Front. Cell Dev. Biol. Frontiers in Cell and Developmental Biology Front. Cell Dev. Biol. 2296-634X Frontiers Media S.A. 10.3389/fcell.2019.00366 Cell and Developmental Biology Original Research Quantitative Intracellular pH Determinations in Single Live Mammalian Spermatozoa Using the Ratiometric Dye SNARF-5F Chávez Julio C. Darszon Alberto Treviño Claudia L. Nishigaki Takuya * Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico

Edited by: Tomer Avidor-Reiss, The University of Toledo, United States

Reviewed by: Shaomin Shuang, Shanxi University, China; Lin Yuan, Hunan University, China

*Correspondence: Takuya Nishigaki, takuya@ibt.unam.mx

This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology

17 01 2020 2019 7 366 13 08 2019 13 12 2019 Copyright © 2020 Chávez, Darszon, Treviño and Nishigaki. 2020 Chávez, Darszon, Treviño and Nishigaki

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Intracellular pH (pHi) plays a crucial role in mammalian sperm physiology. However, it is a challenging task to acquire quantitative single sperm pHi images due to their small size and beating flagella. In this study, we established a robust pHi imaging system using the dual-emission ratiometric pH indicator, SNARF-5F. Simultaneous good signal/noise ratio fluorescence signals were obtained exciting with a green high-power LED (532 nm) and acquiring with an EM-CCD camera through an image splitter with two band-pass filters (550–600 nm, channel 1; 630–650 nm, channel 2). After in vivo calibration, we established an imaging system that allows determination of absolute pHi values in spermatozoa, minimizing cell movement artifacts. Using this system, we determined that bicarbonate increases non-capacitated human pHi with slower kinetics than in mouse spermatozoa. This difference suggests that distinct ionic transporters might be involved in the bicarbonate influx into human and mouse spermatozoa. Alternatively, pHi regulation downstream bicarbonate influx into spermatozoa could be different between the two species.

intracellular pH alkalization spermatozoa dual emission image splitter ratiometric Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México10.13039/501100006087

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The pH is fundamental for most proteins to ensure their proper function, as it influences the electrostatic status of their side chains that, in turn, affect protein structure (folding and conformation) and their interaction with other molecules (Zhou and Pang, 2018). Therefore, intracellular pH (pHi) changes serve as crucial signals in many cell types.

      In spermatozoa, pHi critically regulates motility (Ho et al., 2002; Nishigaki et al., 2014). In mammals, spermatozoa remain quiescent in the epididymis due to the acidic environment created by vacuolar-type H+-ATPase (V-ATPase) found in the apical plasma membrane of epithelial cells (Acott and Carr, 1984; Brown et al., 1997). Flagellar beating is suppressed in acidic environments as dynein ATPases, the motor molecules that propel the flagellum, are highly pHi dependent (Crhisten et al., 1983). Upon ejaculation and contact with the seminal fluid sperm pHi increases, and the flagellum starts beating. The initial flagellar beat is symmetric with low amplitude and high frequency. Subsequently in the oviduct, the flagellar beat pattern becomes vigorous (asymmetric with high amplitude and low frequency), a process called hyperactivation (Ho and Suarez, 2001). Hyperactivated motility is essential for mammalian spermatozoa since it is required to approach the oocyte and to penetrate its investments (Stauss et al., 1995; Suarez and Pacey, 2006). In order to induce and maintain hyperactivation, an increase in intracellular Ca2+ concentration ([Ca2+]i) is required (Ho et al., 2002), which is mediated through a sperm-specific Ca2+ channel, named CatSper (Ren et al., 2001). Although there are species-specific activation mechanisms of CatSper (Lishko et al., 2011), this channel is moderately voltage dependent and highly up regulated by intracellular alkalization (Kirichok et al., 2006). In mouse, the sperm-specific Na+/H+ exchanger (sNHE) is essential for the regulation of sperm motility and has been proposed as an activator of CatSper by elevating pHi (Wang et al., 2003; Navarro et al., 2008). On the other hand, in human spermatozoa, a voltage-gated H+ channel (Hv1) has been documented to be the main H+ transporter that activates CatSper rather than sNHE (Lishko et al., 2010). In sea urchin sperm, CatSper is a predominant player in chemotaxis toward sperm-attracting peptides (Seifert et al., 2015; Espinal-Enríquez et al., 2017) and sNHE has been shown to be critical for modulating CatSper activity (González-Cota et al., 2015; Windler et al., 2018).

      External bicarbonate (HCO3-) is fundamental for capacitation in mammalian spermatozoa (Lee and Storey, 1986; Visconti et al., 1995). Both the pH and the HCO3- concentration of the oviductal fluid are higher in uterine and tubal fluids compared to plasma (Vishwakarma, 1962). Moreover, pH in the rhesus monkey female tract elevates dramatically, concomitantly with ovulation (Maas et al., 1977), which might promote sperm capacitation in vivo. In mammalian spermatozoa, several HCO3- transporters were reported as candidates to mediate HCO3- influx across the plasma membrane such as Na+/HCO3- cotransporter (NBC) (Demarco et al., 2003), Cl/HCO3- exchangers (Chavez et al., 2012), and CFTR (Hernández-González et al., 2007; Xu et al., 2007), as well as its indirect entrance via CO2 diffusion with subsequent hydration by intracellular carbonic anhydrases (CA) (Wandernoth et al., 2010; José et al., 2015). Besides an increase in the pHi, a cytosolic HCO3- elevation is crucial for activation of the sperm soluble adenylyl cyclase (Okamura et al., 1985; Buck et al., 1999).

      To understand how sperm pHi is regulated, it is indispensable to determine where and when it changes in individual cells. Although sperm pHi measurements in suspension have been performed using fluorescence indicators for more than three decades (Schackmann and Boon Chock, 1986; Darszon et al., 2004; Hamzeh et al., 2019), there are few reports of imaging single sperm pHi (Zeng et al., 1996; Chávez et al., 2014, 2018; González-Cota et al., 2015). All these experiments were performed with BCECF (Rink et al., 1982), the most popular fluorescent pHi indicator in cell physiology. This fluorescence probe is ratiometric but requires dual-excitation (Rink et al., 1982). Consequently, there is a time lag between two subsequent images excited by two different wavelengths and therefore, cell movement artifacts can be significant. Furthermore, BCECF is highly phototoxic to cells (Nishigaki et al., 2006), which was also confirmed in this study.

      To overcome the BCECF disadvantages stated above we employed SNARF-5F acetoxymethyl ester (AM) (Liu et al., 2001) whose fluorescence spectra changes (shift of the peak wavelength) depending on pH (pKa: 7.2). This dye allowed us to perform dual-emission ratiometric pHi imaging using an image splitter with a single EMCCD camera. In this report, we detail our pHi imaging setup and conditions. Furthermore, we found kinetic differences in the pHi changes induced by HCO3- in human and mouse spermatozoa which could suggest that HCO3- influx pathways are distinct in human and mouse spermatozoa.

      Materials and Methods Materials

      Dimethyl sulfoxide (DMSO, cat. D2650), ammonium chloride (NH4Cl, cat. A9434), nigericin (cat. N7143), progesterone (cat. P8783), and concanavalin A (cat. C2010) were purchased from Sigma–Aldrich. Pluronic F-127 (cat. P6867), SNARF-5F AM (5-(and-6)-carboxylic acid, acetoxymethyl ester) (cat. S23923), and 2′, 7′-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester (BCECF AM) (cat. B1170) were obtained from ThermoFisher Scientific.

