Edited by: Sean T. Manion, Science Distributed, United States
Reviewed by: Jonathan Tennant, Université Paris 13, France; Karmen Condic-Jurkic, Computational Biology Center, Memorial Sloan- Kettering Cancer Center, United States
This article was submitted to Blockchain for Science, a section of the journal Frontiers in Blockchain
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Many sectors, like finance, medicine, manufacturing, and education, use blockchain applications to profit from the unique bundle of characteristics of this technology. Blockchain technology (BT) promises benefits in trustability, collaboration, organization, identification, credibility, and transparency. In this paper, we conduct an analysis in which we show how open science can benefit from this technology and its properties. For this, we determined the requirements of an open science ecosystem and compared them with the characteristics of BT to prove that the technology suits as an infrastructure. We also review literature and promising blockchain-based projects for open science to describe the current research situation. To this end, we examine the projects in particular for their relevance and contribution to open science and categorize them afterwards according to their primary purpose. Several of them already provide functionalities that can have a positive impact on current research workflows. So, BT offers promising possibilities for its use in science, but why is it then not used on a large-scale in that area? To answer this question, we point out various shortcomings, challenges, unanswered questions, and research potentials that we found in the literature and identified during our analysis. These topics shall serve as starting points for future research to foster the BT for open science and beyond, especially in the long-term.
香京julia种子在线播放
The blockchain technology (BT) offers great potential to foster various sectors (Casino et al.,
The typical use case in that area for BT is the exchange of value units without the need of intermediaries (Nakamoto,
There are already some scientific sources (but far more gray literature) on how the BT can be used to mitigate existing problems in science like the reproducibility of results from published articles and experiments. Due to immutability, append-only function, and a viewable record of all transactions, BT can provide transparency for all users over every step done in a system. As a result of that, an environment gets created that does not need a trusted authority because malicious behavior is technically difficult. The decentralization enables researchers to build their own open ecosystem for research data, metadata, and communication that follows the philosophy of open science. For us, open science is characterized above all by the fact that everyone can openly participate, collaborate, and contribute to science. The results of these activities, such as research data, processes, studies, and methods, are freely available so that they can be reused and reproduced. In section 3, we go into open science and its definitions in more detail.
Besides reproducibility of experiments (Prinz et al.,
BT stands out from other systems in its exceptional technical architecture, which allows the technology to get adapted for a variety of use cases. For example, developers have the possibility to design blockchains for open or private access combined with individual governance models depending on its purpose. In addition to the technical perspective, cryptocurrencies, for example, provide additional, unique opportunities to create business models and incentives for users or entire communities. However, besides BT, there are also other technologies that are applicable to open science. One example is the peer-to-peer data synchronization protocol Dat (Ogden et al.,
We want to point out at an early stage of this paper that BT is just a technology and certainly not the silver bullet that will overcome all problems we are facing in science today. Some of the issues cannot get solved by technology alone, instead require the involved persons to rethink habits, behaviors, and processes. In some cases, it might even lead to researchers having to renounce privileges. There is also criticism of the use of BT for science. Hartgerink (
Overall, our work contributes to understanding the BT and the possibilities it offers to design, implement, and improve open science projects and applications across all different scientific fields. We think it is a suitable technology to support the transformation of open science. The motivation for this work lies in the circumstance that there is currently no systematic review of the general suitability of BT for open science, the state of the art or related vital challenges and research potentials. We are addressing these topics in this paper.
The BT is, besides the financial area, also emerging in many other sectors and gets continuously more popular. It is difficult to overview the market of existing and planned projects since there is no holistic public database or repository for it. Further, the range of visions, concepts, and prototypes is constantly increasing, which means that this review can only provide a snapshot and does not claim to be complete or exhaustive.
We conducted a systematic review of the research topic by first searching for relevant literature. It has turned out that this topic is quite novel, and there are just a few publications about how BT can be used to foster open science or science in general. In a literature review about the usage of BT in different domains (Casino et al.,
What are the current requirements for a technical open science infrastructure, and how do they compare with BT features?
What is the current status and perspectives for the use of BT in science and academia?
What are the biggest challenges and obstacles that are preventing successful implementation and adoption of BT as supporting infrastructure for open science?
