Front. Astron. Space Sci. Frontiers in Astronomy and Space Sciences Front. Astron. Space Sci. 2296-987X Frontiers Media S.A. 795040 10.3389/fspas.2021.795040 Astronomy and Space Sciences Mini Review High Accuracy Molecular Line Lists for Studies of Exoplanets and Other Hot Atmospheres Tennyson and Yurchenko Line Lists for Studies of Exoplanet Tennyson Jonathan * Yurchenko Sergey N. Department of Physics and Astronomy, University College London, London, United Kingdom

Edited by: Rudolf von Steiger, University of Bern, Switzerland

Reviewed by: Xinchuan Huang, NASA Ames Research Center, United States

*Correspondence: Jonathan Tennyson, j.tennyson@ucl.ac.uk

This article was submitted to Exoplanets, a section of the journal Frontiers in Astronomy and Space Sciences

03 01 2022 2021 8 795040 14 10 2021 16 11 2021 Copyright © 2022 Tennyson and Yurchenko. 2022 Tennyson and Yurchenko

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The desire to characterize and model the atmospheres of the many extrasolar planets that have been discovered over the last three decades is a major driver of current astronomy. However, this goal is impacted by the lack of spectroscopic data on the molecules in question. As most atmospheres that can be studied are hot, some surprisingly so, this activity requires spectroscopic information not readily available from laboratory studies. This article will review the current status of available molecular spectroscopic data, usually presented as line lists, for studies of exoplanet atmospheres and, indeed, the atmospheres of other astronomical objects hotter than the Earth such as brown dwarfs, cool stars and even sunspots. Analysis of exoplanet transit spectra and the calculation of the relevant opacities often require huge datasets comprising billions of individual spectroscopic transitions. Conversely, the newly-developed high-resolution Doppler-shift spectroscopy technique has proved to be a powerful tool for detecting molecular species in exoplanet atmospheres, but relies on the use of smaller, highly accurate line lists. Methods of resolving issues arising from the competing demands of completeness versus accuracy for line lists are discussed.

opacity databases exoplanets brown dwarfs cool stars Doppler shift spectroscopy transit spectroscopy ExoMol European Research Council10.13039/501100000781 Science and Technology Facilities Council10.13039/501100000271

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1 Introduction

      Almost 5,000 exoplanets have now been positively identified with many more candidate planets awaiting confirmation, and with both ground-based and space-borne missions regularly detecting new planets. These discoveries have sparked significant activity on characterizing these planets through their spectra. Broadly speaking there are three methods of observing the spectrum of an exoplanet: directly imaging the planet, transit spectroscopy which involves observing light from the host star as a planet passes in front (and behind) it, and high resolution Doppler shift spectroscopy.

      These techniques all have different characteriztics in terms of which planets are amenable to being observed, how the observational data are obtained, what information can be obtained and, of importance for this article, the requirements in terms of laboratory data needed to interpret observations. We run the ExoMol project (Tennyson and Yurchenko, 2012) which aims to provide molecular line lists, and increasingly other data, for studies of exoplanets and other astronomical atmospheres. In this paper we review the provision of available spectroscopic data for characterization of exoplanet atmospheres. There are already a number of reviews which discuss this situation for studies involving transit spectroscopy (Tinetti et al., 2013; Tennyson and Yurchenko, 2017; Tennyson and Yurchenko, 2018; Madhusudhan, 2019) so here while we summarize the current situation regarding transit spectroscopy and direct imaging, we concentrate particularly on the laboratory data required for the newer method of high-resolution Doppler-shift spectroscopy (HRDSS), also known as high-resolution cross-correlation spectroscopy.

