Front. Cell. Neurosci. Frontiers in Cellular Neuroscience Front. Cell. Neurosci. 1662-5102 Frontiers Media S.A. 10.3389/fncel.2019.00268 Neuroscience Original Research Middle Ear Administration of a Particulate Chitosan Gel in an in vivo Model of Cisplatin Ototoxicity Videhult Pierre Pernilla 1 * Fransson Anette 2 Kisiel Marta Alina 2 Damberg Peter 3 Nikkhou Aski Sahar 3 Andersson Mats 4 Hällgren Lotta 4 Laurell Göran 2 1Division of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden 2Department of Surgical Sciences, Uppsala University, Uppsala, Sweden 3Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Stockholm, Sweden 4Division of Bioscience and Materials, RISE Research Institutes of Sweden, Södertälje, Sweden

Edited by: Sylvain Celanire, PRAGMA Therapeutics, France

Reviewed by: Sten O. M. Hellström, Karolinska Institutet (KI), Sweden; Agnieszka J. Szczepek, Charité – Berlin University of Medicine, Germany

*Correspondence: Pernilla Videhult Pierre, pernilla.videhult-pierre@ki.se

Present address: Marta Alina Kisiel, Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden

This article was submitted to Cellular Neurophysiology, a section of the journal Frontiers in Cellular Neuroscience

25 06 2019 2019 13 268 31 01 2019 29 05 2019 Copyright © 2019 Videhult Pierre, Fransson, Kisiel, Damberg, Nikkhou Aski, Andersson, Hällgren and Laurell. 2019 Videhult Pierre, Fransson, Kisiel, Damberg, Nikkhou Aski, Andersson, Hällgren and Laurell

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Background

Middle ear (intratympanic, IT) administration is a promising therapeutic method as it offers the possibility of achieving high inner ear drug concentrations with low systemic levels, thus minimizing the risk of systemic side effects and drug-drug interactions. Premature elimination through the Eustachian tube may be reduced by stabilizing drug solutions with a hydrogel, but this raises the secondary issue of conductive hearing loss.

Aim

This study aimed to investigate the properties of a chitosan-based particulate hydrogel formulation when used as a drug carrier for IT administration in an in vivo model of ototoxicity.

Materials and Methods

Two particulate chitosan-based IT delivery systems, Thio-25 and Thio-40, were investigated in albino guinea pigs (n = 94). Both contained the hearing protecting drug candidate sodium thiosulfate with different concentrations of chitosan gel particles (25% vs. 40%). The safety of the two systems was explored in vivo. The most promising system was then tested in guinea pigs subjected to a single intravenous injection with the anticancer drug cisplatin (8 mg/kg b.w.), which has ototoxic side effects. Hearing status was evaluated with acoustically evoked frequency-specific auditory brainstem response (ABR) and hair cell counting. Finally, in vivo magnetic resonance imaging was used to study the distribution and elimination of the chitosan-based system from the middle ear cavity in comparison to a hyaluronan-based system.

Results

Both chitosan-based IT delivery systems caused ABR threshold elevations (p < 0.05) that remained after 10 days (p < 0.05) without evidence of hair cell loss, although the elevation induced by Thio-25 was significantly lower than for Thio-40 (p < 0.05). Thio-25 significantly reduced cisplatin-induced ABR threshold elevations (p < 0.05) and outer hair cell loss (p < 0.05). IT injection of the chitosan- and hyaluronan-based systems filled up most of the middle ear space. There were no significant differences between the systems in terms of distribution and elimination.

Conclusion

Particulate chitosan is a promising drug carrier for IT administration. Future studies should assess whether the physical properties of this technique allow for a smaller injection volume that would reduce conductive hearing loss.

auditory brainstem response particulate chitosan cisplatin hair cell hearing loss intratympanic administration magnetic resonance imaging sodium thiosulfate AFA Försäkring10.13039/501100002706 Stiftelsen Tysta Skolan10.13039/100010799 VINNOVA10.13039/501100001858

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Cisplatin is a first-generation, platinum-based chemotherapeutic agent widely used in solid tumor treatment. However, cisplatin may cause permanent hearing loss and tinnitus, limiting its therapeutic use. There is no established pharmacological method to prevent or treat cisplatin-induced ototoxicity.

      At the cellular level, cisplatin-induced ototoxic effects are often manifested as loss of the cochlear outer hair cells (OHCs), as shown in experimental animals (Rybak et al., 2007). Excessive levels of reactive oxygen species play a key role in cisplatin-induced ototoxicity (Sheth et al., 2017), while systemic co-administration of cisplatin with antioxidants can reduce ototoxicity in experimental animals (Campbell et al., 1996; Dickey et al., 2004; Fransson et al., 2017). However, developing a safe antioxidant treatment to protect the hearing of cancer patients subjected to cisplatin therapy is more complicated. Antioxidant treatment can reduce cisplatin’s antineoplastic efficacy since antioxidants may chemically interact with cisplatin (Videhult et al., 2006) and/or promote tumor growth (Sayin et al., 2014) and/or tumor metastasis (Le Gal et al., 2015). Another issue is that at least two barrier systems, the blood-perilymph barrier and intrastrial fluid-blood barrier, limit transportation of otoprotectors from systemic circulation to the cochlear compartments (Cohen-Salmon et al., 2007; Shi, 2016). Both of these problems may be circumvented by middle ear (intratympanic, IT) drug administration.

      The round and oval windows are the main routes of drug transport from the tympanic cavity to the inner ear (Salt et al., 2016). Some drugs are likely also absorbed by the middle ear mucosa, which may provide an alternative transportation route to the inner ear. One problem with IT drug delivery is that a large portion of the solution may flow through the Eustachian tube and be swallowed. There are several potential methods to increase the amount of drug reaching the cochlea. However, repeated IT application may be limited by round window edema (Saber et al., 2009) and is associated with increased risks of middle ear infection and chronic perforation of the tympanic membrane. Direct administration of a drug onto the round window membrane involves unnecessary surgical trauma and may have deleterious effects on the inner ear. In the present study, the risk of premature elimination from the tympanic cavity was reduced by using a hydrogel as a drug carrier.

      IT administration induces temporary conductive hearing loss, a factor which must be accepted by patients. Furthermore, ideally, a drug carrier should degrade in a controlled manner without inducing any side effects in the middle and inner ears. Here, we assessed the protective effects of a chitosan-based delivery system for sodium thiosulfate to inhibit cisplatin-induced ototoxicity over a 10-day period. The carrier was a homogenously deacetylated chitosan with physical and immunological properties different to those of traditional, heterogeneously deacetylated chitosans. The specific aim of the present study was to investigate a chitosan formulation, based on a dispersed particulate hydrogel in an aqueous suspension, as a drug carrier for IT administration in an in vivo model of ototoxicity.

      Materials and Methods Study Design

      The study consisted of three parts. The first part investigated the safety of a chitosan-based delivery system for IT administration by exploring its effects on auditory brainstem responses (ABRs) to air-conducted pure tones and on hair cells. Two different candidate gel formulations were used, herein referred to as Thio-25 and Thio-40. These formulations differed in terms of the concentration of chitosan particles: 25% in Thio-25 and 40% in Thio-40. Guinea pigs were randomly assigned to one of two treatment groups: Thio-25 (n = 15) or Thio-40 (n = 15). Both groups received a single unilateral IT injection of sodium thiosulfate (100 mM) in a chitosan-based hydrogel formulation. The contralateral ear served as a control (no IT injection). ABR was measured prior to and 7 and 10 days after IT injection. Neither formulation caused hair cell loss, and ABR threshold shifts in the Thio-25 group were milder than in the Thio-40 group. Thio-25 was therefore used in the second part of the study.