(1) We approached this question by comparing the characteristics of BT with the goals and needs of open science. We examined whether it is able to deliver a reasonable and adequate fundament for an open science ecosystem. At first, we studied existing literature to describe what open science is (section 3.1), what it aims to be, and what the requirements for such an infrastructure (section 3.2) are. Then, we examined the BT to understand how it works and what characteristics it has (section 4.1). Finally, we created a matrix that shows all related infrastructure requirements and compares them to the characteristics of the BT to determine how they match and whether they can be fulfilled (section 4.2).
(2) To answer the second research question, we discussed relevant literature, gray literature, and projects that we found, collected, and screened from different search engines and reference lists until April 2019. Primarily, we used Google Scholar
Besides the literature, we also collected exciting and promising blockchain-based projects consisting of concepts, prototypes, and already deployed applications. We found in numbers many more projects than relevant scientific publications. The majority of the projects got identified in the reviewed literature and the rest through search engines. These projects are either designed specifically for open science, or some of their functionalities are usable in that area. We also found some very early concepts and ideas that only exist in forums or social media networks. However, their potential is not ratable yet due to low progress and information scarcity, so we did not include them into detailed analysis. Altogether, we collected and analyzed 83 projects but removed 23 of them early due to cancelation, irrelevancy, or inactivity (no actions or news for more than 1 year), leaving 60 projects left. We summarized and mapped these into different categories according to their use and created an overview of our approach (section 5.1). The so built structure and the review of projects help to gain a better understanding of the current situation of research in this area (section 5.3). Finally, we made a summary and discussed our findings (section 5.4). For a complete overview, we created a database (see
(3) As a basis to process the third research question, we used the knowledge gained from answering the first and second research question, and the analysis of literature and projects. First, we conducted a brainstorming, discussed all mentioned topics, and rated them each individually. Then we created a ranking of the topics by collecting and evaluating the ratings of all people who were involved in the brainstorming. Finally, we took the issues of rank one to five and described them in terms of current challenges, research potentials, and open questions that should be addressed to foster the BT for open science (sections 6.1–6.5).
In this section, we briefly describe the philosophy behind open science and existing problems in science it can mitigate (section 3.1). Furthermore, we did an analysis to point out what requirements have to be met to establish a technical ecosystem that follows and lives the principles of open science (section 3.2). Finally, we created an overview of the requirements we determined in this section.
There are several definitions of what open science is, but there is not a universal definition that is generally valid. We think the definition of FOSTER
Six open science schools of thought. The sources (Fecher and Friesike,
Open Science School of Thought | ||||
Democratic School | The access to knowledge is unequally distributed | Making knowledge freely available for everyone | Open Access, intellectual property rights, Open Data, Open Code | |
Pragmatic School | Knowledge-creation could be more efficient if scientists worked together | Making the process of knowledge creation more efficient and goal oriented | Wisdom of the crowds, network effects, Open Data, Open Code | |
Public School | Science needs to be made accessible to the public | Making science accessible for citizens | Citizen Science, Science PR, Science Blogging | |
Infrastructure School | Efficient research depends on the available tools and applications | Creating openly available platforms, tools, and services for scientists | Collaboration platforms and tools | |
Measurement School | Scientific contributions today need alternative impact measurements | Developing an alternative metric system for scientific impact | Altmetrics, peer review, citation, impact factors | |
Community School | Science requires all voices to be heard and a committed community | Ensuring diversity and inclusion in scholarly conversations | Diversity, inclusivity, standards, public goods, public funding |
As we have learned only late about the sixth school (community school), which is also quite new, we refer in the further work to the original five schools, which are the basis of our requirements analysis. For the sake of completeness, we included the sixth school in
Today's communication technologies have opened up the way to practice open science; in detail, the methods for producing, storing, sharing, and accessing information have been progressing, and new research opportunities have developed (Nentwich,
Adjustments in science are needed because many studies in different scientific fields, for example, medicine, psychology, and computer science are irreproducible (Schooler,
Researchers usually aggregate and compress their collected research data for their final publication to meet the requirements of journals and especially conferences that request to stay within a specific limit of pages. In computer science, the cap for full papers on conferences is mostly ten pages (Gray,
In addition to the raw data, researchers create further content such as ideas and study designs in early research phases that usually do not get published. If the experiments and analysis give negative results, the same picture appears since the focus is on publishability (Nosek et al.,
Open science still has to overcome significant obstacles in different dimensions to get widely applied. Most of the points mentioned here require such drastic changes in research processes and habits and behaviors of researchers that their realization in the foreseeable future is doubtful. For example, the traditional workflows of researchers need to be changed; they usually do not contain steps to publish research data or publicly discuss different topics about it before the final publication. Research is most of the time taking place in a closed institutional framework without the integration of individuals from the outside, so these barriers need to put down to build an open research environment. Around the whole open science discussion, a legislative framework has to be developed, but not only on the national level; it has to be international to set the global rules for the disclosure of incoming and outgoing data and also to protect the rights of all people involved. It is also a discussion of how the crediting of contributions is working fairly when researchers are creating micro-contributions (data sets, hypothesis, ideas, and reviews) (Tennant,
Altogether, in this section, we described on the one side different challenges and problems of science and the other side how open science can mitigate them and what benefits it can deliver if a suitable technical infrastructure is found. For that purpose, we are analyzing in the next section what specific requirements such an open science infrastructure has to fulfill.