      2 Detecting Molecules on Exoplanets

      The original detection of molecules on exoplanets were based on transit spectroscopy at infrared wavelengths for hot Jupiter exoplanets (Tinetti et al., 2007; Swain et al., 2008). These detections of respectively water and methane in hot objects (temperatures were generally assumed to be over 1000 K) using relatively low-resolution space telescopes relied on the detection of broad spectral features. Modeling these features requires significant quantities of laboratory data (Yurchenko et al., 2014) since the spectra of hot molecules in the infrared consists of many (106–109) individual absorption lines. Stimulated by these observations a number of groups started providing comprehensive lists of molecular transitions (line lists) appropriate for modeling molecular spectra at elevated temperatures. Besides ExoMol, the TheoRets project (Rey et al., 2016) and NASA Ames (eg., Huang et al., 2017) provide comprehensive, computed line lists for a variety of molecules while the MoLLIST project of Bernath (2020) attempts to address this problem from a more experimental standpoint. These line lists, which can be very large, are often pre-processed into cross sections representing opacities for ease of use in forward models and spectroscopic retrievals (Freedman et al., 2014; Min, 2017; Allard et al., 2000; Goyal et al., 2018; Yurchenko et al., 2018a; Tennyson and Yurchenko, 2018; Chubb et al., 2021; Gharib-Nezhad et al., 2021; Grimm et al., 2021).

      The importance of these activities can be gauged from attempts to determine C/O ratios in exoplanetary atmospheres. At the time of the initial detections of methane in short-period hot Jupiter exoplanets with temperatures typically in the 1,000–2000 K range, spectral modeling of methane relied on the existing laboratory measurements of methane spectra which were almost entirely performed at room temperature. A consequence of this was that atmospheric retrievals tended to indicate high C/O ratios due to overestimated amounts of methane detected as at room temperature higher-lying rotation-vibrations levels are not populated, leading to the opacity being underestimated. The need for a reliable methane line list or opacity has sparked a range of studies (Yurchenko and Tennyson, 2014; Rey et al., 2014; Yurchenko et al., 2014; Rey et al., 2017; Yurchenko et al., 2017; Wong et al., 2019; Hargreaves et al., 2020). The status of comprehensive line lists for methane and other molecules important in exoplanets has been discussed elsewhere (Tennyson et al., 2020). The careful use of observational data and modern, comprehensive line lists is leading to reliable abundance determinations and C/O ratios, see Line et al., 2021.

      The transit spectroscopy technique is only applicable to planets whose orbit leads to them passing in front of (and behind) their host star as viewed from the Solar System. Obviously this criterion is not satisfied by most exoplanets but in fact missions have concentrated on finding transiting exoplanets which as a result make up well over half of those exoplanets detected up to now. Figure 1 (Top) shows an example of the detection of water in the gas giant exoplanet Wasp-127b by Spake et al. (2020). Water is relatively easy to detect by this methodology (Tinetti et al., 2012; Tsiaras et al., 2018; Fraine et al., 2014; Tsiaras et al., 2019). It is also much easier to see a large exoplanet in a nearby orbit transiting so the sample of transiting exoplanets has a strong observational bias towards short period and hot planets.

      Detection of water in exoplanets: Top, Transmission (Hubble Space Telescope and Spitzer) spectrum of transiting exoplanet Wasp-127b (reproduced from Figure 18 of Spake et al., 2020); Middle, high-resolution detection of water in with significance of 4.8σ (reproduced from Figure 3 of Birkby et al., 2013); Bottom, first 1.4 μm water band photometric measurement for HD 106906 by Zhou et al., 2020. (©AAS. Reproduced with permission.)

      Conversely, direct imaging relies on being able to separate the spectral signature of a planet from that of its host star. This is most easily done for nearby stars with planets in large orbits. Planets that orbit far from their star should be cool as they receive only weak starlight. However, in this case such planets would also be faint and hard to detect. Young planets, however, are formed hot due to the heating generated by gravitational collapse. As a result observation and characterization of directly imaged planets has largely concentrated on very young (a few tens of millions years old) planets. Progress is being made on the characterization of young, self-luminous giant planets at wide orbital separations from their host stars by direct imaging; an example of a recent detection of water in directly imaged exoplanet HD 106906b by Zhou et al. (2020) is given in Figure 1 (Bottom).

      In fact, the most secure detections of molecules thus far have not been made by transit spectroscopy or direct imaging. Observations using these methods have relied on use of relatively low resolution methods resulting in spectra showing broad features rather than individual transitions. While these broad features can be associated with certain molecules, the results are open to alternative explanations, see Blain et al. (2021) for an example. The HRDSS method pioneered by Snellen and co-workers (Snellen, 2014) involves recording spectra of the combined star and exoplanetary system over the entire orbit of the exoplanet, which does not have to be transiting. Molecular signatures can then be identified using the combination of line positions and appropriate Doppler shifts. This technique has been used to make a number of molecular detections at 5σ level or better (Birkby, 2018; Brogi and Line, 2019). Figure 1 (Middle) shows the detection of water in hot Jupiter exoplanet HD 189733b by Birkby et al. (2013). In this case the figure confirming the detection does not look like a standard spectrum but instead takes the form of a cross-correlation diagram obtained using a particular set of molecular transitions and appropriate Doppler shifts.

