Front. Cell. Neurosci. Frontiers in Cellular Neuroscience Front. Cell. Neurosci. 1662-5102 Frontiers Media S.A. 10.3389/fncel.2019.00177 Neuroscience Original Research Stem Cell Based Drug Delivery for Protection of Auditory Neurons in a Guinea Pig Model of Cochlear Implantation Scheper Verena 1 2 3 * Hoffmann Andrea 3 4 Gepp Michael M. 5 6 Schulz André 5 Hamm Anika 3 4 Pannier Christoph 1 Hubka Peter 3 7 Lenarz Thomas 1 2 3 Schwieger Jana 1 3 1Department of Otolaryngology, Hannover Medical School, Hanover, Germany 2Cluster of Excellence ‘Hearing4all’, German Research Foundation, Bonn, Germany 3Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hanover, Germany 4Department of Orthopaedic Surgery, Hannover Medical School, Hanover, Germany 5Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany 6Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany 7Department of Experimental Otology, Hannover Medical School, Hanover, Germany

Edited by: Peter S. Steyger, Oregon Health & Science University, United States

Reviewed by: Robert Shepherd, The University of Melbourne, Australia; Robert M. Raphael, Rice University, United States

*Correspondence: Verena Scheper, scheper.verena@mh-hannover.de

This article was submitted to Cellular Neurophysiology, a section of the journal Frontiers in Cellular Neuroscience

14 05 2019 2019 13 177 30 01 2019 12 04 2019 Copyright © 2019 Scheper, Hoffmann, Gepp, Schulz, Hamm, Pannier, Hubka, Lenarz and Schwieger. 2019 Scheper, Hoffmann, Gepp, Schulz, Hamm, Pannier, Hubka, Lenarz and Schwieger

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Background: The success of a cochlear implant (CI), which is the standard therapy for patients suffering from severe to profound sensorineural hearing loss, depends on the number and excitability of spiral ganglion neurons (SGNs). Brain-derived neurotrophic factor (BDNF) has a protective effect on SGNs but should be applied chronically to guarantee their lifelong survival. Long-term administration of BDNF could be achieved using genetically modified mesenchymal stem cells (MSCs), but these cells should be protected – by ultra-high viscous (UHV-) alginate (‘alginate-MSCs’) – from the recipient immune system and from uncontrolled migration.

Methods: Brain-derived neurotrophic factor-producing MSCs were encapsulated in UHV-alginate. Four experimental groups were investigated using guinea pigs as an animal model. Three of them were systemically deafened and (unilaterally) received one of the following: (I) a CI; (II) an alginate-MSC-coated CI; (III) an injection of alginate-embedded MSCs into the scala tympani followed by CI insertion and alginate polymerization. Group IV was normal hearing, with CI insertion in both ears and a unilateral injection of alginate-MSCs. Using acoustically evoked auditory brainstem response measurements, hearing thresholds were determined before implantation and before sacrificing the animals. Electrode impedance was measured weekly. Four weeks after implantation, the animals were sacrificed and the SGN density and degree of fibrosis were evaluated.

Results: The MSCs survived being implanted for 4 weeks in vivo. Neither the alginate-MSC injection nor the coating affected electrode impedance or fibrosis. CI insertion with and without previous alginate injection in normal-hearing animals resulted in increased hearing thresholds within the high-frequency range. Low-frequency hearing loss was additionally observed in the alginate-injected and implanted cochleae, but not in those treated only with a CI. In deafened animals, the alginate-MSC coating of the CI significantly prevented SGN from degeneration, but the injection of alginate-MSCs did not.

Conclusion: Brain-derived neurotrophic factor-producing MSCs encapsulated in UHV-alginate prevent SGNs from degeneration in the form of coating on the CI surface, but not in the form of an injection. No increase in fibrosis or impedance was detected. Further research and development aimed at verifying long-term mechanical and biological properties of coated electrodes in vitro and in vivo, in combination with chronic electrical stimulation, is needed before the current concept can be tested in clinical trials.

spiral ganglion neuron functionalized cochlear implant biological functionalization hydrogel encapsulation coating injection genetically modified cells HO 2058/13-1 SCHE 1663/2-1 Deutsche Forschungsgemeinschaft10.13039/501100001659

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The cochlear implant (CI) is the standard treatment for unilateral and bilateral severe to profound sensorineural hearing loss, both in adults and children. More than 350,000 deaf individuals have already received cochlear implantations worldwide (NIDCD, 2017). In this device, acoustic signals are detected by a microphone, converted into electrical signals and transmitted transcutaneously to an implanted receiver. The signal is decoded and delivered via an electrode array implanted into the scala tympani of the cochlea to the auditory nerve. The entire frequency range of the acoustic signal is split into different frequency bands and allocated to the different contacts, mimicking the physiological tonotopic organization of the cochlea (Lenarz and Scheper, 2015).

      The loss of hair cells associated with deafness is followed by retraction of the peripheral nerve fibers in both the animal model (Zilberstein et al., 2012) and in humans (Liu et al., 2015; Whitlon, 2017), and then by degeneration of spiral ganglion neuron (SGN) cell bodies (Liu et al., 2015). This secondary degeneration is highly dependent on the cause of hearing loss and the cochlear structures affected. However, the number of SGNs is crucial for the success of cochlear implantation (Seyyedi et al., 2014). Thus, the prevention of progressive SGN degeneration is a major goal of CI research. The electrical stimulation of SGNs by the CI may (per se) reduce the degeneration of SGNs via depolarization-induced neurotrophic signaling pathways (Hansen et al., 2001; Scheper et al., 2009; Leake et al., 2013). The extent to which electrical stimulation alone is able to protect SGNs from degeneration in vivo (Li et al., 1999; Agterberg et al., 2010) is unknown, as is the dependence of the protective mechanism of electrical stimulation on various factors such as the onset and duration or stimulation parameters used (Araki et al., 1998; Leake et al., 1999).

      In addition to electrical stimulation via the CI, neuroprotective effects on SGNs have also been demonstrated for the application of exogenous neurotrophic factors both in vitro (Hegarty et al., 1997) and in vivo (Scheper et al., 2009; Leake et al., 2011). The neuroprotective effect of neurotrophic factors persists a few weeks after cessation of neurotrophic treatment (Maruyama et al., 2008; Agterberg et al., 2009). However, neurotrophic therapies may require ongoing administration if a lifelong survival effect is to be achieved in human patients (Gillespie et al., 2003; Gillespie and Shepherd, 2005). Various systems delivering neurotrophins and other drugs locally to the inner ear are under investigation (El Kechai et al., 2015; Nguyen et al., 2017; Mäder et al., 2018; Hao and Li, 2019). For human use, however, most approaches – if intended for continuous application – are not practicable due to the fact that the application has to be repeated [single injection via needle or catheter-based (Prenzler et al., 2018)], or the device or matrix has to be refilled periodically [osmotic pumps (Brown et al., 1993), or intratympanic hydrogels applied to the round window (Wang et al., 2011)].

      Cell-based drug delivery is an alternative approach to chronically treating inner ear neurons. Inoculation of the inner ear with appropriate viral vectors, in order to transduce cochlea cells to over-express a desired neurotrophic factor (Geschwind et al., 1996; Kanzaki et al., 2002), allows long-term stable application without a permanent opening of the cochlea. However, there are several safety concerns (David and Doherty, 2017), such as control of neurotrophic factor dosage, choice of transfection site/volume and, where appropriate, options for preventing expression of factors after transduction (Sacheli et al., 2013).

      Another approach to supplying inner ear neurons with cell-based neurotrophic factor is the implantation of autologous, allogenic, or xenogenic cells. Implanted cells can either be genetically engineered to overexpress a desired protein or (per se) to produce factors at a neuroprotective concentration. Fibroblasts induced to produce brain-derived neurotrophic factor (BDNF), a neurotrophin, have been shown to protect SGNs from degeneration in guinea pigs (Warnecke et al., 2012; Gillespie et al., 2015). However, implanted cells need to be entrapped into a matrix to avoid uncontrolled migration and to shield them from the host’s immune system (Warnecke et al., 2012). Gillespie et al. (2015) solved this problem by encapsulating fibroblasts into a non-biodegradable, biocompatible alginate matrix (ImmupelTM, Living Cell Technologies Limited). The same hydrogel was used to encapsulate Schwann cells genetically modified to overexpress the neurotrophins BDNF or neurotrophin 3 (NT-3). These entrapped cells supported SGN survival in an in vitro model of deafness (Pettingill et al., 2008) and, in the case of the BDNF-producing Schwann cells, protected SGNs in a guinea pig model (Pettingill et al., 2011).

