Front. Clim. Frontiers in Climate Front. Clim. 2624-9553 Frontiers Media S.A. 10.3389/fclim.2021.576294 Climate Perspective Casting a Wider Net on Ocean NETs Cox Emily 1 * Boettcher Miranda 2 3 Spence Elspeth 1 Bellamy Rob 4 1School of Psychology, Cardiff University, Cardiff, United Kingdom 2Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands 3Institute for Advanced Sustainability Studies (IASS), Potsdam, Germany 4Department of Geography, The University of Manchester, Manchester, United Kingdom

Edited by: Lennart Thomas Bach, University of Tasmania, Australia

Reviewed by: Phillip Williamson, University of East Anglia, United Kingdom; Jonathan Symons, Macquarie University, Australia

*Correspondence: Emily Cox CoxE3@cardiff.ac.uk

This article was submitted to Negative Emission Technologies, a section of the journal Frontiers in Climate

02 02 2021 2021 3 576294 25 06 2020 07 01 2021 Copyright © 2021 Cox, Boettcher, Spence and Bellamy. 2021 Cox, Boettcher, Spence and Bellamy

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Societal issues involving policies and publics are generally understudied in research on ocean-based Negative Emission Technologies (NETs), yet will be crucial if novel techniques are ever to function at scale. Public attitudes are vital for emerging technologies: publics influence political mandates, help determine the degree of uptake by market actors, and are key to realizing broader ambitions for robust decision-making and responsible incentivization. Discourses surrounding ocean NETs will also have fundamental effects on how governance for the techniques emerges, shaping how they are defined as an object of governance, who is assigned the authority to govern, and what instruments are deemed appropriate. This Perspective brings together key insights on the societal dimensions of ocean NETs, drawing on existing work on public acceptability, policy assessment, governance, and discourse. Ocean iron fertilization is the only ocean NET on which there exists considerable social science research thus far, and we show that much evidence points against its social desirability. Taken in conjunction with considerable natural science uncertainties, this leads us to question whether further research is actually necessary in order to rule out ocean iron fertilization as an option. For other ocean NETs, there is a need for further research into social dimensions, yet research on analogous technologies shows that ocean interventions will likely evoke strong risk perceptions, and evidence suggests that the majority of ocean NETs may face a greater public acceptability challenge than terrestrial NETs. Ocean NETs also raise complex challenges around governance, which pose questions well-beyond the remit of the natural sciences and engineering. Using a conceptual exploration of the ways in which different types of discourse may shape emerging ocean NETs governance, we show that the very idea of ocean NETs is likely to set the stage for a whole new range of contested futures.

carbon dioxide removal public perceptions governance policy assessment discourse negative emissions climate change marine geoengineering RC-2015-029 Leverhulme Trust10.13039/501100000275

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Given current atmospheric concentrations of greenhouse gases, it seems increasingly likely that both unprecedented emissions reductions and gigatonne-scale CO2 removal will be required to keep global average temperature increase to “well below 2°C” (National Academies of Sciences, 2019). NET proposals are heterogeneous, with large uncertainties around their risks and benefits. As a hedge against unforeseen risks, including the risk of technology failure, some technical experts advise that it would be wise to explore a diverse range of NETs alongside ambitious efforts to reduce emissions (Lomax et al., 2015; Nemet et al., 2018). The ocean has been posited by some as suitable for NETs because of its large available area, and the potential for CO2 sequestration over extremely long timescales; yet the idea of intervening in complex marine ecosystems poses significant risks and societal concerns (GESAMP, 2019). Therefore, more research will be needed to assess which ocean NETs, where, at what scale, and under what societal conditions, might be considered as part of the climate response “toolbox.” A wide variety of ocean NETs have been proposed, operating at different scales, including proposals for coastal waters (for example, restoring sea grasses and mangrove ecosystems), and proposals for international waters and the deep ocean (for example, ocean iron fertilization, direct injection of CO2, or ocean upwelling/downwelling), as well as proposals ranging from utilization of existing biological systems to the development of highly novel engineering technologies. The technological characteristics of various ocean NETs proposals have been explored in more detail within the literature than the social science aspects; see GESAMP (2019) and National Academies of Sciences (2019) for an overview.

      In this Perspective, we emphasize that assessments of the potential of ocean NETs must not be limited to technical, physical and economic questions. Research on negative emissions tends to focus on “supply-side” topics such as sequestration potential, resource availability, and cost (Nemet et al., 2018). Yet the demand side, including publics, policies and governance, will be just as important for assessing the “real world” potential of ocean NETs. Engaging with social science questions early on may help to anticipate potential pitfalls in technology development and inform the design of responsible governance mechanisms to avoid them. Engaging with wider society can additionally help to identify broader issues which experts might have missed, because they come into the topic “without blinkers on” (Cox et al., 2020a). It is also vital to assess policy options early in the innovation process, because most new technologies require the development of novel policy frameworks. Understanding the social science of ocean NETs also requires looking not only at the technologies and policies themselves, but also at the ways in which we talk about them. Understanding how discourses shape technology governance can help to avoid premature closure around solutions which may appear optimal according to particular types of knowledge, whilst simultaneously crowding out other options. This Perspective explores three fundamental aspects of the social science of ocean NETs: public perceptions, policy assessment, and the role of discourse in technology governance. The first three sections address these topics in turn, drawing on existing work on ocean NETs as well as analogous and related technologies and systems. We then identify common threads across these diverse bodies of literature, concluding with insights into the roles social science can play in the ethical and effective assessment of ocean NETs' potential as a climate response strategy.