      Biological Sample Collection Human Spermatozoa

      Human spermatozoa samples were obtained from healthy donors under written informed consent and with the approval of the Bioethics Committee of the Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBt-UNAM). Only ejaculates that fulfilled the World Health Organization guidelines were used in all the experiments (Cao et al., 2010). Motile cells were recovered using the swim-up technique in HTF medium (in mM: 90 NaCl, 4.7 KCl, 1.6 CaCl2, 0.3 KH2PO4, 1.2 MgSO4, 2.8 glucose, 0.3 pyruvic acid, 23.8 HEPES, and 21.4 lactic acid, 25 NaHCO3) pH 7.4 (Mata-Martínez et al., 2013). Briefly, 400 μl of liquefied semen was placed in glass test tubes and 1 ml HTF medium was carefully added on the top of the semen without mixing the phases. Samples were incubated for 1 h at 37°C under 5% CO2. The upper layer (700 μl) with motile spermatozoa was then collected. Cell density was determined using a Makler chamber and adjusted to 10 × 106 spermatozoa/ml.

      Mouse Spermatozoa

      All experimental protocols were approved by the Bioethics Committee of the IBt-UNAM). Motile spermatozoa were obtained from epididymal cauda of 3-month-old CD-1 mouse by placing incised epididymis in an Eppendorf tube containing 1 ml of in TYH medium (in mM: 119 NaCl, 4.7 KCl, 1.7 CaCl2, 1.2 KH2PO4, 1.2 MgSO4, 5.6 dextrose, 0.5 pyruvic acid, and 20 HEPES) pH 7.4. Spermatozoa were allowed to swim-out during 15 min at 37°C. The upper layer (800 μl) with motile spermatozoa was collected and the cell density was adjusted to 10 × 106 spermatozoa/ml using a Makler counting chamber (Irvine Scientific, Santa Ana, CA, United States).

      <italic>In vitro</italic> Fluorescence Spectra of SNARF-5F

      Fluorescence spectra of SNARF-5F were determined with a Perkin-Elmer LS 55 (Perkin-Elmer, Waltham, MA, United States) fluorescence spectrometer using the software FL WinLab version 4.00.03 for data acquisition (Figure 1). SNARF-5F non-permeable and AM versions were used at 20 μM final concentration in 50 mM potassium phosphate buffer (see table in Supplementary Figure S1). Multiple spectra were acquired using various excitation wavelengths (405, 440, 465, 488, 510, 532, and 543 nm) and different pHe (5.5, 6.0, 6.4, 6.8, 7.0, 7.2, 7.4, 7.8, and 8.2) (Supplementary Figure S1).

      SNARF-5F emission spectra at 488 and 532 nm excitation wavelengths, in 50 mM potassium phosphate buffers at various pH values. Emission spectra of non-permeable SNARF-5F (A) using a fixed excitation wavelength of 488 nm (A,left) and 532 nm (A,right). Emission spectra of SNARF-5F-AM (B) with 10 × 106 sperm/ml treated with 0.1% Triton X-100, using a fixed excitation wavelength of 488 nm (B,left) and 532 nm (B,right). The lines are representative fluorescence spectra at different pHe (5.5, 6.0, 6.4, 6.8, 7.0, 7.2, 7.4, 7.8, and 8.2), indicated by color lines. (C) SNARF-5F chemical structure. Typically, SNARF-5F possess two emission wavelengths, at 575 and 640 nm; n = 4.

      SNARF-5F and BCECF Incorporation Into Spermatozoa

      Motile mouse/human spermatozoa (10 × 106/ml) were incubated with 20 μM SNARF-5F AM in the presence of 0.1% pluronic F-127 during 90 min at 37°C with 5% CO2 in the dark. The cells were washed once by centrifugation at 200 × g for 5 min and resuspended with fresh medium. To obtain fluorescence spectra of SNARF-5F incorporated into spermatozoa, human spermatozoa loaded with SNARF-5F AM were diluted in the media of different pHe as described above and treated with 0.1% Triton-X 100 detergent. Fluorescence spectra of the lysed spermatozoa were acquired at excitation wavelengths 488 and 532 nm. For single cell recordings, spermatozoa were attached to Concanavalin A-treated coverslips for 2–3 min and mounted in recording chambers.

      For BCECF experiments, motile mouse/human spermatozoa (10 × 106/ml) were incubated with 1 μM BCECF AM without pluronic acid during 15 min at 37°C with 5% CO2 in the dark and the unincorporated dye was removed by centrifugation as the case of SNARF-5F.

      Imaging Setup

      Single cell images were acquired using two different setups: (1) Olympus iX71 LED-light source epifluorescence microscope and (2) Olympus iX81 laser widefield/total internal reflection fluorescence (TIRF) microscope (Olympus, Japan). The LED setup was equipped with a PlanApo N 60X/1.42 oil objective and a 3A 532 nm LED coupled to Opto-LED light controller (Cairn Research, United Kingdom). The laser setup was equipped with an Apo N (TIRF) 60X/1.49 oil objective and a 488 nm laser with high speed imaging shutter. To acquire dual emission images of SNARF-5F, an image splitter OptoSplit II (Cairn Research, United Kingdom) was used for both setups, LED (with band-pass filter ET 530/30X) and laser. To acquire the images with SNARF-5F, a wide band-pass filter ET 575/50 M (channel 1) and a band-pass filter ET 640/20 M (channel 2) were employed as dual emission filters combined with a dichroic mirror DC 610lp (Chroma Technology, United States) (Figure 2). For BCECF experiments, a 3.15 A 465 nm LED (Luminus Devices, Woburn, MA, United States) with bandpass filter HQ 480/40X was used for excitation light, combined with a dichroic mirror (Q505lp) and an emission filter (HQ 535/50M) (Chroma Technology, United States). Each setup has a 512 × 512 Andor iXon 3 EMCCD camera (model X3 DU897E-CS0) (Oxford Instruments, United Kingdom).

      Imaging set-up configuration to visualize the dual emission wavelengths of SNARF-5F. Diagram of imaging set-up (A), indicating LED (532 nm) or laser (488 nm) as an illumination source. A different excitation cube (green square) was used for the LED set-up (ET 530/30X, dichroic mirror DC 550 LP) and the laser set-up (D485/25X, dichroic DC510 LP). To visualize at the same time the two emission wavelengths of SNARF-5F, we used an image splitter (in purple), which has an emission cube (orange square) (ET575/50M, ET640/20M, and dichroic mirror DC610 LP), that divides the emission in reflected (channel 1, corresponding to emission wavelength 575 nm) or transmitted (channel 2, corresponding to emission wavelength 640 nm) images. The image splitter is coupled to the microscope on one side, and to the detector (CCD camera) on the other. Fluorescence images obtained from epifluorescence (laser set-up) microscope with 60× (Plan Apo N, 1.49 numerical aperture) objective, using 20 μM non-permeable SNARF-5F (B) or 20 μM SNARF-5F-AM loaded in human and mouse (not shown) spermatozoa in the presence of nigericin 10 μM (C) in 50 mM potassium phosphate buffers at indicated pH. (D) Ratio values were obtained (referred from panel C) at each pHe (6.0, 6.5, 7.0, 7.5, and 8.0) in human and mouse spermatozoa, using channel 1 (575 nm) and channel 2 (640 nm) fluorescence values. (E) Lineal correlation between pHe and fluorescence ratio in human and mouse spermatozoa, obtaining R2 = 0.99 and 0.98, respectively. Numbers 1 (yellow) and 2 (red) to the left in panels B and C refer to channel 1 (emission 575 nm) and channel 2 (emission 640 nm). Scale bar in panels B and C is equal to 10 μm; n = 3.