With the underlying five schools of thought by Fecher and Friesike (
Overview of general and specific requirements for an open science infrastructure/ecosystem.
One essential requirement of an open science infrastructure is to provide a
Everyone should be able to express their opinion freely without being
Another essential requirement is to provide an
The five schools of thought have their own more specific requirements for an open science ecosystem. The
In the view of the
Another part of the public school is
The
In this section, we briefly describe the blockchain technology (BT), its characteristics, and functionalities to provide fundamental knowledge about it (section 4.1). After that, we compare the requirements of an open science infrastructure (section 3.2) with the characteristics of the BT (section 4.2). Finally, we present an overview matrix and several examples showing that the technology as a technical basis fulfills the requirements and hence suits as a solution.
When talking about BT, the distributed ledger technology needs to get mentioned since it is an umbrella term that includes blockchains as one type (Benčić and Podnar Žarko,
In 2008 a pseudonym “Satoshi Nakamoto” released a whitepaper about a novel peer-to-peer-based digital currency called “Bitcoin” (Nakamoto,
The BT does nothing new in a perspective of its single elements, but as a bulk, these elements (for example, decentralization, immutability, transparency, and cryptographic hashing) are unique and avoiding the double-spending problem (Nakamoto,
It depends on the blockchain whether users can store complete files on-chain or they need to use off-chain solutions like a cloud or an InterPlanetary File System (IPFS) (Benet,
In general, a blockchain is a type of database that only supports reading and appending (Swan,
Literature categorizes blockchain networks in terms of their access and governance system into the following different types: public, private, and consortium, which is also called federated (Buterin,
Application programming interfaces (APIs) are essential for a blockchain to connect off-chain (external) hardware and software with the network. It enables communication as well as the transmission and exchange of data between the systems (Linn and Koo,
BT has developed continuously; Swan (
We noticed that there are slightly different characterizations of BT in the literature (Aste et al.,
Note, that the characteristics mentioned above are not exclusive to BT. As mentioned in the introduction, there exist other approaches that also have one or more of these properties.
In this section, we compare the characteristics of BT with the needs of an open science infrastructure. With this, we study whether the technology suits as a foundation. Therefore, we made a matrix that shows which characteristics are important for the specific requirements and can meet them (see
Matrix about open science infrastructure requirements and blockchain technology characteristics that are fulfilling them.
In terms of
In a permissioned network, the governance is not taken over by all equally, but an organization (we call it committee) must be formed. One possibility could be to democratically elect the members of the committee through a network of universities and research institutions. This committee then decides how the open science infrastructure will develop or what value specific contributions in the network have. The division of roles justifies itself on the fact that non-experts / non-scientists lack the necessary experience to make well-founded decisions in such a system, which is why a permissioned blockchain is elementary with this governance model. So, users get divided into two roles (“user” and “committee user”), which differ in the ability to participate in certain decisions but have the same permissions for all other aspects.