      Public Perceptions

      There is little existing empirical work on public perceptions of ocean NETs. However, we can develop an idea of how perceptions are likely to emerge from research on public perceptions of the ocean, terrestrial NETs, and climate engineering (CE). Certain risk attributes have been shown to be important for a diverse range of technologies: these include the degree of control people have over the risk, its voluntariness, the possible severity of consequences, and the familiarity of the risk or system (Fischhoff et al., 1978; Slovic, 1987). In this respect, many ocean NETs proposals may be perceived as highly risky in the same way as nuclear power or Solar Radiation Management. One early UK study found lower support for ocean liming and ocean iron fertilization than for atmospheric sulfate injection, because of concerns about the riskiness, unpredictability and uncontrollability of the ocean environment (Ipsos Mori, 2010).

      Previous work suggests that research carried out at small scale and under well-controlled conditions is likely to be generally acceptable (Cummings et al., 2017). However, in this respect the ocean presents challenges similar to atmospheric CE, because people may be skeptical of scientists' abilities to carry out controlled and accurate research in such an open, interconnected system (Pidgeon et al., 2013). A crucial determinant will be the extent to which ocean NETs are perceived to “tamper with nature” (Corner et al., 2013; Wolske et al., 2019). For example, when discussing oceanic disposal of CO2, people in the United States expressed concerns about the impact this would have on marine organisms and saw it as “…messing with some form of life…” (Palmgren et al., 2004). The ocean is often perceived as fragile and pristine (Hawkins et al., 2016; Cox et al., 2020b), and research finds that ocean NETs might be seen as overstepping the limits of human ability to understand and control the environment (Macnaghten et al., 2015; Wibeck et al., 2017; Gannon and Hulme, 2018). Research in Scotland and Norway found that people felt changes in the deep sea would personally impact them and they were not confident in the abilities of management to protect the marine environment (Ankamah-Yeboah et al., 2020). The concern people express about the ocean is commonly linked to a positive emotional connection with it (McMahan and Estes, 2015), shown to be important for perceptions of ocean acidification (Spence et al., 2018). Despite low levels of prior awareness of ocean acidification, research in the US and UK demonstrates consistently high levels of public concern and strong emotional feelings (Capstick et al., 2016; Cooke and Kim, 2019). Importantly, NETs research suggests that emotional connection to the ocean manifests similarly in coastal and inland populations (Cox et al., 2020b).

      That said, some ocean-based techniques may be perceived as more “natural” than others, for example restoration of coastal ecosystems such as mangroves, salt marshes or sea grass habitats which act as carbon sinks. Destruction of coastal ecosystems currently means that much of the carbon storage potential of these areas is being lost (Luisetti et al., 2019), and reversal of this could be perceived as a restoration of nature, rather than tampering. Similar terrestrial techniques such as peatland restoration are generally assumed to be unproblematic in terms of public perceptions (Royal Society and Royal Academy of Engineering, 2018), and work on terrestrial afforestation demonstrates that it is generally preferred (Wolske et al., 2019). However, perceptions of what constitutes “natural” are fuzzy, dynamic, and contested, partly because even “pristine” landscapes are often the product of enormous human intervention (Corner et al., 2013). The specific context will be important: coastal restoration projects are not always without conflict, and can be socially or environmentally problematic (Myatt et al., 2003; Srivastava and Mehta, 2017). Work on terrestrial NETs also suggests that there may be trade-offs between the social and ethical impacts of a technique, and its scale of operation, which in turn affects its CO2 sequestration potential (Cox et al., 2018); habitat restoration techniques may not benefit from the space afforded by transnational waters, and may be fundamentally constrained in their ability to sequester CO2 over long timeframes (National Academies of Sciences, 2019).

      Importantly, support or opposition for a particular project or research trial cannot be easily predicted, because it depends on when, where, and how it is implemented (Gough and Mander, 2019). Perceptions are neither fixed nor immutable, particularly in the early stages of technology scale-up; meaningful public engagement, drawing on lessons learned from other technologies, will be crucial (cf. Lockwood, 2017; Williams et al., 2017; Dwyer and Bidwell, 2019). Such flexibility early on means that views can be influenced by those with a platform, including the media, environmental organizations, and influential individuals such as celebrities or scientific advocates. For example, the first ocean iron fertilization projects encountered strong opposition from environmental organizations, which echoed people's feelings about the fragility, uncontrollability and inherent preciousness of the ocean (Fuentes-George, 2017). Such opposition was an important factor in the development of highly influential governance mechanisms which forbid the dumping of materials at sea (IMO, 2020). For lay publics, however, knowledge about novel ocean technologies is likely to be extremely low, meaning that at this stage perceptions may be mainly influenced by emotion and by risk attributes which cut across technology types (Macnaghten et al., 2015; Spence et al., 2018).

