Front. Commun. Frontiers in Communication Front. Commun. 2297-900X Frontiers Media S.A. 10.3389/fcomm.2020.00039 Communication Original Research Prejudice Toward Asian Americans in the Covid-19 Pandemic: The Effects of Social Media Use in the United States Croucher Stephen M. * Nguyen Thao Rahmani Diyako School of Communication, Journalism and Marketing, Massey University, Palmerston North, New Zealand

Edited by: Rukhsana Ahmed, University at Albany, United States

Reviewed by: Yin Paradies, Deakin University, Australia; Mark Walters, University of Sussex, United Kingdom

*Correspondence: Stephen M. Croucher s.croucher@massey.ac.nz

This article was submitted to Health Communication, a section of the journal Frontiers in Communication

12 06 2020 2020 5 39 06 05 2020 22 05 2020 Copyright © 2020 Croucher, Nguyen and Rahmani. 2020 Croucher, Nguyen and Rahmani

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The ongoing Covid-19 outbreak has brought increased incidents of racism, discrimination, and violence against “Asians,” particularly in the United States, with reports of hate crimes of over 100 per day. Since January 2020, many Asian Americans have reported suffering racial slurs, wrongful workplace termination, being spat on, physical violence, extreme physical distancing, etc., as media and government officials increasingly stigmatize and blame Asians for the spread of Covid-19. The links with social media are increasingly evident, as anti-Asian sentiment increases, with reports of anti-Asian sentiment spreading and Asian-Americans fighting hate via social media. Using integrated threat theory, this study explores the links between prejudice/hate toward Asians-Americans, in particular Chinese, and social media use. Three key results emerged from the study. First, the more a social media user believes their most used daily social media is fair, accurate, presents the facts, and is concerned about the public (social media believe), the more likely that user is to believe Chinese pose a realistic and symbolic threat to America. Second, men and women significantly differed on each type of prejudice, with men scoring higher on intergroup anxiety and women higher on symbolic and realistic threat. Third, respondents who do not use social media on a daily basis are less likely than those who use Facebook to perceive Chinese as a symbolic threat. Implications and recommendations for practitioners, health workers and government are proposed.

prejudice regression social media intergroup anxiety integrated threat theory

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Our world is confronting the novel coronavirus (Covid-19) pandemic. As of May 2020, the World Health Organization (2020) declared there are more than three million confirmed cases of Covid-19 in 213 countries, areas and territories. The outbreak of Covid-19 has sent billions of people into lockdown, health services into crises, and economies into turmoil worldwide.

      While anxiety and fear about the pandemic have been widespread, racist incidents, including hate crimes and Asian-focused racism, have also occurred, particularly in the United States. The Asian population, the fastest growing ethnic group in the U.S. (Lopez et al., 2017), has become targets of discrimination, harrassment, racial slurs, and physical attacks. Negative attitudes and prejudice toward Asian Americans are trending upwards as more and more Covid-19 cases and deaths are confirmed in the U.S. The FBI (Federal Bureau of Investigation) also said that as Covid-19 grows, hate crimes against Asian Americans will more than likely increase as well (Margolin, 2020). This study explores these negative attitudes toward Asian-Americans. Specifically, this study explores how prejudice toward Asian-Americans during the Covid-19 pandemic is related to social media use.

      As of early 2020, many parts of the world have been in physical isolation due to the Covid-19 pandemic. Due to physical and social isolation, people increasingly rely on social media platforms, such as Facebook, Twitter or Instagram, etc. to facilitate human interactions and keep themselves up to date with information. Also, authorities use situational information to organize official Covid-19 related posts on their social media platforms to popularize their response strategies to the public (Li et al., 2020). For example, United Nation (2020) statistics from April 8, 2020 state, there are 167 countries using national portals and social media platforms to engage people and provide vital information against Covid-19. Consequently, social media plays a crucial role in the public's perceptions and significantly influences their communication during a crisis (Schultz et al., 2011).

      In recent years, social media platforms have been used as a tool to express people's reactions, thoughts and opinions on current events (Chavez-Dueñas and Adames, 2018). However, according to recent research, social media also creates a playground for racism; and people of different races have experienced discrimination online because of their race (appearance or accent related) (Yang and Counts, 2018). Moreover, Relia et al. (2019) have said the proportion of discrimination on social media is strongly related to the number of hate crimes across 100 cities in the U.S. For instance, Trump's presidential campaign concentrated on Twitter usage and his tweets about Islam-related topics have been correlated with hate crimes toward Muslims (Müller and Schwarz, 2019). The findings of Müller and Schwarz's study (2019) stated social media accounts for the spread of anti-Muslim hate crimes since the start of Trump's 2016 presidential campaign.

      People also use social media to oppose unfair treatment based on race or to support anti-racism activism (Chavez-Dueñas and Adames, 2018). Similarly, following the election of Barack Obama, the first African American president in the U.S., in 2008, words like “post-racial” and “colorblind” became popular in many social media outlets (Bonilla-Silva, 2010). These popular words have suggested the historic election minimized the role of race in the lives of many ethnic groups in the U.S. (López, 2009). In recent years, more and more people have used Twitter as a platform to promote social and racial activism by creating hashtags such as #BlackLivesMatter or #SayHerName (Chavez-Dueñas and Adames, 2018).

      In the U.S., social media has become a means to either discriminate against Asian Americans or to fight against prejudice. Media outlets have been considered as one of the main factors contributing to discrimination and xenophobia (Aten, 2020). Some media outlets have had misleading headlines such as “Chinese virus pandemonium” or “China kids stay home” (Wen et al., 2020). As of early April 2020, there have been around 72,000 posts with hashtag #WuhanVirus and 10,000 others with hashtag #KungFlu on Instagram (Mcguire, 2020). In the U.S., across social media, posts like these have negatively impacted the Asian community and are unlikely to stop (Aten, 2020). Such posts have flamed anti-Asian sentiment, with acts of anti-Asian violence in direct response to fears of Covid-19 being reported. For example, a man in Texas attempted to kill an Asian-American family including a 2-year-old and a 2-year-old in late March 2020 (Melendez, 2020). Such an attack represents a potential surge of hate crimes toward Asian Americans amid the Covid-19 outbreak in the U.S. (Margolin, 2020).

      In contrast, social media platforms also deliver messages to help counter prejudice/discrimination against the Asian community. Social media firms like Twitter, Instagram, and Facebook have all taken action. Their platforms have been used to support those suffering from abuse. Campaigns such as posts including hashtag #IAmNotAVirus have been promoted atop user feeds on their sites (Mcguire, 2020). In general, depending on different types of messages and distribution platforms, public's perceptions on social media vary, particularly in such crisis like Covid-19 pandemic.