      The HRDSS method is powerful but requires high resolution laboratory data to be successful, see Hoeijmakers et al. (2015) for example. Typically to be useful, wavelengths, λ, need to be known with a resolving power R = λ Δ λ of 100,000 or better. While such accuracies are routinely obtained by laboratory high resolution spectroscopy experiments, they are only achievable by theory for a few exceptional (few electron) molecules. Therefore to satisfy the data needs of HRDSS observations a different approach is required for the construction of molecular line lists.

      3 High Resolution Molecular Line Lists

      Given that theory alone cannot provide line positions accurate enough for HRDSS studies, it is necessary to find an alternative procedure. For temperate planets the HITRAN database (Gordon et al., 2022), which largely comprises data from laboratory measurements, provides a good starting point. However, for hotter exoplanets or ones with exotic atmospheres one has to move beyond this towards computed line lists. Using experimental data to improve the underlying potential energy surface used in a nuclear motion calculations is a standard procedure, see Tennyson (2012), but not one which yields the required accuracy for HRDSS. We have therefore adopted an alternative approach based on use of the MARVEL (measured accurate rotation vibration energy levels) procedure.

      MARVEL was originally developed by Furtenbacher et al. (2007) to address the challenge of obtaining a consistent and accurate set of empirical energy levels for the main isotopologues of water (Tennyson et al., 2014a). The MARVEL algorithm has subsequently been improved (Furtenbacher and Császár, 2012; Tóbiás et al., 2019), largely to improve the treatment of uncertainties. Put simply, the procedure involves assembling assigned transitions with uncertainties from all high resolution spectroscopy experiments which are then inverted to give empirical energy levels using the MARVEL procedure, which is available as an online tool. In practice a considerable amount of data cleaning is usually required before final answers are obtained. The empirical energy levels obtained using MARVEL are then validated against the appropriate line list allowing the reliability of those energy levels characterized by only one or two transitions to be assessed. The resulting empirical energy levels can then be used to substitute those calculated in a computed line list, which are then assigned the uncertainty obtained in the MARVEL process. This approach not only guarantees that a line list reproduces the observed transitions accurately, but results in many other, as yet unmeasured, transitions being predicted with the accuracy of high resolution spectroscopy. The replacement of energy levels in the full line list also ensures the retention of the original line list completeness.

      A recent example of this appropach is provided by a MARVEL study on formaldehyde (CH2O) by Al-Derzi et al., 2021 who compiled a list of 16,403 non-redundant observed transitions taken from 43 experimental sources. Using MARVEL gave 5,029 empirical energy levels which were validated by comparing with the predictions of the AYTY ExoMol line list (Al-Refaie et al., 2015). Substituting these empirical energy levels back into this line list yields 367,779 transition frequencies with accuracy good enough to be used for HRDSS astronomical studies. This represents a more than twenty-fold increase compared to the original experimental measurements.

      Thus the basic strategy for computing a high accuracy line list is clear. Step 1 is to compute a line list using the best available potential curves or surfaces, which should be tuned to the experimental data if possible. Step 2 is to use available empirical energy levels obtained from a MARVEL study to replace computed ones where possible. This already gives a significant improvement for many predicted transitions. The NASA Ames group have also used MARVEL energy levels in this fashion (Huang et al., 2019b). However, this strategy can be further improved on (Bowesman et al., 2021; McKemmish et al., 2022). Table 1 summarizes MARVEL studies on molecules of interest for exoplanets studies.

      Astronomically important molecules with published MARVEL datasets.