      Choroid plexus cells that natively produce neuroprotective factors to protect inner ear neurons were implanted in deafened cats using unspecified alginate capsules (Skinner et al., 2009; Wise et al., 2011). The encapsulated choroid plexus cells were harvested from pigs and produced a cocktail of various neurotrophic factors including GDNF, BDNF, and VEGF (Skinner et al., 2009). These cells did not protect neurons from degeneration in the animal model used. Combined with electrical stimulation by the CI, however, capsule implantation resulted in improved neuronal survival (Wise et al., 2011). In general, microspheres have the disadvantage that they cannot be easily explanted and replaced, which – considering the timescale of lifelong implantation – is likely to be necessary in human CI users. This constraint can be overcome with cells encapsulated in explantable matrixes such as hollow-fiber membrane capsules equipped with a tether for removal. While these devices have already been successfully used in deafened guinea pigs for SGN protection (Fransson et al., 2018), they induced an increase in foreign-body reaction in deafened cats (Konerding et al., 2017). An alternative approach to the implanting of cells for chronic drug delivery to the inner ear neurons involves adhesion of the cells onto the CI surface. Using ultra-high viscous alginate (UHV-alginate) made of the brown algal species Lessonia nigrescens and Lessonia trabeculata, it has been shown that coating the CI with this alginate is possible (Schwieger et al., 2018). It has also been demonstrated that BDNF-overexpressing murine fibroblasts survive in the UHV-alginate and release BDNF at a concentration that is neuroprotective in vitro (Hütten et al., 2013). Since gaining approval for use in humans of murine fibroblasts as xenogeneic cells may be difficult, a human cell source may prove more beneficial. Human mesenchymal stem cells (MSCs) are a promising alternative for lifelong factor delivery. Genetically modified MSCs overexpressing BDNF are shown to produce BDNF at a neuroprotective concentration in vitro (Schwieger et al., 2018). When these cells, too, are encapsulated in UHV-alginate, they rescue SGNs from degeneration in vitro. Here we investigate the potential neuroprotective effect of MSCs incorporated into a UHV-alginate matrix in deafened guinea pigs. CI electrodes are coated with the cell-UHV-alginate hydrogel layers and implanted into the scala tympani. Additionally, the UHV-alginate-MSC matrix was injected into the scala tympani and gelled instead of being used to coat the CI. Injection into the inner ear was an approach used not only in deafened animals, but also in hearing animals, to investigate the effect of injection on hearing ability.

      Materials and Methods Animals and Experimental Conditions

      Adult male t Dunkin-Hartley guinea pigs (N = 43, weight 300–500 g, Charles River Laboratories, Sulzfeld, Germany) were kept in a temperature- and humidity-controlled room, exposed to a 24-h light-dark cycle (14 h/10 h) with free access to food and water.

      All animals were normal hearing, this having been proven by initial measurement of the acoustically evoked auditory brainstem response (AABR, see below). The guinea pigs were randomly divided into five experimental groups. Twenty-six animals were systemically deafened (see below). Deafening was verified after 1 week by AABR measurements, and these animals were randomly assigned to one of three experimental groups unilaterally implanted with the following: a cochlear implant (CI) (N = 8; one ear deaf: deaf; one ear deaf and CI inserted: deaf-CI), a CI with alginate-mesenchymal stem cell (MSC) coating (N = 10; one ear deaf: not analyzed; one ear deaf with alginate-MSC-coated CI: deaf-alginate-C) or an alginate-MSC injection into the scala tympani followed by the CI insertion (N = 8; one ear deaf: not analyzed; one ear deaf with alginate injection: deaf-alginate-I). The 17 remaining, non-deafened, normal-hearing animals were either directly sacrificed after verification of normal hearing (NH; N = 9) or received a bilateral CI implantation with an additional unilateral alginate-MSC injection (N = 8; one ear normal hearing with CI: NH-CI; one ear normal hearing with CI and MSC-UHV-alginate injection: NH-alginate-I). Figure 1 illustrates the experimental conditions (A) and the time line (B).

      (A) Illustration of experimental groups: red X: deafened ears; green X: normal-hearing ears; color code for ears: orange: deafened (red X) or normal-hearing (green X) ears with cochlear implant: deaf-CI and NH-CI; red: deafened ear without further treatment, included in group deaf; gray: deaf and implantation of CI with UHV-alginate-MSC coating: deaf-alginate-C; white with red x: contralateral ears of those treated with factor-releasing cells. Since it cannot be ruled out that the factor has an effect on contralateral neurons, theses ears were not included in the analysis. Violet: animals first received an alginate-MSC injection using a microcatheter system (provided by MED-EL Corp.) inserted 3 mm deep into the scala tympani. After injection the catheter was removed, a normal CI was inserted and the polymerization solution for alginate crosslinking was applied for 30 min at the round window niche. Violet with red X: deaf-alginate-I; violet with green X: normal hearing with CI and UHV-alginate-MSC injection: NH-alginate-I; white with green X: normal hearing: NH. (B) illustrates the time line of the experiments for each treatment condition.

      The purpose of the various experimental conditions is to provide information on:

      Spiral ganglion neuron (SGN) density in normal-hearing ears: NH.

      Influence of CI insertion on SGN density and hearing status in normal-hearing ears: NH-CI.

      SGN density after deafening: deaf.

      Effect of CI insertion on SGN density in deafened animals: deaf-CI.

      Neuroprotective potential of CI coated with UHV-alginate containing brain-derived neurotrophic factor- (BDNF-)overexpressing MSCs: deaf-alginate-C versus deaf-CI.

      Neuroprotective potential of UHV-alginate containing BDNF-overexpressing MSCs injected into the inner ear with subsequent CI insertion: deaf-alginate-I versus deaf-CI.

      Influence on hearing threshold of UHV-alginate injection with subsequent CI insertion: NH-alginate-I.

      Assessment of which application method (coating versus injection) is more favorable: deaf-alginate-C versus deaf-alginate-I.

      Deafening, AABR measurement, inner ear surgery and perfusion were performed under general anesthesia with medetomidine hydrochloride (0.2 mg/kg, intramuscular; CP-Pharma Handelsgesellschaft, Burgdorf, Germany), midazolam (1 mg/kg, intramuscular; Ratiopharm, Ulm, Germany) and fentanyl (0.025 mg/kg, intramuscular; Janssen-Cilag, Neuss, Germany). Animals were placed on a heating pad to maintain the body temperature at 37–38°C. They subcutaneously received 0.05 mg/kg atropine (B. Braun, Melsungen, Germany) to reduce bronchial secretion and salivation, 0.2 mg meloxicam/kg (Boehringer Ingelheim, Ingelheim am Rhein, Germany) for analgesia, and 2 × 4 ml Ringer’s solution including 5% glucose (both from B. Braun) per 300 g body weight, 10 mg enrofloxacin/kg (Bayer Vital, Leverkusen, Germany) for prophylactic antibiotic therapy. Areas to be incised were locally infiltrated with prilocaine (Xylonest 1%, AstraZeneca).

      The anesthesia was antagonized by injecting atipamezole (1 mg/kg; Zoetis, Parsippany, United States), flumazenil (0.1 mg/kg; Hexal, Holzkirchen, Germany) and naloxone (0.03 mg/kg, Ratiopharm).

      AABR Measurement

      Acoustic stimulation and recording of the auditory brainstem response (AABR) signals were performed using an Audiology Lab system (Otoconsult, Frankfurt a. M., Germany) in a soundproof booth. To detect general auditory system thresholds, acoustic clicks (duration: 50 μs) were used. For detection of frequency-specific acoustic thresholds, tone bursts (duration: 6 ms with 2 ms rising/falling ramps) at frequencies of 1, 2, 4, 8, 16, and 32 kHz with 1 octave step were used. The acoustic stimuli were presented by a calibrated loudspeaker (DT48, BeyerDynamic, Heilbronn, Germany) via a plastic cone placed in the outer ear canal.

      The AABR signals were recorded using subcutaneous electrodes. The signals were amplified, band-pass filtered and recorded at a sampling rate of 100 kHz. The signals were analyzed using custom-made software in MATLAB (Mathworks, Natick, MA, United States). The signals were averaged and smoothed using the Savitzky–Golay FIR filter (frame length: 1 ms; polynomial order: 5). The hearing thresholds were determined by visual inspection of AABR signals. The lowest stimulus intensity at which AABR signals could be detected was taken to be a hearing threshold for the relevant stimulus configuration.

      Only animals with initial normal hearing (thresholds of <40 dB SPL) were included into the study.

      Additional AABR measurements were performed in all animals 1 week after the deafening procedure on experimental day 0 to verify deafness, and in all animals on experimental day 28. In normal-hearing animals, frequency-specific stimulation was performed on day 0 and day 28 (following click measurement) to identify the frequency-specific impact of cochlear manipulation.