      Prejudice and fear toward Asians have increased in the U.S. during the Covid-19 pandemic. Drawing on prejudice and intergroup contact research (Allport, 1954; Stephan and Stephan, 2000; Croucher, 2013) First, such negative sentiments, particularly via social media demonstrate how the dominant cultural group (predominantly Caucasian) express their fears and hatred toward Asians (a minority group) and a fear of coming into contact with the virus. One explanatory reason for anti-Asian attitudes is threat perception. Stephan and Stephan (1996) in their integrated threat theory (ITT) proposed four types of threat: realistic threats, symbolic threats, stereotypes, and intergroup anxiety, may cause prejudice. Since then, these types of threat have been a framework for understanding, explaining, and predicting prejudice and negative attitudes toward minorities (Croucher, 2013).

      Integrated Threat Theory

      Prejudice and discrimination do not have a single cause; instead, they are the result of negative attitudes or beliefs of the in-group toward out-group members (Allport, 1954). One of the explanatory factors of these negative emotions or hostility is threat perception. Stephan and Stephan (1993, 1996) stated that when the in-group members believe their values or beliefs are threatened by the out-group, negative attitudes emerge as defensive mechanisms.

      In line with Allport's research on prejudice, Stephan and Stephan (1993, 1996, 2000) developed integrated threat theory (ITT). The theory includes four kinds of threat that explain and predict negative attitudes toward minority groups: realistic threats, symbolic threats, intergroup anxiety, and negative stereotypes (Croucher, 2013). According to ITT, intergroup feelings of threat and fear result in prejudice and discrimination (Stephan and Stephan, 2000). The key to ITT is that threat does not need to be real, the perception of threat is enough to lead the ingroup (a dominant cultural group) to have and express negative attitudes, prejudice, and hate toward an out-group (a minority group).

      Realistic threats are related to concerns posed by the out-group to the in-group's existence (Stephan and Stephan, 1996). Realistic threats emphasize threats to welfare, political and economic power, physical and material well-being of the in-group and its members. Moreover, Stephan and Stephan (2000) stated realistic threats lead to prejudice whether the threat is real or not.

      Symbolic threats describe concerns to the ingroup's “way of life,” which is different from “morals, values, standards, beliefs and attitudes of the out-group (Stephan and Stephan, 1996). These threats occur when members of the ingroup feel their “way of life” perceptions are threatened by the outgroup. Perceived symbolic threats predict prejudice as perceptions of cultural differences indirectly affect attitudes toward the out-group (Spencer-Rodgers and McGovern, 2002).

      Stephan and Stephan (2000) have argued intergroup anxiety occurs when people feel personally threatened while having intergroup interactions since they are worried about individually negative outcomes. On the other hand, negative outcomes result from the fear of embarrassment, rejection, or ridicule (Stephan and Stephan, 2000). Islam and Hewstone (1993) argued when the out-group has more advantages (perceived or real) than the in-group, intergroup anxiety arises; and this is a result of dislike toward the out-group members. Stephan and Stephan (1996) have also argued intergroup anxiety directly causes negative expressions toward out-group members.

      Negative stereotypes are the in-group's assumptions about the out-group. These assumptions are implied threats to the in-group because while having an interaction, the in-group members are often afraid of negative effects (Croucher, 2017). For example, if in-group members assume members of the out-group are dishonest or aggressive, they will expect negative interactions with them. Consequently, in-group members might dislike out-group members (Stephan W. G. et al., 2000). The stereotypes of the outgroup may consist of threats to the in-group when the out-group does not meet the ingroup's social or behavioral expectations (Hamilton et al., 1990). Studies have shown that negative stereotypes exist in social media (Levy et al., 2013), as stereotypes about social groups are one form of media content (Bissell and Parrott, 2013). Consequently, social media often reinforce prejudice (Davidson and Farquhar, 2020).

      The digital era is characterized by an unprecedented number of media and the invention of new platforms available to both professional journalists and the public. Also, raising digital intergroup/intercultural contacts are increasingly affecting the quantity and quality of intergroup dynamics such as prejudicial messages disseminated via social media. The level of prejudice in social media is linked to the selective exposure to media and type of media content, and the resulting polarization, described as the deepened tendency toward the chosen source of media exposure (Davidson and Farquhar, 2020). However, as different social platforms provide various content production and distribution facilities, the quality of produced messages could vary across these media, which could be explained by the notion of media richness.

      Media Richness Theory (MRT) posits that richness of medium and equivocality of task influence the media chosen for communication (Ishii et al., 2019). MRT bases media richness on the availability of immediate feedback, multiple cues, language variety, and personal focus. Later on, social information and individual experiences were also added to the measures of media richness (Ishii et al., 2019). Recent studies have expanded MRT to social media and showed there is a valance variation in the ability of social media to convey specific types of messages; for example, the perceived media richness of Instagram was found to be more related to young adults' self-presentation via photos and videos while on Facebook and Twitter it more relies on openness in writing (longer or shorter) texts (Lee and Borah, 2020).

      Social media is a platform often used to communicate prejudice (Davidson and Farquhar, 2020). During the Covid-19 pandemic in the U.S., prejudice, hatred, and other forms of negative sentiments have been expressed on social media toward Asian Americans, particularly Chinese Americans (Mcguire, 2020). Moreover, the extent to which these media vary in levels of media richness differs. Thus, to understand the extent to which during the Covid-19 pandemic in the U.S. that social media use is related to prejudice toward Asian Americans, in particular Chinese Americans the following research question is proposed:

      RQ: During the Covid-19 pandemic in the United States, to what extent does social media use predict prejudice toward Chinese Americans?

      Method

      To answer the research question, we collected data in the U.S. via an online survey with the assistance of Qualtrics, a research firm. Online participant panels, such as Qualtrics have been shown to be comparable in composition to other population in prior research (Roulin, 2015; Troia and Graham, 2017). Qualtrics provided a small amount of compensation to each respondent. We included various quality checks (analysis of Means, and Standard Deviations) that led to a final sample of 288. We received ethical approval before data collection began. The survey included a series of demographic questions, a measure of social media use, and scales assessing integrated threat.

      Participants

      Participants for this study included 288 participants. Participants not born in the U.S. were removed from the sample for final analysis, leaving a final sample of 274 participants. Participants not born in the U.S. were removed so that the sample only included native born individuals to remove nation of birth as an additional point of comparison. All participants were Caucasian (White). Table 1 presents the full demographic information.

      Participant demographics.

      Variable n
      18–19 years of age 25
      20–29 years of age 72
      30–39 years of age 50
      40–49 years of age 46
      50–59 years of age 33
      60–69 years of age 33
      70 years and older 15
      How many people the participant knows who with covid-19
      None 163
      1–3 people 82
      4–6 people 21
      7 or more people 8
      Sex
      Male 81
      Female 193
      Political affiliation
      Democrat 98
      Republican 66
      Independent 100
      Other 10
      Highest educational level
      High school 105
      2 year degree 52
      4 year degree 74
      Masters 31
      Doctorate 12
      Most used social media
      Twitter 14
      Facebook 125
      Instagram 37
      Youtube 12
      TV 11
      None 41
      Snapchat 15
      Other 19
      Measures

      All surveys included demographic questions and the following measures: Social Media use (Believe and Share Opinion) (Spencer and Croucher, 2008), Measure of Intergroup Contact (Gonzalez et al., 2008), Measure of Symbolic Threat (Stephan et al., 1999), Measure of Realistic Threat (Stephan et al., 1999), and the Intergroup Anxiety Scale (Stephan and Stephan, 1985). See Table 2 for the means, standard deviations, correlations, and alphas associated with the study variables. Confirmatory factor analysis (CFA) was performed to ensure the validity and reliability of the study constructs. CFA using social media belief and social media share opinion showed acceptable fit: χ2(17) = 37.71, p < 0.001, CFI = 0.99, SRMR = 0.02, RMSEA = 0.07, PClose = 0.17 (Hu and Bentler, 1999). CFA using contact, symbolic threat, realistic threat and intergroup anxiety also showed excellent fit: χ2(112) = 231.57, p < 0.001, CFI = 0.97, SRMR = 0.06, RMSEA = 0.06, PClose = 0.05.

