Front. Bee Sci. Frontiers in Bee Science Front. Bee Sci. 2813-5911 Frontiers Media S.A. 10.3389/frbee.2024.1351616 Bee Science Review Thermodynamics, thermal performance and climate change: temperature regimes for bumblebee (Bombus spp.) colonies as examples of superorganisms Kevan Peter G. 1 * Rasmont Pierre 2 Martinet Baptiste 3 1 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada 2 Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium 3 Biological Evolution and Ecology Research Unit, Université Libre de Bruxelles, Brussels, Belgium

Edited by: Franco Mutinelli, Experimental Zooprophylactic Institute of the Venezie (IZSVe), Italy

Reviewed by: Jiandong An, Chinese Academy of Agricultural Sciences, China

Eduardo E. Zattara, National University of Comahue, Argentina

*Correspondence: Peter G. Kevan, pkevan@uoguelph.ca

03 05 2024 2024 2 1351616 06 12 2023 06 03 2024 Copyright © 2024 Kevan, Rasmont and Martinet 2024 Kevan, Rasmont and Martinet

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Evidence is widespread that many species of Bombus are in population and biogeographical decline in response to adverse effects of global climate warming. The complex interactions of the mechanisms at the root of the declines are poorly understood. Among the numerous factors, we posit that heat stress in the nests could play a key role in the decline of bumblebee species. The similarity of the optimum temperature range in incubating nests is remarkable, about 28–32 °C regardless of species from the cold High Arctic to tropical environments indicates that the optimal temperature for rearing of brood in Bombus spp. is a characteristic common to bumblebees (perhaps a synapomorphy) and with limited evolutionary plasticity. We do note that higher brood rearing temperature for the boreal and Arctic species that have been tested is stressfully high when compared with that for B. terrestris. The Thermal Neutral Zone (TNZ), temperatures over which metabolic expenditure is minimal to maintain uniform nest temperatures, has not been studied in Bombus and may differ between species and biogeographic conditions. That heat stress is more serious than chilling is illustrated by the Thermal Performance Curve Relationship (TPC) (also sometimes considered as a Thermal Tolerance Relationship). The TPC indicates that development and activity increase more slowly as conditions become warmer until reaching a plateau of the range of temperatures over which rates of activity do not change markedly. After that, activity rates decline rapidly, and death ensues. The TPC has not been studied in eusocial bees except Apis dorsata but may differ between species and biogeographic conditions. The importance of the TPC and the TNZ indicates that environmental temperatures in and around bumblebee nests (which have been rarely studied especially in the contexts of nest architecture and substrate thermal characteristics) are factors central to understanding the adverse effects of heat stress and climatic warming on bumblebee populations, health, and biogeographical decline.

thermoregulation Thermal Neutral Zone thermal performance thermal tolerance nest architecture incubation nest insulation diet section-in-acceptance Bee Protection and Health

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Bumblebees are eusocial, large and conspicuous insects. More than 250 species are described throughout the world (Williams, 1998), but in some respects they are remarkably uniform in form and behaviour. Their colonies can be considered individually to be single “superorganisms” (i.e., a group of synergetically interacting organisms of the same species) because the entire colony, rather than the individual resident bees, is the reproductive unit subject to Darwinian selection. An important feature of the “superorganism” concept is the ability of the whole colony to maintain its temperature within a range over which metabolic rates are minimal and activity can be maintained. That range is the Thermal Neutral Zone (TNZ) ( Figure 1 ) and was elucidated by Moritz and Southwick (1992) for the western honeybee (Apis mellifera). Thermal stress has been indicated to result in workers of smaller size and poorer condition through accelerated development and more energy devoted to respiration during development. Similarly, the reproductives, especially the gynes, may mature at a smaller size with concomitant adverse effects on overwintering success, spring founding of new colonies, fewer eggs in the ovaries, and overall reduced colony strength (see Vanderplanck et al., 2019).

      Generalised relationship between rate of performance (i.e. activity) and environmental temperature in animals, notably in those with capacity to thermoregulate as in the nests of eusocial insects (from Moritz and Southwick, 1992). As conditions become colder (in blue), thermoregulation requires more and more metabolic energy (e.g., through vibration of thoracic muscles) until cold torpor and then death set in (BMR). The Thermal Neutral Zone (TNZ) (in green) represents temperature conditions under which the metabolic rate required to thermoregulate remains minimal. If heat stress occurs (in red), the metabolic cost of thermoregulation for cooling increases (e.g., by fanning, evaporation, mass defecation, etc.) until thermoregulation becomes impossible and death ensues. In general, the slopes of metabolic and thermal stress are longer and shallower for warming than for cooling (i.e. overheating is more metabolically stressful than chilling) (see Figure 2 ). The TNZ has not been studied in Bombus and may differ between species and biogeographic conditions.

      Bumblebees are recognised as important pollinators from the High Arctic to the tropics and are exploited in commercial agriculture (Cameron and Sadd, 2019). They form a monophyletic genus, Bombus, that includes the subgenus of socially parasitic Psithyrus, within the Family Apidea (Hymenoptera) (Cameron et al., 2007). Aspects of the bionomics of several species of bumblebees have contributed to their commercial value in pollination of crops (Velthuis and Van Doorn, 2006), assessing natural problems in pollination and associated issues in conservation (IPBES, 2016; Potts et al., 2016).

      Bumblebees are widely considered to be in decline globally, with climate change (especially warming) being a major contributor (Vannote and Sweeney, 1980; Williams, 1986; Colla and Packer, 2008; Cameron et al., 2011; Bommarco et al., 2012; Rasmont and Iserbyt, 2012; Sunday et al., 2014; Kerr et al., 2015; Martins et al., 2015; Rasmont et al., 2015; Arbetman et al., 2017; Ogilvie et al., 2017; Woodard, 2017; Koch et al., 2018; Sirois-Delisle and Kerr, 2018; Françoso et al., 2019; Naeem et al., 2019; Vray et al., 2019; da Silva Krechemer and Marchioro, 2020; Jacquemin et al., 2020; Rollin et al., 2020; Soroye et al., 2020; Marshall et al., 2021; Martínez-López et al., 2021; Oyen et al., 2021). In the few examples when the diversity and abundance of bumblebees have been assessed by a standard method over several years, wide interannual fluctuations have not been explained (Turnock et al., 1997). The conclusions from most studies rely on inferences, circumstantial evidence, and correlations without invoking experimentally elucidated root physiological causes, or suggesting a suite of interacting ecological, behavioural to physiological causalities.