In a permissionless network, everyone is equal in all aspects, but it also opens ways to system abuse. Therefore, a suitable consensus mechanism is mandatory to make collaborative decisions about how the underlying blockchain system is developing and also to prevent malicious behavior in the network. PoW is not the right choice for open science, not least because of its high energy consumption. Instead, more appropriate are mechanisms like PoS, which could be adopted to open science purposes. The distribution of tokens, which are representing voting rights in this system, could be based on scientific experience and merit. How these values are determined and composed would have to be studied in detail beforehand. However, this approach would make the use of a permissionless blockchain possible, since people without a scientific background do not have to be excluded, their impact gets minimized by the size of their stake.
Both approaches have advantages and disadvantages, and it depends on many factors which method is better. There are even more ways to build such a system. A detailed examination of these approaches would be the next step toward a blockchain-based open science infrastructure but goes far beyond the goal and scope of this manuscript. In the following, we concentrate on the comparison of the identified requirements for an open science infrastructure with blockchain features.
An essential topic of an open science system is the possibility to provide a
The
Considering data created in scientific work, we follow an approach that the data should be open for reuse with appropriate credit to the originator(s), but in reality, often a third party holds the rights for its usage (Dulong de Rosnay,
In addition to
To accurately reflect the reputation of researchers, an
Similar to ResearchGate
Technical infrastructures need to be sustainable. A key factor here is to provide
Another
A network can offer
Besides the incentives that should motivate people to use a network, it also must be
In terms of
A growing economy is
Another promising element that BT can provide in an open science infrastructure is the ability to create a
Non-experts can also participate and provide valuable data in research (called
As an important requirement for an open science infrastructure, the
Besides citizen science and individual contributions in a blockchain-based open science network, people can also participate in research by
The last requirement is about using
At the end of this section, we would also like to point out that the realization of a scientific platform is often made difficult or impossible by the lack of consistent funding. These are long-term projects that require detailed and well-considered preliminary planning and cause costs not only for development but also continuously for maintenance and expansion. Blockchain-based infrastructures also face this difficulty, but with the possibility of providing incentives such as cryptocurrencies that can create speculative value for investors. Thus, people outside the scientific environment get also addressed, but with this type of funding, called initial coin offering (ICO) (Conley,
Altogether, in this section, we answered our first research question and described how the characteristics of the BT can fulfill the requirements of an open science infrastructure and provide many advantages regarding replication of results, transparency of research processes, and also the traceability of research objects. The current technological state is already capable of the realization of such a platform. Nevertheless, a variety of general and technical questions in terms of a suitable consensus and governance system, incentive factors, law, and data storage still have to be answered in future research work; we explain some of these issues in more detail in section 6. Current literature and projects are focusing on different goals, a few of them describing specific use cases like resource sharing, publishing, and especially reproducibility. More are following visions of holistic science platforms that are offering different functionalities to support research. Therefore, we will analyze the state-of-the-art in the next section to answer our second research question and overview what literature and projects are already available or in development and what is the current state of the BT for open science.
This section starts with a description of how we analyzed the current state of research and how we categorized relevant blockchain projects to clarify our approach (section 5.1). After that, we give an overview of available literature (section 5.2) and projects (section 5.3). Finally, we summarize and discuss the state-of-the-art (section 5.4).
To create an outline of the current research, we have read and analyzed research papers, concepts, and applications up to April 2019 that are connecting BT and open science or are relevant in other forms to this topic. Currently, there is not much pertinent literature, but the amount is growing, suggesting that this research subject is in an early phase. Since there is little literature, it would not make sense to structure it. It is different with practical blockchain projects, of which we finally examined 60 in detail: 18% in a concept, 52% in a prototype, and 30% in a deployed status. We assigned each project to one of the six categories shown in
Overview of categories of open science-related blockchain projects. The figures in brackets show the number of projects in the respective category.
The category
In total, we investigated 83 projects (see
Since it is an early research phase, there is little literature about open science in combination with BT, but still, there are exciting and promising concepts, ideas, discussions, and approaches that we want to describe and highlight.