      Molecule N iso N elec N levels References
      H2O 7 1 18,486 Tennyson et al. (2009), Tennyson et al. (2010), Tennyson et al. (2013a), Tennyson et al. (2014b)
      updates 3 1 19,225 Tóbiás et al. (2019), Furtenbacher et al. (2020b), Furtenbacher et al. (2020c)
      H 3 + 3 1 652 Furtenbacher et al. (2013a), Furtenbacher et al. (2013b)
      NH3 1 1 4,951 Al Derzi et al. (2015)
      update 1 1 4,936 Furtenbacher et al. (2020a)
      C2 1 14 5,699 Furtenbacher et al. (2016)
      update 1 20 7,087 McKemmish et al. (2020)
      TiO 1 9 10,564 McKemmish et al. (2017), McKemmish et al. (2019)
      HCCH 1 1 11,213 Chubb et al. (2018a)
      SO2 3 1 15,130 Tóbiás et al. (2020)
      H2S 1 1 11,213 Chubb et al. (2018b)
      ZrO 1 10 8,088 McKemmish et al. (2018)
      O2 1 6 4,279 Furtenbacher et al. (2019)
      SO2 3 1 15,130 Tóbiás et al. (2018)
      NH 1 4 1,058 Chubb et al. (2018a)
      CaOH 1 5 1954 Wang et al. (2020)
      H2CO 1 1 5,029 Al-Derzi et al. (2021)
      NO 1 1 4,106 Wong et al. (2017)
      update 1 4 6,306 Qu et al. (2021)
      AlH 2 2 331 Yurchenko et al. (2018b)
      BeH 3 2 1,264 Darby-Lewis et al. (2018)
      CN 1 10 7,779 Syme and McKemmish (2020)
      H2CO 1 1 5,029 Al-Derzi et al. (2021)
      AlO 1 7 6,152 Bowesman et al. (2021)

      N iso Number of isotopologues considered; N elec Number of electronic states considered N levels Number of energy levels extracted: value is for the main isotopologue.

      We note that MARVEL is an active procedure which means that when new data become available they can simply be added to an existing compilation and the process re-run. As can be seen from Table 1 a number of updates to existing MARVEL compilations have been published. Indeed experiments are now being designed and performed to explicitly update available MARVEL compilations by, for example, performing measurements for transitions critical for improving the network (Tobias et al., 2020; Diouf et al., 2021).

      The traditional method of representing the energy levels obtained from high resolution molecular spectroscopy is via so-called effective Hamiltonians which use rotational and other constants to represent the observed levels. Effective Hamiltonians have a proven record of providing compact and highly accurate representations of molecular energy levels. However, there are two issues with their use. Firstly, while they accurately interpolate between observed data, their extrapolation properties are known to be problematic in many cases (Polyansky et al., 1994; Furtenbacher et al., 2020a). Secondly, they often struggle to accurately represent so-called resonance states: ones which are perturbed by interactions with states of the same symmetry but belonging to another vibrational or vibronic state. Representing states in resonance using effective Hamiltonians usually requires many parameters and a significant amount of extra experimental data. While MARVEL uses (approximate) quantum number assignments for states, these are actually just a labelling scheme which makes no assumptions about the underlying physics of the state involved. MARVEL simply obtains a value for the observed energy level and its behavior is not affected by any unexpected or resonant interactions.

      However, one issue with using MARVEL is that it may not give complete coverage: levels may be missing because transitions to them have yet to be observed. Effective Hamiltonians can be used to fill in these missing energy levels, see the recent study of AlO by Bowesman et al. (2021) for example. Bowesman et al. (2021) also found that the observed minus calculated energy levels can also give information allowing further improvement to be achieved for yet to be observed transitions involving to be observed states.

      Figure 2 shows the coverage of the MARVEL data in providing accurate transition frequencies for water by using the ExoMol POKAZATEL line list for H 2 16 O (Polyansky et al., 2018). At room temperature the contribution from the high accuracy MARVEL transitions is nearly complete up to 20,000 cm−1 (λ > 0.5 μm). Even though the higher temperature spectrum (T = 3000 K) loses the MARVEL completeness by about 1 μm, it is important that the strongest features remain dominated by the MARVEL transitions, which should still be reasonably well covered for the HRDSS applications but care is required to ensure that the correct, accurately determined, lines are used in any such application. This point is further illustrated in Figure 3 which shows water cross sections at T = 3000 K for 1.5 < λ < 2.4 μm and compares them to cross sections contributed from MARVEL states only. This spectral window of ExoMol’s POKAZATEL was recently used in HR spectral characterization of the atmosphere of WASP-77Ab (Line et al., 2021).