      We suggest that assessment of the effects of stress at the superorganism level (i.e., colony) would help explain their plight under climate change. Conditions within nesting habitats are a rather neglected but probably important factor under conditions of heat stress, such as during heat waves (Vanderplanck et al., 2019; Martinet et al., 2021; Gradišek et al., 2023), in constraining and adversely affecting the health and survival of bumblebees as the effects of global warming become increasingly severe. The effects of stress may be well measured by whole colony respirometry which seems to have been rarely undertaken. The stress of parasitic tracheal mites adversely affects the respiratory rates of whole colonies of honeybees (Apis mellifera) and helped understand winter mortality (Skinner, 2000). Respirometry of honeybees in clusters held at differing temperatures has helped understand superorganism effects in colony thermoregulation (Moritz and Southwick, 1992; Stabentheiner et al., 2021).

      The aim of this report is to stress the importance of nest thermoregulation and brood incubation, and their apparent consistency throughout the genus, as being highly sensitive to disruption, especially under heat stress. Then, by returning to classic understandings of thermal performance, we point out that more and comparative studies on this common character could explain the recorded sensitivities of various Bombus spp. to the effects of climate change.

      Coupled with the remarkable uniformity in the nest incubation temperatures across the genus ( Table 1 ), other studies on nesting ecology are needed, such as the ambient heat load (soil temperature), nature of the substrate, architecture of the nests, thermal buffering properties of the substrate, considerations of aspect to insolation, shading, and other environmental factors. The extent of behavioural plasticity is probably greater than noted in published studies but may be constrained in the face of other risks, such as flooding, predation and potential for disease.

      Uniformity of nest incubation temperatures

      Seeley and Heinrich (1981), Heinrich (1993), and Jones and Oldroyd (2007) review what is known about temperature regulation in the nests of various social insects. It is widely known that honeybees [Apis spp. (Hymenoptera: Apidae)] control the environmental conditions in their colonies (Huber, 1814; Milum, 1929; Seeley and Heinrich, 1981; Moritz and Southwick, 1992; Sudarsan et al., 2012; Stabentheiner et al., 2021), but the extent and mechanisms by which other eusocial insects, such as ants (Roeder et al., 2021; Nascimento et al., 2022) and bumblebees [Bombus spp. (Hymenoptera: Apidae)] do so is less understood (Goulson, 2010).

      Newport (1837) presented probably the first detailed accounts of the temperatures generated for the incubation of the brood by bumblebees, as later pointed out by Hoffer (1882) as being similar to birds incubating their eggs and chicks. The informative books by Heinrich (1979, 1993, 2004) summarise the scientific information on both cooling and heating in terms of temperature control in individual bumblebees and of the nest.

      Table 1 presents information on the species of Bombus for which nest incubation and body temperature data are published. From the first publication by Newport (1837), it has become increasingly accepted that the general optimum temperature within the brood of various species bumblebee is much the same, at about 28–32 °C, regardless of species. That narrow temperature range applies when the colony is well developed, but the brood nest may be much cooler when a lone queen needs to leave her nest to forage at the early phase of nest establishment. In small, queenless, colonies of B. terrestris thermoregulation is also tightly controlled, notably under conditions of cold stress. More recent research (e.g., Vogt, 1986; Weidenmüller et al., 2002; Weidenmüller, 2004; Gardner et al., 2007; Vanderplanck et al., 2019) has stressed behavioural responses, especially fanning, in response to high temperatures, cooling, and preventing the overheating of brood in developed colonies.

      Generalised brood temperatures of various species of Bombus arranged primarily in chronological order of studies made.

      Species Brood temperatures Reference
      Bombus terrestris 22.5–34.5 °C Newport, 1837
      30–34 °C Linhard, 1912
      29–35 °C Hasselrot, 1960
      31.3–33.4 °C Weidenmüller et al., 2002
      31 °C Livesley et al., 2019
      28–34 °C Wynants et al., 2021
      Bombus pascuorum (as B. agrorum) 29–32.5 °C Himmer, 1933
      Bombus hypnorum 30 °C Nielsen, 1938
      Bombus borealis 30.5 °C Fye and Medler, 1954
      Bombus rufocinctus 29.5 °C
      Bombus fervidus 29.5–32.2 °C
      Bombus lapidarius 20–35 °C Hasselrot, 1960
      Bombus terrestris 29–35 °C
      Also B. hypnorum, B. lucorum, B. so[a]ro[e]ensis, B. pratorum
      Bombus lapidarius 27–33 °C Wojtowski, 1963
      Also B. pascuorum, B. derhamellus, B. terrestris, B. silvarum
      Bombus polaris 25–35 °C (despite the cold ground surrounding the nest) Richards, 1973
      Bombus vosnesenskii 24–34 °C Heinrich, 1974
      Bombus impatiens, B. terrestris, B. ruderatus 29–32 °C Pomeroy and Plowright, 1980
      Bombus agrorum (=B. pascuorum), B. hortorum, B. saroeensis, B. subbaicalensis, B. distinguendus 27–34 °C (29–31 °C) Eskov and Dolgov, 1986
      Bombus impatiens and Bombus affinis 30–32 °C Vogt, 1986
      Bombus lapidarius 27 – (29–33) °C Schultze-Motel, 1991
      Bombus huntii 28–32 °C (implied as optimum) Gardner et al., 2007
      Bombus atratus 28 (by implication) Vega et al., 2011
      Bombus hypnorum, B. hortorum, B. argillaceus, B. pascuorum, B. humilis, and B. sylvarum ca. 31 °C for all species, especially at night Gradišek et al., 2023

      The temperature regime at the periphery of the cluster and within the cavity occupied by the nest varies depending on the ambient temperature outside the cavity or domicile in which the colony lives. The ambient temperature immediately outside the cavity is, of course, similarly influenced but the surrounding materials (e.g., wood, straw, animal nest residues, soil and so on) and their thermal properties, especially conductance (see below).