      The threshold shift was calculated as the difference between the initial hearing threshold and the hearing threshold after deafening or after cochlear implantation in the normal-hearing animals. Where the AABR threshold could not be identified up to the maximum click level [0 dB att. (=120 dB SPL)], the threshold shift was defined as the difference between the AABR threshold at initial measurement and the maximum click level.

      Deafening

      Directly after verification of normal hearing by AABR measurement, 26 animals were systemically deafened by subcutaneous injection of kanamycin (400 mg/kg; Kanamycin Sulfate, BioChemica, AppliChem GmbH, Darmstadt, Germany) and subsequent infusion of furosemide (100 mg/kg; Diuren, WDT, Garbsen, Germany) into the external jugular vein (Meyer et al., 2012), which has been shown to eliminate the majority of both inner and outer hair cells (Versnel et al., 2007). The success of the procedure was determined after 1 week by click-evoked AABR measurement. A click AABR threshold shift of 50 dB after the ototoxic treatment was set as the limit for indication of a successful deafening (Meyer et al., 2012). A click AABR threshold shift of 50 dB after the ototoxic treatment was set as the limit for indication of successful deafening (Meyer et al., 2012).

      Preparation of Genetically Modified MSCs

      The expression of human BDNF (entire coding sequence including signal peptide: Warnecke et al., 2012) was under the control of a spleen focus-forming virus (SFFV) promoter in a lentiviral vector that also mediated red fluorescence using the marker protein tdTomato (red). Subsequently, after lentivirus production, hMSCs from one selected donor were seeded at 3,000 cells/cm2, passage 4 or 5, and were infected with the BDNF-lentivirus including 8 μg/ml polybrene. In order to subsequently downgrade the cells to S1 level, the cells were cultured and expanded for 11 days before being harvested with trypsin/EDTA solution. The medium used for expansion of MSCs (‘MSC medium’) was Dulbecco’s Modified Eagle’s Medium (1 g/l glucose, Biochrom, FG0415) supplemented with 10% (v/v) fetal calf serum (FCS, not heat-inactivated, Thermo Fisher Scientific, Schwerte, Germany, ‘HyClone’, SV30160.03), 25 mM HEPES (Biochrom, Berlin, Germany), 1% (100 U/ml/100 μg/ml) penicillin/streptomycin (Biochrom, Berlin, Germany) and 2 ng/ml human recombinant FGF 2 (from Escherichia coli, PeproTech, Hamburg, Germany).

      Preparation of UHV-Alginate-MSC Injections and CI Coating

      For injection into the inner ear, 1 ml UHV-alginate solution (0.65% (w/v%) in isotonic 0.9% sodium chloride solution (B. Braun), provided by Fraunhofer IBMT, Sulzbach, Germany, now commercially available from Alginatec GmbH, Riedenheim, Germany) was mixed with 250,000 BDNF-producing MSCs. The alginate-MSC solution was freshly prepared during surgery; immediately following its preparation, it was injected into the scala tympani using a catheter system provided by MED-EL, Innsbruck, Austria. Two catheter types were used, one with a yellow conus and an outer diameter of 0.38 mm, and one with a transparent conus and an outer diameter of 0.64 mm. The thinner catheter had a more flexible consistency and was more difficult to insert, but was still the first choice as its insertion is hypothetically less traumatizing than that of the transparent catheter system.

      The cochlear implants were kindly provided by MED-EL Corp., Innsbruck, Austria. They consisted of a connector, a reference and an active electrode. The active electrode array had two electrode contacts and a marker point to guide insertion at a depth of 3 mm from the tip (Figure 2). The electrode arrays were precoated with poly-L-Lysine (pLL, Sigma-Aldrich, Taufkirchen, Germany), after which they were dipped into 300 μl alginate-MSC solution containing about 500,000 MSCs before subsequently being transferred into a 20 mM BaCl2 solution (with 115 mM NaCl and 5 mM L-histidine) to achieve crosslinking of the UHV-alginate-MSC layer, and finally washed with saline solution (0.9% w/v, B. Braun, Melsungen, Germany). In total, four alginate-MSC layers were applied, followed by three outer layers with cell-free alginate to protect the MSCs from the host immune system and to avoid migration of cells (Figure 3).

      Cochlear implant electrode. The electrodes consisted of a connector, a reference electrode and an active electrode with two contacts and a marker point to determine the insertion depth.

      Representative image of a UHV-alginate-MSC-coated cochlear implant. The photograph is taken from the tip of the array. The red layer depicts the boundary between CI surface and alginate coating. The first electrode contact is marked. BDNF-producing MSCs are visible all around the electrode array. The electrode was coated by dip-coating with four inner layers of alginate containing MSCs and three outer layers of cell-free alginate.

      Cochlear Surgery

      Cochlear implantation was performed in all experimental groups except the NH group. Either a CI (coated or uncoated) was immediately inserted, or one was inserted following insertion of a catheter for purposes of alginate-MSC injection.

      The middle ear cavity was opened using a postauricular approach, the cochlea visualized and the round window membrane incised. The CI electrode array was inserted into the scala tympani until the marker point reached the round window niche. Where alginate-MSC was injected (groups: deaf-alginate-I and NH-alginate-I), a catheter was inserted 3 mm into the scala tympani and the alginate-MSC matrix was injected until the surgeon observed flushing of the medium (pink color) that exited the cochlear while the bony cochlea capsule was being rinsed. The catheter was withdrawn while injection continued, and subsequently the CI was inserted. After CI insertion, the round window niche was filled with TABOTAMP® (Ethicon SARL, Neuchatel, Switzerland) and about two drops of BaCl2 were placed on the material using a syringe to induce gelation of the cell-containing UHV-alginate. After 30 min, the TABOTAMP®/BaCl2 layer was removed. The CI was secured in place and the bulla fenestration site closed using Tetric EvoFlow® (ivoclar vivadent, Schaan, Liechtenstein) in all implantation groups. The reference electrode was placed extratympanically on the bony wall of the bulla and the wound was sutured in two layers.

      Impedance Measurement

      Electrode impedances were measured in all implanted animals using a standard MED-EL PULSARci100 stimulator with a HD-CIS 750 pps coding strategy to generate biphasic monopolar pulse trains with a charge of 16 nC, as previously described (Wilk et al., 2016). Starting with the first (apical) contact, impedance was measured three times, followed by three subsequent impedance measurements at the second contact (basal). For data analysis purposes, the mean of the three measurements was taken for each contact (Wilk et al., 2016). In vivo measurement of electrode impedance was performed directly after CI insertion and 7, 14, 21, and 28 days postsurgically.

      In addition to in vivo measurements, the impedance of n = 3 electrode arrays was measured ex vivo to investigate whether the coating has an impact on electrode impedance. The first measurement without alginate coating was performed directly prior to coating with pLL in phosphate-buffered saline (PBS), because pLL is diluted 1:10 in PBS. The second impedance measurement (without coating) was performed in the MSC medium, and the final measurement (following coating with alginate-MSCs) was carried out in the MSC medium.

      Preparation of Specimen for Histological Analysis

      After the final AABR and impedance measurement, the animals received a second injection of the initial anesthesia and were euthanized by transcardial perfusion. Temporal bones were removed (Hütten et al., 2014) and the implant was secured in place at the round window niche using Tetric EvoFlow® (ivoclar vivadent). The duration of fixation was prolonged overnight followed by decalcification for about 3 weeks in 10% ethylenediamine tetraacetic acid-disodium salt (EDTA, Sigma-Aldrich Chemie GmbH, Steinheim, Germany). After dehydration with ethanol, the cochleae were cleared in Spalteholz solution [methyl salicylate, benzyl benzoate (MSBB); Figure 4], placed in self-made glass chambers (Wrzeszcz et al., 2013) and microscopically analyzed.

      The same cleared cochlea (dashed line) with CI in situ in methyl salicylate, benzyl benzoate (MSBB) (A) and without MSBB (B), illustrating the total transparency of decalcified cochleae positioned in MSBB (A) suitable for confocal laser scanning microscopy of SGNs. The electrode is secured in place at the round window niche with dental cement.

      SGN Density

      Using a Leica TSC SP8 confocal laser scanning microscope and the tissue’s PFA-induced autofluorescence, images were generated at a speed of 400 Hz and 2048 pixels × 2048 pixels with a fivefold object lens or 1024 pixels × 1024 pixels with a 10-fold object lens. Following the previously published protocol, the cochlea was scanned and the images were exported and further processed using ImageJ software (Wrzeszcz et al., 2013). The area of Rosenthal’s canal was traced and the SGNs were automatically counted in the traced area using the Image-based Tool for Counting Nuclei (ITCN) plug-in (Center for Bio-Image Informatics1). SGN count was performed on five subsequent images of cochlear cross-sections. The number of SGNs divided by the measured cross-sectional area of Rosenthal’s canal gives the SGN density (cells/10,000 μm2). The mean SGN density of the total cochlear length, including all cross-sections of Rosenthal’s canal, was analyzed. The mean SGN density of the (lower and upper) basal turn was also analyzed, but separately.