      Contribution of MARVEL states to the spectra of H 2 16 O (MARVEL) compared to the full spectra (POKAZATEL) for two temperatures, T = 296 and 3000 K. In both cases the intensities are from the POKAZATEL line list (Polyansky et al., 2018). Note that the MARVEL curve represents only that part of the overall intensity given by transitions between energy levels determined using the MARVEL procedure. Here a Gaussian line profile of half-width-half-maximum (HWHM) of 1 cm−1 was used.

      Same as Figure 2 but at higher resolution (R = 45,000): contribution of MARVEL states to the spectra of H 2 16 O (MARVEL) compared to the full spectra (POKAZATEL) for high temperature, T = 3000 K. In both cases the intensities are from the POKAZATEL line list (Polyansky et al., 2018). The cross sections were computed using the Voigt line profile using the broadening parameters of H2O from the ExoMol diet (Barton et al., 2017).

      Very recently Zhang et al., 2021 reported the first detection in an exoplanet of an isotopically substituted molecule, an isotopologue, in this case 13CO. As isotopic abundances vary across the Universe, the abundance of isotopologues will also vary and their observation has the capability of yielding significant extra information about exoplanets; an increasing number of such studies can be anticipated. Although a number of MARVEL studies have provided energy levels for isotopologues, see Table 1, it is true to say that there is always significantly less information available for these minor species than for the most abundant or parent isotopologue.

      Polyansky et al. (2017) showed that it was possible to use the observed minus calculated residues in the energy levels of the main (parent) isotopologue to improve the predicted energy levels of the minor isotopologues. This procedure, which was further improved by Furtenbacher et al. (2020c), can greatly increase the number of levels and hence transitions which are known to high accuracy for the minor isotopologues. The effectiveness of this procedure for obtaining what are termed pseudo-experimental energy levels has been shown by a recent independent high resolution spectroscopy study of H 2 17 O in the visible by Sinitsa et al. (2021). This procedure is being increasingly adopted by us to improve isotoplogue predictions for ExoMol line lists. For example, predictions for isotopologues of TiO in the ExoMol Toto line list of McKemmish et al. (2019) proved accurate enough to identify several isotopologues of TiO in the visible spectrum of two M-dward stars (Pavlenko et al., 2020) and has been used to model titanium isotope ratios in exoplanet atmospheres (Serindag et al., 2021). Again we note that the NASA Ames group have used a mass-dependent fitting procedure which also improves the accuracy of predicted isotopologue spectra (Huang et al., 2019a).

      4 Data Formats and Uncertainties

      The ExoMol project has a well-developed data structure (Tennyson et al., 2013b; Tennyson et al., 2020) which is designed to give a compact representation of what are very large datasets. This data structure, which can be read by post-processing programs such as ExoCross (Yurchenko et al., 2018a) and the effective Hamiltonian program PGOPHER (Western, 2017), is based about the use of two files. A states file which contains all the energy levels of the molecule (isotopologue) in question plus associated meta data such as quantum numbers, and a trans file which is simply a list of two state numbers plus an Einstein A coefficient. This structure means that it is easy to incorporate improved energy levels from a MARVEL project as it is only the states file that needs to be updated; doing this automatically updates the transition wavenumbers which are computed as energy differences (upper minus lower) from the states file. In the current way ExoMol handles its datasets, updating the states file with, for example, improved energy levels represents an update of the underlying line list rather than a new line list. The update becomes a new version with version number given by the date in YYYYMMDD format.

      One important thing missing from the original ExoMol format was any consideration of uncertainties. This was done to conserve space but in an era where the data are being used to both give comprehensive opacities and to model high resolution spectra it has become important to indicate the uncertainty with which the wavenumber (or wavelength) of a given transition is predicted. Therefore in the latest release of the ExoMol database, Tennyson et al. (2020) revised the data format to allow an uncertainty to be included for each energy level. This update is still in the process of implementation but our plan is that this will become a compulsory part of the ExoMol format. At present there is no corresponding uncertainty in the intensities (or Einstein A coefficients). Our judgement is that at present the benefit of including this extra information does not justify the further increase in size of already very large datasets which would be required to implement it.