      Views will also be constructed through contextually-specific local meanings (Mabon et al., 2014; Gannon and Hulme, 2018), and cultural differences will be important, such as the extent to which the ocean is perceived as an important food provider (Potts et al., 2016). Acceptance will also be highly conditional: for example, NETs are more likely to be supported as part of a package of emissions reduction policies, thus reassuring people that the “root cause” of climate change is being tackled (Cox et al., 2020b). Carbon capture and storage is widely seen as a “non-transition” (Butler et al., 2013; Mabon and Shackley, 2015), and any perception that ocean NETs are being used to continue business-as-usual may be damaging. Thus, rather than asking whether ocean NETs are publicly “acceptable, ” it is more useful to identify the conditions under which a proposal might be perceived as reasonable by many people (Cox et al., 2018). Western and developing nations may also differ (Pidgeon et al., 2013; Carr and Yung, 2018), and in this respect we have precious little understanding of risk perceptions in non-western contexts. For example, a 2017 review of public perceptions research on climate engineering identified 23 studies, of which 19 included Western Europeans samples, 5 US/Canadian, and only one included a non-OECD nation. In more recent years, research on public perceptions has increased, yet the historical imbalance remains. A small number of studies find that risk perceptions in non-Western and non-affluent areas include several similar concerns regarding scale, unintended consequences, and irreversibility of techniques taking place in open environments (Winickoff et al., 2015; Carr and Yung, 2018). A study of Global South stakeholders on climate engineering found that even small experiments in open environments encountered concern regarding both physical and social risks (Winickoff et al., 2015).

      Policy Assessment

      Publics—in combination with diverse experts and stakeholders—are also key to realizing broader ambitions for robust decision-making on ocean NETs. The early stage of technology development makes assessments particularly sensitive to framing effects, i.e., the conditioning of outcomes from the ways in which assessors choose to organize and communicate their assessments. Early assessments of ocean NETs have been criticized for adopting narrow framings that, among other things, employ reductive methods, exclude diverse forms of expertise, marginalize alternative options, disregard social criteria, and downplay uncertainties (Bellamy et al., 2012). Such framings have made certain technologies appear to be optimal courses of action; yet they only appear optimal under the narrow set of framings upon which their ostensible optimality is based. Accordingly, efforts are underway to broaden out and open up the framings going into assessments of ocean NETs, and to thereby render decision-making more robust. Such methods involve diverse participants, include alternative options, factor in social criteria, and are candid about uncertainties. The full range of ocean NETs are yet to be given this treatment; initial assessments of attitudes to ocean iron fertilization in Europe and Japan show it to be among the options for tackling climate change with the lowest level of public support (Bellamy et al., 2013, 2017; Amelung and Funke, 2015; Asayama et al., 2017; Jobin and Siegrist, 2020), but open policy assessment must also recognize the variety of ocean techniques, and as shown above, some may not experience the same issues as ocean iron fertilization.

      These kinds of assessment are also key to growing calls for the responsible incentivization of research (Bellamy, 2018). Research into ocean NETs is undoubtedly needed, but this must be done responsibly, through broad societal participation in choosing which, if any, ocean NETs to incentivize in the first place, and continued participation in how to incentivize those NETs and ultimately in how to govern them. Building on cognate concepts of responsible innovation (Owen et al., 2013) and development (Waller et al., 2020), such a framework for incentivization encourages policy institutions and actors to go beyond technical considerations of policy design that would treat ocean NETs as though they were already fixed technologies or approaches. Instead, they are encouraged to engage with the diverse geographies of knowledge-making through which the pros and cons of ocean NETs will be negotiated in real-world contexts (Hulme, 2010). In this way, incentive and governance regimes are not predefined for society, but defined through societal participation. So far, research is yet to gather social intelligence on what responsibly incentivized ocean NETs might look like. However, work on other NETs shows that incentives have so far been poorly aligned with societal values (Cox and Edwards, 2019) and that policy instrument choice can significantly affect public attitudes toward the technologies themselves (Bellamy et al., 2019).

      More is known about preferences for governing ocean NETs. General principles drawn from the public include: (1) transparency of purposes, activities and reporting; (2) minimization and monitoring of environmental impacts; (3) independence from private interests, or at the very least sufficient oversight of them; (4) qualification of scales by perceived controllability; and (5) technology- and activity-specific governance protocols (Bellamy, 2018). Yet the dynamic and multi-faceted nature of public perceptions complicates matters, and experimental research has shown that views on what forms of governance should apply at different stages of research vary amongst people of differing underlying “worldviews” (Bellamy et al., 2017). Some have felt that self-regulation by scientists constitutes sufficient governance for small-scale or “contained” research, whereas others believe that only computational modeling should be left to self-regulation. However, people with various cultural worldviews often feel that international agreements will be necessary for large-scale, outdoors, or “uncontained” research.

      The Role of Discourse

      Environmental and climate governance is shaped by discourse, therefore analyzing debates around emerging technologies can help us to understand how governance “truths” are produced (Leipold et al., 2019). Some work has investigated discourses on terrestrial NETs (Boettcher, 2020; Cox et al., 2020a; Low and Schäfer, 2020), but there has generally been little focus on ocean-based NETs apart from ocean iron fertilization. Most literature focuses on a run of highly controversial iron fertilization experiments between 2001 and 2012 (Buck, 2014; Fuentes-George, 2017; Horton, 2017; Gannon and Hulme, 2018), and the unique procedural dynamics of these experiments means that caution must be taken when extrapolating to other projects or technologies. However, they do provide useful lessons for other ocean NETs, in that controversy stemmed in part from divergent framings around the value of scientific uncertainty (Fuentes-George, 2017) and around mankind's relationship with nature (Gannon and Hulme, 2018).