      Means, standard deviation, reliability coefficients, and correlations.

      Variable M SD α (1) (2) (3) (4) (5) (6)
      (1) Social media belief 4.47 1.53 0.93
      (2) Social media share opinion 4.32 1.50 0.93 0.85**
      (3) Intergroup contact 1.94 0.83 0.79 0.01 0.01
      (4) Symbolic threat 3.78 1.13 0.90 0.15** 0.07 0.16*
      (5) Realistic threat 3.85 1.14 0.94 0.16** 0.07 0.14* 0.82**
      (6) Intergroup anxiety 3.74 2.26 0.89 −0.07 −0.02 −0.09 −0.52** −0.48**

      p < 0.05,

      p < 0.01.

      Social Media Use

      Social media use was measured using eight Likert-type questions from Spencer and Croucher (2008). The eight items make up two factors: Believe the Media and Share its Opinion. The items measure a participant's perception of their most used daily social media in terms of: how much they believe it, think it is fair, think it is accurate, think it presents the facts, think it is concerned about the public, represents their own opinion, and represents their own opinion on Covid-19. In addition, one question asks participants to identify the social media they use on a daily basis and a final question asks the participants to identify their most used daily social media. Reliabilities have ranged from 0.70 to 0.80 (Spencer and Croucher, 2008; Spencer et al., 2012).

      Integrated Threat

      Integrated threat was assessed using a Measure of Intergroup Contact (Gonzalez et al., 2008), Measure of Symbolic Threat (Stephan et al., 1999), Measure of Realistic Threat (Stephan et al., 1999), and the Intergroup Anxiety Scale (Stephan and Stephan, 1985).

      Measure of Intergroup Contact

      Four items from Gonzalez et al. (2008) measured intergroup contact. The items were: “How many Chinese friends do you have?” This item was rated from (1) none to (4) only Chinese friends. The remaining three items were: “Do you have contact with Chinese students or co-workers?” “Do you have contact with Chinese in your neighborhood?” and “Do you have contact with Chinese somewhere else, such as at a sports club or other organization?” These items were rated from (1) never to (4) often. The alpha for the scale was 0.70 in the Gonzalez et al. (2008) study and has ranged from 0.75 to 0.90 in other research (Croucher, 2013; Croucher et al., 2013).

      Measure of Symbolic Threat

      Three items measured symbolic threat (Stephan et al., 1999). The items were: “American identity is threatened because there are too many Chinese today,” “American norms and values are threatened because of the presence of Chinese today,” and “Chinese are a threat to American culture.” “Chinese” was used as the target group for prejudice due to the high amount of social media commentary directed toward “China,” “the Chinese” and “Chinese Americans” in relation to Covid-19, as opposed to other Asian groups. Responses ranged from (1) strongly disagree to (5) strongly agree. A higher score indicated a stronger feeling of threat. The scale has shown high reliability in previous research, 0.89 (Gonzalez et al., 2008) and 0.85 to 0.90 (Croucher, 2013; Croucher et al., 2013).

      Measure of Realistic Threat

      The measure of realistic threat included three statements that assessed the effects of Chinese on the economic situation in the U.S. The statements included: “Because of the presence of Chinese, Americans have more difficulties finding a job,” “Because of the presence of Chinese, Americans have more difficulties finding a house,” and “Because of the presence of Chinese, unemployment will increase.” Responses ranged from (1) strongly disagree to (5) strongly agree. Higher scores indicate more threat. This scale has also shown reliability, 0.80 (Gonzalez et al., 2008) and 0.82 to 0.86 (Croucher, 2013).

      Intergroup Anxiety Scale

      Stephan and Stephan's (1985) 10-item semantic differential Intergroup Anxiety Scale assessed the extent to which respondents have an affective/emotional response to interacting with outgroup members in an ambiguous situation. The items are rated on a 10-point scale from 1 not at all to 10 extremely. Reliabilities have ranged from 0.86 (Stephan and Stephan, 1985) to 0.91 (Hopkins and Shook, 2017).

      Analysis and Results

      To answer the research question, three multiple regressions were constructed using symbolic threat, realistic threat, and intergroup anxiety as the criterion variables. The following predictor variables were included in each multiple regression: intergroup contact, social media belief, social media share opinion, sex, political affiliation, educational level, number of people the participant knows with Covid-19, and most used daily social media outlet. Research has shown sex, political affiliation, and education differ in attitudes toward out-group members. For example, research has shown women have more implicit racial prejudice toward minorities than men because women are more concerned about crime threats from out-group members (Valentova and Alieva, 2013). Political affiliation also predicts attitudes toward immigrants (Hawley, 2011). Meeusen et al. (2017) said prejudice against immigrants differ in political parties; thus, it also affects voters in diverse ways. Furthermore, education has a strong effect on prejudice (Carvacho et al., 2013). Hello et al. (2002) stated varied levels of education have different influences on prejudice, with more educated individuals showing lower levels of prejudice. Dummy variables were therefore created for political affiliation, and most used daily social media outlet. Cross-produce terms were generated to test for interaction effects. Interaction effects were tested using a hierarchical regression analysis (Pedhazur, 1997).

      Multiple hierarchical regression modeling was used to test the research question. For each multiple regression, five models were created. The regression results are presented in Tables 35. For symbolic threat (Table 3), in model 1, sex, education, and political affiliation were entered as predictors (R2 = 0.09). In model 2, intergroup contact and the number of individuals known with Covid-19 were entered as predictors (R2 = 0.13). The nested F statistic comparing model 1 and model 2 was significant (ΔF = 4.86, p < 0.01). In model 3, a cross-product for intergroup contact and individuals known with Covid-19 was entered (R2 = 0.13). This model was not a significant improvement over model 2 (ΔF =0.06, p = ns). In model 4, most used daily social media, social media belief, and social media share opinion were entered (R2 = 0.24). This model was a significant improvement over model 3 (ΔF = 4.34, p < 0.01). In model 5, cross-product terms for most used daily social media and social media belief, and most used social media and social media share opinion were entered (R2 = 0.27). This model was not a significant improvement over model 4 (ΔF = 0.61, p = ns). As model 4 had the most significant explanatory power of the models, it was retained for the final analysis. As Table 3 reveals, various independent variables predict symbolic threat. Sex was a significant predictor of symbolic threat (b = −0.13, p < 0.05), with males scoring lower on symbolic threat than female respondents. Democrats (b = 0.21, p < 0.01) scored higher on symbolic threat than Republicans. Individuals who reported not using social media on a daily basis scored significantly lower on symbolic threat (b = −0.22, p < 0.01) than those who identify Facebook as their most used daily social media. Finally, there is a significant positive relationship between symbolic threat and the extent to which an individual believes their most used daily social media score (b = 0.37, p < 0.01).