Dhillon wrote an article (Dhillon,
Another use case highlighted by Dhillon et al. is blockchain-based prediction markets, where mainly experts try to predict a specific outcome like the potential of reproducibility of an experiment (Almenberg et al.,
Bartling manages an open living document about the usage of the BT for open science that contains many promising ideas, projects, and hypothesis (Bartling,
Statements in the living document criticize the publication bias for positive results because negative outcomes may also be valuable and prevent the waste of time and money that researchers are using for experiments that already failed for others. In that sense, Chen et al. (
van Rossum (
The report (van Rossum,
Intellectual property is a regular output in science which can be very valuable and should be protected so others are not able to steal it and the originator can appropriately be credited. de La Rosa et al. (
Since most projects we found are social research platforms and repositories that allow their users to discuss ideas and hypothesis openly before they are processed, we see the protection of intellectual property as fundamental. de La Rosa et al. (
Another core part of the scientific process is the peer-review of submitted research work. It is one of the most important activities because not only the acceptance of papers for conferences or journals and hence the progression of PhD students and researchers are depending on it, but also research grants and hiring are related to it. Therefore, reviews need to be neutral, trustworthy, and transparent without any bias to provide a fair chance for all participants in science. But there are some concerns about the fairness and quality of today's review system and the opportunities to abuse it (Smith,
In a multi-disciplinary study of Tennant et al. (
Tenorio-Fornés et al. (
Janowicz et al. (
But Janowicz et al. (
In the following sections, we describe use cases of the six categories we defined along with associated projects. We do not aim to present every single project in detail as it would be far beyond the scope of this paper; moreover, several of them are similar and follow more or less the same goals. Also, we include some approaches and applications that are not focused on science but contain specific interesting functions or mechanisms that are promising if transferred to blockchain-based research workflows. Our analysis includes projects that are at concept, prototype, or deployed status; some of them are commercial. Regarding references, we preferred research papers or whitepapers. If these were not available, we referred to the related website or GitHub repository.
We classified most of the projects that we analyzed as
Some blockchain-based projects also aim to open up the publishing process and to provide incentive mechanisms for peer-reviewers in order to be more transparent, trustworthy, and rewarding; they function similar to an open access journal. Examples are Publish and Evaluate Online (PEvO) (Wolf et al.,
In order to gain more trust and transparency in their fund granting for research, The National Research Council of Canada created a blockchain-based prototype that is named NRC-IRAD (NRC-IRAP,
Matryx (McCloskey et al.,
ScientificCoin (
The project bloxberg (Vengadasalam et al.,
A further blockchain infrastructure that focuses especially on the validation of data integrity in biomedical studies is TrialChain (Dai et al.,
Blockchain projects with a focus on
Forecasting and prediction markets like Gnosis (
The next blockchain-based project that we want to mention because of its unique approach is Dsensor (
This category contains projects that intend to create
Online discussion and sharing platforms can also use BT to record all platform activities to secure the trustworthiness of messages and data. So, the first appearance of an idea or a micro-contribution gets registered and then is traceable to its originator. VirtualPatent (Breitinger and Gipp,
An approach that is focusing primarily on the peer-review process in science is Blockchain for Peer Review (BfPR,
Since
A concept named Coalition of Automated Legal Applications Intellectual Property (COALA IP) (De Filippi et al.,
Resources are limited; researchers are peculiarly aware of that when some experiments are not feasible due to a local lack of materials, workforce, equipment, or funds. In this regard, a blockchain can serve as a distributor to
Besides sharing storage space and data, there are also approaches to share computing power in a blockchain network. We think a method of that kind is promising to enable, for instance, researchers to execute specific demanding computing tasks such as complex simulations. A project that aims to provide exactly this functionality hence to operate like a distributed “supercomputer” is Golem (Golem,
In every case, the requirements of a project need to get evaluated to decide whether the possibilities of a provided customizable infrastructure are sufficient to fulfill them or a custom blockchain application is necessary. If the estimated quality is satisfying, there is no necessity to incur the additional effort for a new development. We found several projects that aim to provide such an infrastructural framework to build blockchains or blockchain-based applications, for example, Hyperledger (Androulaki et al.,
Our review shall serve as a snapshot of the current research situation of the BT for open science with an additional view outside the box to other applications that offer useful functionalities for that scope. During the last 7 months in that we collected and analyzed practical projects, we noticed that the market is unstable. A few of them disappeared, got canceled with official statements of their developers, or are subjectively dead based on long-time inactivity. In total, more new approaches were announced in these months, so the trend we identified shows a steadily increasing number of active blockchain projects for open science. That development is also retroactively observable over the past few years.