      The second part investigated the protective effects of Thio-25 IT administration on cisplatin-induced ototoxicity. Guinea pigs were randomly assigned to three treatment groups: Thio-25-cispt (n = 15), Placebo-25-cispt (n = 15), or NaCl-cispt (n = 15). All three groups received a single intravenous (i.v.) injection of cisplatin [8 mg/kg body weight (b.w.)]. One hour earlier, the Thio-25-cispt group was given a single unilateral IT injection of Thio-25, while the Placebo-25-cispt group received the vehicle only (Placebo-25), i.e., the same gel formulation (25% chitosan gel particles) but without sodium thiosulfate. The NaCl-cispt group was given an IT injection of sodium chloride (9 mg/mL; NaCl). The contralateral ears were not injected in any group. Auditory function was evaluated by measuring ABR prior to injection and then 10 days later.

      Animals were euthanized after the final ABR measurement in both study parts. The cochleae of animals in the Thio-25, Thio-40, and Thio-25-cispt groups were collected for histological analyses.

      The third part investigated the behavior of a chitosan-based formulation in the tympanic cavity compared with a hyaluronan-based formulation. Guinea pigs (n = 19) received single IT injections of a paramagnetic gel based on chitosan (Chito-Dota) and hyaluronan (Hya-Dota). All animals received Chito-Dota in one ear and Hya-Dota in the contralateral ear. The gels were then visualized in vivo using magnetic resonance imaging (MRI), which was carried out on three occasions per animal over a 2-week period after gel injection. The animals were euthanized immediately after the final MRI session.

      Animals

      Our experiments involved 94 guinea pigs (Duncan-Hartley, Lidköpings Kaninfarm, Lidköping, Sweden). Both sexes were utilized, and b.w. ranged from 263 to 413 g. Animals were maintained in an enriched environment in small groups on a 12-h light/12-h dark cycle at a temperature of 21°C and 60% humidity. They were given access to water and standard chow ad libitum and were allowed to acclimatize for a minimum of 10 days prior to the first experimental procedure. At baseline, all guinea pigs had normal tympanic membranes and hearing as determined by otoscopic examination and ABR assessment. During the experimental procedures, the animals were placed on a homeothermic pad. Animals subjected to cisplatin administration were weighed and hydrated with NaCl (37°C) subcutaneously (s.c., 5 mL) each day after cisplatin exposure. All animal procedures were performed under anesthesia and aseptic conditions and were in accordance with the Swedish national regulations for animal care and use. The experimental protocol was approved by the Regional Ethical Review Board in Uppsala (No. C5/15) and the Regional Ethical Review Board in Stockholm (No. 138/15).

      Anesthesia

      In parts one and two of the study, general anesthesia was produced with ketamine [intramuscular (i.m.), 40 mg/kg b.w.; Ketalar, 50 mg/mL; Pfizer AB, Sollentuna, Sweden] and xylazine (i.m.; 10 mg/kg b.w.; Rompun, 20 mg/mL; Bayer Health Care AG, Copenhagen, Denmark). Anesthesia depth was assessed by measuring the pedal reflex, and additional doses of ketamine (25 mg/kg b.w.) were given if needed. Bupivacaine (s.c.; Marcain, 2.5 mg/mL; AstraZeneca, Södertälje, Sweden) was used for local anesthesia. Buprenorphine (s.c.; 0.06 mg; Temgesic, 0.3 mg/mL; Schering-Plow, Kenilworth, NJ, United States) was used as a post-treatment analgesia in animals subjected to cisplatin administration.

      In part three of the study, general anesthesia was induced in an induction box using 4–5% isoflurane in a 3:7 oxygen:air gas mixture after pretreatment with atropine (s.c.; 0.02–0.05 mg/kg b.w.; Atropine Mylan, 0.5 mg/mL; Mylan, Stockholm, Sweden) and 100% oxygen for 30 min to reduce respiratory tract secretions. The animal was then quickly transferred to an MRI-compatible rig where anesthesia was maintained using 2–3% isoflurane. Lidocaine (s.c.; Lidocaine Accord, 10 mg/mL; Accord Healthcare AB, Solna, Sweden) was used for local anesthesia. Anesthesia depth was monitored by measuring the pedal reflex and visual inspection of the respiratory rate. Under MRI, anesthesia depth was monitored by automatic assessment of heart and breathing rates.

      Gel Preparation Thio-25, Thio-40, and Placebo-25

      To prepare Thio-25, chitosan (4.4 g, degree of N-deacetylation 49%, viscosity 365 mPas; ViscosanTM, Flexichem AB, Uttran, Sweden) was suspended in 185 mL of distilled water (Baxter Medical AB, Kista, Sweden) and dissolved in 2 M aqueous HCl, which was added dropwise. The pH of the solution was adjusted to neutral with 1 M aqueous NaOH. The total volume was then adjusted to 200 mL with distilled water. The solution was filtered through a 5-μm syringe filter and heat-sterilized at 121°C for 20 min. Then, 12 g of this solution was mixed with a solution of sodium thiosulfate (4.8 g, 100 mM; Acros Organics, Thermo Fisher Scientific, Göteborg, Sweden) and another 7.2 g of distilled water. The resultant solution was then filtered through a 5 μm syringe filter. 3,4-Diethoxy-3-cyclobutene-1,2-dione [Aldrich Merck KGaA, Darmstadt, Germany; 41 μL of a 10% (v/v) solution in ethanol] was then added to 22.8 mL of the chitosan solution, and the mixture was stirred for 15 min at room temperature. The solution was then placed in a heating cabinet at 40°C for 14 days, after which the solidified gel was mechanically processed into 10-μm particles. Then, 1.29 g of gel particles were added to 3.87 g of a 30 mM phosphate buffer containing 100 mM of sodium thiosulfate to yield a 25% (w/w) ViscoGelTM suspension. Thio-40 was prepared using the same method but by mixing 2.08 g particles with 3.12 g of the phosphate/thiosulfate buffer. A placebo gel to Thio-25, referred to as Placebo-25, was prepared in a similar way as Thio-25 but without the addition of sodium thiosulfate.

      Chito-Dota

      Chitosan (609.95 mg, degree of N-deacetylation 49%, viscosity 49 mPas; ViscosanTM, Flexichem AB, Uttran, Sweden) was suspended in 90 mL of distilled water. Then, 530 μL of 2 M aqueous HCl was added, and the chitosan concentration adjusted to 0.5% with water. DOTA-NHS-ester (117.16 mg; Macrocyclics, Plano, TX, United States) was dissolved in 20.0 mL of distilled water. Then, 14.0 mL of this solution was added to 23.51 mL of the chitosan solution. The pH was adjusted to 7.02 with 1 M NaOH, and the mixture stirred for 2 days. Gadolinium (III) acetate hydrate (216.5 mg; Aldrich, Merck KGaA) was dissolved in distilled water (20.0 mL); 14.6 mL of this solution was then added to the chitosan-DOTA solution, and the mixture was stirred overnight. Then, 270 mg of EDTA (Scharlau, Scharlab, Barcelona, Spain) was added, and the mixture stirred for 30 min. The solution was dialyzed against 3 × 3 L distilled water (Spectra/Por Membrane molecular weight cut-off [MWCO]: 6–8,000). Subsequently, the dialysate was lyophilized; 86.8 mg of the lyophilized powder was dissolved in distilled water, the pH adjusted to 6.7, and the volume adjusted to 6.5 mL. To 3.75 g of this solution, diethoxy-3-cyclobutene-1,2-dione [Acros, Organics, Thermo Fisher Scientific; 14 μL of a 6.5% (v/v) solution in ethanol] was added while stirring. After 15 min of stirring at room temperature, the solution was placed in a heating cabinet at 40°C for 14 days. Finally, the solidified gel was mechanically processed into 10-μm particles, and 2.068 g of gel particles were mixed with 6.2 mL of 30 mM phosphate buffer.