      Our review of the published literature over the past 180 years indicates that bumblebees of all species so far studied maintain constant brood nest temperatures of 30–35 °C at the core of the colony ( Table 1 ). This range seems to be wider at lower temperatures than for honeybees, however comparative studies have not been made. As with honeybees, the narrow temperature range of incubation and thermoregulation seems not to have been studied in bumblebees in relation to brood survival. It can be assumed that bumblebee brood would not survive at temperatures above 36 °C, and at temperatures at about 30–32 °C the brood survives and develops normally, prolonged chilling can be assumed to be detrimental.

      Thermal performance & tolerance

      In general, temperature affects rates of biological activity (A), from enzymatic reactions, bacterial population growth rates, various metabolic functions, organ development and maturation, to organismal growth and development. Together and in combination temperatures and rates of biological activity (also metabolic rates) constitute the Thermal Performance Curve (TPC) (Schulte et al., 2011; Rezende and Bozinovic, 2019) ( Figure 2 ), sometimes referred to as the Thermal Tolerance Relationship (TTR). TPC is highly diverse across life forms, from organisms that thrive at near freezing temperatures to extreme thermophiles. Nevertheless, for all life forms, TPC may be modelled as the product of two functions, an exponentially increasing rate of the forward reaction to the optimum and a steeper exponential decay (till death) presumably resulting from enzyme denaturation, membrane dysfunction, deceleration of mitochondrial activity as temperatures increase beyond the optimum, and perhaps effects on DNA-methylation. The optimum, where the change in activity remains nil (homeostatic) as temperature increases (dA/dT = 0 for TTR) may be extended by biochemical plasticity, acclimation, thermoregulatory behaviour, and evolutionary adaptation.

      In classical ecology it is generally recognised that the ranges of most terrestrial organisms, especially animals, can be explained ecophysiologically by temperature and moisture (Uvarov, 1931; Andrewartha and Birch, 1954; Lutterschmidt and Hutchison, 1997; Kinsolver and Umbanhower, 2018). In particular, the relationship between temperatures for development and survival of all organisms shares the common feature of being negatively skewed (i.e., the TPC, which indicates that once the optimal temperature for development, activity, or survival is exceeded, the decline is steep with death ensuing after a few more degrees of heat) (bacteria: Rezende and Bozinovic, 2019; plants: Rezende and Bozinovic, 2019; fungi: Rezende and Bozinovic, 2019; insects: Uvarov, 1931; Wigglesworth, 1972; Kinsolver and Umbanhower, 2018; Rezende and Bozinovic, 2019; vertebrates: Lutterschmidt and Hutchison, 1997; Rezende and Bozinovic, 2019).

      Surprisingly, it seems that few experimental studies have been made to elucidate the thermal performance and tolerances (TT, see discussion below) of bees and their brood together (but see Vogt, 1986; Vanderplanck et al., 2019). It may be assumed that brood temperatures lower than optimal are more tolerable and less damaging over a greater range than temperatures above optimal. That is because temperatures lower than the optimum just slows down metabolism but going higher causes irreversible damage. In general, one may assume that heat stress may be lethal even if slightly elevated above optimum. Himmer (1932) suggested that the vital upper limit for temperature of honeybee brood (Apis mellifera) is 36 °C and Mardan and Kevan (2002) showed that for Apis dorsata brood does not survive when incubated at 36 °C or above. For adult bumblebees it is known that this curve may have different positions on the temperature continuum, with some species able to function at lower or higher temperatures and some species that can acclimate in response to ambient and local conditions (Oyen et al., 2016; Oyen and Dillon, 2018; Oyen et al., 2021; Gonzalez et al., 2022).

      Food is the source of energy for thermoregulation and colony maintenance and can be influenced by climate change (e.g., Miller-Struttmann et al., 2015). Vanderplanck et al. (2019) studied the interactive effects of heat stress reduction of dietary resource quality, and colony size in bumblebee colonies. Using 117 colonies of B. terrestris, they applied a fully cross-treatment experiment to test the effects of three dietary quality levels under three levels of heat stress with two colony sizes. Both nutritional and heat stress reduced colony development and caused lower investment in offspring production. Small colonies were much more sensitive to heat and nutritional stresses than were large ones, possibly because a higher proportion of workers are needed to maintain social homeostasis in the former. From a nutritional viewpoint, the effects of heat stress were far less pronounced for small colonies which received relatively good diets than for those that received inferior diets.

      Bumblebee nest architecture and soil temperature profiles

      We suggest that the thermal environments in which bumblebee nest (mostly underground, some in cavities, and few on the surface of the ground) are a neglected area in bumblebee ecology. We have not found any reports that link experimentally the various factors involved.

      Bumblebee nests take on many forms but are generally enclosed. The most well-known form is ovoid enclosed in a protective cavity. Those bumblebees using vacated rodent nests may be as much as 20 cm beneath the soil surface (Free and Butler, 1959; Goulson 2010; Martinet et al., 2022). The nest itself includes the central complex of brood cells within an involucre of waxy material adhering to an outer layer of insulation. That insulation may be a centimetre or so thick. Outside the cavity is the substrate in which the nest is enclosed is soil, wood (as in cavity nesters), or rarely vegetation (living and/or dead) for surface nesters ( Figure 3 ) (for examples, see Free and Butler, 1959; Sakagami et al., 1967; Hines et al., 2007; Goulson, 2010; De Meulemeester et al., 2011; Martinet et al., 2022).

      Generalised relationship between temperature and activity (Thermal Performance Curve; TPC) showing the more pronounced impact of heat stress (steep decline in activity after optimal temperatures are exceeded) than of chilling (left-hand tail). The position and breadth of the curve differs between organisms, being transposed to the right for thermophiles and to the left for organisms adapted to cooler conditions. The optimal temperature range, at which activity can be the greatest, may broader or narrower depending on adaptation and/or acclimation. For poikilotherms the relationship is generally broader, especially at cooler temperatures, but for homoeotherms the relationship is tight at across the range of tolerable temperatures as is well-known for incubation and successful development of birds’ eggs. The general form of the relationship is recognised by biologists who have studied temperatures and activity/development from bacteria to mammals (see Rezende and Bozinovic, 2019).