For section 5, we diligently analyzed 35 relevant research publications (gray literature excluded) and overall 60 blockchain-based projects (see
In the end, a blockchain alone represents a database with a unique bulk of characteristics but without a specific sense. An integrated application like Bitcoin or Ethereum gives a purpose and functionality to it. So, we differentiate between the blockchain and application layer (includes the front-end), which need to correspond with each other to use the technology as an advantage. Therefore, in open science projects, both layers should get designed in harmony following the open principles to provide a cornerstone for a transparent and trustable environment; the prevention of non-transparency and possibilities for malicious behavior is fundamental.
If a researcher integrates BT continuously within the whole research cycle, it can be useful in every phase, also partially for experimenting if it comes to tests of algorithms or evaluation of sensorial data. As shown, there are many varieties of using the technology in science to achieve a win-win situation for all stakeholders. In combination with sophisticated application design and development, it is also able to enable new usage models regarding research management, peer-reviewing, funding, and publishing. However, the expectations must be realistic; BT is not a cure for all existing problems in science or an all-in-one solution.
During our analysis, some questions and concerns arose in terms of various projects and other aspects that should get examined in future works. Below, we will briefly describe these uncertainties; more details to the most relevant topics will follow in section 6 to answer our third research question. Many projects are introducing own incentive methods that are often of monetary nature; examples are bounty systems or coin/token rewards for specific actions. On one side, we question if it is a suitable approach to integrate such financial aspects in the research process. Would that shift the intention to create knowledge and progress in science to an economic focus? On the other side, we agree to establish new incentives for the invested time and expertise of scientists who are reproducing and confirming results/studies and peer-reviewing submitted research work for conferences and journals. Further concerns are about how to deal with bugs in already deployed hence immutable SCs, and how different nations are assessing proofs issued from a blockchain in their juristic processes.
The literature and projects also showed that a standard is missing that sets a framework for how blockchains can communicate with external software through APIs, and how data is exchanged to ease the development and integration of the BT into existing workflows. The current situation makes it difficult to identify serious blockchain-based applications. The enthusiasm around this technology led to many new project announcements in the last few years, but in the area of open science, most are in concept or prototype status as our analysis showed hence are not suitable for full integration. To prevent the waste of resources, we advise making sure only to actively use blockchain applications that are at a mature state and already providing the desired functionalities. Due to the unstable market, projects can disappear from 1 day to another, specifically because most of the time, startups are developing them that usually do not have a financial buffer.
A couple of the analyzed projects aim to make intermediaries in science obsolete. These would primarily be publishers. However, the publishers can also use the BT for their good. It provides the potential for them to partially automate distribution and peer-review processes via SCs, and to decrease their costs to manage the steadily increasing amount of knowledge and number of publications. As a synergy effect, these aspects can also be positive for researchers, for instance, through fewer publication fees and faster feedbacks. Further, publishers can open up their operations to transparently show how peer-reviewing and other activities function in order to improve their trustworthiness.
Funding bodies as one stakeholder group in science are using, among various factors, metrics for their decisions on how to distribute their financial resources to researchers and their projects. The problem is that indicators of the same researchers and publications are often differing from one research platform to another due to the circumstance that they use different databases to calculate their key figures. We think the basic technical structure of a blockchain is an excellent opportunity to create a shared, transparent storage. So, it can provide the same data for every science platform to calculate precise metrics like the impact factor of a researcher or a publication.
We also think, as mentioned in some literature, that the adoption rate of the BT will decide about its future development both in science and in all other application fields. So, the number of users is a key factor; a network without participants does not make sense. Most of the projects we analyzed had, from a subjective point of view, a non-existent or small community, so we opine that the technology needs a push explicitly for its usage in open science; maybe a big publisher, stakeholder, or a norm? Overall, it is still a fairly new technology, so it is not yet possible to say for sure how the masses will interact with it and what behavior will emerge.
In this section, we answered our second research question and gave a picture about the current research state of BT for open science along with its possibilities and uncertainties that we identified during our review.