      Fibrosis

      Fibrosis was visually evaluated for one representative image per area to be analyzed. Since no fibrosis was detectable apically from the electrode tip, two areas of the scala tympani were analyzed where the electrode was located. One was the basal part of the cochlea including the area near the round window, and the other was the area of the scala tympani where the electrode tip was located. A subjective evaluation was performed using a ranking system. Scores for subjective ranking were assigned as follows: score 0: no connective tissue; score 1: thin film of fibrosis directly on the electrode surface; score 2: thin fibrous cloudy structures around the electrode; score 3: more prominent cloudy structures around the electrode; score 4: almost the entire investigated area of the scala tympani is filled with fibrous tissue.

      Alginate and Cell Analysis

      In one middle ear of the deaf-alginate-MSC injected group, crosslinked alginate was found in the middle ear cavity on experimental day 28 when the specimen preparation was performed. This alginate was transferred into the cell medium and microscopically (CKX53 + Camera XM10, Olympus) analyzed for detection of fluorescent marker protein producing MSCs. Cells with fluorophore expression were deemed to be surviving cells.

      Statistical Analysis

      The data were statistically analyzed using the GraphPad Prism®5 program.

      The relevant data sets (AABR threshold and threshold shift, SGN density, impedances and connective tissue score) were tested for normal distribution of the values, the D’Agostino and Pearson omnibus normality test being used for this purpose. Click-evoked AABR threshold and threshold shift, electrode impedances and SGN densities exhibited normal distribution.

      To compare click-evoked AABR threshold shifts between groups and impedances between groups, an unpaired t-test was performed. For the purpose of analyzing frequency-specific AABR thresholds on day 0 and day 28, as well as impedance over time, paired t-tests were performed.

      Spiral ganglion neurons density was then analyzed by applying Bartlett’s Test for Equality of Variances to the sample sets. With a p-value of 0.9833, the variances of the SGN densities of all groups were homogeneous. An ANOVA was performed and subsequently the Bonferroni multiple comparison test was used to analyze the variance of independent samples.

      The scores yielded by the connective tissue analysis were not distributed normally. The Kruskal–Wallis test was performed to compare these scores between groups, and the Wilcoxon matched-pairs test was used to compare basal and apical fibrosis within one experimental group.

      The significance levels determined were defined as follows:

      p > 0.05 = not significantly different (ns).

      p < 0.05 = significantly different ().

      p < 0.01 = highly significantly different (∗∗).

      p < 0.001 = most significantly different (∗∗∗).

      In the following sections, the data are represented as mean ± standard error of mean (SEM) for each experimental group.

      Results AABR

      A reference AABR using click stimuli was performed in all animals prior to their inclusion into the study to confirm that physiological hearing function was present. All animals’ hearing threshold (based on click-evoked potentials) was 80 dB att. (=40 dB SPL) or lower, and therefore all animals showed normal hearing as defined by previous studies.

      An additional AABR measurement was performed on experimental day 0 in animals 1 week after treatment with kanamycine and furosemide, the aim being to verify the success of the deafening method. All animals receiving ototoxic drugs were deaf and therefore underwent cochlear implantation.

      To investigate whether alginate injection may have an impact on residual hearing in implanted subjects, click- and frequency-specific hearing thresholds were analyzed for normal-hearing animals unilaterally provided with a cochlear implant (NH-CI), and contralaterally injected with alginate-embedded mesenchymal stem cells (MSCs) followed by CI insertion (NH-alginate-I).

      Using click-evoked AABR, a mean threshold shift (difference between day 0 threshold before surgery and day 28 threshold before perfusion) of 23.75 ± 19.78 dB SPL was detected in NH-CI ears. The same animals received a contralateral injection of UHV-alginate-MSCs; a CI was subsequently inserted and the UHV-alginate was crosslinked for 30 min using BaCl2. These ears had a threshold shift of 35.00 ± 21.21 dB SPL (NH-alginate-I). No statistically significant differences in mean hearing loss between both experimental groups were observed (Figure 5).

      The mean hearing threshold shift (click-evoked) of normal-hearing ears implanted with an uncoated cochlear implant (NH-CI) or of normal-hearing ears receiving an alginate-MSC injection followed by insertion of an uncoated cochlear implant (NH-alginate-I) did not differ 28 days after implantation. Each data point represents the threshold shift of click-evoked AABR in one ear.

      Analysis of frequency-specific thresholds revealed a significant increase in high-frequency thresholds (8, 16, and 32 kHz) in both experimental conditions, namely both CI insertion and alginate injection followed by cochlear implantation (Figure 6). At 32 kHz, the mean threshold shift after 28 days of implantation was 44 ± 17 dB (NH-CI) and 48 ± 13 dB (NH-alginate-I). With increasing distance from the round window, the threshold shift decreased in both conditions, from 37 ± 26 dB (NH-CI) and 47 ± 25 dB (NH-alginate-I) at 16 kHz to 20 ± 23 dB (NH-CI) and 24 ± 21 dB (NH-alginate-I) at 8 kHz, and 13 ± 19 dB (NH-CI) and 22 ± 22 dB (NH-alginate-I) at 4 kHz; in NH-CI treated ears, no significant difference in hearing thresholds (compared with the initial condition) was observed. At the lowest frequencies (i.e., 1 and 2 kHz), the hearing threshold on day 0 and day 28 in UHV-alginate- injected and cochlear-implanted ears (NH-alginate-I) – but not in only cochlear-implanted ears (NH-CI) – differed significantly (NH-CI mean threshold at 1 kHz: d0 39 dB and d28 48 dB; at 2 kHz: d0 35 dB and d28 47 dB; NH-alginate-I mean threshold at 1 kHz: d0 38 dB and d28 60 dB; at 2 kHz: d0 35 dB and d28 58 dB).

      Frequency-specific hearing thresholds in normal-hearing ears. The data shown are means ± SEM of data for all ears (n = 8) within the various experimental groups. Continuous lines: day 0 thresholds before implantation. Dashed lines: Thresholds 28 days after implantation. Orange: Normal hearing with CI (NH-CI); purple: Normal hearing with alginate-MSC injection and subsequent CI insertion (NH-alginate-I). Significant differences between initial hearing thresholds and the thresholds determined after 28 days of implantation are depicted above (NH-alginate-I) or below (NH-CI) the experimental condition in question. In both experimental groups, the hearing threshold at the higher frequencies (8, 16, and 32 kHz) increased significantly after implantation. At 4–1 kHz, cochlear implantation did not affect the threshold significantly, but alginate injection with subsequent CI insertion resulted in a significantly increased threshold at all frequencies. ns = not significat; p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

      SGN Survival

      In normal-hearing guinea pigs (NH, n = 9 animals, n = 18 ears), a mean neuronal density of 23.31 ± 0.34 spiral ganglion neurons (SGN)/10,000 μm2 was detected. Implantation of a CI or injection of UHV-alginate-MSCs followed by CI insertion in normal-hearing/non-deafened animals did not affect the SGN density compared with NH when the total cochlea is analyzed (NH-CI: 22.67 ± 0.48 SGN/10,000 μm2, n = 8; NH-alginate-I: 22.87 ± 0.65 SGN/10,000 μm2; n = 8; Figure 7A) or when the lower and upper basal region of the cochlea is investigated (Figure 7B) (ANOVA, total cochlea: p = 0.57; basal: p = 0.64).

      Mean spiral ganglion neuron density in normal-hearing ears without further intervention (NH; n = 9 animals, i.e., n = 18 ears), with cochlear implantation (NH-CI; n = 8 ears) and with injection of alginate-MSCs followed by CI insertion (NH-alginate-I; n = 8 ears) did not differ over the entire length of the cochlea (A) and for the basal region (lower and upper basal turn) (B). Each data point in (A) represents the mean SGN density of one animal over the full length of the cochlea. Each data point in B represents the mean SGN density of the lower basal or upper basal cochlear turn of one experimental animal. ns = not significat; ∗∗p < 0.01; ∗∗∗p < 0.001.

