher's Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      We would like to thank Lauren Bleyer, Matthew Dungan, Carli Parenti, Emily Ritter, Olivia Rosensteel, Ann Marie Rydberg, Michella Salvitti, and Grace Smoot for their assistance in data collection.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fcosc.2021.727517/full#supplementary-material

      References Barnosky A. D. Matzke N. Tomiya S. Wogan G. O. U. Swartz B. Quental T. B. . (2011). Has the Earth's sixth mass extinction already arrived? Nature 471, 5157. 10.1038/nature0967821368823 Barton K. (2020). MuMIn: Multi-Model Inference. Available online at: https://CRAN.R-project.org/package=MuMIn (accessed June 14, 2021). Belovsky G. E. Bissonette J. A. Dueser R. D. Edwards T. C. Jr. Luecke C. M. Ritchie M. E. . (1994). Management of small populations: concepts affecting the recovery of endangered species. Wildl. Soc. Bull. 22, 307316. Bernazzani P. Bradley B. A. Opperman J. J. (2012). Integrating climate change into habitat conservation plans under the U.S. Endangered Species Act. Environ. Manage. 49, 11031114. 10.1007/s00267-012-9853-222535183 Bland L. M. (2017). Global correlates of extinction risk in freshwater crayfish. Anim. Conserv. 20, 532542. 10.1111/acv.12350 Böhm M. Dewhurst-Richman N. I. Seddon M. Ledger S. E. H. Albrecht C. Allen D. . (2020). The conservation status of the world's freshwater molluscs. Hydrobiologia 848, 32313254. 10.1007/s10750-020-04385-w Boltovskoy D. Sylvester F. Paolucci E. M. (2018). Invasive species denialism: sorting out facts, beliefs, and definitions. Ecol. Evol. 8, 1119011198. 10.1002/ece3.458830519436 Burnham K. P. Anderson D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd Edn. New York, NY: Springer. Butchart S. H. M. Walpole M. Collen B. van Strien A. Scharlemann J. P. W. Almond R. E. A. . (2010). Global biodiversity: indicators of recent declines. Science 328, 11641168. 10.1126/science.118751220430971 Currie J. Marconi V. (2020). An analysis of threats and factors that predict trends in Canadian vertebrates designated as at-risk. Facets 5, 4966. 10.1139/facets-2019-0017 Ducatez S. Shine R. (2017). Drivers of extinction risk in terrestrial vertebrates. Conserv. Lett. 10, 186194. 10.1111/conl.12258 Dueñas M. A. Ruffhead H. J. Wakefield N. H. Roberts P. D. Hemming D. J. Diaz-Soltero H. (2018). The role played by invasive species in interactions with endangered and threatened species in the United States: a systematic review. Biodivers. Conserv. 27, 31713183. 10.1007/s10531-018-1595-x Early R. Bradley B. A. Dukes J. S. Lawler J. J. Olden J. D. Blumenthal D. M. . (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7:12485. 10.1038/ncomms1248527549569 Endangered Species Act (ESA) (1973). Public Law No. 93–205, 87 U. S. Statutes at Large 884, Dec. 23, 1973, codified as amended at 16 16 U.S.C. secs. 1531–43. ESA. Evans D. M. Che-Castaldo J. P. Crouse D. Davis F. W. Epanchin-Niell R. Flather C. H. . (2016). Species recovery in the United States: increasing the effectiveness of the Endangered Species Act. Issues Ecol. 20, 128. Foin T. C. Riley S. P. D. Pawley A. L. Ayres D. R. Carlsen T. M. Hodum P. J. . (1998). Improving recovery planning for threatened and endangered species. BioScience 48, 117184. 10.2307/1313263 Gerber L. R. (2016). Conservation triage or injurious neglect in endangered species recovery. Proc. Natl. Acad. Sci. U. S. A. 113, 35633566. 10.1073/pnas.152508511326976572 Gibson-Reinemer D. K. Sparks R. E. Parker J. L. Deboer J. A. Fritts M. W. McClelland M. A. . (2017). Ecological recovery of a river fish assemblage following the implementation of the Clean Water Act. BioScience 67, 957970. 10.1093/biosci/bix110 Gilpin M. E. Soulé M. E. (1986). Minimum viable populations: processes of extinction, in Conservation Biology: The Science of Scarcity and Diversity, ed. Soulé M. E. (Sunderland, MA: Sinauer Associates), 1934. Haines A. M. Leu M. Costante D. M. Treakle T. C. Parenti C. Miller J. R. B. . (2021). Benchmark for the ESA: having a backbone is good for recovery. Front. Conserv. Sci. 2:630490. 10.3389/fcosc.2021.630490 Hernández-Yáñez H. Kos J. T. Bast M. D. Griggs J. L. Hage P. A. Killian A. . (2016). A systematic assessment of threats affecting the rare plants of the United States. Biol. Conserv. 203, 260267. 10.1016/j.biocon.2016.10.009 Houston M. J. Bruskotter J. T. Fan D. (2010). Attitudes toward wolves in the United States and Canada: a content analysis of the print news media, 1999-2008. Hum. Dimens. Wildl. 15, 389403. 10.1080/10871209.2010.507563 IPCC (2014). Climate change 2014: synthesis report, in Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Core Writing Team Pachauri R. K. Meyer L. A. (Geneva: IPCC), 151. Javeline D. Hellmann J. J. Cornejo R. C. Shufeldt G. (2013). Expert opinion on climate change and threats to biodiversity. BioScience 63, 666673. 