      Images were acquired with the software Andor iQ version 2.9.1 (LED set-up) (Oxford Instruments, United Kingdom) and Xcellence version 1.2 (laser set-up) (Olympus, Japan). Fluorescence images of both SNARF-5F and BCECF were taken with 1 × 1 binning, 5 images/s (5 ips), with an exposure time of 10 ms for the LED setup and 30 ms (laser potency 35%) for the laser setup. Images were analyzed with ImageJ version 1.52n (NIH, United States), obtaining mean fluorescence intensities, selecting heads and flagellum as regions of interest.

      <italic>In vivo</italic> pH<sub><italic>i</italic></sub> Calibration

      To convert fluorescence data to pH values in vitro, the following equation is commonly used:

      pH = pK a - log [ R - R B R A - R × F B ( λ 2 ) F A ( λ 2 ) ]

      where R is the ratio Fλ1/Fλ2 of fluorescence intensities (F) measured at two wavelengths λ1 and λ2 and the subscripts A and B represent the values at the acidic and basic conditions, respectively (Whitaker et al., 1991). However, it is difficult to maintain live spermatozoa in highly acidic and alkaline condition to obtain FB(λ2)/FA(λ2) values from the same cells. Therefore, we performed in vivo pHi calibration by fixing external pH (pHe) between 6.0 and 8.0 as reported previously (Grillo-Hill et al., 2014). Briefly, spermatozoa suspensions were incubated for 15 min with calibration medium (in mM: 120 KCl, 25 HEPES, 1 MgCl2, and 0.01 nigericin, at different pHe: 6.0, 6.5, 7.0, 7.5, and 8.0, adjusted with KOH). We measured the fluorescence intensity at two emissions, 575 (channel 1) and 640 nm (channel 2), always subtracting the fluorescence background value in each channel. As fluorescence ratio values (RF640/F575) have a lineal relation with pHi values (between 6.0 and 8.0) (Figures 2D,E), we used the following equations to estimate pHi from the fluorescence ratio values, for human: pHi = (RF640/F575 + 6.96)/1.22 and for mouse: pHi = (RF640/F575 + 7.52)/1.32.

      Statistical Analysis

      The results are expressed as the mean ± SEM of at least three independent experiments (three different donors or mice), with a minimum of 200 cells per condition. The data were analyzed by a comparison test between the groups, using the non-parametric Mann–Whitney U-test with 95% statistical significance. The paired tests were carried out comparing the head and the flagellum of the same cell. Additionally, the Bonferroni correction was used when multiple comparisons were made.

      Results Emission Spectra of SNARF-5F With Distinct Excitation Wavelengths

      To perform ratiometric fluorescence measurements with a good signal to noise ratio (S/N ratio), it is important to acquire bright fluorescence images in both channels. In other words, if we detect dim fluorescence signals in one channel, the S/N ratio of the dual-emission ratio values become undesirably low even when we detect bright signals in the other channel. As spermatozoa possess a quite reduced cytoplasm, it is crucial to use an appropriate excitation wavelength and emission filters. Therefore, we first determined the fluorescence spectra of SNARF-5F at several pHe values (5.5–8.2), exciting with various wavelengths (405–543 nm). As shown in Supplementary Figure S1, the longer excitation wavelength (longer than 465 nm) gives the higher fluorescence intensities in all emission wavelengths we explored (550–750 nm). Namely, 543 nm produced the highest fluorescence values.

      Figure 1 illustrates the fluorescence spectra of SNARF-5F at different pHe (5.5–8.2) excited at 488 and 532 nm. At both exciting wavelengths, the fluorescence intensities around 575 nm (the first peak) decrease when the pH increases, while those of around 640 nm (the second peak) increase at the same conditions. When exciting at 532 nm, the relative fluorescence intensities within the first peak at different pHe are much smaller than those within the second peak, as reported in the original article of SNARF-5F (Liu et al., 2001). Conversely, the relative fluorescence intensities within the two peaks became almost equal when 488 nm was used as excitation light (Figure 1A). In spite of this favorable feature, their absolute fluorescence intensities are small. Considering these characteristics, we selected 532 nm as the best compromise between brightness and peak balance for this study.

      To evaluate the incorporation of the membrane permeant dye SNARF-5F AM into the spermatozoa, we incubated human spermatozoa with 20 μM of this dye for 90 min. After the excess dye was washed out by centrifugation, the cells were lysed with 0.1% Triton X-100 and the fluorescence spectra were acquired (Figure 1B). The spectra of the dye incorporated into human spermatozoa were not identical to SNARF-5F in vitro, suggesting that SNARF-5F AM was not completely hydrolyzed in the cell and/or some of the dye was bound to certain molecules of the cell. Nevertheless, SNARF-5F AM incorporated into the cell responded to pHe changes similarly to SNARF-5F AM.

      Dual-Emission pH<sub><italic>i</italic></sub> Imaging System and <italic>in vivo</italic> Calibration of pH<sub><italic>i</italic></sub>

      A conventional dual-emission fluorescence imaging setup usually is composed of an epi-fluorescence microscope, a CCD camera, and a filter wheel, which exchanges two emission filters alternatively. In this type of setup, there is always a time lag between the image in one channel and the image in the other channel. Since spermatozoa are small and motile cells, the presence of a time lag between two images of each channel is undesirable. Therefore, we used an image splitter (Kinosita et al., 1991) that allows the simultaneous capture of the images from the two channels with a single camera (Figure 2A). In a common configuration of dual-emission ratiometric imaging, emission lights are divided into two components (two channels) at the isosbestic point, around 595 nm in the case of SNARF-5F AM excited by 532 nm. However, because the fluorescence intensity of the first peak (575 nm) is lower than the second peak (640 nm) as described previously (Figure 1), we separated the emission light at 610 nm (about 15 nm longer than the isosbestic point) by a dichroic mirror. Consequently, we collected a wide range of wavelengths, 550–600 nm, as the fluorescence signals in the first channel (channel 1). Then, we collected 630–650 nm wavelengths as the longer wavelength fluorescence (channel 2). This configuration gives us comparable fluorescence intensities from the two channels without the insertion of a neutral density filter (Figure 2A).

      Figure 2B shows fluorescence images (gray scale) of SNARF-5F in media at different pHs, clearly demonstrating the opposite changes of fluorescence intensity between Channel 1 and Channel 2. Since fluorescence spectra of SNARF-5F and SNARF-5F AM incorporated into human spermatozoa show a slight difference (Figures 1A,B), we performed in vivo calibration using human spermatozoa to convert the ratio fluorescence values into pHi values. To perform in vivo calibration, spermatozoa pHi was equilibrated to the pHe using high K+ (120 mM) media in the presence of 10 μM nigericin (an ionophore that facilitates K+/H+ exchange across the lipid bilayer). Figure 2C shows fluorescence images (pseudo color) of human spermatozoa, whose pHi was fixed at different pHe (6.0–8.0).

      The mean ratio values of fluorescence intensities of the two channels (F640/F575) in distinct pHi are summarized in Figure 3C and these ratio values are plotted as a function of pHi (Figure 2D). The ratio values increase proportionally to pHi between 6.0 and 8.0 with excellent linearity (human spermatozoa: RF640/F575 = 1.22 × pHi – 6.96, R2 = 0.99; mouse spermatozoa: RF640/F575 = 1.32 × pHi – 7.52, R2 = 0.98) (Figure 2E).

      Time-lapse experiments in the microscope set-up did not cause significant photobleaching in mammal spermatozoa, using LED or laser as an illumination source. Representative recordings from emission wavelength time lapse experiments, using 20 μM SNARF-5F-AM in human spermatozoa. Images were taken every 200 ms, exposure time 4 ms with 60× objective. An image splitter was used for the experiments, allowing us to measure emission fluorescence at 575 (left) and 640 (center) nm, and obtaining the ratio from both wavelengths (right). The illumination source was LED 532 (A) or laser 488 nm (B,C), in the epifluorescence (A,B) or TIRF 100 nm (C) configuration. Traces in each panel show representative single cell pHi. Same color at both emission wavelengths indicates the same cell; n = 3.