      From a thermodynamic viewpoint, nest temperatures are influenced by thermoregulation by the colony (metabolic or behavioural) ( Figure 1 ) (Vogt, 1986). The buffering of the temperature within the colony must be influenced by the insulation afforded by the involucre and insulation; that is, the capacity of the materials together to resist the flow of conductive heat (R- or RSI values and U-units) (see Figure 3 ). The involucre of the nest is likely to have high insulational value with RSI at about 20 (https://en.wikipedia.org/wiki/R-value_(insulation)) based on data for sheep fleece, straw, etc. Outside the involucre, the soil or wood substrate likely has a much lower RSI at less than half that of the involucre but its conductivity presumably varies widely depending on water content, compaction, and composition. We know of no measurements of RSI values for materials that make up bumblebee nests.

      Diagram of the main components of the subterranean nest of Bombus species (see Martinet et al., 2022). Such nests are usually about 15 cm below the surface.

      The actual temperature profile from the outside of the nest’s involucre to the surface presumably and typically would show the highest heat loads at the surface, especially if insolated with temperatures exceeding lethal temperatures for many organisms. Under shaded, night-time and rainy conditions the surface temperature of the soil is known to be close to that of the ambient air (Geiger et al., 2003; Holmes et al., 2008). We know of no records in which the soil temperature profile over bumblebee nests is given but Linhard (1912) provided data on ambient temperatures associated with wooden-cavity nests (bird nesting boxes) inhabited by B. hypnorum.

      Discussion

      This essay brings to readers’ attention that the issue of climate change and ensuing range reductions in bumblebees is complex. We hope that our readers recognise that we have attempted to provide a vista of the “Horizon” by presenting this “Frontier” for contemporary “Bee Science”.

      Climate change and especially increases in global temperatures seem to affect bumblebees in various and interrelated ways. Anatomical adaptations have been recorded and include changes is size, body part dimensions (notably mouthparts) and possibly pilosity (Miller-Struttmann et al., 2015; but see de Keyzer et al., 2016 and, more recently, Gérard et al., 2018, 2021, 2022a, 2022b). Other adaptive morphological and physiological changes in bee species have been proposed for bees living in urban heat islands (Polidori et al., 2023). Flight activity is influenced by temperature, insolation, and other weather conditions in nest-seeking queens, foraging workers, and the next generation of sexuals. Thermoregulation in nests and incubation of brood are in themselves thermodynamically and behaviourally complex and presumably part of species and colony differences in nest site choice, nest design and construction, and use of materials. The nest differences must also reflect strategies and adaptations for overcoming periods of adversity (e.g., heat, cold, damp, dearth of resources and even hibernation/diapause/metamorphosis).

      Excessive heat is clearly a major issue for perhaps most species of bumblebees and it is the factor considered in most detail for the effects of climatic warming. Most contemporary research has focussed on standard meteorological data and coincidental or circumstantial changes in the ranges of various species on bumblebees. Experimental explanations of cause and effect need more detailed and integrated studies with special attention paid to colonies as “superorganisms” (Moritz and Southwick, 1992).

      Thermal performance and tolerance (TT) studies in perhaps all organisms show that heat is more hazardous than cold [see Figure 2 (TPC) with its negatively skewed shape]. After a certain ambient temperature is reached, the effects of increasing heat are more pronounced and deadly than are the effects of cooling. The relationship between temperature and larval death has been studies in only a few species of social insects and not in bumblebees. The maximum for the level of activity with temperature can be presumed to reflect a preferred range and the temperature at which social insects, including bumblebees, would try to keep their nests. That range lends to the general relationship ( Figures 1 , 2 ) but the variability in that feature seems not to have been assessed in insects, neither physiologically nor in the broader contexts of evolutionary ecology and behaviour. We suggest that such studies, specific and comparative, could elucidate explanatory aspects to climate change and biogeographical range shifts as well as providing insights into possible variability in the TNZ ( Figure 1 ).

      The remarkable similarity of nest temperatures recorded from numerous species of bumblebee ( Table 1 ) needs to be seriously considered as a possible limitation on their abilities to withstand not just cool conditions but heat as well. The idea of the TNZ ( Figure 1 ) provides insights as to the possible nature of ecological and evolutionary constraints. Few species have been studied for nesting TNZ. We suggest that various species differ in that respect, with cool-climate species possibly having broader TNZ than others from subtropical and tropic environments. Tropical and subtropical bumblebees may have narrow TNZs reflecting that thermoregulation for cooling is more energetically expensive than in temperate zone species. Thus, the latter with their abilities to live over a broad range of temperatures may represent greater variability in potential survival under relatively limited hot and cold conditions. That aspect of comparative energetics and thermoregulation remains unexplored but may suggest reasons for some changes in bumblebee ranges. The apparent and approximate inverse relationship between TPC ( Figure 2 ) and TNZ ( Figure 1 ) reflects mostly the general shape of the TPC curve with its extended tail at the cold end of the temperature range coupled with the preferred temperature range as maintained by thermoregulatory processes (TNZ, Figure 1 ).

      Thermoregulatory behaviours are various. Air exchange is the most commonly considered reaction to temperature changes in the nests of various bees. The thermodynamics and biophysics of colony clustering within the nest have been elucidate by Sudarsan et al. (2012) for western honeybees (A. mellifera) and those principals likely apply to other cavity nesting social insects. Fanning to expel excess heat from the nest is well known in honeybees and bumblebees. That behaviour can be coupled with the evaporation of water (the swamp cooler effect) within the nesting cavity (e.g. hive) or on the surface of open nests, such as in A. dorsata which indulge in gobetting and mass defecatory flights related to cooling the colony under conditions of heat stress (Mardan and Kevan, 1989). Those behaviours seem not to have been recorded in bumblebees but may be important.