      Hya-Dota

      Ethylene diamine (62.2 mg; Sigma-Aldrich; Merck KGaA) was dissolved in 20 mL of distilled water, pH was adjusted to 6.0 with 2 M HCl, and the volume was adjusted to 25.0 mL. N-hydroxy succinimide (23.3 mg; Aldrich, Merck KGaA) was then added under vigorous stirring to 209 mg of sodium hyaluronate (Fluka, Merck KGaA). Then, N-dimethylaminopropyl-N ethyl carbodiimide hydrochloride (10.7 mg; Sigma, Merck KGaA) was added under continuous stirring. This solution was slowly added to the ethylene diamine solution under vigorous stirring, and the reaction mixture was left at room temperature for 4 h. The solution was then dialyzed against 4 × 5 L distilled water (Spectra/Por Membrane MWCO: 2,000), after which the dialysate was lyophilized. Then, 138 mg of the lyophilized powder was dissolved in distilled water; 34.1 mg of DOTA-NHS-ester was added, the pH was adjusted to 6.9, and the mixture was stirred overnight. Then, 41 mg of gadolinium (III) acetate hydrate in 4 mL distilled water was added, and the mixture was stirred overnight. Finally, 270 mg of EDTA was added, and the mixture was stirred for 30 min followed by dialysis against 3 × 4 L of distilled water (Spectra/Por Membrane MWCO: 2,000). The dialysate was subsequently lyophilized, and 54.4 mg of the lyophilized powder was dissolved in 5.44 mL of 30 mM phosphate buffer.

      IT Administration

      All animals were subjected to a single gel injection (approximate volume: 0.15 mL) into the auditory bulla following a small paracentesis of the tympanic membrane.

      Cisplatin Administration

      Cisplatin (8 mg/kg b.w.; Platinol 1 mg/mL; Bristol-Myers Squibb AB, Solna, Sweden) was injected at a rate of 0.2 mL/min through a catheter (PE50, inner diameter 0.58 mm, outer diameter = 0.965 mm; Intramedic, Becton Dickinson, Franklin Lakes, NJ, United States) inserted into the right jugular vein toward the heart. To rinse the catheter, 1 mL of sterile saline was administered immediately after cisplatin injection. The catheter was subsequently removed, the jugular vein was ligated, and the skin was sutured.

      Hearing Thresholds

      Auditory function was quantified by determining the hearing thresholds at 12.5, 20.0, and 30.0 kHz with air-conducted acoustically evoked ABR. Each animal was placed in a soundproof box. The frequency-specific stimulus signal was generated through a signal analyzer (Tucker-Davis Technologies, Alachua, FL, United States) controlled by a computer and presented through an electrostatic speaker (EC1, Tucker-Davis Technologies). The speaker was connected to a 10-cm tube positioned in the ear canal of each guinea pig. Neural responses were then collected using three subdermal electrodes: one placed at the vertex (active), one on the mastoid (reference), and a ground electrode on the lower back. The ABR threshold was defined as the lowest stimulus intensity that produced a reproducible response for ABR wave II, which was visualized at the same latency after an average of 1,000 recordings.

      Morphology

      After the final ABR assessment, animals were deeply anesthetized with sodium pentobarbital [25 mg/kg, intraperitoneal (i.p.); Allfatal vet., 100 mg/mL; Omnidea AB, Stockholm, Sweden] and subsequently decapitated. In the Thio-25, Thio-40, and Thio-25-cispt groups, the temporal bones were removed and the bulla opened to expose the cochleae. Small fenestrations were made in the apex and round window, and 4% phosphate-buffered formaldehyde was gently flushed through the cochlea. Surface preparation was performed as previously described (Fransson et al., 2017). After analyzing all inner hair cells (IHCs), OHCs, and scar formations, the proportion (%) of hair cell loss per millimeter distance from the round window was calculated and plotted in cytocochleograms.

      MRI

      As described in section “Study Design”, guinea pigs (n = 19) received a single IT injection of Chito-Dota in one ear and Hya-Dota in the contralateral ear. Each animal underwent MRI immediately after injection and on two more occasions over 2 weeks. Anesthetized animals were placed in the supine position with the middle ear cavity situated within the sensitive region of a four-channel phased array coil originally designed for rat heart imaging (Rapid Biomedical, Würzburg, Germany) within an MR-compatible animal holder. The bed was positioned in the isocenter of a horizontal 9.4 T Agilent magnet equipped with a 12-cm inner diameter gradient system with a maximum gradient strength of 6000 mT/m and an actively tuned birdcage coil (RAPID Biomedical, Würzburg, Germany). Respiration rate was monitored throughout the experiment, and core body temperature was maintained at 37°C using feedback-controlled warm air (SA Instruments, Stony Brook, NY, United States). T1-weighted 3D images were acquired with a gradient echo 3D (GE3D) sequence: repetition time, 5.16 ms; echo time, 2.60 ms; number of averages, 4; flip angle, 20°; data matrix, 256 × 256 × 348; field of view (FOV), 38.4 × 38.4 × 57.6 mm3; resolution scan duration, 33 min and 51 s including two dummy scans.

      The bias field was characterized from the ratio of blurred (1.6% of FOV) 3D images acquired separately with the surface and volume coils using identical parameters as for the high-resolution images, apart from a reduced matrix size of 256 × 192 × 192.

      After imaging, the animals were sacrificed by an i.p. injection of sodium pentobarbital, followed immediately by decapitation.

      All MRI images were bias-field corrected using low-resolution and blurred volume and surface coil images. Intensities and volumes were estimated by segmenting areas in the image where there was a contrast difference using ImageJ (version 1.43; National Institutes of Health, Bethesda, MD, United States) and ITK-snap [version 3.41 (Yushkevich et al., 2006)].

      Statistics

      To investigate effects on hearing thresholds, mixed linear modeling was used to account for heteroscedasticity and autocorrelation in terms of time point, frequency, and IT administration (when both ears of an animal were included in the analysis). Frequency was included as a continuous variable. The model with the lowest maximum likelihood and fewest estimated parameters was considered to have the best fit; this was determined with a likelihood ratio chi-square test.

      Repeated measures analysis of variance (ANOVA) was used to analyze the percentage loss of OHCs in each row (three levels: rows 1, 2, and 3) as the within-subjects effect and the two types of IT administration (two levels: Thio-25 and none) as the within-subjects effect.

      An alpha level of 0.05 was used throughout, and all tests were two-sided. All calculations were performed in IBM SPSS Statistics (v. 23, release 23.0.0.0, 64-bit edition for Mac; Armonk, NY, United States).