      The analysis of variance of the mean SGN densities in deafened ears showed highly significant differences both for the total cochlear (p = 0.0005) and for the basal region (p < 0.0001) when compared with NH. Applying the Bonferroni multiple comparison test, the mean SGN densities of the deafened groups were tested for difference. The deafening procedure resulted in a significantly reduced mean SGN density of 10.91 ± 0.52 SGN/10,000 μm2 over the entire length of the cochlea (Figure 8A). With 13.84 ± 0.56 surviving SGN/10,000 μm2, CI insertion evidently did not change neuronal survival compared with the non-implanted deafened ears, if measurements over the entire length of the cochlea are included. Four weeks after implantation of alginate-MSC-coated CIs into deafened ears, the SGNs were significantly protected compared with deafened controls (deaf-alginate-C: 16.30 ± 0.64 SGN/10,000 μm2 vs. deaf: 10.91 ± 0.52 SGN/10,000 μm2, p < 0.05). The injection of MSC-containing alginate (deaf-alginate-I: 11.61 ± 1.54 SGN/10,000 μm2) did not affect SGN survival compared with the deafened, or deafened and CI-implanted, ears, but resulted in significantly lower SGN survival than where ears were implanted with an alginate-MSC-coated CI.

      Focusing on the basal cochlear region (lower basal and upper basal cross-section of Rosenthal’s canal) where injection and implantation takes place, even more prominent differences are evident between the treatment strategies (Figure 8B). Cochlear implantation (per se) resulted in better SGN preservation than no intervention at all (deaf-CI: 14.10 ± 0.60 SGN/10,000 μm2 vs. 10.46 ± 0.50 SGN/10,000 μm2, p < 0.01). Protection of SGNs from degeneration by coating the CI with MSC-containing alginate resulted, in the basal cochlear region, in a SGN density of 16.36 ± 0.048 SGN/10,000 μm2, and was significantly improved compared with all other conditions (p < 0.001). No difference was observed between cochlear-implanted ears and those receiving an alginate injection before cochlear implantation (deaf-CI: 14.10 ± 0.60 SGN/10,000 μm2 vs. deaf-alginate-I: 11.64 ± 0.98 SGN/10,000 μm2; ns).

      The SGN density (number of surviving SGNs in 10,000 μm2) was influenced by the different interventions tested when data were collected for the total length of the cochlea (A) and, even more markedly, when the basal cochlear region was analyzed separately (B). The deafening procedure resulted in a significantly reduced SGN density compared with the normal-hearing control (NH, green dashed line). Cochlear implantation preserved SGNs from degeneration in the basal region. Coating the CI with alginate-MSCs (deaf-alginate-C) significantly preserved the SGNs from degeneration in deafened animals; the injection (deaf-alginate-I), however, did not. Each data point in (A) represents the mean SGN density of one animal over the full length of the cochlea. Each data point in (B) is the mean SGN density of the lower basal or upper basal cochlear turn of one experimental animal. ns = not significat; ∗∗p < 0.01; ∗∗∗p < 0.001.

      Impedance

      To investigate whether coating with alginate-MSCs had an impact on electrode impedance, coated electrodes had to be measured in the MSC medium to avoid damage to these cells and alginate destruction. Comparative measurements were made of the electrode impedance of arrays placed in the MSC medium and those placed in PBS: for both electrode contacts, impedance was found to be lower in PBS than in the MSC medium (Figure 9A; those data are not included in Figure 9B). Electrode impedances of contacts in the MSC medium were not affected by alginate-MSC coating as compared with impedance of the same contact before coating (Figure 9B; mean of contact 1 and 2 for uncoated in PBS: 2.38 ± 0.19 kΩ versus alginate-MSCs coated in medium: 2.77 ± 0.11 kΩ). In contrast to impedances measured ex vivo in the MSC medium, impedances measured in vivo directly after surgery were significantly increased (4.36 ± 0.20 kΩ, p < 0.001).

      Electrode impedance on electrode contact 1 (apical) and 2 (basal) in PBS and MSC medium before coating (A) and after coating (B) in medium and in vivo (coated implanted). Electrode impedance of uncoated contacts was increased in MSC medium compared with PBS (A). The coating did not affect impedance but after implantation, all impedances were increased (B).

      Change over time in impedance in vivo did not differ between experimental groups. This is mainly due to the high variability in each group (Supplementary Figure S1).

      Comparison of final electrode impedances on experimental day 28 revealed a statistically not significant tendency toward increased impedance at contact 2 (basal) in comparison with contact 1 (tip) in all groups. No differences in electrode impedance between groups were found (Figure 10).

      Electrode impedance on experimental day 28 did not differ between experimental groups.

      Fibrosis

      Fibrosis around the electrode array was visible in all cochleae analyzed. No fibrosis was detectable apically from the electrode tip. None of the ears showed an absence of fibrosis (score 0), and none was affected by massive fibrosis with a score of 4. Figure 11 includes representative images for scores 1, 2, and 3. No difference between alginate-injected cochleae or cochleae with insertion of alginate-coated CI or uncoated CI was observed (Figure 11).

      Fibrosis score of implanted ears for all experimental groups. Representative images of scores 1 (A), 2 (B), and 3 (C) are given. No images of score 0 and score 4 are shown, since all cochleae were affected to some extent by fibrosis and none of them was densely packed with fibrotic tissue. The extent of fibrosis did not differ between groups (D).

      Alginate and Cell Analysis

      The explanted alginate from one animal after 28 days of injection included living MSCs (Figure 12).

      Alginate including spherical MSCs explanted from the middle ear 28 days after injection and crosslinking in an animal. Several MSCs still produce the red fluorescence marker protein tdTomato, which is associated with the genetic modification for BDNF-overexpression and is an indicator for living cells.

      Discussion

      To determine the neuroprotective effect of brain-derived neurotrophic factor endogenously overexpressed from infected mesenchymal stem cells (MSCs), two different application methods were evaluated in systemically deafened guinea pigs. The BDNF-overexpressing MSCs were encapsulated in a UHV-alginate matrix and were either injected into the scala tympani or used to coat the cochlear implant array.

      Neuroprotection

      Cochlear implantation resulted in significantly increased spiral ganglion neuron survival in the basal region compared with deafened ears that were not further treated (Figure 8). A greater decrease in SGN density was to be expected due to the fact that the cochlear-implanted ears were locally manipulated, in contrast to the deafened ears which were not opened at all. It is possible, however, that merely the activation of the electrode for the purpose of the weekly impedance measurement itself resulted in a neuroprotective effect. It is known that electrical stimulation may have a protective effect on auditory neurons (Scheper et al., 2009; Leake et al., 2013; Shepherd et al., 2018). The electric fields increase gene expression for, and synthesis of, growth factors (Aaron et al., 2004), which may lead to neuroprotection through autocrine and paracrine neurotrophic signaling (Hansen et al., 2001). To date, exact parameters for electrical stimulation of the SGNs that result in reliable neuroprotection have not been defined. There are indications that even only short-term electrical stimulation may lead to increased SGN survival. This application of ‘short-term’ stimulation was for 2.3 h during weekly electrical ABR measurements in guinea pigs (Mitchell et al., 1997), and for 8–88 h over a period of 8.5–9.6 months in cats (Konerding et al., 2017). It may be that, by contrast, neuronal protection in the present study was initiated by electrical stimulation during impedance measurement, which is very brief and involves only a matter of seconds. This is a very interesting finding which should be investigated further in future projects.