      A wider body of research on CE assesses how different types of discourse may be shaping the development of technology governance (Harnisch et al., 2015; Biermann and Möller, 2019; Boettcher, 2019; Low and Boettcher, 2020; Möller, 2020). This research has demonstrated how discussions on the feasibility and responsibility of various CE approaches have prioritized scientific and technical knowledge types (Matzner and Barben, 2018, 2020; Low and Schäfer, 2020). This is seen as particularly problematic in the Global South, where memories of broken promises mean that NETs may be seen as means for the Global North to avoid their responsibilities to reduce emissions (Cox et al., 2020a; Möller, 2020). Although the heterogeneous range of CE proposals raise differing governance challenges, a bounded range of expert knowledges have been shown to have both direct de facto governance effects on how the various techniques are being researched and developed, and indirect effects on how de jure governance (policy) is emerging (Boettcher, 2019; Gupta and Möller, 2019). Yet analyses have also shown that the idea of intervening into global systems—in particular the oceans—raises a plethora of governance questions which lie beyond the scope of purely scientific knowledge (Buck, 2014; Gannon and Hulme, 2018; McLaren, 2018). Given that ocean NETs research is still in its preliminary stages, there may be a greater opportunity to establish knowledge diversity before governance begins to emerge.

      One promising analytical framework for exploring the link between discourse and ocean NETs governance is the Sociology-of-Knowledge Approach to Discourse (SKAD) (Keller, 2011; Boettcher, 2019). According to this approach, discourses are underpinning systems of knowledge which shape understandings of why governance is necessary, what is to be governed, by whom, and how. Therefore, discourses have a constitutive effect on what type of governance is “thinkable and practicable to both its practitioners and to those upon whom it is practiced” (Gordon, 1991, p. 3). If different systems of knowledge (discourses) become privileged in ocean NETs governance discussions, they will have varying implications for what types of governance become “thinkable and practicable.” To illustrate this, Table 1 contains a set of knowledge types which are present in the current ocean NETs debate, and a conceptual exploration of the different ways they may shape the why, what, who, and how of emerging ocean NETs governance. The table is based on a preliminary review of key literature on ocean NETs (IOC, 2010; Buck, 2014; Horton, 2017; Gannon and Hulme, 2018; Gattuso et al., 2018; Keller, 2018; Brent et al., 2019; GESAMP, 2019; McDonald et al., 2019), using a SKAD-based approach to map underpinning discourse types (see Boettcher, 2019, 2020). This thought experiment is not intended to be exhaustive or conclusive; yet it illustrates the varied, and potentially conflicting, implications that foregrounding legal, biogeochemical, economic, or cultural discourses in ocean NETs governance development may have.

      Shaping implications of different types of discourse for emerging Ocean NETS governancea.

      Implications for emerging ocean NETs governance
      Rationale (why) Object (what) Actors (who) Modes and instruments (how)
      Legal Governance of ocean NETs is needed because many ocean-based interventions would have trans-boundary effects (positive and negative), thereby contravening national jurisdictions and raising the risk of conflict Ocean NETs approaches with trans-boundary effects. Scale of effects defining criterion Legal experts, states, and international maritime bodies (LC/LP, UNCLOS, IOC, CBD) Global/international, top-down. International laws, guidelines
      Bio-geochemical Governance of ocean NETs is needed to prevent ecosystem damage, maintain marine biogeochemical systems, protect biological diversity Ocean NETs approaches (regardless of scale) that have biogeochemical ecosystem effects. Environmental effects defining criterion Marine biology, biogeochemical and biodiversity experts, NGOs, international maritime bodies (LC/LP, UNCLOS, IOC, CBD) Global to local, top-down, monitoring, enforcing compliance with regulations
      Knowledge system/discourse Economic Governance is needed to balance costs and (co-)benefits of ocean NETs approaches. Cost-effective NETs approaches to be enabled, non-cost-effective to be restricted. Cost-effectiveness as defining criterion Economic experts, assessment bodies, industrial, and commercial actors Global to local, coordination/competition in flat hierarchies to allow the most cost-effective solutions to emerge
      Cultural Governance is needed to preserve the cultural significance of the (natural) ocean NETs approaches that are non-natural or invasive, that change the character of cultural (human) interactions with the ocean, alter human understandings of the natural Social acceptability within a given context as defining criterion Cultural anthropology experts, local communities, NGOs, indigenous groups Regional to local, bottom up, participatory engagement

      LC/LP, London Convention/London Protocol on The Prevention of Marine Pollution by Dumping of Wastes and Other Matter; UNCLOS, United Nations Convention for the Law of the Sea; IOC, Intergovernmental Oceanographic Commission of UNESCO; CBD, Convention on Biological Diversity.

      Discussion

      This exploration of existing social science research on ocean NETs has, first and foremost, highlighted how limited the state of knowledge currently is. The only technique that has received a significant degree of attention so far is ocean iron fertilization, which has been roundly condemned in work on public perceptions and policy assessment (at least in OECD contexts), and has raised considerable concerns around prospective governance frameworks. Taken in conjunction with the exceptionally uncertain natural science of ocean iron fertilization (Strong et al., 2015), we might reasonably question whether further research is necessary in order to rule this out as an option.