      Regression model for symbolic threat.

      Regressor Model 1 Model 2 Model 3 Model 4 Model 5
      Intercept 4.26 3.99 3.91 3.49 3.58
      Sex −0.16** −0.15 −0.15 −0.13* −0.14*
      Independents −0.04 −0.02 −0.02 0.03 0.02
      Democrats 0.20 0.21** 0.21** 0.21** 0.21**
      Others −0.07 −0.07 −0.07 −0.01 0.02
      Education −0.04 −0.06 −0.06 −0.06 −0.05
      Intergroup contact 0.18** 0.21 0.25 0.26
      People known with Covid-19 −0.10 −0.07 −0.04 −0.04
      Intergroup contact*people known with Covid −0.07 −0.11 −0.11
      Twitter −0.06 −0.23
      Instagram −0.02 0.01
      Youtube 0.04 −0.01
      TV −0.02 0.34
      None −0.22** −0.25
      Snapchat 0.11 0.25
      Other −0.15 −0.25
      Social media belief 0.37** 0.17
      Social media share opinion −0.27 −0.09
      Twitter* social media belief 0.78
      Instagram* social media belief 0.37
      Youtube* social media belief 0.15
      TV* social media belief 0.36
      None* social media belief 0.17
      Snapchat* social media belief −0.15
      Other* social media belief 0.59*
      Twitter * social media share opinion −0.59
      Instagram* social media share opinion −0.49
      Youtube* social media share opinion −0.10
      TV* social media share opinion 0.01
      None* social media share opinion −0.14
      Snapchat* social media share opinion 0.01
      Other* social media share opinion −0.48
      F 5.57** 5.48** 4.79 4.80** 2.85**
      ΔF 4.86** 0.06 4.34** 0.61
      R2 0.09 0.13 0.13 0.24 0.27
      Radj2 0.08 0.10 0.10 0.19 0.17

      Note:

      p < 0.05,

      p < 0.01.

      For realistic threat (Table 4), in model 1, sex, education, and political affiliation were entered as predictors (R2 = 0.11). In model 2, intergroup contact and the number of individuals known with Covid-19 were entered as predictors (R2 = 0.14). The nested F statistic comparing model 1 and model 2 was significant (ΔF = 4.62, p < 0.01). In model 3, a cross-product for intergroup contact and individuals known with Covid-19 was entered (R2 = 0.14). This model was not a significant improvement over model 2 (ΔF = 0.97, p = ns). In model 4, most used daily social media, social media belief, and social media share opinion were entered (R2 = 0.24). This model was a significant improvement over model 3 (ΔF = 3.43, p < 0.01). In model 5, cross-product terms for most used daily social media and social media belief, and most used social media and social media share opinion were entered (R2 = 0.27). This model was not a significant improvement over model 4 (ΔF = 0.87, p = ns). As model 4 had the most significant explanatory power of the models, it was retained for the final analysis. As Table 4 reveals, various independent variables predict realistic threat. Sex was a significant predictor of realistic threat (b = −0.19, p < 0.01), with males scoring lower on realistic threat than female respondents. There is a significant positive relationship between realistic threat and the extent to which an individual believes their most used daily social media score (b = 0.38, p < 0.01), and a negative relationship between realistic threat and sharing opinions with social media (b = −0.28, p < 0.01).

      Regression model for realistic threat.

      Regressor Model 1 Model 2 Model 3 Model 4 Model 5
      Intercept 4.38 4.23 4.57 4.57 4.35
      Sex −0.22** −0.21 −0.21** −0.19** −0.20**
      Independents −0.05 −0.03 −0.03 −0.01 −0.02
      Democrats 0.16 0.18 0.19 0.18 0.18
      Education 0.04 0.04 0.40 0.04 0.04*
      Intergroup contact 0.15 0.03 0.07 0.08
      People known with Covid-19 0.08 −0.29 −2.81 −0.31
      Intergroup contact*people known with Covid −0.23 0.20 0.20
      Twitter −0.07 −0.26
      Instagram −0.05 0.08
      Youtube 0.07 −0.13
      TV −0.01 0.34
      None −0.14 −0.17
      Snapchat 0.04 0.12
      Other −0.19 −0.32
      Social media belief 0.38** 0.28
      Social media share opinion −0.28* −0.21
      Twitter* social media belief 0.69
      Instagram* social media belief 0.06
      Youtube* social media belief 0.40
      TV* social media belief −0.57
      None* social media belief −0.10
      Snapchat* social media belief −0.45
      Other* social media belief 0.57
      Twitter * social media share opinion −0.48
      Instagram* social media share opinion −0.20
      Youtube* social media share opinion −0.18
      TV* social media share opinion 0.23
      None* social media share opinion 0.13
      Snapchat* social media share opinion 0.36
      Other* social media share opinion 0.43
      F 6.65** 6.20** 5.55** 4.64** 2.92**
      ΔF 4.62* 0.97 3.43** 0.87
      R2 0.11 0.14 0.14 0.24 0.27
      Radj2 0.09 0.12 0.12 0.19 0.18

      For intergroup anxiety (Table 5), in model 1, sex, education, and political affiliation were entered as predictors (R2 = 0.09). In model 2, intergroup contact and the number of individuals known with Covid-19 were entered as predictors (R2 = 0.11). The nested F statistic comparing model 1 and model 2 was significant (ΔF = 2.73, p < 0.05). In model 3, a cross-product for intergroup contact and individuals known with Covid-19 was entered (R2 = 0.11). This model was not a significant improvement over model 2 (ΔF = 1.46, p = ns). In model 4, most used daily social media, social media belief, and social media share opinion were entered (R2 = 0.16). This model was a significant improvement over model 3 (ΔF = 1.42, p = ns). In model 5, cross-product terms for most used daily social media and social media belief, and most used social media and social media share opinion were entered (R2 = 0.18). This model was not a significant improvement over model 4 (ΔF = 0.62, p = ns). As model 2 had the most significant explanatory power of the models, it was retained for the final analysis. As Table 5 reveals, sex and intergroup contact predicted intergroup anxiety. Sex was a significant predictor of intergroup anxiety (b = 0.25, p < 0.01), with males scoring higher on intergroup anxiety than female respondents. Finally, there is a significant negative relationship between intergroup anxiety and intergroup contact (b = −0.13, p < 0.05).

      Regression model for intergroup anxiety.