      Coating the CI with alginate containing MSCs that continuously secrete BDNF additionally increased SGN survival in deafened animals compared to cochlear implantation without alginate-MSC functionalization (Figure 8). This effect is significant for the basal region (p < 0.001). Compared with deafened-only ears, this effect is evident in terms of the mean SGN density of the entire cochlea, and also if the focus is on the basal region only. This coating would therefore seem to be a feasible method of applying BDNF-overexpressing MSCs into the inner ear for chronic growth factor therapy. It is known from previous in vitro experiments that 50 ng/ml exogenous, recombinant human BDNF is optimal in order to preserve murine SGNs from degeneration, and that lower concentrations result in lower numbers of surviving neurons (Wefstaedt et al., 2005). To date, in vivo BDNF delivery has involved an osmotic pump or carrier matrices that deliver it into the inner ear or onto the round window. Ramekers et al. (2015) used pumps with a flow rate of 0.25 μl/h filled with 100 μg/ml BDNF, resulting in a calculated total quantity of BDNF infused into guinea pig cochleae after 28 days of about 17 μg. The same concentration of BDNF, i.e., 100 μg/ml, delivered into the inner ear using a pump was examined as to its biological effect by Miller (in combination with FGF) and by Miller et al. (2007) and Agterberg et al. (2009). Other studies have used much lower concentrations in guinea pigs [50 ng/ml pump-based delivery (Miller et al., 1997), or gelfoam cubes (1 mm3) infiltrated with 6 μg BDNF/ml saline placed on the round window (Havenith et al., 2010)] or rat [5.4 μg/ml pump-based delivery (McGuinness and Shepherd, 2005)] which also effectively preserved SGNs from degeneration. We know that the BDNF produced by the encapsulated hMSCs and released from the UHV-alginate was in the pg/ml-range and protected SGNs from degeneration in vitro (Schwieger et al., 2018). Although we did not measure the amount of BDNF released from the alginate coating in vivo, we speculate that the BDNF concentration in the inner ear was also in the pg/ml-range. If this is indeed the case, then our study reports a neuroprotective effect using a very low dose of BDNF compared with experiments described in the literature. It must be noted, however, that all these previous studies reported the BDNF concentration in the primed pumps or matrixes but did not measure the final concentration in the perilymph. There are initial reports on the pharmacokinetics of glucocorticoids (Salt and Plontke, 2018), but relevant studies regarding growth factor uptake, distribution and stability in the inner ear are still pending. It remains virtually impossible to state which BDNF concentration is required in vivo to achieve significant protection of SGN, since relevant pharmacokinetic studies are lacking. It should also be mentioned that there are indications that endogenous growth factors, as used in the present study, may be more potent for neuronal protection than exogenous factors, due to increased bioactivity of the endogenously produced growth factor. For erythropoietin (EPO), a profound structural difference between human endogenous and various pharmaceutical preparations of human recombinant erythropoietins have been shown (Reichel, 2011), which may lead to different biological activity. This effect may also apply for endogenous and recombinant BDNF. Before translating any approach for growth factor delivery into clinical practice, well-planned and well-performed studies on their pharmacokinetics are a prerequisite.

      In contrast to coating the CI with alginate-MSCs, injection of the alginate-MSC matrix with subsequent CI insertion did not affect SGN density compared to deafened-only ears (Figure 8). Since increased SGN survival was observed in the basal region of ears implanted with a CI, it would appear that alginate injection diminishes the effect of cochlear implantation. The reduced SGN survival observed in the injected alginate-MSC cohort (compared to the cohort with alginate-MSC coating on the electrode array) is caused by the injection technique. Although histological analysis did not include seeking for trauma of the inner ear structures, we know from the electrophysiological data that there is a functional impact on the inner ear that is mediated by injection of alginate-MSCs. Since we did not observe a difference in fibrous tissue growth between the groups, we speculate that the reason for the absence of a neuroprotective effect is not increased tissue trauma but physical impact on the delicate inner ear structures.

      Residual Hearing

      To investigate whether the hearing threshold may be influenced by alginate-MSC injection, we provided one experimental group with unilateral CI and alginate-MSC injection combined with subsequent CI insertion in the contralateral ear. Cochlear implantation resulted in a shift of 23 ± 20 dB SPL in click-evoked AABR threshold levels. In comparison to CI insertion with previous alginate injection, where the threshold increased by 35 ± 21 dB, no significant differences were detectable (Figure 5). However, the recording of click stimuli gives the lowest threshold detectable over the entire frequency range of the cochlea. To investigate whether there are differences between the high- (CI and alginate injection) and the low-frequency regions of the ear (no manipulation, region of physiologically functioning cochlear in patients with residual hearing), frequency-specific thresholds were measured. In both implantation modes – with and without additional alginate injection – high-frequency (32, 16, and 8 kHz) hearing ability was significantly reduced compared with the initial thresholds measured before cochlear manipulation. At 4–1 kHz, cochlear implantation did not modify the threshold significantly, but alginate injection with subsequent CI insertion resulted – across all frequencies – in a significantly increased threshold (Figure 6). Hearing preservation after cochlear implantation is affected by factors including insertion depth, length and mechanical characteristics of the electrode in use, surgical technique used (Lenarz and Scheper, 2015), insertion angle (Helbig et al., 2018) as well as insertion trauma, foreign-body reaction, electrode-neuron interfacing, and long-term stability of electrode position and function (Lenarz and Scheper, 2015). The high-frequency threshold increase observed in this study may be due to the presence of the CI inside the scala tympani, the insertion angle or depth, as well as to fibrous tissue growth around the electrode. It can, however, be stated that this high-frequency hearing loss is not clinically relevant, since the most important prerequisite for cochlear implantation is high-frequency hearing loss. Furthermore, we observed a significant low frequency threshold shift in all animals receiving an alginate injection. This loss of hearing in a cochlear region where no manipulation was performed may be due to the filling of the scala tympani with viscous alginate. This may lead to interference with the pressure wave in the perilymph or with basilar membrane movement, which may in turn lead to decreased activation of the high-frequency areas of the inner ear.

      We did not investigate a potential effect of alginate-MSC-coated CIs on the hearing threshold. It cannot be ruled out that such coating affects the hearing ability by inducing additional swelling, for example in general, alginate hydrogels are osmotically active and swell in, for example, low-pH environments or in hypotonic solutions (Bajpai and Sharma, 2004). The alginate hydrogel used in this study was produced using isoosmolaric reagents (storage solution and cross-linked solution). In a previous study, Ehrhart et al. (2013) demonstrated the stable volume (low swelling behavior) of such UHV-alginate hydrogels in isoosmolaric media over time. However, for reasons of patient safety, the swelling behavior in perilymph has to be investigated in detail in future studies.

      Alginate and Cell Analysis <italic>in situ</italic>

      The injection of alginate-MSCs was visually monitored and discontinued as soon as the surgeon observed the phenol-red-colored alginate (due to the matrix formed with the MSC medium) exiting the cochlea. There was, however, one individual in which UHV-alginate was found in the middle ear cavity. By means of microscopic analysis, it was proven that the MSCs survived (as indicated by red fluorescence) in alginate for 28 days in vivo (Figure 12).

      No information about the alginate-MSCs located in the scala tympani is generated by the present study, due to the fact that dehydration is a prerequisite for preparation of specimens for histological analysis of SGNs. This is not only the case for the method used in this study, but also for established procedures such as paraffin or plastic embedding (Scheper et al., 2017). Dehydration erases the alginate, so that the MSCs no longer remain in situ and cannot be visualized in the scala tympani. If electrodes had been explanted to evaluate the coating, it would not have been possible to compare fibrosis between CI-explanted ears and other ears where the electrode remained in situ; this is because it cannot be ruled out that, together with the electrode, fibrous tissue is additionally translocated or even extracted from the scala. Potential future studies could involve implanting additional animals, focusing only on investigation of alginate coating stability. Alternatively, the electrode array could be left in situ, and parts of the bony cochlear wall removed in order to investigate the electrode and its coating in situ, with subsequent dehydration for histological processing.

      Fibrosis

      The amount of fibrosis around the implanted arrays did not differ between the experimental groups, suggesting that the alginate – whether in the form of coating or an injection – does not increase the activation of the host immune system. It has previously been shown that the UHV-alginate is biocompatible (Schneider et al., 2005; Zimmermann et al., 2007), and here we show for the first time that this is also the case for application in the inner ear.

      Electrode Impedance – Effect of Coating

      Electrode impedance of uncoated contacts was increased in the MSC medium compared with PBS. These measurements were started in PBS, with three consecutive measurements performed; only afterwards were impedance levels measured in the MSC medium, again three times. Electrode impedance decreases after activation in an animal model (Wilk et al., 2016) and in humans (Hu et al., 2017). Therefore, the impedances were expected to be lower in the MSC medium than in PBS. Since the medium is protein-rich, these proteins may have attached to the contact surface and increased impedance levels. Since the coated electrodes in the MSC medium had the same impedance levels as uncoated electrodes in PBS, it can be speculated that, with this coating, protein attachment was prevented, so that it positively influenced electrode impedance. After implantation, all impedance levels of the coated electrodes were significantly higher; this finding was expected, since it is well known that electrode impedance rises after implantation (Paasche et al., 2006) compared with impedance measured ex vivo.

      Electrode Impedance – Effect of Experimental Condition Over Time

      Electrode impedance levels were measured weekly in all implanted ears over the experimental period of 28 days (Supplementary Figure S1). Changes in impedance over time did not differ between groups, suggesting that where the coating or scala tympani fills with the alginate-MSC matrix, this may not have a negative effect on electrode impedance.

      Conclusion

      Coating of the electrode array with BDNF-producing mesenchymal stem cells embedded in UHV-alginate has the effect of protecting spiral ganglion neurons from degeneration in systemically deafened animals. Such coating is superior to alginate-MSC injection, which did not affect the SGNs and which resulted in increased hearing loss compared with cochlear implantation alone in normal-hearing animals.