      Phototoxicity of SNARF-5F to Spermatozoa

      BCECF is known to be quite phototoxic to spermatozoa and this effect can be easily detected as flagellar beat attenuation and as a decrease in the fluorescence intensity (photo-bleaching) during the intense exposure of excitation light (Nishigaki et al., 2006; González-Cota et al., 2015). In this study, we confirmed the phototoxic effect of BCECF on sperm using the same setup utilized for SNARF-5F (Supplementary Figure S2). Particularly, the 488 nm laser excitation attenuated the flagellar beat of human and mouse spermatozoa after around 60 and 20 s illuminations, respectively. Subsequently, notable photobleaching of BCECF was observed in both human and mouse spermatozoa (Supplementary Figures S2A,C). On the other hand, LED illumination caused less photobleaching in human spermatozoa (Supplementary Figure S2B), but certain level of photobleaching was still observed in 40% of mouse spermatozoa (Supplementary Figure S2D). This result suggests that mouse sperm are more susceptible to oxidative stress than human spermatozoa.

      In contrast, SNARF-5F incorporated into spermatozoa is much less toxic to the cells than BCECF (Figure 3). The fluorescence intensities excited by LED and 488 nm laser (epi-fluorescence mode) did not cause photo-bleaching of the dye during our experimental periods (5 ips for 250 s) (Figures 3A,B). However, we observed a slight photobleaching of SNARF-5F when excited by the 488 nm laser in the TIRF configuration (Figure 3C). This photobleaching was negligible when we reduced the frequency of image acquisition from 5 to 2.5 ips (data not shown).

      Comparison of Epi-Fluorescence and TIRF Images

      In our previous study of pHi imaging (epi-fluorescence mode) of sea urchin spermatozoa using BCECF, fluorescence intensities of the flagellum were much lower than those of the heads and their fluorescence signals were noisy with a poor S/N ratio (González-Cota et al., 2015). We thought that the use of TIRF would improve this aspect, avoiding the saturation of fluorescence signal in the head. However, the difference of SNARF-5F images between the two configurations (epi-fluorescence and TIRF) was relatively small in both human (Figure 4A) and mouse spermatozoa (Figure 4B). Particularly, in mouse spermatozoa, the TIRF fluorescence signals in the head and the flagellum (primarily mid piece) are very similar to the epi-fluorescence images. This result is probably due to the thin hook-like shape of the mouse sperm head. As a consequence, an important difference between the two systems (epi-fluorescence and TIRF) is not significant for mouse spermatozoa.

      Comparison between epifluorescence and total internal reflection fluorescence (TIRF) images. Representative images from human (A) and mouse (B) spermatozoa in the two emission channels for SNARF-5F dye, 640 (red) and 575 nm (yellow). Images were taken using the epifluorescence (center) or TIRF (right) configuration. For reference, brightfield images (left) are shown. Scale bar is equal to 10 μm. Reference bar for fluorescence intensity is also depicted. Scale bar is equal to 10 μm; n = 3.

      Spermatozoa Responses to pH<sub><italic>i</italic></sub> Manipulation

      Using the epi-fluorescence configuration with the LED as a light source, we acquired fluorescence images upon pHi manipulations. During image acquisition, we added HTF or TYH medium as control in human and mouse spermatozoa, respectively. As additional control, 10 mM NH4Cl and 5 mM HCl were added to increase and reduce the pHi, respectively. The upper panels of Figures 5A,B show human sperm fluorescence signals from the two channels in the head and the flagellum, respectively. Changes of fluorescence intensities were observed during the additions even in control conditions (indicated with arrows). Also, fluorescence signals from some cells are noisy probably due to the continuous movement associated to the flagellar beat. Once the dual emission signals were converted into the ratio and pHi values (Figures 5A,B, lower panels), the problems of addition artifacts and movement were eliminated in the both regions, demonstrating the advantage of the dual-emission ratiometric imaging. Additionally, the effects of NH4Cl and HCl can be clearly observed as an increase and a decrease of the ratio and the pHi, respectively. Figure 6 basically demonstrates the same results as Figure 5 but using mouse spermatozoa. In this experiment, the fluorescence signal of the flagellum arises mainly from the mid piece since mouse spermatozoa flagellum is much longer than that of human spermatozoa and therefore it is difficult to capture the image of the entire flagellum of mouse spermatozoa. In these experiments, the average pHi of non-capacitated human and mouse spermatozoa was 6.72 ± 0.19 (SEM) and 6.63 ± 0.23 (SEM), respectively; n = 3.

      It is possible to measure pHi using SNARF-5F in human spermatozoa, in the head and flagellum regions. Representative recordings from head (A) and flagellum (B) regions, measuring fluorescence changes at the two emission wavelengths of SNARF-5F, 575 (Top left) and 640 nm (Top right). Ratio recordings (Bottom left) are obtained from both emission fluorescence values, and converted to pHi (Bottom right) utilizing the calibration curve as shown in Figure 2. The micropipette manual addition of HTF medium (control), 10 mM NH4Cl, and 5 mM HCl is indicated by arrows in each panel. Traces in each panel show representative single cell pHi responses. Same color at both emission wavelengths and in both regions (head and flagellum) correspond to the same cell; n = 3.

      It is possible to measure pHi using SNARF-5F in mouse spermatozoa, in the head and flagellum regions. Representative fluorescence recordings from head (A) and flagellum (B) regions, measuring changes at the dual emission wavelengths of SNARF-5F, 575 (Top left) and 640 nm (Top right). Ratio recordings (Bottom left) are obtained from both emission fluorescence values, and converted to pHi (Bottom right) using the calibration curve shown before. The micropipette manual addition of TYH medium (control), 10 mM NH4Cl, and 5 mM HCl are indicated by arrows in each panel. Traces in each panel show representative single cell pHi. The same color at both emission wavelengths and in both regions (head and flagellum) correspond to the same cell; n = 3.

      Response to <inline-formula><mml:math id="INEQ17"><mml:msubsup><mml:mtext>HCO</mml:mtext><mml:mn>3</mml:mn><mml:mo>-</mml:mo></mml:msubsup></mml:math></inline-formula>

      To obtain new insights of mammalian spermatozoa pHi regulation, we determined the effect of HCO3- (10 and 25 mM) on pHi in non-capacitated human and mouse spermatozoa using our dual-emission imaging system (Figure 7). In these experiments, we confirmed that HCO3- increases the pHi of human (Figure 7A) and mouse (Figure 7B) spermatozoa, in a concentration-dependent manner. We did not observe statistical differences in the pHi increase induced by HCO3- between human and mouse spermatozoa (Figure 7C). However, we found a significant difference in the kinetics of the pHi increase between the two species. Namely, HCO3- rapidly increases the pHi of mouse spermatozoa, and the time to reach 50% of the maximum pHi increase (t50) was around 10 s. In contrast, HCO3- increases human sperm pHi gradually with a longer t50 (40 s) in our experimental conditions (Figure 7D). Moreover, the pHi increase in human spermatozoa was slightly, but significantly, slower in the flagellum compared to the head with 10 and 25 mM HCO3- additions.