      Regressor Model 1 Model 2 Model 3 Model 4 Model 5
      Intercept 1.60 1.95 2.78 3.56 3.58
      Sex 0.26** 0.25** 0.25** 0.25** 0.27**
      Independents 0.80 0.07 0.07 0.06 0.05
      Democrats −0.01 −0.03 −0.03 −0.02 −0.05
      Education 0.09 0.10 0.10 0.96 0.09
      Intergroup contact −0.13* −2.81* −0.33* −0.33*
      People known with Covid-19 0.09 −0.10 −0.14 −0.12
      Intergroup contact*people known with Covid 0.28 0.35 0.35
      Twitter −0.02 −0.11
      Instagram 0.02 −0.16
      Youtube −0.08 −0.11
      TV 0.05 1.06
      None 0.05 0.14
      Snapchat −0.10 0.04
      Other 0.01 −0.09
      Social media belief −0.27* −0.13
      Social media share opinion 0.19 0.17
      Twitter* social media belief 0.17
      Instagram* social media belief −0.17
      Youtube* social media belief −0.75
      TV* social media belief 0.02
      None* social media belief −0.29
      Snapchat* social media belief −0.40
      Other* social media belief −0.35
      Twitter* social media share opinion −0.07
      Instagram* social media share opinion 0.35
      Youtube* social media share opinion 0.78
      TV* social media share opinion −0.60
      None* social media share opinion 0.19
      Snapchat* social media share opinion 0.26
      Other* social media share opinion 0.46
      F 5.30** 4.62** 4.23** 2.77** 1.77*
      ΔF 2.73* 1.46 1.42 0.62
      R2 0.09 0.11 0.11 0.16 0.18
      Radj2 0.07 0.09 0.09 0.10 0.08

      In sum, social media's predictive influence on prejudice is mixed. Social media had no statistical effects on intergroup anxiety. Intergroup contact had a negative effect on intergroup anxiety. However, the more a social media user believes their most used daily social media is fair, accurate, presents the facts, and is concerned about the public (social media belief), the more likely that user is to believe Chinese Americans pose a realistic and symbolic threat. In addition, respondents who do not use social media on a daily basis are less likely than those who use Facebook to perceive Chinese Americans as a symbolic threat. Interestingly, there is a negative relationship between the extent to which a respondent shares their opinions with social media outlets and realistic threat. Essentially, there is an inverse relationship between sharing opinions with social media and realistic threat: more similar opinion lower threat, less similar opinion higher threat. Democrats scored higher on symbolic threat than Republicans on symbolic threat, while political affiliation had no effect on other types of prejudice. Men and women significantly differed on each type of prejudice, with men scoring higher on intergroup anxiety and women higher on symbolic and realistic threat.

      Discussion

      The purpose of this study was to explore the extent to which social media use predicts prejudice toward Chinese Americans during the Covid-19 pandemic in the United States. Three general conclusions emerged from the data. First, results revealed sex plays a significant role in predicting realistic threats and intergroup anxiety among Americans toward out-group members (in this case, Chinese Americans). Women feel more threatened than men as they are more likely to believe the presence of Chinese Americans has a negative influence on their welfare, political and economic power, physical and material well-being such as difficulties finding a job or a house and increases unemployment. Even if the threat is not real, in-group members have prejudicial attitudes to out-group members (Stephan and Stephan, 2000). Maddux et al. (2008) asserted realistic threats account for prejudice and negative emotions toward ethnic groups. Men have more intergroup anxiety than women, as they personally perceive more threats when having intergroup interactions. This is a clear indicator that men feel more awkward, irritated, suspicious, anxious, defensive, and self-conscious while having communicative interactions with Chinese Americans. Such feelings directly cause negative expressions toward out-group members (Stephan and Stephan, 1996). Also, intergroup anxiety is a powerful and consistent predictor of prejudice against ethnic groups (Stephan et al., 1998). Together, these results show women tend toward more cognitive fears of Chinese Americans (realistic and symbolic) while men tend to have more affective fears (intergroup anxiety) of Chinese Americans, at least during the Covid-19 pandemic.

      Second, social media belief or sharing of opinions was not related to intergroup anxiety. There is debate over the conceptualization of intergroup anxiety as a predictor of negative attitudes. Riek et al. (2006), in their meta-analysis showed how researchers increasingly replace intergroup anxiety with group self-esteem. Moreover, more and more ITT researchers have reduced the original four ITT threats (realistic threat, symbolic threat, intergroup anxiety and negative stereotypes) to only realistic and symbolic threats (Stephan and Renfro, 2002; Stephan et al., 2009; Nshom and Croucher, 2017, 2018). Thus, while the construct of intergroup anxiety still relates to the other ITT constructs (realistic and symbolic threat and intergroup contact) in this study, it is possible that intergroup anxiety is not the most applicable construct to link with social media use. As social media has been extensively linked to the promotion of self-esteem (Blachnio et al., 2016; Hawi and Samaha, 2017), a more practical way to measure the relationship between social media and “anxiety” could be to explore group self-esteem as a substitute for intergroup anxiety. Exploring how social media use influences one's self-esteem during a pandemic might provide a more nuanced and fruitful understanding of how threats to self-esteem are impacted by perceived threats from potential virus carriers or those blamed for carrying the virus in the media.

      Third, the distinction between intergroup anxiety and other threat factors in ITT is also evident in the relationship between belief in social media, and media representation of one's opinion and ITT. The study showed that higher levels of believing one's preferred social media predicts increased symbolic and realistic threat and decreased intergroup anxiety. The impact of belief in social media on symbolic and realistic threats could reflect social media content during the COVID-19 pandemic, in which resentment about the outcome of COVID-19 is associated with higher levels of prejudice toward the outgroup perceived to be responsible for the virus. This is in line with social identity theory (Tajfel and Turner, 1979), which indicates that group identification is based on maximizing the positive aspects of ingroup and negative aspects of the outgroup. The maximization of the negative aspects of the outgroup during the Covid-19 pandemic, Chinese Americans, has caused an increase in how the symbolic (i.e., the new lifestyle and social relationships and distancing), and unpleasant realistic aspects of the virus (i.e., economic hardship, unemployment and stockpiling) are ascribed and perceived. Sharing opinions with a preferred social media, however, had a negative impact on realistic threat and no impact on symbolic threat and intergroup anxiety. Based on spiral-of-silence (Noelle-Neumann, 1993), a lower level of being exposed to one's opinion in the media increases the perception that one is in the minority position, which can decrease one's self-esteem in dealing with intergroup situations, especially realistic situations that have more immediate economic effects. Both media belief and sharing opinions showed a distinctive effect on intergroup anxiety, which could be related to the varied nature of intergroup anxiety, which functions at the individual level compared to the other ITT factors which define threat at the group level (Rahmani, 2017). While believing and relating to media message were related to the one of some forms of integrated threat, the study found no difference among the various type of media in perceiving intergroup threat. This could be related to the similar content of the social media, as the main media for most of the participant, which provide a platform for the various mass media to disseminate their content.