      Results Study Part One Hearing Thresholds

      The first part of the study investigated conductive hearing loss induced by unilateral IT injection of two sodium thiosulfate-containing particulate chitosan gels, Thio-25 and Thio-40. The hearing thresholds of each animal measured before and after injection are presented in Figure 1. Mixed linear modeling was performed using hearing threshold as the outcome variable and IT administration (two levels: Thio-25 and Thio-40) as the effect, and frequency and time point (three levels: pretreatment, day 7, and day 10) as repeated effects. In the final model, time point was also used to model a random slope. There was a significant main effect of frequency (F = 146.18, p < 0.0001) and significant interactions between frequency and IT administration (F = 14.87, p < 0.001), frequency and time point (F = 69.00, p < 0.0001), and IT administration and time point (F = 24.85, p < 0.0001). The estimates of fixed effects are given in Table 1A, and pairwise comparisons are shown in Tables 1B,C. Both Thio-25 and Thio-40 increased the electrophysiological hearing thresholds, although Thio-25 did this to a significantly lesser extent than Thio-40. The hearing thresholds of both groups were significantly higher on days 7 and 10 compared to pretreatment.

      Guinea pigs were subjected to a single, unilateral intratympanic (IT) injection of sodium thiosulfate (100 mM) in a particulate chitosan gel with a gel particle concentration of 25% (Thio-25 group, n = 15) or 40% (Thio-40 group, n = 15). Electrophysiological hearing thresholds assessed with air-conducted acoustically evoked auditory brainstem response (ABR) were measured at 12.5, 20.0, and 30.0 kHz before (pre) and 7 and 10 days after IT administration. Hearing threshold (decibel sound pressure level, dB SPL) vs. time point stratified by IT administration and frequency is shown. Each color represents one animal. Fewer colors than 15 per graph are due to overlapping lines.

      Mixed linear modeling of associations of the hearing thresholds presented in Figure 1 with IT administration, frequency, and time point.

      Estimates of fixed effects on hearing threshold (dB SPL)
      Parameter β SE of β t p-value 95% CI

      Intercept 23 1.9 12.51 <0.0001 20 to 27
      Frequency# 0.72 0.08 8.59 <0.0001 0.55 to 0.89
      Interactions
      Time Point and IT Pre and Thio-25 4.6 2.1 2.17 0.03 0.38 to 8.9
      Pre and Thio-40 -3.4 1.9 -1.75 NS -7.23 to 0.48
      Day 7 and Thio-25 -2.9 2.8 -1.03 NS -8.54 to 2.69
      Day 7 and Thio-40 8.2 2.5 3.37 0.001 3.4 to 13
      Day 10 and Thio-25 -2.0 2.0 -1.01 NS -6.1 to 2.0
      Day 10 and Thio-40 Ref
      Time Point and Frequency# Pre and Frequency -0.65 0.08 -7.73 <0.0001 -0.82 to -0.48
      Day 7 and Frequency 0.11 0.11 1.04 NS -0.11 to 0.33
      Day 10 and Frequency Ref
      IT and Frequency# Thio-25 and Frequency -0.14 0.04 -3.86 <0.001 -0.21 to -0.07
      Thio-40 and Frequency Ref
      Estimates of fixed effects on the outcome variable, hearing threshold (dB SPL) are shown. Results obtained with mixed linear modeling using electrophysiological hearing threshold based on acoustically evoked ABR as the outcome variable, IT administration as an effect, frequency as a repeated effect, time point as a repeated effect, and time point as an effect for random slope. Covariate type: compound symmetry heterogeneous (fixed effects) and variance components (random effect). #In kHz. ABR, auditory brainstem response; β, coefficient of regression; CI, confidence interval; dB SPL, decibel sound pressure; IT, intratympanic; NS, non-significant; Pre, before IT administration; Ref, reference category.

      Pairwise comparisons of the analysis results presented in Table 1A.

      Pairwise comparisons of effects for hearing threshold (dB SPL)
      Time point (I) IT (J) IT Mean difference (I-J) SE p-value 95% CI

      Pre Thio-25 Thio-40 5.1 1.0 <0.0001 3.1 to 7.1
      Day 7 Thio-25 Thio-40 -14 1.9 <0.0001 -18 to -10
      Day 10 Thio-25 Thio-40 -4.9 2.0 0.02 -8.9 to -1.0
      CI, confidence interval; dB SPL, decibel sound pressure level; NS, non-significant; pre, before IT administration; SE, standard error of mean difference. signifies p < 0.05 (Bonferroni adjusted).

      Pairwise comparisons of the analysis results presented in Table 1A.

      Pairwise comparisons of effects for hearing threshold (dB SPL)
      IT (I) Time point (J) Time point Mean difference (I-J) SE p-value 95% CI

      Thio-25 Pre Day 7 -8.4 1.3 <0.0001 -12 to -5.1
      Pre Day 10 -6.9 1.4 <0.0001 -10 to -3.3
      Day 7 Day 10 1.5 1.4 NS -1.9 to 4.9
      Thio-40 Pre Day 7 -28 1.3 <0.0001 -31 to -24
      Pre Day 10 -17 1.4 <0.0001 -21 to -13
      Day 7 Day 10 11 1.4 <0.0001 7.3 to 14
      CI, confidence interval; dB SPL, decibel sound pressure level; NS, non-significant; pre, before IT administration; SE, standard error of mean difference. signifies p < 0.05 (Bonferroni adjusted).
      Morphology

      No significant IHC or OHC loss was found in the first five animals of the Thio-25 (Supplementary Table S1) and Thio-40 (Supplementary Table S2) groups. As the morphological procedure is very laborious, we decided not to count the remaining cochleae. These results indicate that the elevated hearing thresholds presented in section “Hearing Thresholds” were caused by conductive hearing loss.

      Study Part Two Hearing Thresholds

      As the IT administration of Thio-25 induced less conductive hearing loss than Thio-40 and because neither treatment caused hair cell loss, the protective effects of Thio-25 on cisplatin-induced ototoxicity were explored. Electrophysiological hearing thresholds before and 10 days after IT administration of Thio-25 followed by i.v. cisplatin injection are shown in Figure 2. Mixed linear modeling was then carried out using hearing threshold as the outcome variable and IT administration (two levels: Thio-25 and none), frequency, and time point (two levels: pretreatment and day 10) as repeated effects. In the final model, time point was also used to model a random slope. A significant main effect of IT administration (F = 56.68, p < 0.0001) and frequency (F = 126.06, p < 0.0001), and significant interactions between time point and IT administration (F = 33.76, p < 0.0001) and between time point and frequency (F = 126.38, p < 0.0001) were found. The fixed effects estimates are given in Table 2A, and pairwise comparisons are given in Tables 2B,C. In summary, cisplatin injection induced a significant increase in electrophysiological hearing threshold; however, this effect was significantly lower in ears treated with Thio-25 compared to no IT administration.

      Guinea pigs were subjected to a single, unilateral IT injection of a sodium thiosulfate-containing chitosan-based gel (Thio-25, n = 15), while the other ear was left untreated, serving as a control (None). The animals received a single high dose of cisplatin (8 mg/kg b.w., i.v.) 1 h later. Electrophysiological hearing thresholds (in decibel sound pressure level, dB SPL) assessed with air-conducted acoustically evoked auditory brainstem response (ABR) at 12.5, 20, and 30 kHz before and 10 days after IT administration are shown. Each color represents one animal. Fewer colors than 15 per graph are due to overlapping lines.

      Mixed linear modeling of associations of the hearing thresholds in the Thio-25-cispt group (n = 15) presented in Figure 2 with IT administration, frequency, and time point.