      5 Conclusion

      The provision of spectroscopic data for studies of exoplanets and other hot astronomical atmospheres is being driven by the demands of astronomers both modeling and observing various heavenly bodies. In particular, important developments in techniques have driven the demand that molecular line lists that should not only be complete, an essential requirement for producing accurate opacity functions, but at least for strong lines, they should also be accurate. In this paper we describe measures being taken to ensure that line lists meet these dual requirements. This has meant the upgrading of many ExoMol line lists, see Bowesman et al., 2021 for example, to include available high accuracy empirical energy levels obtained using the MARVEL procedure; a process we refer to as refactoring. This process is still ongoing.

      With modern technological advances in astrophysical exploration allowing studies of increasingly complex phenomena in atmospheres of exoplanets, it is becoming possible to study non-local thermodynamic equilibrium (non-LTE) effects (Fisher and Heng, 2019) which are already well-known elsewhere, such as in the spectra of stars, planets, comets and interstellar medium (ISM) (López-Puertas and Taylor, 2001). Non-LTE spectroscopy is based on modeling of rotational, vibrational and electronic populations and therefore introduces special requirements both on the molecular data and spectral simulation software, such as, for example, provision of ro-vibronic assignment or non-Boltzmann populations, with non-LTE methods of different levels of complexity ranging from simplified bi-temperature models (Pannier and Laux, 2019; Clark and Yurchenko, 2021) to sophisticated non-LTE radiative transfer calculations (Funke et al., 2012). This line of research is been actively explored by ExoMol (Wright et al., 2021).

      The ExoMol database contains approximately 700 billion lines. Even once refactoring is complete it can be anticipated that only a small minority of these lines, maybe several tens of millions, will be determined with spectroscopic accuracy. By and large these lines constitute the most important and strongest lines for each molecule. Separately identifying these lines can be important for purposes such as line assignment in well-resolved spectra. For this reason we have updated our spectral modeling program ExoCross (Yurchenko et al., 2018a) to allow accuracy of predicted line positions to be a selection criterion when generating model spectra. We are also in the process of creating an interactive database, ExoMolHR, which will allow astronomers and others to search for high resolution data contained in the ExoMol database.

      Author Contributions

      All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

      Funding

      The project has been supported by ERC Advanced Investigator Awards 267219 (2011-16) and 883830 (2020-25), as well as STFC as part of the UCL consolidated grants (ST/M001334/1 and ST/R000476/1) in the intervening years.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      We thank Tony Lynas-Gray for many helpful comments on the manuscript and the many talented scientists who have worked with us during the ExoMol project.