      HCO3- increased pHi in a concentration-dependent manner in both, head and flagellum, regions using human and mouse spermatozoa. Representative recordings from human (A) and mouse (B) spermatozoa, measuring pHi using 20 μM SNARF-5F in head (Top) and flagellum (Bottom) regions. The perfused addition of medium (HTF and TYH for human and mouse, respectively) (left, control in gray rectangle), 10 (center in green rectangle) or 25 mM (right in green rectangle) HCO3- are showed. As positive controls, perfused addition of 10 mM NH4Cl (red rectangle) and 5 mM HCl (purple rectangle) are showed in each panel. Traces in each panel show representative single cell pHi. Same color in both, head and flagellum, indicate to the same cell. Maximum change in pHi (ΔpHi) (C) and average of t50 (D), time to reach 50% of the maximum fluorescent intensity, before and after 10 (blue bars), 25 (green bars) mM HCO3- addition, in head (shaded) or flagellum (diagonal lines) regions. The bars in C,D indicated means ± SEM. Different letters indicate significant differences at the p ≤ 0.05 level, according to Mann–Whitney U-test; n = 5.

      Response to Progesterone in Human Spermatozoa

      In the literature, there is some controversy about the effect of progesterone on human sperm pHi. A decrease (Garcia and Meizel, 1996; Cross and Razy-Faulkner, 1997), no change (Fraire-Zamora and González-Martínez, 2004) or a slow increase (Hamamah et al., 1996) in pHi have been reported by different groups in response to this hormone. Therefore, we determined the effect of different progesterone concentrations on pHi in human spermatozoa. Figure 8 shows that progesterone at 500 nM (I), 1 μM (II), and 10 μM (III) did not change pHi neither in the head (Figure 8A) nor in the flagellum (Figure 8B) of these cells. As a control we tested 1 μM monensin, a Na+ ionophore that exchanges Na+/H+ (Babcock, 1983). As anticipated, this ionophore alkalized pHi in these cells in both head (Figure 8A, IV) and flagellum (Figure 8B, IV).

      Progesterone did not changed pHi in human spermatozoa. Representative recordings using 20 μM SNARF-5F in human spermatozoa in the head (A) and flagellum (B) regions. Micropipette manual progesterone (Prog) additions of 500 nM (I), 1 μM (II), and 10 μM (III), as well as 1 μM of monensin (Monen) (IV) are indicated by arrows in each panel. As controls, 10 mM NH4Cl and 5 mM HCl additions were performed (see arrows). Traces in each panel show representative single cell pHi. The same color at both emission wavelengths and in both regions (head and flagellum) corresponds to the same cell; n = 3.

      Discussion Advantages of the New System to Determine Spermatozoa pH<sub><italic>i</italic></sub>

      In this study we established a dual-emission ratiometric imaging system using SNARF-5F AM, which has negligible photo-toxicity compared to BCECF (Figure 3 and Supplementary Figure S2). Our system allows determining mammalian spermatozoa (head and flagellum) pHi with minimum artifacts associated to cell movements and focus alteration upon addition or exchange of bath solutions (Figures 57). Commonly, the ratio of dual fluorescence signals utilizes the dye isosbestic point (595 nm in our condition). However, the first peak fluorescence intensity (575 nm) of SNARF-5F excited at 532 nm is much smaller than the second peak (640 nm). Therefore, we divided the fluorescence at 610 nm, 15 nm longer than the isosbestic point, and employed a wide band-pass filter (550–600 nm) for Channel 1. In this configuration, fluorescence signals of the two channels are comparable (Figure 2), which is a critical point to obtain the ratio values with a good S/N ratio. This type of optical filter configuration (division of fluorescence signals not at the isosbestic point) could be applied to other dual-emission indicators such as GEM-GECO (Zhao et al., 2011) and Asante Calcium Red (Hyrc et al., 2013) because their dual-emission signals are quite asymmetric.

      pH<sub><italic>i</italic></sub> Calibration

      We observed a slight difference between the fluorescence spectra of SNARF-5F in vitro and inside human spermatozoa. Therefore, in order to convert the fluorescence emission values into the pHi, we performed an in vivo pHi calibration with human and mouse spermatozoa using a high K+ solution combined with nigericin in order to equal pHi to the pHe. This protocol is based on the assumption that the cytoplasmic K+ concentration is 120 mM in human and mouse spermatozoa, as determined in bovine spermatozoa (Babcock, 1983). Therefore, depending on the real cytoplasmic K+ concentration in human and mouse spermatozoa, the absolute pHi values could be different. In our conditions, we determined that the pHi value in non-capacitated human and mouse spermatozoa is 6.72 ± 0.19 and 6.63 ± 0.23, respectively. These values were measured in the head, but no significant differences were observed in the flagellum (see below). There are several reports of pHi determinations (most of them in cell population experiments and a few using single cell determination) of non-capacitated spermatozoa from distinct mammalian species: 6.24 (Parrish et al., 1989a) and 6.7 (Vredenburgh-Wilberg and Parrish, 1995) in bovine spermatozoa, 6.55 (Balderas et al., 2013), 6.54 (Zeng et al., 1996), and 6.8 (Carlson et al., 2007) in mouse sperm, and 6.7 (Hamamah et al., 1996; Fraire-Zamora and González-Martínez, 2004) and 6.94 (Cross and Razy-Faulkner, 1997) in human spermatozoa. Our findings that pHi values of non-capacitated mammalian spermatozoa are >6.5 are consistent with the

      report that detergent-demembranated bovine spermatozoa do not exhibit motility at pH 6.5, although they are highly motile at pH 7.0 (Ho et al., 2002).

      Regional pH<sub><italic>i</italic></sub> Difference in the Head and the Flagellum

      We did not observe significant differences between the head and the flagellum in the basal pHi in non-capacitated spermatozoa, although the head pHi tends to be slightly higher than the flagellar pHi both in human (6.72 ± 0.19 and 6.69 ± 0.24, respectively) and mouse spermatozoa (6.63 ± 0.23 and 6.60 ± 0.26, respectively). Our results are similar to those reported in bovine spermatozoa (Vredenburgh-Wilberg and Parrish, 1995). In general, the epifluorescent signal from an indicator incorporated into the sperm head is generally much higher than in the flagellum, independently of the species. Therefore, we examined if TIRF microscopy would reduce the fluorescence difference between the head and the flagellum. However, we did not observe significant differences nor advantages of TIRF microscopy compared to epifluorescence microscopy (Figure 4) either in mouse or human spermatozoa for measuring pHi. With these data, we can conclude that epifluorescence microscopy with SNARF-5F AM allows performing reliable single spermatozoa pHi imaging with a good S/N ratio in both spermatozoa head and flagellum (mid piece of flagellum in the case of mouse).

      Difference of pH<sub><italic>i</italic></sub> Responses to <inline-formula><mml:math id="INEQ27"><mml:msubsup><mml:mtext>HCO</mml:mtext><mml:mn>3</mml:mn><mml:mo>-</mml:mo></mml:msubsup></mml:math></inline-formula> Between Human and Mouse Spermatozoa

      HCO3- is an essential ion for mammalian sperm to acquire the ability to fertilize the oocyte (Lee and Storey, 1986). In fact, the HCO3- concentrations in rabbit uterine and tubal fluids are approximately twice as high as in the blood plasma, which results in pH values of 7.4 and 8.1–8.3, respectively (Vishwakarma, 1962). In rhesus monkeys, the pH and HCO3- concentration in the oviduct lumen change during the menstrual cycle. Namely, these values are similar to those of the blood plasma during the follicular phase, but they suddenly increase concomitantly with ovulation (Maas et al., 1977). This observation supports the importance of HCO3- for fertilization in mammals. The principal role of cytoplasmic HCO3- in mammalian spermatozoa is considered to be the activation of the soluble adenylyl cyclase, which increases cAMP (Okamura et al., 1985; Buck et al., 1999; Chen et al., 2000), leading to protein kinase A (PKA) stimulation. The enhanced PKA activity increases flagellar beat frequency (Wennemuth, 2003) and elevates CatSper activity (Carlson et al., 2003; Orta et al., 2018), among many other things.