      The placement, construction, and architecture, of nests of social bees and wasps have been described to greater or lesser extents for several species but not especially so for thermoregulatory considerations. Subterranean nesting is well-known in bumblebees. They use various substrates and materials, but nests are usually only a few centimetres below the surface ( Figure 3 ). Less seems to be known about the nesting structures of bumblebees that nest in above ground cavities (e.g., hollow trees or bird-nesting boxes). Some may nest above ground in available cavities (even discarded household furniture) or, as the tropical Amazonian B. transversalis which even forages for nest-building thatch materials along its established walking trails (Cameron and Whitfield, 1996). Human beings have domesticated a few species so that they inhabit artificial domiciles (Velthuis and Van Doorn, 2006). Interspecific and intraspecific comparative studies on the nature of the nests and their locations, together with considerations on thermoregulation, may elucidate factors that pertain to physiological ecology and biogeographic limitations. A major problem confronting bumblebee studies is finding nests in the wild. For locating nests of subterranean species, perhaps non-invasive studies by ground-penetrating radar (GPR) could be useful. Sherrod et al. (2019) record nesting burrows of the ground-nesting, solitary bee, Colletes inaequalis at about 0.5 m depth. We know of no published studies using that technique for bumblebees.

      We suggest that studies using flow-through respirometry (Skinner, 2000; Stabentheiner et al., 2021) of whole colonies whereby the temperature of the atmosphere, its saturation deficit, and possibly partial pressures of gases can be manipulated would provide more comprehensive and comparative ecophysiological understandings of the TNZ and TPC. Such studies could also involve measurements of the insulation properties of materials from which nests are constructed and of their surrounding matrix. We know of no measurements of heat loss through bee nesting materials. Skowron and Kern (1980) used basic principles of thermodynamics and heat flux to measure the insulation afforded by birds’ nests. Their approach could be followed with modifications possible by modernisation of instrumentation. We suggest that measuring heat flow (i.e., thermal resistance or conductance) across bee nest walls may be instructive and can be done when the temperatures inside and outside are known so as to calculate the temperature difference from inside to the outside of the nest. Then, by measuring the area or volume of the nesting material or matrix being considered and the amount of time taken for the temperature difference to stabilise the insulational properties of the nest can be measured (R-value or U-value for heat transmittance). We are not aware of any such measurements for materials comprising bumblebee nests, either artificial or natural. Calculation could be adjusted to account for the thickness and nature of the wall materials. Readers are referred to Çengel and Afshin (2015) and Tritt (2004) for principles and methods.

      By linking the various ecophysiological and behavioural factors, with environmental concerns and constraints on evolutionary plasticity through the superorganism approach to bumblebee nesting, several novel approaches suggest themselves for understanding how climate change asserts its influence on bumblebees’ population dynamics, changing biogeography, and possibly conservation. We suggest that the same principles should be applied to the effects of climate change on other eusocial and other insects (e.g., ants, termites, other Hymenoptera, community gall-formers, etc.).

      Author contributions

      PK: Writing – original draft, Writing – review & editing. PR: Writing – original draft, Writing – review & editing. BM: Writing – original draft, Writing – review & editing.

      Funding

      The author(s) declare financial support was received for the research, authorship, and/or publication of this article. PK acknowledges funding from the Natural Sciences and Engineering Research Council (NSERC Individual Discovery Grant RGPIN-2018-0482) has been used to finance the reported research. It is also part of the Accelerating Green Plant Innovation for Environmental and Economic Benefit Cluster funded by the Canadian Ornamental Horticulture Alliance (COHA-ACHO) and by the Government of Canada under the Canadian Agricultural Partnership’s AgriScience Program. BM is supported by the Belgian National Fund for Scientific Research (FRS-FNRS; postdoctoral fellowship).