      Estimates of fixed effects on hearing thresholds (dB SPL)
      Parameter β SE OF β t p-value 95% CI

      Intercept 21 2.0 10.80 <0.0001 17 to 25
      IT None 16 1.9 8.26 <0.0001 12 to 19
      Thio-25 Ref
      Frequency# 0.96 0.06 14.79 <0.0001 0.83 to 1.1
      Interactions
      Time point and IT Pre and None -12 3.6 -3.26 <0.005 -19 to -4.40
      Pre and Thio-25 4.0 2.6 1.51 NS -1.3 to 9.2
      Day 10 and None Ref
      Day 10 and Thio-25 Ref
      Time point and frequency Pre and Frequency -0.96 0.09 -11.24 <0.0001 -1.1 to -0.79
      Day 10 and Frequency Ref
      Estimates of fixed effects on the outcome variable, hearing threshold (decibel sound pressure level; db SPL), are shown. Results obtained with mixed linear modeling using electrophysiological hearing threshold based on acoustically evoked ABR as the outcome variable, IT administration as a repeated effect, frequency as a repeated effect, time point as a repeated effect, and time point as an effect for random slope. Covariate type: first-order factor analytic (repeated effects) and variance components (random effect). #In kHz; ABR, auditory brainstem response; β, coefficient of regression; CI, confidence interval; dB SPL, decibel sound pressure; IT, intratympanic; NS, non-significant; Pre, before IT administration; Ref, reference category; SE, standard error of β.

      Pairwise comparisons of the analysis results presented in Table 2A.

      Pairwise comparisons of effects for hearing threshold (dB SPL)
      Time point (I) IT (J) IT Mean difference (I-J) SE p-value 95% CI

      Pre None Thio-25 -0.1 0.8 NS -1.7 to 1.5
      Day 10 None Thio-25 16 1.9 <0.0001 12 to 19
      CI, confidence interval; dB SPL, decibel sound pressure level; NS, non-significant; Pre, before IT administration; SE, standard error of mean difference. signifies p < 0.05 (Bonferroni adjusted).

      Pairwise comparisons of the analysis results presented in Table 2A.

      IT (I) Time point (J) Time point Mean difference (I-J) SE p-value 95% CI
      None Pre Day 10 -31.6 2.7 <0.0001 -37 to -26
      Thio-25 Pre Day 10 -16.0 1.9 <0.0001 -20 to -12
      CI, confidence interval; NS, non-significant; Pre; before IT administration; SE, standard error of mean difference. signifies p < 0.05 (Bonferroni adjusted).

      This experiment was repeated using Placebo-25 (the chitosan-based vehicle without sodium thiosulfate) instead of Thio-25. Ten days after cisplatin administration, animals in the Placebo-25 group had symmetrical, bilateral electrophysiological hearing threshold elevations (Supplementary Figure S1), suggesting that the vehicle itself did not offer any otoprotection.

      The experiment was then repeated a third time, using NaCl instead of Thio-25. Ten days after cisplatin administration, the animals had symmetrical, bilateral electrophysiological hearing threshold elevations (Supplementary Figure S2). Thus, IT administration had no effect on hearing thresholds.

      Morphology

      A representative example of the hair cell loss observed in cisplatin-injected animals that were unilaterally pretreated with IT Thio-25 (group Thio-25-cispt) is shown in Figure 3A,B. One animal showed marked bilateral hair cell loss (Figure 3C,D). The mean percentage losses of OHCs and IHCs in all animals are presented in Table 3. Repeated measures ANOVA revealed a statistically significant difference in terms of OHC loss across rows 1 [F(1,14) = 35.868, p < 0.001], 2 [F(1,14) = 19.368, p < 0.001], and 3 [F(1,14) = 18.145, p < 0.001], as well as statistically significant differences in terms of IT administration [F(2,13) = 27.310, p < 0.001]. The post hoc analysis results are shown in Figure 4. In summary, cisplatin-induced loss of OHCs was significantly less severe in ears subjected to IT Thio-25 compared to no IT administration, which agreed with our electrophysiological hearing threshold results.

      Animals in the Thio-25-cispt group (shown in Figure 2) were euthanized after hearing threshold assessment on day 10. Their cochleae were collected to quantify loss of inner hair cells (IHCs) and outer hair cells (OHCs) in the first (OHC1), second (OHC2), and third (OHC3) rows. Cytocochleogram results from an animal with a loss pattern that was representative of most of the cisplatin-treated guinea pigs subjected to no IT administration (A) and to IT administration of Thio-25 (B). Cytocochleogram results from the only cisplatin-treated animal with a large loss in the untreated ear (C) and the Thio-25-treated ear (D).

      Quantification of hair cell loss in Thio-25-cispt group described in Figure 2.

      Hair cell loss (%)

      OHC1 OHC2 OHC3 IHC





      IT Mean SD Mean SD Mean SD Mean SD
      None 36 24 26 21 23 18 0.0 0.1
      Thio-25 11 15 7.6 12 6.8 12 0.8 1.8
      IHC, inner hair cells; IT, intratympanic; OHC1, -2, and -3, outer hair cells by row; SD, standard deviation.

      Animals in the Thio-25-cispt group (presented in Figure 2) were euthanized after hearing threshold assessment on day 10. Their cochleae were collected to quantify hair cell loss. Repeated measures ANOVA of the percentage loss of outer hair cells (OHCs) in the first (OHC1), second (OHC2), and third (OHC3) rows are shown for ears injected with a thiosulfate- containing gel (Thio-25) and for the contralateral, non-injected ear (None). §§§ signifies p < 0.001.

      Study Part Three Gel Distribution and Clearance

      In the last part of the study, serial MRI was performed to monitor the middle ear distributions of chitosan and hyaluronan, including clearance from the middle ear cavity over a period of 14 days. The polymers were conjugated with a paramagnetic contrast agent to further improve detection and enable estimation of gel clearance over time. Minutes after injection, the contrast-enhanced gel appeared hyperintense and its location in the middle ear cavity was clearly seen, as seen in Figure 5AC, which show different orthogonal viewing planes of 3D data from an animal with IT administration of Chito-Dota and Hya-Dota in the right and left middle ears, respectively. At subsequent time points, the intensities were similar to nearby brain tissue, as seen in Figure 5DF, which were taken 4 days after gel administration and show an empty right middle ear and a mostly fluid-filled left middle ear. Figure 6 shows gel volume vs. time (A and B) and intensity vs. time (C and D) curves of all middle ears. The volume occupied by the gel was larger at the earliest second scanning, i.e., two days after gel administration, compared to the scanning performed immediately after administration of Chito-Dota (Figure 6A) and Hya-Dota (Figure 6B). At later time points, there was a trend for a successive decrease in gel volume. However, there was considerable interindividual variability (represented by the spread shown in Figure 6A,B) at each time point. For example, in 3 of 9 middle ears monitored 6 days after gel injection in each of the Chito-Dota and Hya-Dota groups, the gel volume was larger than immediately after gel injection and thereafter decreased. T1-weighted MR image intensity was dramatically decreased when comparing images acquired at the time of gel administration with those acquired 2 days later (Figure 6C,D). Presumably, the increase in volume and reduction in intensity reflect an initial accumulation of water from the surrounding tissues, thus diluting the contrast agent. Both the distribution and elimination of the chitosan- and hyaluronan-based gels appear to follow similar patterns, and a clear difference between the two forms could not be identified.