In this section, we describe in the context of our third research question challenges and research potentials that we identified during our analysis. Future works should address them in order to eliminate technological and legal insecurities and to enhance the usability of the BT for open science and beyond. We focused on some of the most relevant and promising topics in our view, which got not or insufficiently investigated yet. They shall provide an impulse in the form of starting points for further research; as a positive side effect, addressing these issues can partially also foster other non-scientific areas.
We want to point out that the challenges presented in this section are very complex and profound, so we do not expect them to get resolved in the near future. For example, the correctness problem of software which is fundamental to smart contracts (see section 6.1) is around since the early days of programming, and till today a solution is not yet in sight. Therefore, the following topics are an outlook into vital pillars that need to be considered in the course of a broad integration of BT.
Trustworthiness is a key element of BT and one of its main drivers, so developers should design all aspects in their applications in a way to support and provide that property. In this regard, we see SCs that get used in many projects as critical because they can offer various possibilities for malicious behavior and are prone to crucial coding errors in their development. The ability to use Turing-complete programming languages opens up not only numerous use cases and functionalities but also increases the complexity and thus the potential for human mistakes and the number of backdoors/exploits. These can cause, for example, crashes of the processes or vulnerabilities of the program itself that may allow hackers to steal the resources that a digital contract manages (Bigi et al.,
One approach to counteract vulnerabilities of SCs is to limit the expressiveness of the underlying programming language (Dannen,
Established standards and frameworks for technologies can be vital and bring several advantages with them like time-saving, error prevention, and increased security. Through our analysis, we have concluded that these are largely absent in BT. So far, blockchain developers have taken a pioneering role and mostly programmed their applications in different languages without technical specifications. Thus, many unique application structures emerged that have their advantages and disadvantages as well as security risks and vulnerabilities. Standards for BT can help to foster its adoption, interoperability, make systems more secure, in particular, build trust (Deshpande et al.,
There is still a lot of potential in researching suitable standards and frameworks for the BT, for example, to ease the design and development of blockchain-based software, or to integrate a blockchain into research workflows. Also interesting are unified methods of how academic publishers can use this technology to improve certain of their processes and benefit from it. In our opinion, infrastructural frameworks like Hyperledger will play an even more prominent role in the future in creating a variety of new applications. One general goal of standards and frameworks must be to facilitate the entry into blockchains in order to address non-experts and break down access barriers. Altogether, both topics offer a lot of promising research possibilities, and we think they will be a cornerstone of the BT in the future.
We noticed that several of the blockchain projects in our evaluation are using diverse monetary incentive systems that function through the issuance of digital coins/tokens for research contributions or specific actions like peer-reviewing. We question these incentive methods due to the current instability and speculative nature of cryptocurrencies. The worth of blockchain issued coins/tokens can vary significantly in a short period; there is also a chance of a total loss. Market development of cryptocurrencies is reviewable on Coinmarketcap. Moreover, it is not clear from where the funds are to come. Some projects propose the researchers themselves as funding bodies, but it is questionable whether they will independently reward others for their scientific contributions. Also, such a monetary incentive depends substantially on the amount of funds. Further, we see the chance that financial inducements can shift the focus of scholars from qualitative knowledge creation to a quantitative performance mentality in which they aim to achieve publications as fast as possible to profit economically.
We think there is plenty of research potential in analyzing blockchain-based incentive systems that are reliable and sustainable on the one hand and motivating for scientists on the other. In our view, exciting research questions are how to influence creative performance positively by extrinsic work stimuli, and whether BT can contribute something meaningful to that goal. A further approach is to evaluate existing incentive systems for their improvability with that technology. Currently, incentives in science mainly revolve around metrics such as the number of citations, the impact factor, and the resulting reputation. Another possibility for research is to work on inducements for the increasing quantity of micro-contributions that should also be appropriately getting acknowledged. Overall, there are several starting points worth to investigate to use the technologies' potential regarding the creation of new and enhancing of existing incentive systems for science.
The primary information sources of scientific metrics are research platforms, for instance, ResearchGate, Mendeley
Exemplary comparison of citation metric on two different scientific platforms.