      Acknowledgments

      We thank Dr. T. Woodcock for critical review of the manuscript.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Andrewartha H. G. Birch L. C. (1954). The distribution and abundance of animals. Chicago, IL: University of Chicago Press. Arbetman M. P. Gleiser G. Morales C. L. Williams P. Aizen M. A. (2017). Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen. Proc. R. Soc. B-Biological Sci. 284, 20170204. doi: 10.1098/rspb.2017.0204 Bommarco R. Lundin O. Smith H. G. Rundlof M. (2012). Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B-Biological Sci. 279, 309315. doi: 10.1098/rspb.2011.0647 Cameron S. A. Hines H. M. Williams P. H. (2007). A comprehensive phylogeny of the bumble bees (Bombus). Biol. J. Linn. Soc. 91, 161188. doi: 10.1111/j.1095-8312.2007.00784.x Cameron S. A. Lozier J. D. Strange J. P. Koch J. B. Cordes N. Solter L. F. . (2011). Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. United States America 108, 662667. doi: 10.1073/pnas.1014743108 Cameron S. A. Sadd B. M. (2019). Global trends in bumble bee health. Annu. Rev. Entomology 65, 209232. doi: 10.1146/annurev-ento-011118-111847 Cameron S. A. Whitfield J. B. (1996). Use of walking trails by bees. Nature 379, 125. doi: 10.1038/379125a0 Çengel Y. A. Afshin J. G. (2015). Heat and mass transfer: fundamentals & applications. 5th edition. New York, NY: McGraw-Hill Education, 10121. Colla S. R. Packer L. (2008). Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodiversity Conserv. 17, 13791391. doi: 10.1007/s10531-008-9340-5 da Silva Krechemer K. F. Marchioro C. A. (2020). Past, present, and future distributions of bumble bees in South America: identifying priority species and areas for conservation. J. Appl. Ecol. 57, 18291839. doi: 10.1111/1365-2664.13650 de Keyzer C. W. Colla S. R. Kent C. F. Rafferty N. E. Richardson L. L. Thomson J. D. (2016). Delving deeper: questioning the decline of long-tongued bumble bees, long-tubed flowers and their mutualisms with climate change. J. Pollination Ecol. 18, 3642. doi: 10.26786/1920-7603(2016)15 De Meulemeester T. Aytekin A. M. Cameron S. Rasmont P. (2011). Nest architecture and species status of the bumble bee Bombus (Mendacibombus) shaposhnikovi (Hymenoptera: Apidae: Bombini). Apidologie 42, 301306. doi: 10.1007/s13592-011-0022-z Eskov E. K. Dolgov L. A. (1986). Temperature regulation in the nest and its importance in the bumblebee family life. Zoologicheskii Zhurnal 65, 15001507. Françoso E. Zuntini A. R. Arias M. C. (2019). Combining phylogeography and future climate change for conservation of Bombus morio and B. pauloensis (Hymenoptera: Apidae). J. Insect Conserv. 23, 6373. doi: 10.1007/s10841-018-0114-4 Free J. B. Butler C. G. (1959). Bumblebees. London, UK: Collins. Fye R. E. Medler J. T. (1954). Temperature studies in bumblebee domiciles. J. Economic Entomology 47, 847852. doi: 10.1093/jee/47.5.847 Gardner K. E. Foster R. L. O’Donnell S. (2007). Experimental analysis of worker division of labor in bumblebee nest thermoregulation (Bombus huntii, Hymenoptera: Apidae). Behav. Ecol. Sociobiology. 61, 783792. doi: 10.1007/s00265-006-0309-7 Geiger R. Aron R. H. Todhunter P. (2003). The climate near the ground (various editions). New York: Springer Science & Business Media. (2012). Lanham, MD: Rowman and Littlefield. Gérard M. Michez D. Debat V. Fullgrabe L. Meeus I. Piot N. (2018). Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings. Sci Rep. 8, 15169. doi: 10.1038/s41598-018-33429-4 Gérard M. Marshall L. Martinet B. Michez D. (2021). Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century. Ecography 44, 255264. doi: 10.1111/ecog.05310 Gérard M. Amiri A. Cariou B. Baird E. (2022a). Short-term exposure to heatwave-like temperatures affects learning and memory in bumblebees. Glob. Change Biol 28, 42514259. doi: 10.1111/gcb.16196 Gérard M. Cariou B. Henrion M. Descamps C. Baird E. (2022b). Exposure to elevated temperature during development affects bumblebee foraging behavior. Behav. Ecol. 33, 816824. doi: 10.1093/beheco/arac045 Gonzalez V. H. Oyen K. Ávila O. Ospina R. (2022). Thermal limits of Africanized honey bees are influenced by temperature ramping rate but not by other experimental conditions. J. Thermal Biol. 110, 103369. doi: 10.1016/j.jtherbio.2022.103369 Goulson D. (2010). Bumblebees: behaviour, ecology, and conservation. 2nd edition. Oxford, UK: Oxford University Press. Gradišek A. Bizjak J. Popovski A. Grad J. (2023). Bumble bee nest thermoregulation: a field study. J. Apicultural Res. 62, 634642. doi: 10.1080/00218839.2022.2164651 Hasselrot T. B. (1960). Studies on Swedish bumblebees (genus Bombus Latr.): their domestication and biology. Opusc. Entomol. Suppl. 17, 1192. Heinrich B. (1974). Thermoregulation in bumblebees. I. Brood incubation by Bombus vosnesenskii queens. J. Comp. Physiol. 88, 129140. doi: 10.1007/BF00695404 Heinrich B. (1979). Bumblebee economics. Cambridge, MA: Harvard University Press. Heinrich B. (1993). The hot-blooded insects: strategies and mechanisms of thermoregulation. Cambridge, MA: Harvard University Press. Heinrich B. (2004). Bumblebee economics: with a new preface. Cambridge, MA: Harvard University Press. Himmer A. (1932). Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol. Rev. 7, 224253. doi: 10.1111/j.1469-185X.1962.tb01042.x Himmer A. (1933). Die Nestwarme bei Bombus agrorum F. Biologische Zentralblatt 53, 270276. Hines H. M. Cameron S. A. Deans A. R. (2007). Nest architecture and foraging behavior in Bombus pullatus (Hymenoptera: Apidae), with comparisons to other tropical bumble bees. J. Kansas Entomological Soc. 80, 115. doi: 10.2317/0022-8567(2007)80[1:NAAFBI]2.0.CO;2 Hoffer E. (1882). Die hummelbauten. Kosmos. 