      Guinea pigs (n = 19) were subjected to IT administration of a paramagnetic chitosan-based gel (Chito-Dota) in one ear and a hyaluronan- based gel (Hya-Dota) in the contralateral ear. The gels were then visualized by magnetic resonance imaging. Different orthogonal viewing planes of 3D data from one animal taken immediately after (A–C) and 4 days after (D–F) injection of Chito-Dota into the right ear and Hya-Dota into the left ear. The position of each cochlea is indicated with a yellow arrow in B and E. The sagittal plane in C and F shows the left ear. Keys (in yellow): a, anterior; i, inferior; l, left; p, posterior; r, right; s, superior.

      Guinea pigs were subjected to intratympanic IT administration of two different paramagnetic gels, one based on chitosan (Chito-Dota) in one ear and one based on hyaluronan (Hya-Dota) in the contralateral ear. Volume and intensity in the middle ear were explored with magnetic resonance imaging performed on three different occasions in each guinea pig. The volume (A,B) and intensity (C,D) in the middle ear vs. time curves for each guinea pig are shown. n = 19 on day 1, n = 5 on day 3, n = 4 on day 5, n = 9 on day 7, n = 8 on day 10, n = 5 on day 12, and n = 5 on day 14 for both Chito-Dota and Hya-Dota.

      Discussion

      IT administration is commonly used in preclinical research. The present large-scale in vivo study in guinea pigs provides key data relating to the safety, efficacy, and elimination of an IT drug delivery system composed of an antioxidant incorporated in a particulate hydrogel drug carrier. A sodium thiosulfate-containing, chitosan-based system reduced ototoxic injury induced by a single high dose of cisplatin. Cisplatin is a common anticancer agent that predominantly exerts its effects through DNA-dependent mechanisms (Ghosh, 2019). Evidence from preclinical studies demonstrates that the cisplatin ototoxicity is primarily caused by OHC damage in the cochlea (Laurell and Bagger-Sjöbäck, 1991), and the underlying mechanisms include oxidative stress and mitochondrial dysfunction (Giari et al., 2012; Sheth et al., 2017). Drugs that up-regulate the antioxidant system are therefore considered promising candidates for otoprotection. Two measures were used to explore the ototoxic effects of cisplatin and the efficacy of middle ear administration: assessment of ABR and counting of cochlear hair cells. The primary outcome measure to verify toxicity and assess protective effects was hair cell counting, while the functional capacity of the ear following IT administration was better reflected by ABR assessment. Under normal physiological conditions, the middle ear cavity is filled with gas to optimize sound conduction to the cochlea. When a drug carrier is inserted into the middle ear cavity, air-conducted sound might temporarily be obstructed (conductive hearing loss). Therefore, it is generally desirable to use a technique to estimate bone conduction frequency-specific ABRs as this could provide useful information about middle ear function. However, assessing bone thresholds is difficult in the guinea pig. The first part of the study investigated hair cell loss induced by the drug delivery system. Although ABR assessment showed significantly increased thresholds on days 7 and 10, hair cell counting did not reveal any OHC or IHC loss. This finding corroborates previous results (Saber et al., 2010; Lajud et al., 2015). Taken together, the observed effects of the drug delivery system on hearing thresholds are largely due to conductive hearing loss and agree with a number of earlier in vivo studies (Engmér Berglin et al., 2015; Cole et al., 2018). In the second part of the study, the utility of particulate chitosan as a drug carrier for an antioxidant to protect inner ear structures was examined. The choice of sodium thiosulfate was based on positive results from earlier studies (Videhult et al., 2006; Videhult Pierre et al., 2009; Berglin et al., 2011). Sodium thiosulfate (100 mM), in a formulation containing 25% of thiosulfate-containing chitosan gel particles in suspension was used to protect the hearing end organ via a simple injection to the middle ear cavity 1 h before cisplatin administration. As conductive hearing loss did not completely recover within 10 days in the first part of the study, it was evident that hair cell counting represented a more reliable measure of ototoxicity. A partial protective effect on all three OHC rows was observed. Although some OHC loss occurred, it is important to consider that this is the first evidence of otoprotection observed 10 days after a single i.v. administration of cisplatin. On the other hand, short-term in vivo studies reported partial protection against cisplatin ototoxicity [see e.g., (Ghosh et al., 2018; Wang et al., 2018)]. Unfortunately, findings from many preclinical studies cannot be translated into clinical trials because of drug toxicity, drug-drug interaction, or the impermeability of the blood-labyrinth barriers. For example, Roldán-Fidalgo et al. (2016) reported that lutein exerted significant otoprotective effects in vitro but not in vivo. Earlier studies on drug delivery involved short follow-up periods, multiple dosing strategies, and more unreliable methods for administering cisplatin (i.p.). In the second part of the study, the effects of the drug carried itself on cisplatin-induced ototoxicity was also investigated. ABR assessment showed no significant difference between vehicle-treated and untreated ears. Therefore, hair cell loss in vehicle-treated ears was not assessed, largely because the technique is very laborious. As chitosan exhibits antioxidant properties (Ngo and Kim, 2014), it cannot be excluded that chitosan reduced hair cell loss in vehicle-treated ears but the effect was masked by the conductive hearing loss induced by IT administration. In the last part of the study, MRI was used to examine the distribution and elimination of particulate chitosan in comparison to hyaluronan, which is a frequently used vehicle for IT drug delivery [see e.g., (Arriaga and Goldman, 1998; Berglin et al., 2011; Rolland et al., 2019)]. To the best of our knowledge, no previous study has investigated these properties in two gels in the same animal for up to 14 days. Both polymers were conjugated with a gadolinium-containing contrast agent to improve detection. Gel volume changes in the middle ear varied between animals. A typical pattern was increase in gel volume the first days after IT injection, followed by a decrease. At 2 weeks (4 days longer than the protective study in part two), the middle ear was typically clear of fluid, and the MR signal in the inner ear had returned to baseline.

      Two major treatment approaches have been employed to circumvent ototoxicity in patients receiving cisplatin-based chemotherapy: systemic and local administration of otoprotector drug candidates. Drugs can be systemically administered during a time window that achieves otoprotection hopefully without compromising antineoplastic efficacy (Brock et al., 2018), or IT injection can deliver otoprotector drugs directly to the inner ear (Marshak et al., 2014; Sarafraz et al., 2018; Rolland et al., 2019). There has been much interest in improving formulations for IT drug delivery. The most appropriate formulation would facilitate drug transport of an otoprotector into the inner ear compartments while minimizing negative effects in the middle ear, including conductive hearing loss. In the present study, the entire middle ear was filled with chitosan. Injecting a smaller volume could be one way to improve chitosan-based delivery systems. Future research should address the effects of injection volume on conduction following IT delivery of a gel. Furthermore, little is known about drug absorption in the middle ear mucosa and how it affects drug transport to the inner ear; future research should address this shortfall. Longitudinal studies for longer than 10 days after cisplatin administration should also be performed to determine whether IT administration can sustain otoprotective effects.