      In the absence of empirical research into the various other proposals for novel ocean NETs, reasonable inferences can be drawn from work on analogous techniques, including terrestrial NETs and climate engineering more broadly. These literatures have demonstrated that ocean interventions raise complex questions surrounding governance, which are not always within the scope of scientific/expert forms of knowledge. Discussions on the governance of ocean interventions seem likely to implicate an even wider range of discourses and types of knowledge than land-based NETs. Indeed, discussion over the emergent UNCLOS Global Ocean Treaty, which aims to protect biodiversity on the High Seas, reveals that different nations and people have very different understandings of the ocean, including whether it represents the “common heritage of mankind” (Silver et al., 2020). Similar differences concerning fundamental definitions and values were important in ocean iron fertilization controversies (Gannon and Hulme, 2018). Researchers working on ocean NETs would benefit from understanding how these diverse knowledge types may affect upstream governance of their work. They also raise tricky questions for public attitudes, because of the way in which the ocean is perceived as fragile, vital to human life, emotionally valuable, interconnected, and challenging to experiment on in an accurate and controllable manner. Evidence therefore suggests that the majority of ocean NETs will face a greater public acceptability challenge than terrestrial NETs. People will need to be assured that controlled, reversible and reliable testing can be carried out, and attempting to “communicate around” uncertainty or downplay risks is likely to backfire. That said, ocean NETs are highly diverse, and empirical research may reveal that some proposals encounter lower risk perceptions; our treatment of ocean NETs as a broad category in this short piece should not be taken to imply homogeneity. For example, some ocean NETs such as coastal habitat restoration do not claim to have trans-boundary effects, which means that they may not encounter the same governance challenges as NETs in the High Seas, and may not encounter public concerns about messing with nature. However, further research is needed, with no substitute for bespoke empirical testing. The remainder of this section sets out principles which can be used to guide responsible research and innovation in this field.

      This paper has explored diverse bodies of literature on multiple social science topics, yet they all point toward the need for broad, participatory frameworks to address these issues. Engaging with a broader spectrum of actors early on can help to facilitate the development of techniques in an effective and ethical manner (Fiorino, 1990). The early stage of ocean NETs research creates unique opportunities in this regard, because the technologies and their governance are not yet “locked in.” Therefore, participatory approaches could enable flexibility for establishing options for ocean NETs, including how the problems are defined, what methods are used, what criteria are selected, whose perspectives are included, and how uncertainties are conveyed (Stirling, 2007). However, previous participatory approaches have revealed challenges and constraints which will need addressing in social science research on ocean NETs. Firstly, there is the need to ensure that broader perspectives are actually integrated into the technology development, rather than as an add-on, an afterthought, or a legitimization exercise (Markusson et al., 2020). Secondly, more research is needed into frameworks for responsible incentivization, including policy mechanisms which might be able to incentivize ocean NETs even in absence of a high carbon price (Cox and Edwards, 2019). Such work needs to be better integrated into public attitudes research, that we might better understand the two-way relationship between public attitudes and policy: the ways in which publics generate the policy mandate for the incentivization of technologies, and the ways in which public attitudes depend on the policy frameworks used. Ocean NETs also raise challenges around the equitable distribution of risks and benefits, particularly for communities who are highly dependent on the ocean for their basic needs, and research is needed into the perspectives of coastal communities which may be among the most vulnerable to ocean impacts. Addressing the imbalance which currently exists in social science research on NETs, wherein the majority of information comes from Western and OECD samples, should be a priority.

      There remains a lot to be done to explore the link between discursively (re)produced knowledge and ocean NETs governance development. Discursive mapping of the wider ocean NETs debate would help to identify which types of knowledge are being privileged or neglected, and what implications this may have for the emergence of ocean NETs governance. Furthermore, bringing these discourses to light may help to anticipate tensions between knowledge systems, mitigate potential conflict by integrating different knowledge types in NETs decision-making, and design deliberative processes to further “open up” discursive diversity in ocean NETs governance. The conceptual categorizations outlined in Table 1 could provide the basis for several (complementary or competing) ocean NETs governance narratives for use in deliberative engagement. Discourse has been called “the source code with which contested futures are written” (Boettcher, 2019), and the idea of ocean NETs is likely to set the stage for a whole new range of contested futures. Further elucidating the shaping role of discourses underpinning the NETs debate is therefore key to anticipating and critically reflecting upon the emergence of ocean NETs governance.

      Societal uncertainties are likely to play a key role in the emergence of NETs as a potential climate strategy. We therefore make a call for future research to “cast a wider net” on ocean NETs by taking societal and political “demand-side” dynamics seriously.