      In this work, we observed that HCO3- elevates the pHi in both human and mouse spermatozoa (Figure 7D). In contrast, Carlson et al. (2007) reported that HCO3- did not induce a pHi increase in mouse spermatozoa. Interestingly, we found a difference in the kinetics of HCO3--induced pHi increase between the two species (Figure 7D), namely a faster increase in mouse compared to human spermatozoa, but of similar magnitude (Figure 7C). So far, several mechanisms have been reported for HCO3- influx, such as the NBC (Demarco et al., 2003), Cl/HCO3- exchangers (Chavez et al., 2012), and the CFTR channel (Hernández-González et al., 2007; Xu et al., 2007). However, the physiological relevance of each transporter is unclear as well as differences between the two species. In addition to HCO3- transporters, CO2 diffusion with subsequent hydration by intracellular CA contributes to an increase in cytoplasmic HCO3- concentration (Carlson et al., 2007; Wandernoth et al., 2010; José et al., 2015). Curiously, a general CA inhibitor, ethoxyzolamide, potently affects human but not mouse sperm motility (José et al., 2015), suggesting a difference in the involvement of CAs in the motility of the two species. Another explanation is that human spermatozoa may have higher pH buffering capacity than mouse spermatozoa. This might be correlated to the time required for capacitation (>6 h in human compared to 1–2 h in mouse spermatozoa). Indeed, the pHi of mammalian spermatozoa studied so far increases around 0.14–0.4 units during capacitation (Parrish et al., 1989b; Vredenburgh-Wilberg and Parrish, 1995; Hamamah et al., 1996; Zeng et al., 1996; Cross and Razy-Faulkner, 1997; Fraire-Zamora and González-Martínez, 2004; Balderas et al., 2013). A significant part of this pHi change can be attributed to the HCO3- influx into the cell. Therefore, further studies are required for a better understanding of the mechanism of HCO3--induced pHi increase during capacitation. The pHi imaging system established in this study should contribute to this issue.

      Effect of Progesterone in Human Spermatozoa

      Progesterone increases [Ca2+]i in human spermatozoa at concentrations as low as 300 nM, through CatSper activation (Tesarik et al., 1992; Harper et al., 2003; Achikanu et al., 2018). Recently it was described that the progesterone receptor in these cells is a α/β hydrolase domain-containing protein (ABHD2), which depletes the endocannabinoid 2-arachinoylglycerol (2AG) from membrane and removes CatSper inactivation (Miller et al., 2016; Mannowetz et al., 2017). In contrast, there is inconsistency regarding how progesterone affects pHi. Some groups suggest that this hormone acidifies, others that it alkalizes or does not induce pHi changes (Garcia and Meizel, 1996; Hamamah et al., 1996; Cross and Razy-Faulkner, 1997; Fraire-Zamora and González-Martínez, 2004). In the present work, progesterone did change pHi in human spermatozoa even at concentrations as high as 10 μM (Figure 8). Our result supports that progesterone activates CatSper in a pH-independent manner, possibly exclusively via ABHD2-2AG.

      Progesterone-induced Ca2+ influx through CatSper may affect the activity of transporters and enzymes that can affect pHi such as PMCA (Wennemuth et al., 2003; Okunade et al., 2004) and NOX5 (Baker and Aitken, 2004; Musset et al., 2012). Both PMCA and NOX5 may acidify pHi when they are activated, namely when the [Ca2+]i is high. However, the pHi acidification together with the membrane potential depolarization caused by Ca2+ influx through CatSper and electron efflux through NOX5 could activate Hv1 channel (Lishko et al., 2010; Berger et al., 2017) and may rapidly neutralize the acidification (alkalize the pHi). Depending on the experimental conditions, one activity (acidifying or alkalizing) may exceed the other when progesterone stimulates human CatSper. This may account for part of the discrepancies regarding human sperm pHi responses to progesterone. Further studies are required to confirm this hypothesis.

      Data Availability Statement

      All datasets generated for this study are included in the article/Supplementary Material.

      Ethics Statement

      The studies involving human participants/donors were reviewed and approved by the Bioethics Committee of the Instituto de Biotecnología. The donors provided their written informed consent to participate in this study. The animal study was reviewed and approved by the Bioethics Committee of the Instituto de Biotecnología.

      Author Contributions

      TN conceived the project. JC performed most of the experiments and prepared the figures. All authors proposed the experiments, discussed the results, and wrote, revised, and approved the manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This work was supported by the PAPIIT DGAPA (Grant Numbers IA200419 to JC, IN200919 to AD, IN202519 to CT, and IN205719 to TN) and CONACyT (Fronteras 71).

      We thank Gastón Contreras from the National Laboratory in Advanced Microscopy Facilities, in addition to José L. De la Vega-Beltrán, Yoloxóchitl Sánchez-Guevara, and Paulina Torres for technical assistance. Also, we would like to thank Shirley Ainsworth for library services, and the people of the animal facilities Elizabeth Mata, Graciela Cabeza, and Sergio González. We acknowledge Juan Manuel Hurtado, Roberto Rodríguez, Omar Arriaga, and Arturo Ocádiz for computer services.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fcell.2019.00366/full#supplementary-material

      Spectral characterization of the pH sensitive dye SNARF-5F. Representative emission spectra in 405, 440, 465, 488, 510, 532, and 543 nm excitation wavelengths, in 50 mM potassium phosphate buffers at the proportions indicated in Table 1, obtaining pHe: 5.5, 6.0, 6.4, 6.8, 7.0, 7.2, 7.4, 7.8, and 8.2. The lines are representative fluorescence spectra at indicated excitation wavelength in each pHe; n = 3.

      Single cell pHi measurements with BCECF using laser of led excitation causes significant photobleaching and a reduced response to alkalization and acidification. Representative normalized recordings using BCECF-loaded spermatozoa in human (A,B) and mouse (C,D). Laser (A,C) and LED (B,D) were used as the excitation light source. Arrows indicate the manual addition of 10 mM NH4Cl and 5 mM HCl in each panel. Each trace represents the response of a single cell; n = 3.