12, 412421. Holmes T. R. H. Owe M. De Jeu R. A. M. Kooi H. (2008). Estimating the soil temperature profile from a single depth observation: a simple empirical heatflow solution. Water Resour. Res. 44, W02412. doi: 10.1029/2007WR005994 Huber F. (1814). New observations upon bees. (Various editions and translations of this book or books exists: version used is 1926, translated from French by C. P. Dadant. Am. Bee Journal Hamilton Illinois II, 183198.) IPBES (2016). The assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. Bonn, Germany: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Available at: https://www.ipbes.net/sites/default/files/downloads/pdf/individual_chapters_pollination_20170305.pdf. Jacquemin F. Violle C. Munoz F. Mahy G. Rasmont P. Roberts S. P. . (2020). Loss of pollinator specialization revealed by historical opportunistic data: insights from network-based analysis. PLoS One 15, e0235890. doi: 10.1371/journal.pone.0235890 Jones J. C. Oldroyd B. P. (2007). Nest thermoregulation in social insects. Adv. Insect Physiol. 33, 153191. doi: 10.1016/S0065-2806(06)33003-2 Kerr J. T. Pindar A. Galpern P. Packer L. Potts S. G. Roberts S. M. . (2015). Climate change impacts on bumblebees converge across continents. Science 349, 177180. doi: 10.1126/science.aaa7031 Kinsolver J. G. Umbanhower J. (2018). The analysis and interpretation of critical temperatures. J. Exp. Biol. 221, jeb167858. doi: 10.1242/jeb.167858 Koch J. B. Vandame R. Mérida-Rivas J. Sagot P. Strange J. (2018). Quaternary climate instability is correlated with patterns of population genetic variability in Bombus huntii . Ecol. Evol. 8, 78497864. doi: 10.1002/ece3.42949 Linhard E. (1912). “Humlebien som Husdyr. Spredte Træk af nogle danske Humlebiarters Biologi,” in Tidsskrift for Landbrugets Planteavl, vol. 19. (Organ for Statens Forsøgsvirksomhed i Plantekultur. Udgivet af Statens Planteavlsudvalg), 335352. Livesley J. S. Constable C. Rawlinson W. G. Robotham A. M. Wright C. Hampshire A. E. . (2019). The power and efficiency of brood incubation in queenless microcolonies of bumble bees (Bombus terrestris L.). Ecol. Entomol. doi: 10.1111/een.12736 Lutterschmidt W. I. Hutchison V. H. (1997). The critical thermal maximum: history and critique. Can. J. Zoology 75, 15611574. doi: 10.1139/z97-783 Mardan M. Kevan P. G. (1989). Honeybees and “yellow rain”. Nature 341, 191. doi: 10.1038/341191a0 Mardan M. Kevan P. G. (2002). Critical temperatures for survival of brood and adult workers of the giant honeybee, Apis dorsata (Hymenoptera : Apidae). Apidologie 33, 295301. doi: 10.1051/apido:2002017 Marshall L. Beckers V. Vray S. Rasmont P. Vereecken N. J. Dendoncker N. (2021). High thematic resolution land use change models refine biodiversity scenarios: a case study with Belgian bumblebees. J. Biogeography 48, 345358. doi: 10.1111/jbi.14000 Martinet B. Dellicour S. Ghisbain G. Przybyla K. Zambra E. Lecocq T. . (2021). Global effects of extreme temperatures on wild bumblebees. Conserv. Biol. 15071518. doi: 10.1111/cobi.13685 Martinet B. Przybyla K. Atkins J. Bosiger Y. Evrard D. Gill P. . (2022). Description of nest architecture and ecological notes on the bumblebee Bombus (Pyrobombus) lapponicus (Hymenoptera: Apidae: Bombini). Insectes Sociaux 69, 131135. doi: 10.1007/s00040-022-00849-5 Martínez-López O. Koch J. B. Martínez-Morales M. A. Navarrete-Gutiérrez D. Enríquez E. Vandame R. (2021). Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: conservation implications. Global Change Biol. 27, 17721787. doi: 10.1111/gcb.15559.2015 Martins A. C. Silva D. P. De Marco P. Melo G. A. R. (2015). Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. J. Insect Conserv. 19, 3343. doi: 10.1007/s10841-014-9740-7 Miller-Struttmann N. E. Geib J. C. Franklin J. D. Kevan P. G. Holdo R. M. Ebert-May D. . (2015). Functional mismatch in a bumble bee pollination mutualism under climate change. Science 349, 15411544. doi: 10.1126/science.aab0868 Milum V. G. (1929). Brood rearing temperature and variations in developmental periods of the honey bee. Annu. Rep. Illinois State Beekeepers’ Assoc. 29, 7295. Moritz R. F. A. Southwick E. E. (1992). Bees as superorganisms: an evolutionary reality. Berlin etc: Springer-Verlag. Naeem M. Liu M. Huang J. Ding G. Potapov G. Jung C. . (2019). Vulnerability of East Asian bumblebee species to future climate and land cover changes. Agriculture Ecosyst. Environ. 277, 1120. doi: 10.1016/j.agee.2019.03.002 Nascimento G. Câmara T. Arnan X. (2022). Critical thermal limits in ants and their implications under climate change. Biol. Rev. 97, 12871305. doi: 10.1111/brv.12843 Newport G. (1837). On the temperature of insects, and its connexion with the functions of respiration and circulation in this class of invertebrated animals. Philos. Trans. R. Soc. London 127, 2592338. doi: 10.1098/rstl.1837.0019 Nielsen E. T. (1938). Temperatures in a nest of Bombus hypnorum L. Videnskabelige. Meddelelser Naturhistorisk Forening København Naturhistorisk 102, 16. Ogilvie J. E. Griffin S. R. Gezon Z. J. Inouye B. D. Underwood N. Inouye D. W. . (2017). Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol. Lett. 20, 15071515. doi: 10.1111/ele.12854 Oyen K. J. Dillon M. E. (2018). Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status. J. Exp. Biol. 221, jeb165589. doi: 10.1242/jeb.165589 Oyen K. J. Giri S. Dillon M. E. (2016). Altitudinal variation in bumble bee (Bombus) critical thermal limits. J. Therm. Biol. 59, 5257. doi: 10.1016/j.jtherbio.2016.04.015 Oyen K. J. Jardine L. E. Parsons Z. M. Herndon J. D. Strange J. P. Lozier J. D. . (2021). Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees. J. Comp. Physiol. B 191, 843854. doi: 10.1007/s00360-021-01385-7 Polidori C. Ferrari A. Ronchetti F. Tommasi N. Nalini E. (2023). Warming up through buildings and roads: what we know and should know about the Urban Heat Island effect on bees. Front. Bee Sci. 1, 1269600. doi: 10.3389/frbee.2023.1269600 Pomeroy N. Plowright R. C. (1980). Maintenance of bumble bee colonies in observation hives (Hymenoptera, Apidae). Can. Entomologist 112, 321326. doi: 10.4039/Ent112321-3 Potts S. G. Imperatriz-Fonseca V. Ngo H. T. Aizen M. A. Biesmeijer J. C. Breeze T. D. . (2016). Safeguarding pollinators and their values to human well-being. Nature 540, 220229. doi: 10.1038/nature20588 Rasmont P. Franzén M. Lecocq T. Harpke A. Roberts S. Biesmeijer J. C. . (2015). Climatic risk and distribution atlas of European bumblebees. Sofia, Bulgaria: Pensoft Publishers, 48, 275–280. doi: 10.3897/biorisk.10.4749 Rasmont P. Iserbyt S. (2012). The bumblebee scarcity syndrome: are heat waves leading to local extinctions of bumblebees (Hymenoptera: Apidae: Bombus)? Annales la Societé Entomologique France 48, 275280. doi: 10.1080/00379271.2012.10697776 Rezende E. L. Bozinovic F. (2019). Thermal performance across levels of biological organization. Philos. Trans. R. Soc. B 374, 20180549. doi: 10.1098/rstb.2018.0549 Richards K. W. (1973). Biology of Bombus polaris Curtis and B. hyperboreus Schönherr at Lake Hazen, Northwest Territories (Hymenoptera: Bombini). Quaestiones Entomologicae 9, 115157. Roeder K. A. Roeder D. V. Bujan J. (2021). Ant thermal tolerance: a review of methods, hypotheses, and sources of variation. Ann. Entomological Soc. America 114, 459469. doi: 10.1093/aesa/saab018 Rollin O. Vray S. Dendoncker N. Michez D. Dufrêne M. Rasmont P. (2020). Drastic shifts in the Belgian bumblebee community over the last century. Biodiversity Conserv. 