      Fourth, the study showed men have more intergroup anxiety while their realistic and symbolic threat levels are lower. This finding could be related to higher position of males in the more patriarchal American society where males perceive to lose more should the status quo change. Rye et al. (2019) used the same stance to explain the why threat to gender norms could be more distressing for males and Stephan C. W. et al. (2000) mentioned that as most American women have accepted inevitability of male economic and political hegemony, they do not perceive males to be a realistic threat. Higher levels of intergroup anxiety can be related to the individual nature of this threat compared realistic and symbolic threat. This is in line with previous studies that showed perception of threat about transgender individuals, males showed more hostile sexism while for female the same process included more internalized and personal hatred or hostility (Rye et al., 2019).

      Fifth, the results showed that those respondents who identified as Democrats reported higher levels of symbolic threat from Chinese Americans. Essentially, this result shows that Democrats, as opposed to Republicans see Chinese Americans as posing a higher risk to the U.S. cultural way of life. This result is counter to previous work on political affiliation and prejudice (Hawley, 2011; Meeusen et al., 2017). This result is also counter to the work of Gries and Crowson (2010) who explored American prejudice toward China and found Democrats have lower prejudice than Conservatives. While the results of the current study are statistically significant, further research should be conducted to validate this finding in different samples to ascertain whether during a crisis (such as a pandemic) political merging or shifts of values/ideas could take place toward an outgroup.

      Future Research and Recommendations

      Research has demonstrated that stereotypes are perpetuated on social media and that social media often reinforce prejudice (Bissell and Parrott, 2013; Levy et al., 2013; Davidson and Farquhar, 2020). The findings from this study provide further evidence that social media use reinforces the elements of intergroup threat which could lead to prejudice. Specifically, during the Covid-19 pandemic in the U.S., the more an individual believes their most used daily social media is fair, accurate, presents the facts, and is concerned about the public (social media belief), the more that person sees Chinese Americans as a realistic and symbolic threat. Further research can reveal the extend of media use impact on prejudice. Also, to better understand this relationship, it is important for future research to look at how Chinese Americans and other groups have been framed/portrayed on social media. In depth analyses of these messages could facilitate a critical awareness of how social media messages have introduced or reinforced blame for realistic and symbolic threats from Chinese Americans for Covid-19.

      As the world continues to grapple with Covid-19, instances of prejudice and blaming minorities for the spread of the virus outside of the U.S. should be examined and compared. As of May 6, 2020, there were a total of 3,656,644 global confirmed Covid-19 cases, with 1,202,246 of those in the U.S. (Johns Hopkins University Covid-19 Dashboard, 2020); the reaming cases were from around the globe. While the current study explores how prejudice toward Chinese Americans during the Covid-19 pandemic is related to social media use in the U.S., prejudice toward other groups in other nations has grown dramatically (Muzi, 2020; Serhan and McLaughlin, 2020; Sim et al., 2020). As the virus spreads around the world, so has prejudice, xenophobia, and racism. To better defend against and rebuild from the virus it is essential we understand how societies are socially responding to the virus. To what extent are societies and cultural groups blaming each other for its spread? To what extent is social media being used to unite or divide against Covid-19? What is the social cost of Covid-19? Such questions are crucial to our Covid-19 response and must be discussed.

      Knowing what we know about social media's influence on prejudice during the Covid-19 pandemic, we propose governments and health care industries use social media to combat Covid-19 prejudice. While many governments (like New Zealand, Australia, Canada, Finland, etc.) have developed well-organized campaigns (television, radio, and social media) to educate their populations on the risks of Covid-19, prevention, governmental steps and actions, such campaigns should do more to explicitly combat Covid-19 prejudice and racism. Such campaigns should respond to prejudicial and racist incidents by directly discussing the social cost of Covid-19 prejudice and racism. Moreover, while many nations remain in different levels of lockdown and adjust to social distancing, health practitioners could use social media to explore new techniques to communicate ways to reduce transmission of Covid-19. Governments have already been using social media to encourage social distancing and to promote better health practices, through social media health practitioners can continue these practices.

      This study has two limitations. First, as this study is a cross-sectional study it does not show causality. The study cannot demonstrate that social media causes prejudice, only that there is a correlation between social media use and prejudice. Future research should be conducted using longitudinal and/or experimental designs to examine potential causal relationships between social media use and prejudice. Second, the integrated threat items used the term “Chinese” to identify the target group for participants. It is possible that this term might have confused participants in that participants may have answered questions in terms of “Chinese Americans,” “the Chinese,” “China” or “Chinese culture,” etc. Therefore, the results should be interpreted with caution, knowing that the term, “Chinese” in the measure could have caused some confusion.

      This study is one of the first attempts to examine the extent to which social media use predicts prejudice toward a minority group (Chinese Americans) blamed for the spread of a virus (Covid-19). The results reveal social media use has a significant influence on prejudice toward Chinese Americans. The more a social media user believes their most used daily social media, the more they believe Chinese Americans are a realistic and symbolic threat to the U.S. With cases of Covid-19 continuing to increase globally, so does prejudice, racism, and violence against those individuals and/or groups who are blamed for carrying and spreading the virus. Vince (2020) argued that our tribal culture influences how we see the world more than facts. She added that Americans tend to adopt the opinions of their tribal elites, often political leaders and celebrities. These opinions once shared via social media are deemed fact. As Covid-19 grips the U.S., the nation with the highest numbers of cases in the world as of May 2020, it's critical we understand not only the human but also the social costs of the virus to have any chance at slowing and stopping its spread.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Ethics Statement

      The studies involving human participants were reviewed and approved by Massey University. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