      References Achikanu C. Pendekanti V. Teague R. Publicover S. (2018). Effects of pH manipulation, CatSper stimulation and Ca2+-store mobilization on [Ca2+]i and behaviour of human sperm. Hum. Reprod. 33 18021811. 10.1093/humrep/dey280 Acott T. S. Carr D. W. (1984). Inhibition of bovine spermatozoa by caudal epididymal fluid: ii. interaction of pH and a quiescence factor. Biol. Reprod. 30 926935. 10.1095/biolreprod30.4.926 6329337 Babcock D. F. (1983). Examination of the intracellular ionic environment and of ionophore action by null point measurements employing the fluorescein chromophore. J. Biol. Chem. 258 63806389. 6853488 Baker M. A. Aitken R. J. (2004). The importance of redox regulated pathways in sperm cell biology. Mol. Cell. Endocrinol. 216 4754. 10.1016/j.mce.2003.10.068 15109744 Balderas E. Sánchez-Cárdenas C. Chávez J. C. De La Vega Beltrán J. L. Gómez-Lagunas F. Treviño C. L. (2013). The anti-inflammatory drug celecoxib inhibits t-type Ca2+ currents in spermatogenic cells yet it elicits the acrosome reaction in mature sperm. FEBS Lett. 587 24122419. 10.1016/j.febslet.2013.05.068 23770093 Berger T. K. Fußhöller D. M. Goodwin N. Bönigk W. Khesroshahi N. D. Brenker C. (2017). Posttranslational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating. J. Physiol. 595 15331546. 10.1113/JP273189 27859356 Brown D. Smith P. J. Breton S. (1997). Role of V-ATPase-rich cells in acidification of the male reproductive tract. J. Exp. Biol. 200 257262. Buck J. Sinclair M. L. Schapal L. Cann M. J. Levin L. R. (1999). Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc. Natl. Acad. Sci. U.S.A. 96 7984. 10.1073/pnas.96.1.79 9874775 Cao X. W. Lin K. Li C. Y. Yuan C. W. (2010). A Review of WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th Edn, Vol. 17. Geneva: World Health Organization, 287. Carlson A. E. Hille B. Babcock D. F. (2007). External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility. Dev. Biol. 312 183192. 10.1016/j.ydbio.2007.09.017 17950270 Carlson A. E. Westenbroek R. E. Quill T. Ren D. Clapham D. E. Hille B. (2003). CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc. Natl. Acad. Sci. U.S.A. 100 1486414868. 10.1073/pnas.2536658100 14657352 Chávez J. C. De la Vega-Beltrán J. L. José O. Torres P. Nishigaki T. Treviño C. L. (2018). Acrosomal alkalization triggers Ca2+ release and acrosome reaction in mammalian spermatozoa. J. Cell. Physiol. 233 47354747. 10.1002/jcp.26262 29135027 Chávez J. C. Ferreira J. J. Butler A. De La Vega Beltrán J. L. Treviño C. L. Darszon A. (2014). SLO3 K+ channels control calcium entry through CATSPER channels in sperm. J. Biol. Chem. 289 3226632275. 10.1074/jbc.M114.607556 25271166 Chavez J. C. Hernandez-Gonzalez E. O. Wertheimer E. Visconti P. E. Darszon A. Trevino C. L. (2012). Participation of the Cl-/HCO3- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol. Reprod. 86 114. 10.1095/biolreprod.111.094037 21976599 Chen Y. Cann M. J. Litvin T. N. Iourgenko V. Sinclair M. L. Levin L. R. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289 625628. 10.1126/science.289.5479.625 10915626 Crhisten R. Schackmann R. W. Shapiro B. M. (1983). Metabolism of Sea Urchin Sperm Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. J. Biol. Chem. 258 53925399. 10.1086/281606 6222053 Cross N. L. Razy-Faulkner P. (1997). Control of human sperm intracellular pH by cholesterol and its relationship to the response of the acrosome to progesterone. Biol. Reprod. 56 11691174. 10.1095/biolreprod56.5.1169 9160715 Darszon A. Wood C. D. Beltrán C. Sánchez D. Rodríguez-Miranda E. Gorelik J. (2004). Measuring ion fluxes in sperm. Methods Cell Biol. 74 545576. 10.1016/s0091-679x(04)74022-4 Demarco I. A. Espinosa F. Edwards J. Sosnik J. De la Vega-Beltrán J. L. Hockensmith J. W. (2003). Involvement of a Na+/HCO3- cotransporter in mouse sperm capacitation. J. Biol. Chem. 278 70017009. 10.1074/jbc.M206284200 12496293 Espinal-Enríquez J. Priego-Espinosa D. A. Darszon A. Beltrán C. Martínez-Mekler G. (2017). Network model predicts that CatSper is the main Ca2+ channel in the regulation of sea urchin sperm motility. Sci. Rep. 7:4236. 10.1038/s41598-017-03857-9 28652586 Fraire-Zamora J. J. González-Martínez M. T. (2004). Effect of intracellular pH on depolarization-evoked calcium influx in human sperm. Am. J. Physiol. Cell Physiol. 287 C1688C1696. 10.1152/ajpcell.00141.2004 15306540 Garcia M. A. Meizel S. (1996). Importance of sodium ion to the progesterone-initiated acrosome reaction in human sperm. Mol. Reprod. Dev. 45 513520. 10.1002/(sici)1098-2795(199612)45:4<513::aid-mrd14=3.0.co;2-x 8956290 González-Cota A. L. Silva P. Â. Carneiro J. Darszon A. (2015). Single cell imaging reveals that the motility regulator speract induces a flagellar alkalinization that precedes and is independent of Ca2+ influx in sea urchin spermatozoa. FEBS Lett. 589 21462154. 10.1016/j.febslet.2015.06.024 26143372 Grillo-Hill B. K. Webb B. A. Barber D. L. (2014). Ratiometric imaging of pH probes. Methods Cell Biol. 123 429448. 10.1016/B978-0-12-420138-5.00023-9 24974041 Hamamah S. Magnoux E. Royere D. Barthelemy C. Dacheux J. L. Gatti J. L. (1996). Internal pH of human spermatozoa: effect of ions, human follicular fluid and progesterone. Mol. Hum. Reprod. 2 219224. 9238683 Hamzeh H. Alvarez L. Strünker T. Kierzek M. Brenker C. Deal P. E. (2019). Kinetic and photonic techniques to study chemotactic signaling in sea urchin sperm. Methods Cell Biol. 151 487517. 10.1016/bs.mcb.2018.12.001 30948028 Harper C. V. Kirkman-Brown J. C. Barratt C. L. R. Publicover S. J. (2003). Encoding of progesterone stimulus intensity by intracellular [Ca2+] ([Ca2+]i) in human spermatozoa. Biochem. J. 372 407417. 10.1042/BJ20021560 12614198 Hernández-González E. O. Treviño C. L. Castellano L. E. De La Vega-Beltrán J. L. Ocampo A. Y. Wertheimer E. (2007). Involvement of cystic fibrosis transmembrane conductance regulator in mouse sperm capacitation. J. Biol. Chem. 282 2439724406. 10.1074/jbc.M701603200 17588945 Ho H.-C. Granish K. A. Suarez S. S. (2002). Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev. Biol. 250 208217. 10.1006/dbio.2002.0797 12297107 Ho H. C. Suarez S. S. (2001). Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122 519526. 10.1530/rep.0.1220519 11570958 Hyrc K. L. Minta A. Escamilla P. R. Chan P. P. L. Meshik X. A. Goldberg M. P. (2013). Synthesis and properties of Asante Calcium Red-A novel family of long excitation wavelength calcium indicators. Cell Calcium 54 320333. 10.1016/j.ceca.2013.08.001 24017967 José O. Torres-Rodríguez P. Forero-Quintero L. S. Chávez J. C. De La Vega-Beltrán J. L. Carta F. (2015). Carbonic anhydrases and their functional differences in human and mouse sperm physiology. Biochem. Biophys. Res. Commun. 468 713718. 10.1016/j.bbrc.2015.11.021 26551457 Kinosita K. Itoh H. Ishiwata S. Hirano K. Nishizaka T. Hayakawa T. (1991). Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium. J. Cell Biol. 115 6773. 10.1083/jcb.115.1.67 1918140 Kirichok Y. Navarro B. Clapham D. E. (2006). Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439 737740. 10.1038/nature04417 16467839 Lee M. A. Storey B. T. (1986). Bicarbonate mouse sperm is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol. Reprod. 