      Chitosan is a water-soluble polymer formed by deacetylation of the linear, naturally occurring polymer chitin, which is built up by 1-4-b-linked N-acetyl-glucosamine (Ways et al., 2018). Chitosan is biodegradable with low toxicity, and its cationic nature makes it mucoadhesive (Ways et al., 2018). It has been investigated in many types of pharmaceutical formulations (Ways et al., 2018), including drug delivery to the inner ear (Paulson et al., 2008; Lajud et al., 2013). Technically speaking, there are two types chitosans: those with heterogeneous or homogenous acetylation patterns (Sannan et al., 1976). For decades, only heterogeneously deacetylated chitosans were available on the market. They are typically 70–95% deacetylated, which limits their solubility, and precipitate from solution at pH > 6. Heterogeneously deacetylated chitosans are therefore less suitable for IT administration. Although the pH in the middle ear cavity was not measured in the present study, a pH > 6 is expected in the steady-state conditions established in the guinea pig model. Moreover, IT administration of an acidic formulation can exacerbate cisplatin ototoxicity (Tanaka et al., 2003, 2004). The present study use a formulation with homogenously deacetylated chitosan and a pH of 7.4. These chitosans have recently become available and have lower degrees of deacetylation at 35–80%. In addition to the advantageous properties of heterogeneously deacetylated chitosans, new products have additional features including more rapid biodegradation (Shigemasa et al., 1994) and solubility at physiological pH (Vårum et al., 1994). In contrast to the heterogeneously deacetylated chitosans, the homogenously deacetylated chitosans enable the formation of a viscoelastic hydrogel, so called “crushed gels” or “ringing gels.” These gels are slightly cross-linked and form rigid constructs, which can be loaded with drugs, and after solidification they can be mechanically processed into well-separated particles of defined size. ViscoGelTM is an example of such a particulate hydrogel (Franzen et al., 2015) and was clinically evaluated in a vaccine study where it showed a good safety profile (Neimert-Andersson et al., 2014). The present investigation used a chitosan-based, cross-linked sodium thiosulfate-loaded viscoelastic gel suspended in an aqueous thiosulfate-containing buffer. The formulation was designed to combine the most attractive properties of chitosan hydrogels and drug release functionality. We hypothesized that the aqueous phase would enable rapid transport of thiosulfate to the inner ear, while the gel particles would achieve more sustained thiosulfate delivery by increasing its time in the middle ear cavity. The formulations were easily injected into the middle ear cavity and also offer the possibility of fine-tuning drug-release properties by altering gel particle size and/or concentration.

      Minimizing cisplatin-induced ototoxicity is of great clinical importance. Many physicians would like to avoid systemic protective treatment as it may interfere with the antineoplastic efficacy of cisplatin (Freyer et al., 2017). A prerequisite for developing otoprotection strategies is knowledge of the inner ear pharmacokinetics of cisplatin. It is well recognized that cisplatin-induced hearing loss is primarily seen in the high-frequency area corresponding to the basal turn of the cochlea. The drug is not uniformly distributed throughout the cochlea; instead, the highest concentration is found in the basal turn (Hellberg et al., 2013), in the vicinity of the round and oval windows. The findings above support the development of local protective treatment via IT administration of one or more otoprotectors. Previous studies suggest that cisplatin is not just transported by passive diffusion; enhanced uptake to inner ear targets involves active transport mechanisms, such as the organic cation 2 and the copper transporter 1 (Ciarimboli et al., 2010; More et al., 2010). IT administration of a drug that could block these transporters in the inner ear might represent an alternative method to reduce cisplatin-induced ototoxicity.

      Conclusion

      The results of this preclinical in vivo study show that cisplatin ototoxicity can be reduced by the localized administration of the antioxidant sodium thiosulfate in a suspension of a particulate, homogenously deacetylated chitosan. The IT drug delivery system induced conductive hearing loss that was not completely resolved within the 10-days study period, probably due to gel residue remaining in the middle ear. Future research will determine whether the properties of particulate chitosan for drug delivery to the inner ear can be further improved.

      Ethics Statement

      The study was carried out in accordance with the recommendations of the Swedish national regulations for animal care and use. The protocol was approved by the Regional Ethical Review Board in Uppsala (No. C5/15) and the Regional Ethical Review Board in Stockholm (No. 138/15).

      Author Contributions

      All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

      Conflict of Interest Statement

      MA is CEO at Flexichem AB, the inventor and current holder of the Viscosan manufacturing process. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer SH declared a shared affiliation, though no other collaboration, with one of the authors PVP to the handling Editor.

      Funding. This work was funded by AFA Insurance, 110079; Hörselforskningsfonden, 2016-532; Stiftelsen Tysta Skolan, FB16-0020; Uppsala University Hospital ALF Grants, AS1905702; and VINNOVA, 2015-00845.

      Mrs. Louise Zettergren and Birgitta Linder, Ph.D. are acknowledged for excellent laboratory work.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fncel.2019.00268/full#supplementary-material