      Author Contributions

      All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Allport G. (1954). The Nature of Prejudice. Reading, MA: Addison-Wesley. Aten J. D. (2020). Long-term Covid-19 mental health effects for Asian Americans. Psychology Today. Available online at: https://www.psychologytoday.com/us/blog/hope-resilience/202004/long-term-covid-19-mental-health-effects-asian-americans (accessed May 6, 2020). Bissell K. Parrott S. (2013). Prejudice: the role of the media in the development of social bias. J. Commun. Monogr. 15, 219270. 10.1177/1522637913504401 Blachnio A. Przepiorka A. Rudnicka P. (2016). Narcissism and self-esteem as predictors of dimensions of Facebook use. Pers. Individ. Dif. 90, 296301. 10.1016/j.paid.2015.11.018 Bonilla-Silva E. (2010). Racism Without Racists: Color-Blind Racism and Racial Inequality in Contemporary America. Lanham, MD: Rowman and Littlefield. Carvacho H. Zick A. Haye A. González R. Manzi J. Kocik C. . (2013). On the relation between social class and prejudice: the roles of education, income, and ideological attitudes. Eur. J. Soc. Psychol. 43, 272285. 10.1002/ejsp.1961 Chavez-Dueñas N. Y. Adames H. Y. (2018). #Neotericracism: exploring race-based content in social media during racially charged current events. Rev. Interam. Psicol. Interam. J. Psychol. 52, 314. 10.30849/rip/ijp.v52i1.493 Croucher S. M. (2013). Integrated threat theory and acceptance of immigrant assimilation: an analysis of muslim immigration in Western Europe. Commun. Monogr. 80, 4662. 10.1080/03637751.2012.739704 Croucher S. M. (2017). Integrated threat theory, in Intergroup Communication Encyclopedia, eds Harwood J. Giles H.. Accessible from: http://communication.oxfordre.com/view/10.1093/acrefore/9780190228613.001.0001/acrefore-9780190228613-e-490 Croucher S. M. Aalto J. Hirvonen S. Sommier M. (2013). Integrated threat and intergroup contact: an analysis of Muslim immigration to Finland. Hum. Commun. 16, 109120. Available online at: http://www.uab.edu/Communicationstudies/humancommunication/02_06_13_Croucher.pdf Davidson T. Farquhar L. (2020). Prejudice and social media: attitudes toward illegal immigrants, refugees, and transgender people, in Gender, Sexuality and Race in the Digital Age, eds Farris D. N. Compton D. R. Herrera A. P. (New York, NY: Springer), 151167. Gonzalez K. V. Verkuyten M. Weesie J. Poppe E. (2008). Prejudice towards Muslims in the Netherlands: testing integrated threat theory. Br. J. Soc. Psychol. 47, 667685. 10.1348/014466608X28444318284782 Gries P. H. Crowson H. M. (2010). Political orientation, party affiliation, and American attitudes towards China. J. Chin. Political Sci. 15, 219244. 10.1007/s11366-010-9115-1 Hamilton D. L. Sherman S. J. Ruvolo C. M. (1990). Stereotype-based expectancies: effects on information processing and social behavior. J. Soc. Issues 46, 3560. 10.1111/j.1540-4560.1990.tb01922.x Hawi N. S. Samaha M. (2017). The relations among social media addiction, self-esteem, and list satisfaction in university students. Soc. Sci. Comput. Rev. 35, 576586. 10.1177/0894439316660340 Hawley G. (2011). Political threat and immigration: party identification, demographic context, and immigration policy preference. Soc. Sci. Q. 92, 404422. 10.1111/j.1540-6237.2011.00775.x Hello E. Scheepers P. Gijsberts M. (2002). Education and ethnic prejudice in Europe: explanations for cross-national variances in the educational effect on ethnic prejudice. Scand. J. Educ. Res. 46, 524. 10.1080/00313830120115589 Hopkins P. D. Shook N. J. (2017). Development of an intergroup anxiety toward Muslims scale. Int. J. Intercult. Rel. 61, 720. 10.1016/j.ijintrel.2017.08.002 Hu L. T. Bentler P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equat. Model. Multidiscip. J. 6, 155. 10.1080/10705519909540118 Ishii K. Lyons M. M. Carr S. A. (2019). Revisiting media richness theory for today and future. Hum. Behav. Emerg. Technol. 1, 124131. 10.1002/hbe2.138 Islam R. M. Hewstone M. (1993). Dimensions of contact as predictors of intergroup anxiety, perceived outgroup variability, and out-group attitude: an integrative model. Pers. Soc. Psychol. Bull. 19, 700710. 10.1177/0146167293196005 Johns Hopkins University Covid-19 Dashboard (2020). Covid-19 Dashboard by the Center for Systems Science and Engineering (CSSE). Available online at: https://coronavirus.jhu.edu/map.html (accessed May 6, 2020). Lee D. K. L. Borah P. (2020). Self-presentation on Instagram and friendship development among young adults: a moderated mediation model of media richness, perceived functionality, and openness. Comput. Hum. Behav. 103, 5766. 10.1016/j.chb.2019.09.017 Levy B. R. Chung P. H. Bedford T. Navrazhina K. (2013). Facebook as a site for negative age stereotypes. Gerontologist 54, 172176. 10.1093/geront/gns19423392643 Li L. Zhang Q. Wang X. Zhang J. Wang T. Gao T.-L. . (2020). Characterizing the propagation of situational information in social media during Covid-19 epidemic: a case study on Weibo. IEEE Transac. Comput. Soc. Syst. 7, 556562. 10.1109/TCSS.2020.2980007 Lopez G. Ruize N. G. Patten E. (2017). Key Facts About Asian Americans, A Diverse and Growing Population. Pew Research Center. Available online at: https://www.pewresearch.org/fact-tank/2017/09/08/key-facts-about-asian-americans/ (accessed May 6, 2020). López M. H. (2009). Dissecting the 2008 Electorate: Most Diverse in U.S. History. Washington, D.C.: Pew Hispanic Center. Maddux W. W. Galinsky A. D. Cuddy A. J. C. Polifroni M. (2008). When being a model minority is good and bad: realistic threat explains negativity toward Asian Americans. Pers. Soc. Psychol. Bull. 34, 7489. 10.1177/014616720730919518162657 Margolin J. (2020). FBI warns of potential surge in hate crimes against Asian Americans amid coronavirus. ABC News. Available online at: https://abcnews.go.com/US/fbi-warns-potential-surge-hate-crimes-asian-americans/story?id=69831920 (accessed May 6, 2020). Mcguire E. (2020). Anti-Asian hate continues to spread online amid COVID-19 pandemic. Aljazeera. Available online at: https://www.aljazeera.com/news/2020/04/anti-asian-hate-continues-spread-online-covid-19-pandemic-200405063015286.html (accessed May 6, 2020). Meeusen C. Boonen J. Dassonneville R. (2017). The Structure of prejudice and its relation to party preferences in Belgium: Flanders and Wallonia compared. Psychol. Belg. 57:52. 10.5334/pb.33530479793 Melendez P. (2020). Stabbing of Asian-American 2-year-old and her family was a virus-fueled hate crime: Feds. The Daily Beast. Available online at: https://www.thedailybeast.com/stabbing-of-asian-american-2-year-old-and-her-family-was-a-coronavirus-fueled-hate-crime-feds-say (accessed May 6, 2020). Müller K. Schwarz C. (2019). From hashtag to hate crime: Twitter and anti-minority sentiment. SSRN Electr. J. 10.2139/ssrn.3149103 Muzi L. (2020, 25 March). “As if we were the disease”: Coronavirus brings prejudice for Italy's Chinese workers. The Guardian online. Available online at: https://www.theguardian.com/global-development/2020/mar/25/as-if-we-were-the-disease-coronavirus-brings-prejudice-for-italys-chinese-workers (accessed May 6, 2020). Noelle-Neumann E. (1993). The Spiral of Silence: Public Opinion—Our Social Skin, 2nd ed. Chicago, IL: University of Chicago Press. Nshom E. Croucher S. M. (2017). Perceived threat and prejudice towards immigrants in Finland: a study among early, middle, and late Finnish adolescents. J. Int. Intercult. Commun. 