      Data Availability Statement

      The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

      Author Contributions

      All authors contributed equally to the production of this paper.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Amelung D. Funke J. (2015). Laypeople's risky decisions in the climate change context: climate engineering as a risk-defusing strategy? Hum. Ecol. Risk Assess. Int. J. 21, 533559. 10.1080/10807039.2014.932203 Ankamah-Yeboah I. Xuan B. B. Hynes S. Armstrong C. W. (2020). Public perceptions of deep-sea environment: evidence from scotland and norway. Front. Mar. Sci. 7:137. 10.3389/fmars.2020.00137 Asayama S. Sugiyama M. Ishii A. (2017). Ambivalent climate of opinions: Tensions and dilemmas in understanding geoengineering experimentation. Geoforum 80, 8292. 10.1016/j.geoforum.2017.01.012 Bellamy R. (2018). Incentivize negative emissions responsibly. Nat. Energy 3, 532534. 10.1038/s41560-018-0156-6 Bellamy R. Chilvers J. Vaughan N. E. Lenton T. M. (2012). A review of climate geoengineering appraisals. Wiley Interdiscip. Rev. Clim. Change 3, 597615. 10.1002/wcc.197 Bellamy R. Chilvers J. Vaughan N. E. Lenton T. M. (2013). ‘Opening up' geoengineering appraisal: multi-criteria mapping of options for tackling climate change. Glob. Environ. Change 23, 926937. 10.1016/j.gloenvcha.2013.07.01125224904 Bellamy R. Lezaun J. Palmer J. (2017). Public perceptions of geoengineering research governance: an experimental deliberative approach. Glob. Environ. Change 45, 194202. 10.1016/j.gloenvcha.2017.06.004 Bellamy R. Lezaun J. Palmer J. (2019). Perceptions of bioenergy with carbon capture and storage in different policy scenarios. Nat. Commun. 10:743. 10.1038/s41467-019-08592-530765708 Biermann F. Möller I. (2019). Rich man's solution? Climate engineering discourses and the marginalization of the Global South. Int. Environ. Agreem. Polit. Law Econ. 19, 151167. 10.1007/s10784-019-09431-0 Boettcher M. (2019). Cracking the code: how discursive structures shape climate engineering research governance. Environ. Polit. 29, 890916. 10.1080/09644016.2019.1670987 Boettcher M. (2020). Coming to GRIPs with NETs discourse: implications of discursive structures for emerging governance of negative emissions technologies in the UK. Front. Clim. 2:595685. 10.3389/fclim.2020.595685 Brent K. Burns W. McGee J. (2019). Governance of Marine Geoengineering (Special Report). Waterloo, ON: Centre for International Governance Innovation. Buck H. J. (2014). “Village science meets global discourse : The Haida Salmon Restoration Corporation's ocean iron fertilisation experiment,” in Geoengineering Our Climate? Ethics, Politics, and Governance, eds J. J. Blackstock and S. Low (Abingdon: Routledge), 107112. 10.4324/9780203485262-19 Butler C. Parkhill K. Pidgeon N. F. (2013). Deliberating Energy System Transitions in the UK, Transforming the UK Energy System: Public Values, Attitudes and Acceptability. London: UK Energy Research Centre. Capstick S. B. Pidgeon N. F. Corner A. J. Spence E. M. Pearson P. N. (2016). Public understanding in Great Britain of ocean acidification. Nat. Clim. Change 6, 763767. 10.1038/nclimate3005 Carr W. A. Yung L. (2018). Perceptions of climate engineering in the South Pacific, Sub-Saharan Africa, and North American Arctic. Clim. Change 147, 119132. 10.1007/s10584-018-2138-x Cooke S. L. Kim S. C. (2019). Exploring the “evil twin of global warming”: public understanding of ocean acidification in the United States. Sci. Commun. 41, 6689. 10.1177/1075547018821434 Corner A. Parkhill K. Pidgeon N. Vaughan N. E. (2013). Messing with nature? Exploring public perceptions of geoengineering in the UK. Glob. Environ. Change 23, 938947. 10.1016/j.gloenvcha.2013.06.002 Cox E. Edwards N. R. (2019). Beyond carbon pricing: policy levers for negative emissions technologies. Clim. Policy 19, 11441156. 10.1080/14693062.2019.1634509 Cox E. Pidgeon N. Spence E. Thomas G. (2018). Blurred lines: the ethics and policy of greenhouse Gas Removal at scale. Front. Environ. Sci. 6:38. 10.3389/fenvs.2018.00038 Cox E. Spence E. Pidgeon N. (2020a). Incumbency, trust and the monsanto effect: stakeholder discourses on greenhouse gas removal. Environ. Values 29, 197220. 10.3197/096327119X15678473650947 Cox E. Spence E. Pidgeon N. (2020b). Public perceptions of Carbon Dioxide Removal in the US and UK. Nat. Clim. Change 10, 744749. 10.1038/s41558-020-0823-z Cummings C. Lin S. Trump B. (2017). Public perceptions of climate geoengineering: a systematic review of the literature. Clim. Res. 73, 247264. 10.3354/cr01475 Dwyer J. Bidwell D. (2019). Chains of trust: Energy justice, public engagement, and the first offshore wind farm in the United States. Energy Res. Soc. Sci. 47, 166176. 10.1016/j.erss.2018.08.019 Fiorino D. J. (1990). Citizen participation and environmental risk: a survey of institutional mechanisms. Sci. Technol. Hum. Val. 15, 226243. 10.1177/016224399001500204 Fischhoff B. Slovic P. Lichtenstein S. Read S. Combs B. (1978). How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Sci. 9, 127152. 