10.1525/bio.2013.63.8.934375835 Johnson P. D. Bogan A. E. Brown K. M. Burkhead N. M. Cordeiro J. R. Garner J. T. . (2013). Conservation status of freshwater gastropods of Canada and the United States. Fisheries 38, 247282. 10.1080/03632415.2013.785396 Keitt B. Campbell K. Saunders A. Clout M. Wang Y. Heinz R. . (2011). “The Global Islands Invasive Vertebrate Eradication Database: a tool to improve and facilitate restoration of island ecosystems”, in Island Invasives: Eradication and Management, eds Veitch C. R. Clout M. N. Towns D. R. (Gland: IUCN), 7477. Knight A. J. (2008). “Bats, snakes and spiders, Oh my!” How aesthetic and negativistic attitudes, and other concepts predict support for species protection. J. Environ. Psychol. 28, 94103. 10.1016/j.jenvp.2007.10.001 Lawler J. J. Campbell S. P. Guerry A. D. Kolozsvary M. B. O'Connor R. J. Seward L. C. N. (2002). The scope and treatment of threats in endangered species recovery plans. Ecol. Appl. 12, 663667. 10.1890/1051-0761(2002)012[0663:TSATOT]2.0.CO;2 Leclerc C. Courchamp F. Bellard C. (2018). Insular threat associations within taxa worldwide. Sci. Rep. 8, 63936398. 10.1038/s41598-018-24733-029686360 Leidner A. K. Neel M. C. (2011). Taxonomic and geographic patterns of decline for Threatened and Endangered species in the United States. Conserv. Biol. 25, 716725. 10.1111/j.1523-1739.2011.01689.x21672024 Leu M. Haines A. M. Check C. E. Costante D. M. Evans J. C. Hollingsworth M. A. . (2019). Temporal analysis of threats causing species endangerment in the United States. Conserv. Sci. Pract. 1:e78. 10.1111/csp2.78 Lopes-Lima M. Teixeira A. Froufe E. Lopes A. Varandas S. Sousa R. (2014). Biology and conservation of freshwater bivalves: past, present, and future perspectives. Hydrobiologia 735, 113. 10.1007/s10750-014-1902-9 Lydeard C. Cowie R. H. Ponder W. F. Bogan A. E. Bouchet P. Clark S. A. . (2004). The global decline of nonmarine mollusks. BioScience 54, 321330. 10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 Male T. D. Bean M. J. (2005). Measuring progress in US endangered species conservation. Ecol. Lett. 8, 986992. 10.1111/j.1461-0248.2005.00806.x34517686 McGeoch M. A. Butchart S. H. M. Spear D. Marais E. Kleynhans E. J. Symes A. . (2010). Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers. Distrib. 16, 95108. 10.1111/j.1472-4642.2009.00633.x McKinney M. L. (1999). High rates of extinction and threat in poorly studied taxa. Conserv. Biol. 13, 12731281. 10.1046/j.1523-1739.1999.97393.x McKitrick R. (2007). Why did US air pollution decline after 1970? Empir. Econ. 33, 491513. 10.1007/s00181-006-0111-4 Pimm S. L. Jenkins C. N. Abell R. Brooks T. M. Gittleman J. L. Joppa L. N. . (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:987. 10.1126/science.124675224876501 Puckett E. E. Kesler D. C. Greenwald D. N. (2016). Taxa, petitioning agency, and lawsuits affect time spent awaiting listing under the US Endangered Species Act. Biol. Conserv. 201, 220229. 10.1016/j.biocon.2016.07.005 R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. www.R-project.org. Rejmánek M. Pitcairn M. J. (2002). When is eradication of exotic pest plants a realistic goal?, in Turning the Tide: The Eradication of Invasive Species, eds Veitch C. R. Clout M. N. (Gland; Cambridge: IUCN), 249253. Ricciardi A. Ryan R. (2017). The exponential growth of invasive species denialism. Biol. Invas. 20, 549553. 10.1007/s10530-017-1561-7 Sánchez-Bayo F. Wyckhuys K. A. G. (2019). Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 827. 10.1016/j.biocon.2019.01.020 Scherer R. D. Muths E. Noon B. R. (2012). The importance of local and landscape-scale processes to the occupancy of wetlands by pond-breeding amphibians. Popul. Ecol. 54, 487498. 10.1007/s10144-012-0324-7 Thomas C. D. Cameron A. Green R. E. Bakkenes M. Beaumont L. J. Collingham Y. C. . (2004). Extinction risk from climate change. Nature 427, 145148. 10.1038/nature0212114712274 Wagner D. L. Grames E. M. Forister M. L. Berenbaum M. R. Stopak D. (2021). Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl. Acad. Sci. U. S. A. 118:e2023989118. 10.1073/pnas.202398911833431573 Wilcove D. S. Rothstein D. Dubow J. Phillips A. Losos E. (1998). Quantifying threats to imperiled species in the United States. Bioscience 48, 607615. 10.2307/131342027004432
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gfltech.org.cn
      lucia96.org.cn
      jawcdn.com.cn
      www.nrefs.org.cn
      ssdnkb.com.cn
      uspybf.com.cn
      www.uqsboc.com.cn
      www.uohhfg.com.cn
      sheatour.com.cn
      mofaxiu.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p