10, 309323. 10.1080/17513057.2017.1312489 Nshom E. Croucher S. M. (2018). Other & first authoran exploratory study on the attitudes of elderly finns towards russian speaking minorities. J. Int. Intercult. Commun. 11, 324338. Pedhazur E. J. (1997). Multiple Regression in Behavioral Research: Explanation and Prediction. Wodonga, VIC: Wadsworth. Rahmani D. (2017). Minorities' communication apprehension and conflict: an investigation of Kurds in Iran and Malays in Singapore (Ph.D. thesis). University of Jyvaskyla, Jyvaskyla, Finland. Relia K. Li Z. Cook S. H. Chunara R. (2019). Race, ethnicity and national origin-based discrimination in social media and hate crimes across 100 US cities. Assoc. Adv. Artif. Intellig. 13, 417427. Riek B. M. Mania E. W. Gaertner S. L. (2006). Intergroup threat and the integrated threat theory: a meta-analytic review. Pers. Soc. Psychol. Rev. 10, 336353. 10.1207/s15327957pspr1004_417201592 Roulin N. (2015). Don't throw the baby out with the bathwater: comparing data quality of crowdsourcing, online panels, and student samples. Ind. Organ. Psychol. 8, 190196. 10.1017/iop.2015.24 Rye B. J. Merritt O. A. Straatsma D. (2019). Individual difference predictors of transgender beliefs: expanding our conceptualization of conservatism. Pers. Individ. Dif. 149, 179185. 10.1016/j.paid.2019.05.033 Schultz F. Utz S. Göritz A. (2011). Is the medium the message? Perceptions of and reactions to crisis communication via twitter, blogs and traditional media. Public Relat. Rev. 37, 2027. 10.1016/j.pubrev.2010.12.001 Serhan Y. McLaughlin T. (2020, 13 March). The other problematic outbreak: as the coronavirus spreads across the globe, so too does racism. The Atlantic Online. Available online at: https://www.theatlantic.com/international/archive/2020/03/coronavirus-covid19-xenophobia-racism/607816/ (accessed May 6, 2020). Sim D. Xinghui K. Lim K. (2020, 2 May). Coronavirus: after Little India riot, Singapore promised migrant workers decent housing. What happened? South China Morning Post Online. Available online at: https://www.scmp.com/week-asia/health-environment/article/3082453/coronavirus-after-little-india-riot-singapore-promised (accessed May 6, 2020). Spencer A. T. Croucher S. M. (2008). Spiral of silence and ETA: an analysis of the perceptions of french and spanish basque and non-basque. Int. Commun. Gaz. 70, 137154. Spencer A. T. Croucher S. M. McKee C. (2012). Barack obama: examining the climate of opinion of spiral of silence. J. Commun. Speech Theater Assoc. N. D. 24, 2734. Spencer-Rodgers J. McGovern T. (2002). Attitudes toward the culturally different: the role of intercultural communication barriers, affective responses, consensual stereotypes, and perceived threat. Int. J. Intercult. Relat. 26, 609631. 10.1016/S0147-1767(02)00038-X Stephan C. W. Stephan W. G. Demitrakis K. M. Yamada A. M. Clason D. L. (2000). Women's attitudes toward men: an integrated threat theory approach. Psychol. Women Q. 24, 6373. 10.1111/j.1471-6402.2000.tb01022.x Stephan W. G. Diaz-Loving R. Duran A. (2000). Integrated threat theory and intercultural attitudes. J. Cross Cult. Psychol. 31, 240249. 10.1177/0022022100031002006 Stephan W. G. Renfro C. L. (2002). The role of threat in intergroup relations, in From Prejudice to Intergroup Emotions: Differentiated Reactions to Social Groups D, eds Mackie Smith E. R. (New York, NY: Psychology Press), 191207. Stephan W. G. Stephan C. W. (1985). Intergroup anxiety. J. Soc. Issues 41, 157175. 10.1111/j.1540-4560.1985.tb01134.x Stephan W. G. Stephan C. W. (1993). Cognition and affect in stereotyping: parallel interactive networks, in Affect, Cognition, and Stereotyping: Interactive Processes in Group Perception, eds Mackie D. M. Hamilton D. L. (Orlando, FL: Academic Press), 111136. Stephan W. G. Stephan C. W. (1996). Predicting prejudice. Int. J. Intercult. Relat. 20, 409426. 10.1016/0147-1767(96)00026-0 Stephan W. G. Stephan C. W. (2000). An integrated threat theory of prejudice, in Reducing Prejudice and Discrimination, ed Oskamp S. (Hillsdale, NJ: Lawrence Erlbaum), 225246. Stephan W. G. Ybarra O. Bachman G. (1999). Prejudice toward immigrants: an integrated threat theory. J. Appl. Soc. Psychol. 29, 22212237. 10.1111/j.1559-1816.1999.tb00107.x Stephan W. G. Ybarra O. Martnez C. M. Schwarzwald J. Tur-Kaspa M. (1998). Prejudice toward immigrants to Spain and Israel. J. Cross Cult. Psychol. 29, 559576. 10.1177/0022022198294004 Stephan W. G. Ybarra P. Morrison R. (2009). Intergroup threat theory, in Handbook of Prejudice, ed Nelson T. (Mahwah, NJ: Lawrence Erlbaum Associates), 4359. Tajfel H. Turner J. C. (1979). An integrative theory of intergroup conflict, in The Social Psychology of Intergroup Relations, eds Austin W. G. Worchel S. (Monterey, CA: Brooks/Cole), 3347. Troia G. A. Graham S. (2017). Use and acceptability of writing adaptations for students with disabilities: Survey of Grade 3–8 teachers. Learn. Disabil. Res. Pract. 32, 257269. 10.1111/ldrp.12135 United Nation (2020). UN/DESA policy brief #61: Covid-19: Embracing digital government during the pandemic and beyond. Available online at: https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-61-covid-19-embracing-digital-government-during-the-pandemic-and-beyond/ (accessed May 15, 2020). Valentova M. Alieva A. (2013). Gender differences in the perception of immigration- related threats. Int. J. Intercult. Relat. 39, 175182. 10.1016/j.ijintrel.2013.08.010 Vince G. (2020, 7 May). Why is it so hard to be rational about Covid-19? BBC Online. Available online at: https://www.bbc.com/future/article/20200505-why-its-so-hard-to-be-rational-about-covid-19?fbclid=IwAR1RcACzGG4Famnp-14pSGWC7-oqmHgxfqnmt0BxRKcWjaRDiVsAl94vHJo (accessed May 6, 2020). Wen J. Aston J. Liu X. Ying T. (2020). Effects of misleading media coverage on public health crisis: a case of the 2019 novel coronavirus outbreak in China. Anatolia 31:16. 10.1080/13032917.2020.1730621 World Health Organization (2020). Coronavirus Disease (Covid-19) Pandemic. Available online at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed April 22, 2020). Yang D. Counts S. (2018). Understanding self-narration of personally experienced racism on Reddit. Assoc. Adv. Artif. Intellig. 12, 704707.
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hisike.com.cn
      www.ksjjjy.org.cn
      hyhid.com.cn
      lxdsfzc.com.cn
      www.niania.com.cn
      www.pwlxex.com.cn
      sheye.net.cn
      sinjoys.com.cn
      scplus.com.cn
      www.qyzenw.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p