56 349356. 10.1095/biolreprod34.2.349 3082381 Lishko P. V. Botchkina I. L. Fedorenko A. Kirichok Y. (2010). Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140 327337. 10.1016/j.cell.2009.12.053 20144758 Lishko P. V. Botchkina I. L. Kirichok Y. (2011). Progesterone activates the principal Ca2+ channel of human sperm. Nature 471 387391. 10.1038/nature09767 21412339 Liu J. Diwu Z. Leung W. Y. (2001). Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg. Med. Chem. Lett. 11 29032905. 10.1016/S0960-894X(01)00595-9 11677123 Maas D. H. Storey B. T. Mastroianni L. (1977). Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatta). Fertil. Steril. 28 981985. 10.1016/S0015-0282(16)42801-3 19307 Mannowetz N. Miller M. R. Lishko P. V. (2017). Regulation of the sperm calcium channel CatSper by endogenous steroids and plant triterpenoids. Proc. Natl. Acad. Sci. U.S.A. 114 57435748. 10.1073/pnas.1700367114 28507119 Mata-Martínez E. José O. Torres-Rodríguez P. Solís-López A. Sánchez-Tusie A. A. Sánchez-Guevara Y. (2013). Measuring intracellular Ca2 + changes in human sperm using four techniques: conventional fluorometry, stopped flow fluorometry, flow cytometry and single cell imaging. J. Vis. Exp. 75:50344. 10.3791/50344 23728309 Miller M. R. Mannowetz N. Iavarone A. T. Safavi R. Gracheva E. O. Smith J. F. (2016). Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 352 555559. 10.1126/science.aad6887 26989199 Musset B. Clark R. A. DeCoursey T. E. Petheo G. L. Geiszt M. Chen Y. (2012). NOX5 in human spermatozoa: expression, function, and regulation. J. Biol. Chem. 287 93769388. 10.1074/jbc.M111.314955 22291013 Navarro B. Kirichok Y. Chung J. J. Clapham D. E. (2008). Ion channels that control fertility in mammalian spermatozoa. Int. J. Dev. Biol. 52 607613. 10.1387/ijdb.072554bn 18649274 Nishigaki T. José O. González-Cota A. L. Romero F. Treviño C. L. Darszon A. (2014). Intracellular pH in sperm physiology. Biochem. Biophys. Res. Commun. 450 11491158. 10.1016/j.bbrc.2014.05.100 24887564 Nishigaki T. Wood C. D. Shiba K. Baba S. A. Darszon A. (2006). Stroboscopic illumination usine light-emitting diodes reduces phototoxicity in fluorescence cell imaging. Biotechniques 41 191197. 10.2144/000112220 16925021 Okamura N. Tajima Y. Soejima A. Masuda H. Sugita Y. (1985). Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J. Biol. Chem. 260 96999705. 2991260 Okunade G. W. Miller M. L. Pyne G. J. Sutliff R. L. O’Connor K. T. Neumann J. C. (2004). Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J. Biol. Chem. 279 3374233750. 10.1074/jbc.M404628200 15178683 Orta G. Vega-Beltran J. L. Hidalgo D. Santi C. M. Visconti P. Darszon A. (2018). CatSper channels are regulated by protein kinase A. J. Biol. Chem. 293 1683016841. 10.1074/jbc.RA117.001566 30213858 Parrish J. J. Susko-Parrish J. L. Furst N. L. (1989a). Capacitation of Bovine Sperm by Heparin: inhibitory Effect of Glucose and Role of Intracellular pH. Biol. Reprod. 41 683699. 10.1095/biolreprod41.4.683 2620077 Parrish J. J. Susko-Parrish J. L. Handrow R. R. Sims M. M. First N. L. (1989b). Capacitation of bovine spermatozoa by oviduct fluid. Biol. Reprod. 40 10201025. 10.1095/biolreprod40.5.1020 2765607 Ren D. Navarro B. Perez G. Jackson A. C. Hsu S. Shi Q. (2001). A sperm ion channel required for sperm motility and male fertility. Nature 413 603609. 10.1038/35098027 11595941 Rink T. I. Tsien R. Y. Pozzan T. (1982). Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95 189196. 10.1083/jcb.95.1.189 6815204 Schackmann R. W. Boon Chock P. (1986). Alteration of intracellular [Ca2+] in sea urchin sperm by the egg peptide speract. Evidence that increased intracellular Ca2+ is coupled to Na+ entry and increased intracellular pH. J. Biol. Chem. 261 87198728. 2424902 Seifert R. Flick M. Bönigk W. Alvarez L. Trötschel C. Poetsch A. (2015). The CatSper channel controls chemosensation in sea urchin sperm. EMBO J. 34 379392. 10.15252/embj.201489376 25535245 Stauss C. R. Votta T. J. Suarez S. S. (1995). Sperm motility hyperactivation facilitates penetration of the hamster Zona Pellucida’. Biol. Reprod. 53 12801285. 10.1095/biolreprod53.6.1280 8562682 Suarez S. S. Pacey A. A. (2006). Sperm transport in the female reproductive tract. Hum. Reprod. Update 12 2337. 10.1093/humupd/dmi047 16272225 Tesarik J. Mendoza C. Moos J. Fénichel P. Fehlmann M. (1992). Progesterone action through aggregation of a receptor on the sperm plasma membrane. FEBS Lett. 308 116120. 10.1016/0014-5793(92)81256-l 1499717 Visconti P. E. Moore G. D. Bailey J. L. Leclerc P. Connors S. A. Pan D. (1995). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121 11391150. 7538069 Vishwakarma P. (1962). The pH and bicarbonate-ion content of the oviduct and uterine fluids. Fertil. Sterl. 13 481485. 10.1016/S0015-0282(16)34633-7 Vredenburgh-Wilberg W. L. Parrish J. J. (1995). Intracellular pH of bovine sperm increases during capacitation. Mol. Reprod. Dev. 40 490502. 10.1002/mrd.1080400413 7598914 Wandernoth P. M. Raubuch M. Mannowetz N. Becker H. M. Deitmer J. W. Sly W. S. (2010). Role of carbonic anhydrase IV in the bicarbonate-mediated activation of murine and human sperm. PLoS One 5:e15061. 10.1371/journal.pone.0015061 21124840 Wang D. King S. M. Quill T. A. Doolittle L. K. Garbers D. L. (2003). A new sperm-specific Na+/H+ Exchanger required for sperm motility and fertility. Nat. Cell Biol. 5 11171122. 10.1038/ncb1072 14634667 Wennemuth G. (2003). Bicarbonate actions on flagellar and Ca2+-channel responses: initial events in sperm activation. Development 130 13171326. 10.1242/dev.00353 12588848 Wennemuth G. Babcock D. F. Hille B. (2003). Calcium clearance mechanisms of mouse sperm. J. Gen. Physiol. 122 115128. 10.1085/jgp.200308839 12835474 Whitaker J. E. Haugland R. P. Prendergast F. G. (1991). Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal. Biochem. 194 330344. 10.1016/0003-2697(91)90237-N 1862936 Windler F. Bönigk W. Körschen H. G. Grahn E. Strünker T. Seifert R. (2018). The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nat. Commun. 9:2809. 10.1038/s41467-018-05253-x 30022052 Xu W. M. Shi Q. X. Chen W. Y. Zhou C. X. Ni Y. Rowlands D. K. (2007). Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc. Natl. Acad. Sci. U.S.A. 104 98169821. 10.1073/pnas.0609253104 17519339 Zeng Y. Oberdorf J. A. Florman H. M. (1996). pH regulation in mouse sperm: identification of Na+-, Cl–, and[formula]dependent and arylaminobenzoate-dependent regulatory mechanisms and characterization of their roles in sperm capacitation. Dev. Biol. 173 510520. 10.1006/dbio.1996.0044 8606009 Zhao Y. Araki S. Wu J. Teramoto T. Chang Y.-F. Nakano M. (2011). An expanded palette of genetically encoded Ca2+ indicators. Science 333 18881891. 10.1126/science.1208592 21903779 Zhou H. X. Pang X. (2018). Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 118 16911741. 10.1021/acs.chemrev.7b00305 29319301
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016htzpsx.com.cn
      www.jianchan.com.cn
      hyboao.com.cn
      ipopay.com.cn
      www.shuzibi.net.cn
      www.wfchain.com.cn
      qmesub.com.cn
      tspdkf.com.cn
      szwallet.com.cn
      muketi.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p