29, 25532573. doi: 10.1007/s10531-020-01988-6 Sakagami S. F. Akahira Y. Zucchi R. (1967). Nest architecture and brood development in a neotropical bumblebee, Bombus atratus . Insectes sociaux 14, 389413. doi: 10.1007/BF02223686 Schulte P. M. Healy T. M. Fangue N. A. (2011). Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691702. doi: 10.1093/icb/icr097 Schultze-Motel P. (1991). Heat loss and thermoregulation in a nest of the bumblebee Bombus lapidarius (Hymenoptera, Apidae). Thermochimica Acta 193, 5766. doi: 10.1016/0040-6031(91)80174-H Seeley T. Heinrich B. (1981). “Regulation of temperature in the nests of social insects,” in Insect Thermoregulation. Ed. Heinrich B. (New York: J. Wiley-Interscience Publication, John Wiley & Sons), 159234. Sherrod L. Sauck W. Simpson E. Werkema D. Swiontek J. (2019). Case histories of GPR for animal burrows mapping and geometry. J. Environ. Eng. Geophysics. 24, 117. doi: 10.2113/JEEG24.1.1 Sirois-Delisle C. Kerr J. T. (2018). Climate change-driven range losses among bumblebee species are poised to accelerate. Sci. Rep. 8, 14464. doi: 10.1038/s41598-018-32665-y Skinner A. J. (2000). Impacts of tracheal mites (Acarapis woodii (Rennie)) on respiration and thermoregulation of overwintering honeybees in a temperate climate. Ontario, Canada: University of Guelph. Skowron C. Kern M. (1980). The insulation in nests of selected North American songbirds. Auk 97, 816824. doi: 10.1093/auk/97.4.816 Soroye P. Newbold T. Kerr J. (2020). Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685688. doi: 10.1126/science.aax8591 Stabentheiner A. Kovac H. Mandl M. Kafer. H. (2021). Coping with the cold and fighting the heat: thermal homeostasis of a superorganism, the honeybee colony. J. Comp. Physiol. A 207, 337351. doi: 10.1007/s00359-021-01464-8 Sudarsan R. Thompson C. Kevan P. G. Eberl H. J. (2012). Flow currents and ventilation in Langstroth beehives due to brood thermoregulation efforts of honeybees. J. Theor. Biol. 295, 168193. doi: 10.1016/j.jtbi.2011.11.007 Sunday J. M. Bates A. E. Kearney M. R. Colwell R. K. Dulvy N. K. Longino J. T. . (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. U.S.A 111, 56105615. doi: 10.1073/pnas.1316145111 Tritt T. M. (Ed.) (2004). Thermal conductivity: theory, properties, and applications. Berlin, Germany: Springer Science & Business Media. Turnock W. J. Kevan P. G. Lavertyy T. M. Dumouchel L. (1997). Abundance and species of bumble bees (Hymenoptera: Apoidea: Bombinae) in fields of canola, Brassica rapa L., in Manitoba: an 8–year record. J. Entomol. Soc. Ont. 137, 3140. Uvarov B. P. (1931). “Insects and climate,” in Transactions of the Royal Entomological Society of London 79, 1232. Vanderplanck M. Martinet B. Carvalheiro L. G. Rasmont P. Barraud A. Renaudeau C. . (2019). Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Sci. Rep. 9, 110. doi: 10.1038/s41598-019-49025-z Vannote R. L. Sweeney B. W. (1980). Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115, 667695. doi: 10.1086/283591 Vega L. Torres A. Hoffmann W. Lamprecht I. (2011). Thermal investigations associated with the behaviour patterns of resting workers of Bombus atratus (Hymenoptera: Apidae). J. Thermal Anal. Calorimetry 104, 233237. doi: 10.1007/s10973-011-1373-4 Velthuis H. H. Van Doorn A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421451. doi: 10.1051/apido:2006019 Vogt D. F. (1986). Thermoregulation in bumblebee colonies. I. Thermoregulatory versus brood-maintenance behaviors during acute changes in ambient temperature. Physiol. Zoology 59, 5559. doi: 10.1086/physzool.59.1.30156090 Vray S. Rollin O. Rasmont P. Dufrêne M. Michez D. Dendoncker N. (2019). A century of local changes in bumblebee communities and landscape composition in Belgium. J. Insect Conserv. 23, 489501. doi: 10.1007/s10841-019-00139-9 Weidenmüller A. (2004). The control of nest climate in bumblebee (Bombus terrestris) colonies: individual variability and self reinforecement in fanning response. Behav. Ecol. 15, 120128. doi: 10.1093/beheco/arg101 Weidenmüller A. Kleineidam C. Tautz J. (2002). Collective control of nest climate parameters in bumblebee colonies. Anim. Behav. 63, 10651071. doi: 10.1006/anbe.2002.3020 Wigglesworth V. B. (1972). The principles of insect physiology. London, UK: Methuen. Williams P. H. (1986). Environmental change and the distributions of British bumble bees (Bombus Latr.). Bee World 67, 5061. doi: 10.1080/0005772X.1986.11098871 Williams P. H. (1998). An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bull. Nat. Hist. Mus. Lond. (Ent.) 67, 79152. Wojtowski F. (1963). Studies on heat and water economy in bumble-bee nests (Bombinae). Zoologicae Poloniae 13, 1936. Woodard S. H. (2017). Bumble bee ecophysiology: integrating the changing environment and the organism. Curr. Opin. Insect Sci. 22, 101108. doi: 10.1016/j.cois.2017.06.001 Wynants E. Lenaerts N. Wäckers F. Oystaeyen A. (2021). Thermoregulation dynamics in commercially reared colonies of the bumblebee Bombus terrestris . Physiol. Entomol. 46, 110118. doi: 10.1111/phen.12350
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016fjrl7.com.cn
      www.gpbeyk.com.cn
      lpjqyo.com.cn
      lt17b.net.cn
      www.lianbangzg.com.cn
      game580.com.cn
      www.hnzz666.org.cn
      tlbqem.com.cn
      www.sj1717.com.cn
      www.qutq.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p