      Further research and development are needed before this concept can be tested in clinical trials. Additional studies are needed into how long MSCs survive in vivo in the alginate coating, and into whether the neuroprotective effect can be sustained for longer periods. Additionally, chronic electrical stimulation should simultaneously be applied: to mimic the situation in CI patients, and to investigate the influence of electrical stimulation on MSCs, coating stability and the combined effect of electrical stimulation and MSC-produced BDNF on SGNs.

      Ethics Statement

      All animal procedures were performed in accordance with the European Council directive (2010/63/EU). The protocol was approved by the Local Institutional Animal Care and Research Advisory Committee (IACUC) and permitted by the local authority [Lower Saxony State Office for Consumer Protection, Food Safety, and Animal Welfare Service (LAVES); approval number 17/2396].

      Author Contributions

      VS, TL, and AHo conceived and designed the experiments. MG and AS produced the UHV-alginate used in the study. AHo and AHa isolation, expansion, transduction, and characterization of MSCs. VS, JS, and PH performed in vivo experiments. VS, JS, and CP participated in the processing of the cochleae for histology. CP blinded to the different groups and performed the CLSM and analyzed these data. PH designed and implemented software for AABR analysis. VS and PH analyzed the AABR data. JS impedance data. VS and JS wrote the first version of the manuscript. All authors participated in the reviewing and rewriting of the manuscript. All authors read and approved the final manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), specifically through projects HO 2058/13-1 to AHo, SCHE 1663/2-1 to VS, as well as through ZI 1228/3-1, and the Cluster of Excellence EXC 1077/1 ‘Hearing4all’.

      The authors would like to thank Roland Hessler at MED-EL, Innsbruck, Austria, for providing the electrode arrays.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fncel.2019.00177/full#supplementary-material