Jöran Beel | 1,482 | 2,344 | ≈37% |
Melanie Swan | 2,138 | 5,401 | ≈60% |
Bitcoin Whitepaper | 5,631 | 6,598 | ≈15% |
The comparison showed significant discrepancies, and we noticed that they are even bigger with other platforms. Scientific metrics can, for instance, serve as a factor that funding bodies use for their decisions. As exemplarily demonstrated, a problem of this decision-making method is the crucial deviation of the indicators from one to another research platform triggered by utilization of different calculation formulas and a separated database per system. In concrete terms, the decision of a funding body to support a specific researcher or group can turn out differently depending on the examined network because of the non-identical values of the metrics. We think BT is a suitable possibility to noticeably improve the informative value and reliability of the scientific key figure system.
A blockchain as a shared database can provide the same data source to calculate normed metrics, so all research platforms expel identical values. Open questions are, for example, how to handle retractions in an immutable environment or who fills the infrastructure with information and manages it. However, such a working system as a fundament also opens the doors for potential novel metrics of which we think can also get usefully connected to incentive methods for researchers. Altogether, the research possibilities of the BT for scientific key figures are great because, in particular, its characteristics are suitable to build a shared database and beyond that to enhance metrics or to create new ones.
Some research has already been done on blockchain-based cryptocurrencies (Ponsford,
Further, SCs are also legally unspecified. For example, what happens if resources managed by them are no longer tangible or lost due to incorrect programming; which party is to blame and how does compensation work? SCs or DAOs can barely cover all possible real-world case constellations within their program code. In this respect, is there a technical or non-technical way to deal with unforeseen events? More questions are how juristic systems should treat SCs compared to traditional ones, and what possibilities exist to secure the contracting parties (Savelyev,
This paper contains an analysis about how the BT can foster open science, a review of the state-of-the-art, and an evaluation of relevant research potentials and challenges for that subject. We identified the requirements for an open scientific ecosystem and compared them with the properties of BT to verify whether they fit together. In that way, we answered our first research question and determined the technology as a reliable and appropriate infrastructure for open science. Nevertheless, we regard BT as just one building block among others and we believe that the ideas behind open science can only be implemented if all pieces are put together in a meaningful way and complement each other. Concerning our second research question, we collected and reviewed topic related literature and blockchain projects to describe the current situation. We illustrated the possibilities of the technology by many practical examples to show its capabilities for scientific workflows. Some of the analyzed projects already offer functionalities that can optimize research processes, but most of them need additional development time to implement their aimed features. For our third research question, we identified several existing challenges and research potentials. With this, we intend to draw attention to various promising and essential research topics that should get addressed to support the further development of the BT for open science.
The combination of well-known characteristics like hashing, decentralization, and immutability makes the BT unique and explains the increasing interest of science and industry in it. Due to the limited literature, open questions, and the number of projects in concept or prototype status, we noticed that the usage of blockchains in the perspective of open science is in an early development phase. Nevertheless, the technology can already make valuable contributions to that area, for example, by improving current workflows of researchers, establishing trust in technical systems and enabling new collaborations as well as mitigating existing problems. One of them is the reproducibility crisis in which BT is not a standalone solution, but in our view, a supportive part of it. But many projects need more time to mature for being beneficial. However, there is still much to do in terms of standardization, governance models, beginner-friendliness, interfaces, security and legal issues, and educational work to fully exhaust the potential of the technology.
So long as the adoption of the BT grows, we expect it to get more mature continuously. In this regard, the addressing of the identified challenges will play a vital role in the future. The current situation is comparable to a greenfield in which no specific constraints exist, and researchers have many opportunities to implement new innovative blockchain-based systems and application scenarios. Altogether, after our review, we summarize that the capabilities of the BT for open science are by far not exhausted yet. We conclude that the technology can have a significant positive impact on scientific work and its open ecosystems but that primarily depends on the technology's acceptance of the scientific community and all other associated stakeholders, which is currently unpredictable.
SL has elaborated the entire content of the document, carried out the analysis, and contributed ideas to the topic. The writing of the manuscript was mainly done by SL supported by SS. MS and BG provided critical feedback and helped with the finalization.
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The Supplementary Material for this article can be found online at:
1
2For example, see
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34