      References AlDerzi A. R. Furtenbacher T. Yurchenko S. N. Tennyson J. Császár A. G. (2015). MARVEL Analysis of the Measured High-Resolution Spectra of 14NH3 . J. Quant. Spectrosc. Radiat. Transf. 161, 117130. 10.1016/j.jqsrt.2015.03.034 Al-Derzi A. R. Yurchenko S. N. Tennyson J. Melosso M. Jiang N. Puzzarini C. (2021). MARVEL Analysis of the Measured High-Resolution Spectra of Formaldehyde. J. Quant. Spectrosc. Radiat. Transf. 266, 107563. 10.1016/j.jqsrt.2021.107563 Al-Refaie A. F. Yurchenko S. N. Yachmenev A. Tennyson J. (2015). ExoMol Line Lists - VIII: A Variationally Computed Line List for Hot Formaldehyde. Mon. Not. R. Astron. Soc. 448, 17041714. 10.1093/mnras/stv091 Allard F. Hauschildt P. H. Schwenke D. (2000). TiO and H2O Absorption Lines in Cool Stellar Atmospheres. Astrophys. J. 540, 10051015. 10.1086/309366 Barton E. J. Hill C. Yurchenko S. N. Tennyson J. Dudaryonok A. Lavrentieva N. N. (2017). Pressure Dependent Water Absorption Cross Sections for Exoplanets and Hot Other Atmospheres. J. Quant. Spectrosc. Radiat. Transf. 187, 453460. 10.1016/j.jqsrt.2016.10.024 Bernath P. F. (2020). MoLLIST: Molecular Line Lists, Intensities and Spectra. J. Quant. Spectrosc. Radiat. Transf. 240, 106687. 10.1016/j.jqsrt.2019.106687 Birkby J. L. (2018). Spectroscopic Direct Detection of Exoplanets. Handbook of Exoplanets, 14851508. 10.1007/978-3-319-55333-7_16 Birkby J. L. de Kok R. J. Brogi M. de Mooij E. J. W. Schwarz H. (2013). Detection of Water Absorption in the Day Side Atmosphere of HD 189733 B Using Ground-Based High-Resolution Spectroscopy at 3.2 μm. Mon. Not. R. Astron. Soc. 436, L35L39. 10.1093/mnrasl/slt107 Blain D. Charnay B. Bezard B. (2021). 1D Atmospheric Study of the Temperate Sub-Neptune K2-18b. Astron. Astrophys. 646, A15. 10.1051/0004-6361/202039072 Bowesman C. A. Shuai M. Yurchenko S. N. Tennyson J. (2021). A High Resolution Line List for AlO. Mon. Not. R. Astron. Soc. 508, 31813193. 10.1093/mnras/stab2525 Brogi M. Line M. R . (2019). Retrieving Temperatures and Abundances of Exoplanet Atmospheres with High-Resolution Cross-Correlation Spectroscopy. Astrophys. J. 157, 114. 10.3847/1538-3881/aaffd3 Chubb K. L. Joseph M. Franklin J. Choudhury N. Furtenbacher T. Császár A. G. (2018a). MARVEL Analysis of the Measured High-Resolution Spectra of C2H2 . J. Quant. Spectrosc. Radiat. Transf. 204, 4255. 10.1016/j.jqsrt.2017.08.018 Chubb K. L. Naumenko O. V. Keely S. Bartolotto S. MacDonald S. Mukhtar M. (2018b). MARVEL Analysis of the Measured High-Resolution Rovibrational Spectra of H2S. J. Quant. Spectrosc. Radiat. Transf. 218, 178186. 10.1016/j.jqsrt.2018.07.012 Chubb K. L. Rocchetto M. Yurchenko S. N. Min M. Waldmann I. Barstow J. K. (2021). The ExoMolOP Database: Cross-Sections and K-Tables for Molecules of Interest in High-Temperature Exoplanet Atmospheres. Astron. Astrophys. 646, A21. 10.1051/0004-6361/202038350 Clark V. H. J. Yurchenko S. N. (2021). Modelling the Non-local Thermodynamic Equilibrium Spectra of Silylene (SiH2). Phys. Chem. Chem. Phys. 23, 1199012004. 10.1039/D1CP00839K Darby-Lewis D. Tennyson J. Lawson K. D. Yurchenko S. N. Stamp M. F. Shaw A. (2018). Synthetic Spectra of BeH, BeD and BeT for Emission Modelling in JET Plasmas. J. Phys. B: Mol. Opt. Phys. 51, 185701. 10.1088/1361-6455/aad6d0 Diouf M. L. Tobias R. Simko I. Cozijn F. M. J. Salumbides E. J. Ubachs W. (2021). Network-Based Design of Near-Infrared Lamb-Dip Experiments and the Determination of Pure Rotational Energies of H218O at kHz Accuracy. J. Phys. Chem. Ref 50 023106. 10.1063/5.0052744 Fisher C. Heng K. (2019). How Much Information Does the Sodium Doublet Encode? Retrieval Analysis of Non-LTE Sodium Lines at Low and High Spectral Resolutions. Astrophysical J. 881, 25. 