      References Aaron R. K. Boyan B. D. Ciombor D. M. Schwartz Z. Simon B. J. (2004). Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin. Orthop. Relat Res. 419 3037. 10.1097/00003086-200402000-00006 Agterberg M. J. Versnel H. de Groot J. C. van den Broek M. Klis S. F. (2010). Chronic electrical stimulation does not prevent spiral ganglion cell degeneration in deafened guinea pigs. Hear. Res. 269 169179. 10.1016/j.heares.2010.06.015 20600740 Agterberg M. J. Versnel H. van Dijk L. M. de Groot J. C. Klis S. F. (2009). Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived neurotrophic factor in deafened guinea pigs. J. Assoc. Res. Otolaryngol. 10 355367. 10.1007/s10162-009-0170-2 19365690 Araki S. Kawano A. Seldon L. Shepherd R. K. Funasaka S. Clark G. M. (1998). Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens. Laryngoscope 108 687695. 10.1097/00005537-199805000-00012 9591547 Bajpai S. K. Sharma S. (2004). Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 59 129140. 10.1016/j.reactfunctpolym.2004.01.002 Brown J. N. Miller J. M. Altschuler R. A. Nuttall A. L. (1993). Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear. Res. 70 167172. 10.1016/0378-5955(93)90155-t 8294261 David R. M. Doherty A. T. (2017). Viral vectors: the road to reducing genotoxicity. Toxicol. Sci. 155 315325. 10.1093/toxsci/kfw220 27803388 Ehrhart F. Mettler E. Bose T. Weber M. M. Vasquez J. A. Zimmermann H. (2013). Biocompatible coating of encapsulated cells using ionotropic gelation. PLoS One 8:e73498. 10.1371/journal.pone.0073498 24039964 El Kechai N. Agnely F. Mamelle E. Nguyen Y. Ferrary E. Bochot A. (2015). Recent advances in local drug delivery to the inner ear. Int. J. Pharm. 494 83101. 10.1016/j.ijpharm.2015.08.015 26260230 Fransson A. Tornoe J. Wahlberg L. U. Ulfendahl M. (2018). The feasibility of an encapsulated cell approach in an animal deafness model. J. Control. Release 270 275281. 10.1016/j.jconrel.2017.12.014 29269144 Geschwind M. D. Hartnick C. J. Liu W. Amat J. Van De Water T. R. Federoff H. J. (1996). Defective HSV-1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth: model for treatment of neuron loss following cochlear degeneration. Hum. Gene Ther. 7 173182. 10.1089/hum.1996.7.2-173 8788168 Gillespie L. N. Clark G. M. Bartlett P. F. Marzella P. L. (2003). BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects. J. Neurosci. Res. 71 785790. 10.1002/jnr.10542 12605404 Gillespie L. N. Shepherd R. K. (2005). Clinical application of neurotrophic factors: the potential for primary auditory neuron protection. Eur. J. Neurosci. 22 21232133. 10.1111/j.1460-9568.2005.04430.x 16262651 Gillespie L. N. Zanin M. P. Shepherd R. K. (2015). Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig. J. Control. Release 198 2634. 10.1016/j.jconrel.2014.11.026 25481440 Hansen M. R. Zha X. M. Bok J. Green S. H. (2001). Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro. J. Neurosci. 21 22562267. 10.1523/jneurosci.21-07-02256.2001 11264301 Hao J. Li S. K. (2019). Inner ear drug delivery: recent advances, challenges, and perspective. Eur. J. Pharm. Sci. 126 8292. 10.1016/j.ejps.2018.05.020 29792920 Havenith S. Versnel H. Agterberg M. J. de Groot J. C. Sedee R. J. Grolman W. (2010). Spiral ganglion cell survival after round window membrane application of brain-derived neurotrophic factor using gelfoam as carrier. Hear. Res. 272 168177. 10.1016/j.heares.2010.10.003 20969940 Hegarty J. L. Kay A. R. Green S. H. (1997). Trophic support of cultured spiral ganglion neurons by depolarization exceeds cAMP and is additive with that by neurotrophins or [Ca requires elevation of2+]i within a set range. J. Neurosci. 17 19591970. 10.1523/jneurosci.17-06-01959.1997 9045725 Helbig S. Adel Y. Leinung M. Stover T. Baumann U. Weissgerber T. (2018). Hearing preservation outcomes after cochlear implantation depending on the angle of insertion: indication for electric or electric-acoustic stimulation. Otol. Neurotol. 39 834841. 10.1097/MAO.0000000000001862 29912820 Hu H.-C. Chen J. K.-C. Tsai C.-M. Chen H.-Y. Tung T.-H. Li L. P. (2017). Evolution of impedance field telemetry after one day of activation in cochlear implant recipients. PLoS One 12:e0173367. 10.1371/journal.pone.0173367 28394922 Hütten M. Dhanasingh A. Hessler R. Stöver T. Esser K. H. Möller M. (2014). In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment. PLoS One 9:e104564. 10.1371/journal.pone.0104564 25105670 Hütten M. Ehrhart F. Zimmermann H. Reich U. Esser K. H. Lenarz T. (2013). UHV-alginate as matrix for neurotrophic factor producing cells - a novel biomaterial for cochlear implant optimization to preserve inner ear neurons from degeneration. Otol. Neurotol. 34 11271133. 10.1097/MAO.0b013e3182804949 23512074 Kanzaki S. Stover T. Kawamoto K. Prieskorn D. M. Altschuler R. A. Miller J. M. (2002). Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J. Comp. Neurol. 454 350360. 10.1002/cne.10480 12442325 Konerding W. S. Janssen H. Hubka P. Tornoe J. Mistrik P. Wahlberg L. (2017). Encapsulated cell device approach for combined electrical stimulation and neurotrophic treatment of the deaf cochlea. Hear. Res. 350 110121. 10.1016/j.heares.2017.04.013 28463804 Leake P. A. Hradek G. T. Hetherington A. M. Stakhovskaya O. (2011). Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. J. Comp. Neurol. 519 15261545. 10.1002/cne.22582 21452221 Leake P. A. Hradek G. T. Snyder R. L. (1999). Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J. Comp. Neurol. 412 543562. 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 10464355 Leake P. A. Stakhovskaya O. Hetherington A. Rebscher S. J. Bonham B. (2013). Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats. J. Assoc. Res. Otolaryngol. 14 187211. 10.1007/s10162-013-0372-5 23392612 Lenarz T. Scheper V. (2015). “Preserving residual hearing in cochlear implant patients,” in Free Radicals in ENT Pathology eds Miller J. Le Prell C. G. Rybak L. (New York, NY: Humana Press) 423443. Li L. Parkins C. W. Webster D. B. (1999). Does electrical stimulation of deaf cochleae prevent spiral ganglion degeneration? Hear. Res. 133 2739. 10.1016/s0378-5955(99)00043-x Liu W. Edin F. Atturo F. Rieger G. Lowenheim H. Senn P. (2015). The pre- and post-somatic segments of the human type I spiral ganglion neurons - structural and functional considerations related to cochlear implantation. Neuroscience 284 470482. 10.1016/j.neuroscience.2014.09.059 25316409 Mäder K. Lehner E. Liebau A. Plontke S. K. (2018). Controlled drug release to the inner ear: concepts, materials, mechanisms, and performance. Hear. Res. 368 4966. 10.1016/j.heares.2018.03.006 29576310 Maruyama J. Miller J. M. Ulfendahl M. (2008). Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness. Neurobiol. Dis. 29 1421. 10.1016/j.nbd.2007.07.026 17870569 McGuinness S. L. Shepherd R. K. (2005). Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol. Neurotol. 26 10641072. 10.1097/01.mao.0000185063.20081.50 16151360 Meyer H. Stover T. Fouchet F. Bastiat G. Saulnier P. Baumer W. (2012). Lipidic nanocapsule drug delivery: neuronal protection for cochlear implant optimization. Int. J. Nanomed. 7 24492464. 10.2147/IJN.S29712 22654517 Miller J. M. Chi D. H. O’Keeffe L. J. Kruszka P. Raphael Y. Altschuler R. A. (1997). Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int. J. Dev. Neurosci. 15 631643. 10.1016/s0736-5748(96)00117-7 Miller J. M. Le Prell C. G. Prieskorn D. M. Wys N. L. Altschuler R. A. (2007). Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J. Neurosci. Res. 85 19591969. 10.1002/jnr.21320 17492794 Mitchell A. Miller J. M. Finger P. A. Heller J. W. Raphael Y. Altschuler R. A. (1997). Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig. Hear. Res. 105 3043. 10.1016/s0378-5955(96)00202-x 9083802 Nguyen K. Kempfle J. S. Jung D. H. McKenna C. E. (2017). Recent advances in therapeutics and drug delivery for the treatment of inner ear diseases: a patent review (2011-2015). Expert. Opin. Ther. Patents 27 191202. 10.1080/13543776.2017.1252751 27855527 NIDCD (2017). Cochlear Implants, Vol. Publication No. 00-4798. Bethesda, MD: National Institute of Health/National Institute on Deafness and Other Communication Disorders. Paasche G. Bockel F. Tasche C. Lesinski-Schiedat A. Lenarz T. (2006). Changes of postoperative impedances in cochlear implant patients: the short-term effects of modified electrode surfaces and intracochlear corticosteroids. Otol. Neurotol. 27 639647. 10.1097/01.mao.0000227662.88840.61 16868511 Pettingill L. N. Minter R. L. Shepherd R. K. (2008). Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 152 821828. 10.1016/j.neuroscience.2007.11.057 18304740 Pettingill L. N. Wise A. K. Geaney M. S. Shepherd R. K. (2011). Enhanced auditory neuron survival following cell-based BDNF treatment in the deaf guinea pig. PLoS One 6:e18733. 10.1371/journal.pone.0018733 21525998 Prenzler N. K. Salcher R. Timm M. Gaertner L. Lenarz T. Warnecke A. (2018). Intracochlear administration of steroids with a catheter during human cochlear implantation: a safety and feasibility study. Drug Deliv. Transl. Res. 8 11911199. 10.1007/s13346-018-0539-z 29761349 Ramekers D. Versnel H. Strahl S. B. Klis S. F. L. Grolman W. (2015). Temporary neurotrophin treatment prevents deafness-induced auditory nerve degeneration and preserves function. J. Neurosci. 35 1233112345. 10.1523/JNEUROSCI.0096-15.2015 26354903 Reichel C. (2011). The overlooked difference between human endogenous and recombinant erythropoietins and its implication for sports drug testing and pharmaceutical drug design. Drug Test. Anal. 3 883891. 10.1002/dta.388 22140023 Sacheli R. Delacroix L. Vandenackerveken P. Nguyen L. Malgrange B. (2013). Gene transfer in inner ear cells: a challenging race. Gene Ther. 20 237247. 10.1038/gt.2012.51 22739386 Salt A. N. Plontke S. K. (2018). Pharmacokinetic principles in the inner ear: influence of drug properties on intratympanic applications. Hear. Res. 368 2840. 10.1016/j.heares.2018.03.002 29551306 Scheper V. Hessler R. Hütten M. Wilk M. Jolly C. Lenarz T. (2017). Local inner ear application of dexamethasone in cochlear implant models is safe for auditory neurons and increases the neuroprotective effect of chronic electrical stimulation. PLoS One 12:e0183820. 10.1371/journal.pone.0183820 28859106 Scheper V. Paasche G. Miller J. M. Warnecke A. Berkingali N. Lenarz T. (2009). Effects of delayed treatment with combined GDNF and continuous electrical stimulation on spiral ganglion cell survival in deafened guinea pigs. J. Neurosci. Res. 87 13891399. 10.1002/jnr.21964 19084902 Schneider S. Feilen P. J. Brunnenmeier F. Minnemann T. Zimmermann H. Zimmermann U. (2005). Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes Metab. Res. Rev 54 687693. 10.2337/diabetes.54.3.687 15734844 Schwieger J. Hügl S. Hamm A. Lenarz T. Hoffmann A. Rau T. (2018). BDNF-Producing Human Mesenchymal Stem Cells in An Alginate-Matrix: Neuroprotection and Cochlear Implant Coating Stability in Vitro. Poster presented at the Laryngo-Rhino-Otologie Vol. 97. Thieme, Lübeck, 382. Seyyedi M. Viana L. M. Nadol J. B. (2014). Within-subject comparison of word recognition and spiral ganglion cell count in bilateral cochlear implant recipients. Otol. Neurotol. 35 14461450. 10.1097/MAO.0000000000000443 25120196 Shepherd R. K. Carter P. M. Enke Y. L. Wise A. K. Fallon J. B. (2018). Chronic intracochlear electrical stimulation at high charge densities results in platinum dissolution but not neural loss or functional changes in vivo. J. Neural Eng. 16:026009. 10.1088/1741-2552/aaf66b 30523828 Skinner S. J. Geaney M. S. Lin H. Muzina M. Anal A. K. Elliott R. B. (2009). Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma. J. Neural Eng. 6:065001. 10.1088/1741-2560/6/6/065001 19850973 Versnel H. Agterberg M. J. de Groot J. C. Smoorenburg G. F. Klis S. F. (2007). Time course of cochlear electrophysiology and morphology after combined administration of kanamycin and furosemide. Hear. Res. 231 112. 10.1016/j.heares.2007.03.003 17475424 Wang X. Dellamary L. Fernandez R. Ye Q. LeBel C. Piu F. (2011). Principles of inner ear sustained release following intratympanic administration. Laryngoscope 121 385391. 10.1002/lary.21370 21271594 Warnecke A. Sasse S. Wenzel G. I. Hoffmann A. Gross G. Paasche G. (2012). Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells in vitro and in vivo. Hear. Res. 289 8697. 10.1016/j.heares.2012.04.007 22564255 Wefstaedt P. Scheper V. Lenarz T. Stover T. (2005). Brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor survival effects on auditory neurons are not limited by dexamethasone. Neuroreport 16 20112014. 10.1097/00001756-200512190-00008 Whitlon D. S. (2017). Drug discovery for hearing loss: phenotypic screening of chemical compounds on primary cultures of the spiral ganglion. Hear. Res. 349 177181. 10.1016/j.heares.2016.07.019 27496256 Wilk M. Hessler R. Mugridge K. Jolly C. Fehr M. Lenarz T. (2016). Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode. PLoS One 11:e0147552. 10.1371/journal.pone.0147552 26840740 Wise A. K. Fallon J. B. Neil A. J. Pettingill L. N. Geaney M. S. Skinner S. J. (2011). Combining cell-based therapies and neural prostheses to promote neural survival. Neurotherapeutics 8 774787. 10.1007/s13311-011-0070-0 21904788 Wrzeszcz A. Reuter G. Nolte I. Lenarz T. Scheper V. (2013). Spiral ganglion neuron quantification in the guinea pig cochlea using confocal laser scanning microscopy compared to embedding methods. Hear. Res. 306 145155. 10.1016/j.heares.2013.08.002 23968822 Zilberstein Y. Liberman M. C. Corfas G. (2012). Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J. Neurosci. 32 405410. 10.1523/JNEUROSCI.4678-11.2012 Zimmermann H. Shirley S. G. Zimmermann U. (2007). Alginate-based encapsulation of cells: past, present, and future. Curr. Diab. Rep. 7 314320. 10.1007/s11892-007-0051-1 17686410

      https://imagej.nih.gov/ij/plugins/itcn.html

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.lnjyzyq.org.cn
      jc8news.com.cn
      haoqian.net.cn
      hzxfsj.com.cn
      www.lmchain.com.cn
      oefciw.com.cn
      ruochong.com.cn
      shimoo.com.cn
      www.technion.com.cn
      slsxsw.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p