      References Arriaga M. A. Goldman S. (1998). Hearing results of intratympanic steroid treatment of endolymphatic hydrops. Laryngoscope 108 (11 Pt 1), 16821685. Berglin C. E. Pierre P. V. Bramer T. Edsman K. Ehrsson H. Eksborg S. (2011). Prevention of cisplatin-induced hearing loss by administration of a thiosulfate-containing gel to the middle ear in a guinea pig model. Cancer Chemother. Pharmacol. 68 15471556. 10.1007/s00280-011-1656-2 21533919 Brock P. R. Maibach R. Childs M. Rajput K. Roebuck D. Sullivan M. J. (2018). Sodium thiosulfate for protection from cisplatin-induced hearing loss. N. Engl. J. Med. 378 23762385. 10.1056/NEJMoa1801109 29924955 Campbell K. C. M. Rybak L. P. Meech R. P. Hughes L. (1996). D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear. Res. 102 9098. 8951454 Ciarimboli G. Deuster D. Knief A. Sperling M. Holtkamp M. Edemir B. (2010). Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 176 11691180. 10.2353/ajpath.2010.090610 20110413 Cohen-Salmon M. Regnault B. Cayet N. Caille D. Demuth K. Hardelin J. P. (2007). Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc. Natl. Acad. U.S.A. 104 62296234. 10.1073/pnas.0605108104 17400755 Cole L. K. Rajala-Schultz P. J. Lorch G. (2018). Conductive hearing loss in four dogs associated with the use of ointment-based otic medications. Vet. Dermatol. 29:341. 10.1111/vde.12542 29664150 Dickey D. T. Muldoon L. L. Kraemer D. F. Neuwelt E. A. (2004). Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. Hear. Res. 193 2530. 15219317 Engmér Berglin C. Videhult Pierre P. Ekborn A. Bramer T. Edsman K. Hultcrantz M. (2015). Local treatment of the inner ear: a study of three different polymers aimed for middle ear administration. Acta Otolaryngol. 135 985994. 10.3109/00016489.2015.1058534 26146023 Fransson A. E. Kisiel M. Pirttilä K. Pettersson C. Videhult Pierre P. Laurell G. F. E. (2017). Hydrogen inhalation protects against ototoxicity induced by intravenous cisplatin in the guinea pig. Front. Cell. Neurosci. 11:280. 10.3389/fncel.2017.00280 28955207 Franzen H. M. Draget K. I. Langebäck J. Nilsen-Nygaard J. (2015). Characterization and properties of hydrogels made from neutral soluble chitosans. Polymers 7 373389. Freyer D. R. Chen L. Krailo M. D. Knight K. Villaluna D. Bliss B. (2017). Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 18 6374. 10.1016/S1470-2045(16)30625-8 27914822 Ghosh S. (2019). Cisplatin: the first metal based anticancer drug. Bioorg. Chem. 88:102925. 10.1016/j.bioorg.2019.102925 31003078 Ghosh S. Sheth S. Sheehan K. Mukherjea D. Dhukhwa A. Borse V. (2018). The endocannabinoid/cannabinoid receptor 2 system protects against cisplatin-induced hearing loss. Front. Cell. Neurosci. 12:271. 10.3389/fncel.2018.00271 30186120 Giari L. Dezfuli B. S. Astolfi L. Martini A. (2012). Ultrastructural effects of cisplatin on the inner ear and lateral line system of zebrafish (Danio rerio) larvae. J. Appl. Toxicol. 32 293299. 10.1002/jat.1691 21590781 Hellberg V. Wallin I. Ehrsson H. Laurell G. (2013). Cochlear pharmacokinetics of cisplatin: an in vivo study in the guinea pig. Laryngoscope 123 31723177. 10.1002/lary.24235 23754209 Lajud S. A. Han Z. Chi F. L. Gu R. Nagda D. A. Bezpalko O. (2013). A regulated delivery system for inner ear drug application. J. Control. Release 166 268276. 10.1016/j.jconrel.2012.12.031 23313113 Lajud S. A. Nagda D. A. Qiao P. Tanaka N. Civantos A. Gu R. (2015). A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application. Otol. Neurotol. 36 341347. 10.1097/MAO.0000000000000445 25587675 Laurell G. Bagger-Sjöbäck D. (1991). Dose-dependent inner ear changes after i.v. administration of cisplatin. J. Otolaryngol. 20 158167. 1870163 Le Gal K. Ibrahim M. X. Wiel C. Sayin V. I. Akula M. K. Karlsson C. (2015). Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7:308re8. 10.1126/scitranslmed.aad3740 26446958 Marshak T. Steiner M. Kaminer M. Levy L. Shupak A. (2014). Prevention of cisplatin-induced hearing loss by intratympanic dexamethasone: a randomized controlled study. Otolaryngol. Head Neck Surg. 150 983990. 10.1177/0194599814524894 24618499 More S. S. Akil O. Ianculescu A. G. Geier E. G. Lustig L. R. Giacomini K. M. (2010). Role of the copper transporter. J. Neurosci. 30 95009509. 10.1523/JNEUROSCI.1544-10.2010 Neimert-Andersson T. Binnmyr J. Enoksson M. Langeback J. Zettergren L. Hallgren A. C. (2014). Evaluation of safety and efficacy as an adjuvant for the chitosan-based vaccine delivery vehicle ViscoGel in a single-blind randomised Phase I/IIa clinical trial. Vaccine 32 59675974. 10.1016/j.vaccine.2014.08.057 25218298 Ngo D. H. Kim S. K. (2014). Antioxidant effects of chitin, chitosan, and their derivatives. Adv. Food Nutr. Res. 73 1531. 10.1016/B978-0-12-800268-1.00002-0 25300540 Paulson D. P. Abuzeid W. Jiang H. Oe T. O’Malley B. W. Li D. (2008). A novel controlled local drug delivery system for inner ear disease. Laryngoscope 118 706711. 10.1097/MLG.0b013e31815f8e41 18182968 Roldán-Fidalgo A. Martin Saldaña S. Trinidad A. Olmedilla-Alonso B. Rodríguez-Valiente A. García-Berrocal J. R. (2016). In vitro and in vivo effects of lutein against cisplatin-induced ototoxicity. Exp. Toxicol. Pathol. 68 197204. 10.1016/j.etp.2016.01.003 26850526 Rolland V. Meyer F. Guitton M. J. Bussieres R. Philippon D. Bairati I. (2019). A randomized controlled trial to test the efficacy of trans-tympanic injections of a sodium thiosulfate gel to prevent cisplatin-induced ototoxicity in patients with head and neck cancer. J. Otolaryngol. Head Neck Surg. 48:4. 10.1186/s40463-019-0327-x 30651130 Rybak L. P. Whitworth C. A. Mukherjea D. Ramkumar V. (2007). Mechanisms of cisplatin-induced ototoxicity and prevention. Hear. Res. 226 157167. 10.1016/j.heares.2006.09.015 17113254 Saber A. Laurell G. Bramer T. Edsman K. Engmér C. Ulfendahl M. (2009). Middle ear application of a sodium hyaluronate gel loaded with neomycin in a Guinea pig model. Ear Hear. 30 8189. 10.1097/AUD.0b013e31818ff98e 19125030 Saber A. Strand S. P. Ulfendahl M. (2010). Use of the biodegradable polymer chitosan as a vehicle for applying drugs to the inner ear. Eur. J. Pharm. Sci. 39 110115. 10.1016/j.ejps.2009.11.003 19931387 Salt A. N. Hartsock J. J. Gill R. M. King E. Kraus F. B. Plontke S. K. (2016). Perilymph pharmacokinetics of locally-applied gentamicin in the guinea pig. Hear. Res. 342 101111. 10.1016/j.heares.2016.10.003 27725177 Sannan T. Kurita K. Iwakura Y. (1976). Studies on chitin, 2. Effect of deacetylation on solubility. Macromol. Chem. Phys. 177 35893600. Sarafraz Z. Ahmadi A. Daneshi A. (2018). Transtympanic Injections of N-acetylcysteine and dexamethasone for prevention of cisplatin-induced ototoxicity: double blind randomized clinical trial. Int. Tinnitus J. 22 4045. 10.5935/0946-5448.20180007 29993216 Sayin V. I. Ibrahim M. X. Larsson E. Nilsson J. A. Lindahl P. Bergo M. O. (2014). Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 6:221ra15. 10.1126/scitranslmed.3007653 24477002 Sheth S. Mukherjea D. Rybak L. P. Ramkumar V. (2017). Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front. Cell. Neurosci. 11:338. 10.3389/fncel.2017.00338 Shi X. (2016). Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear. Res. 338 5263. 10.1016/j.heares.2016.01.010 26802581 Shigemasa Y. Saito K. Sashiwa H. Saimoto H. (1994). Enzymatic degradation of chitins and partially deacetylated chitins. Int. J. Biol. Macromol. 16 4349. 8180144 Tanaka F. Whitworth C. A. Rybak L. P. (2003). Influence of pH on the ototoxicity of cisplatin: a round window application study. Hear. Res. 177 2131. Tanaka F. Whitworth C. A. Rybak L. P. (2004). Round window pH manipulation alters the ototoxicity of systemic cisplatin. Hear. Res. 187 4450. 14698086 Vårum K. M. Ottoy M. H. Smidsrod O. (1994). Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohyd. Polym. 25 6570. Videhult P. Laurell G. Wallin I. Ehrsson H. (2006). Kinetics of cisplatin and its monohydrated complex with sulfur-containing compounds designed for local otoprotective administration. Exp. Biol. Med. 231 16381645. 17060685 Videhult Pierre P. Engmér C. Wallin I. Laurell G. Ehrsson H. (2009). High concentrations of thiosulfate in scala tympani perilymph after systemic administration in the guinea pig. Acta Otolaryngol. 129 132137. 10.1080/00016480802116232 18607994 Wang X. Chen Y. Tao Y. Gao Y. Yu D. Wu H. (2018). A666-conjugated nanoparticles target prestin of outer hair cells preventing cisplatin-induced hearing loss. Int. J. Nanomed. 13 75177531. 10.2147/IJN.S170130 30532536 Ways T. M. M. Lau W. M. Khutoryanskiy V. V. (2018). Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10:267. 10.3390/polym10030267 30966302 Yushkevich P. A. Piven J. Hazlett H. C. Smith R. G. Ho S. Gee J. C. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31 11161128. 10.1016/j.neuroimage.2006.01.015 16545965

      www.itksnap.org

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jlfyuq.com.cn
      www.jdzhdwy.org.cn
      oakworks.com.cn
      www.npeezi.com.cn
      www.pumdyo.com.cn
      oldjohn.com.cn
      rybnsi.com.cn
      www.pqlepz.com.cn
      www.omseoe.com.cn
      www.wztesr.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p