10.1007/BF00143739 Fuentes-George K. (2017). Consensus, certainty, and catastrophe: discourse, governance, and ocean iron fertilization. Glob. Environ. Polit. 17, 125143. 10.1162/GLEP_a_00404 Gannon K. E. Hulme M. (2018). Geoengineering at the “Edge of the World”: exploring perceptions of ocean fertilisation through the Haida Salmon Restoration Corporation. Geo Geogr. Environ. 5:e00054. 10.1002/geo2.54 Gattuso J.-P. Magnan A. K. Bopp L. Cheung W. W. L. Duarte C. M. Hinkel J. . (2018). Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5:337. 10.3389/fmars.2018.00337 GESAMP (2019). High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques (Report of GESAMP Working Group 41 No. 98). London: International Maritime Organisation. Gordon C. (1991). “Governmental rationality: an introduction,” in The Foucault Effect: Studies in Governmentality, eds G. Burchell, C. Gordon, and P. Miller (Chicago, IL: University of Chicago Press), 152. Gough C. Mander S. (2019). Beyond social acceptability: applying lessons from CCS social science to support deployment of BECCS. Curr. Sustain. Energy Rep. 6, 116123. 10.1007/s40518-019-00137-0 Gupta A. Möller I. (2019). De facto governance: how authoritative assessments construct climate engineering as an object of governance. Environ. Polit. 28, 480501. 10.1080/09644016.2018.1452373 Harnisch S. Uther S. Boettcher M. (2015). From “go slow” to “gung ho”? Climate engineering discourses in the UK, the US, and Germany. Glob. Environ. Polit. 15, 5778. 10.1162/GLEP_a_00298 Hawkins J. P. O'Leary B. C. Bassett N. Peters H. Rakowski S. Reeve G. . (2016). Public awareness and attitudes towards marine protection in the United Kingdom. Mar. Pollut. Bull. 111, 231236. 10.1016/j.marpolbul.2016.07.00327393214 Horton Z. (2017). Going rogue or becoming salmon? Geoengineering narratives in Haida Gwaii. Cult. Crit. 97, 128166. 10.5749/culturalcritique.97.2017.0128 Hulme M. (2010). Problems with making and governing global kinds of knowledge. Glob. Environ. Change 20, 558564. 10.1016/j.gloenvcha.2010.07.005 IMO (2020). Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter [WWW Document]. Available online at: http://www.imo.org/en/OurWork/Environment/LCLP/Pages/default.aspx (accessed October 15, 2020).25816278 IOC (2010). Ocean Fertilization: A Scientific Summary for Policy Makers (No. IOC/BRO/2010/2). Paris: Intergovernmental Oceanographic Commission. Ipsos Mori (2010). Experiment Earth? Report on a Public Dialogue on Geoengineering. Swindon: Natural Environment Research Council. Jobin M. Siegrist M. (2020). Support for the deployment of climate engineering: a comparison of ten different technologies. Risk Anal. 40, 10581078. 10.1111/risa.1346232112448 Keller D. (2018). “Marine Climate-engineering,” in Handbook on Marine Environmental Protection: Science, Impacts and Sustainable Management, eds M. Salomon and T. Markus (Cham: Springer International Publishing), 261276. 10.1007/978-3-319-60156-424569320 Keller R. (2011). The sociology of knowledge approach to discourse (SKAD). Hum. Stud. 34, 4365. 10.1007/s10746-011-9175-z Leipold S. Feindt P. H. Winkel G. Keller R. (2019). Discourse analysis of environmental policy revisited: traditions, trends, perspectives. J. Environ. Policy Plan. 21, 445463. 10.1080/1523908X.2019.1660462 Lockwood T. (2017). Public Outreach Approaches for Carbon Capture and Storage Projects. London: IEA Clean Coal Centre. Lomax G. Workman M. Lenton T. Shah N. (2015). Reframing the policy approach to greenhouse gas removal technologies. Energy Policy 78, 125136. 10.1016/j.enpol.2014.10.002 Low S. Boettcher M. (2020). Delaying decarbonization: climate governmentalities and sociotechnical strategies from Copenhagen to Paris. Earth Syst. Gov. 5:100073. 10.1016/j.esg.2020.100073 Low S. Schäfer S. (2020). Is bio-energy carbon capture and storage (BECCS) feasible? The contested authority of integrated assessment modeling. Energy Res. Soc. Sci. 60:101326. 10.1016/j.erss.2019.101326 Luisetti T. Turner R. K. Andrews J. E. Jickells T. D. Kröger S. Diesing M. . (2019). Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK. Ecosyst. Serv. 35, 6776. 10.1016/j.ecoser.2018.10.013 Mabon L. Shackley S. (2015). Meeting the targets or re-imagining society? An empirical study into the ethical landscape of carbon dioxide capture and storage in Scotland. Environ. Val. 24, 465482. 10.3197/096327115X14345368709907 Mabon L. Shackley S. Bower-Bir N. (2014). Perceptions of sub-seabed carbon dioxide storage in Scotland and implications for policy: a qualitative study. Mar. Policy Compl. 45, 915. 10.1016/j.marpol.2013.11.011 Macnaghten P. Davies S. R. Kearnes M. (2015). Understanding public responses to emerging technologies: a narrative approach. J. Environ. Policy Plan 21, 504518. 10.1080/1523908X.2015.1053110 Markusson N. Balta-Ozkan N. Chilvers J. Healey P. Reiner D. McLaren D. (2020). Social science sequestered. Front. Clim. 2:2. 10.3389/fclim.2020.00002 Matzner N. Barben D. (2018). “Verantwortungsvoll das Klima manipulieren? Unsicherheit und Verantwortung im Diskurs um Climate Engineering,” in Unsicherheit Als Herausforderung Für Die Wissenschaft, eds N. Janich and L. Rhein (Berlin: Peter Lang), 143178. Matzner N. Barben D. (2020). Climate engineering as a communication challenge: contested notions of responsibility across expert arenas of science and policy. Sci. Commun. 354, 182183. 10.1177/1075547019899408 McDonald J. McGee J. Brent K. Burns W. (2019). Governing geoengineering research for the Great Barrier Reef. Clim. Policy 19, 801811. 10.1080/14693062.2019.1592742 McLaren D. P. (2018). Whose climate and whose ethics? Conceptions of justice in solar geoengineering modelling. Energy Res. Soc. Sci. 44, 209221. 10.1016/j.erss.2018.05.021 McMahan E. A. Estes D. (2015). The effect of contact with natural environments on positive and negative affect: a meta-analysis. J. Posit. Psychol. 10, 507519. 10.1080/17439760.2014.994224 Möller I. (2020). Political perspectives on geoengineering: navigating problem definition and institutional fit. Glob. Environ. Polit. 20, 5782. 10.1162/glep_a_00547 Myatt L. B. Scrimshaw M. D. Lester J. N. (2003). Public perceptions and attitudes towards an established managed realignment scheme: Orplands, Essex, UK. J. Environ. Manage. 68, 173181. 10.1016/S0301-4797(03)00065-312781757 National Academies of Sciences Engineering and Medicine. (2019). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, DC: National Academies Press. 10.17226/2525931120708 Nemet G. F. Callaghan M. W. Creutzig F. Fuss S. Hartmann J. Hilaire J. . (2018). Negative emissions—Part 3: innovation and upscaling. Environ. Res. Lett. 13:063003. 10.1088/1748-9326/aabff4 Owen R. Bessant J. R. Heintz M. (2013). Responsible Innovation: Managing the Responsible Emergence of Science and Innovation in Society. Chichester: John Wiley and Sons.21070299 Palmgren C. R. Morgan M. G. De Bruin W. B. Keith D. W. (2004). Initial public perceptions of deep geological and oceanic disposal of carbon dioxide. Environ. Sci. Technol. 38, 64416450. 10.1021/es040400c15669298 Pidgeon N. Parkhill K. Corner A. Vaughan N. (2013). Deliberating stratospheric aerosols for climate geoengineering and the SPICE project. Nat. Clim. Change 3, 451457. 10.1038/nclimate1807 Potts T. Pita C. O'Higgins T. Mee L. D. (2016). Who cares? European attitudes towards marine and coastal environments. Mar. Policy 72, 5966. 10.1016/j.marpol.2016.06.012 Royal Society and Royal Academy of Engineering (2018). Greenhouse Gas Removal. London: Royal Society and Royal Academy of Engineering. Silver J. Acton L. Campbell L. Gray N. (2020). How a Global Ocean Treaty Could Protect Biodiversity in the High Seas. The Conversation. Available online at: http://theconversation.com/how-a-global-ocean-treaty-could-protect-biodiversity-in-the-high-seas-139552 (accessed October 15, 2020). Slovic P. (1987). Perception of risk. Science 236, 280285. 10.1126/science.35635073563507 Spence E. Pidgeon N. Pearson P. (2018). UK public perceptions of ocean acidification – the importance of place and environmental identity. Mar. Policy Mar. 97, 287293. 10.1016/j.marpol.2018.04.006 Srivastava S. Mehta L. (2017). The Social Life of Mangroves - Resource Complexes and Contestations on the Industrial Coastline of Kutch, India (STEPS Centre Working Paper). Falmer: Institute for Development Studies, University of Sussex. Stirling A. (2007). Risk, precaution and science: towards a more constructive policy debate. Talking point on the precautionary principle. EMBO Rep. 8, 309315. 10.1038/sj.embor.740095317401403 Strong A. Cullen J. Chisholm S. (2015). Ocean fertilization: science, policy, and commerce. Oceanography 22, 236261. 10.5670/oceanog.2009.83 Waller L. Rayner T. Chilvers J. Gough C. A. Lorenzoni I. Jordan A. . (2020). Contested framings of greenhouse gas removal and its feasibility: social and political dimensions. WIREs Clim. Change 11:e649. 10.1002/wcc.649 Wibeck V. Hansson A. Anshelm J. Asayama S. Dilling L. Feetham P. M. . (2017). Making sense of climate engineering: a focus group study of lay publics in four countries. Clim. Change 145, 114. 10.1007/s10584-017-2067-0 Williams L. Macnaghten P. Davies R. Curtis S. (2017). Framing ‘fracking': exploring public perceptions of hydraulic fracturing in the United Kingdom. Public Underst. Sci. 26, 89104. 10.1177/096366251559515926170264 Winickoff D. E. Flegal J. A. Asrat A. (2015). Engaging the Global South on climate engineering research. Nat. Clim. Change 5, 627634. 10.1038/nclimate2632 Wolske K. S. Raimi K. T. Campbell-Arvai V. Hart P. S. (2019). Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions. Clim. Change 152, 345361. 10.1007/s10584-019-02375-z

      Funding. EC and ES were funded by the Leverhulme Trust under project research grant RC-2015-029.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.jc8news.com.cn
      fxowlh.com.cn
      hhccgo.com.cn
      www.ibangkf.com.cn
      www.iiittt.com.cn
      www.haztcm.org.cn
      www.hengfen.com.cn
      kfgowt.com.cn
      v55rz.net.cn
      wyao58.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p