10.3847/1538-4357/ab29e8 Fraine J. Deming D. Benneke B. Knutson H. Jordan A. Espinoza N. (2014). Water Vapour Absorption in the clear Atmosphere of a Neptune-sized Exoplanet. Nature 513, 526. 10.1038/nature13785 Freedman R. S. Lustig-Yaeger J. Fortney J. J. Lupu R. E. Marley M. S. Lodders K. (2014). Gaseous Mean Opacities for Giant Planet and Ultracool dwarf Atmospheres over a Range of Metallicities and Temperatures. Astrophys. J. Suppl. 214, 25. 10.1088/0067-0049/214/2/25 Funke B. López-Puertas M. García-Comas M. Kaufmann M. Höpfner M. Stiller G. (2012). GRANADA: A Generic RAdiative traNsfer AnD Non-LTE Population Algorithm. J. Quant. Spectrosc. Radiat. Transf. 113, 17711817. 10.1016/j.jqsrt.2012.05.001 Furtenbacher T. Coles P. A. Tennyson J. Yurchenko S. N. Yu S. Drouin B. (2020a). Empirical Rovibational Energy of Ammonia up to 7500 Cm−1 . J. Quant. Spectrosc. Radiat. Transf. 251, 107027. 10.1016/j.jqsrt.2020.107027 Furtenbacher T. Császár A. G. (2012). MARVEL: Measured Active Rotational-Vibrational Energy Levels. II. Algorithmic Improvements. J. Quant. Spectrosc. Radiat. Transf. 113, 929935. 10.1016/j.jqsrt.2012.01.005 Furtenbacher T. Császár A. G. Tennyson J. (2007). MARVEL: Measured Active Rotational-Vibrational Energy Levels. J. Mol. Spectrosc. 245, 115125. 10.1016/j.jms.2007.07.005 Furtenbacher T. Horváth M. Koller D. Sólyom P. Balogh A. Balogh I. (2019). MARVEL Analysis of the Measured High-Resolution Rovibronic Spectra and Definitive Ideal-Gas Thermochemistry of the 16O2 Molecule. J. Phys. Chem. Refdata 48 023101. 10.1063/1.5083135 Furtenbacher T. Szabó I. Császár A. G. Bernath P. F. Yurchenko S. N. Tennyson J. (2016). Experimental Energy Levels and Partition Function of the 12C2 Molecule. Astrophys. J. Suppl. 224, 44. 10.3847/0067-0049/224/2/44 Furtenbacher T. Szidarovszky T. Fábri C. Császár A. G. (2013a). MARVEL Analysis of the Rotational–Vibrational States of the Molecular Ions H2D+ and D2H+ . Phys. Chem. Chem. Phys. 15, 1018110193. 10.1039/c3cp44610g Furtenbacher T. Szidarovszky T. Mátyus E. Fábri C. Császár A. G. (2013b). Analysis of the Rotational–Vibrational States of the Molecular Ion. J. Chem. Theor. Comput. 9, 54715478. 10.1021/ct4004355 Furtenbacher T. Tóbiás R. Tennyson J. Polyansky O. L. Császár A. G. (2020b). A Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of O. J. Phys. Chem. Ref. 49, 033101. 10.1063/5.0008253 Furtenbacher T. Tóbiás R. Tennyson J. Polyansky O. L. Kyuberis A. A. Ovsyannikov R. I. (2020c). A Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels Part II. O and O with an Update to O. J. Phys. Chem. Ref 49, 043103. 10.1063/5.0030680 Gharib-Nezhad E. Iyer A. R. Line M. R. Freedman R. S. Marley M. S. Batalha N. E. (2021). EXOPLINES: Molecular Absorption Cross-Section Database for Brown Dwarf and Giant Exoplanet Atmospheres. Astrophys. J. Suppl. 254, 34. 10.3847/1538-4365/abf504 Gordon I. E. Rothman L. S. Hargreaves R. J. Hashemi R. Karlovets E. V. Skinner F. M. (2022). The Hitran2020 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949. 10.1016/j.jqsrt.2021.107949 Goyal J. M. Mayne N. Sing D. K. Drummond B. Tremblin P. Amundsen D. S. (2018). A Library of ATMO Forward Model Transmission Spectra for Hot Jupiter Exoplanets. Mon. Not. R. Astron. Soc. 473, 51585185. 10.1093/mnras/stx3015 Grimm S. L. Malik M. Kitzmann D. Guzmán-Mesa A. Hoeijmakers H. J. Fisher C. (2021). HELIOS-K 2.0 and an Open-Source Opacity Database for Exoplanetary Atmospheres. Astrophys. J. Suppl. 253, 30. 10.3847/1538-4365/abd773 Hargreaves R. J. Gordon I. E. Rey M. Nikitin A. V. Tyuterev V. G. Kochanov R. V. (2020). An Accurate, Extensive, and Practical Line List of Methane for the HITEMP Database. Astrophys. J. Suppl. 247, 55. 10.3847/1538-4365/ab7a1a Hoeijmakers H. J. de Kok R. J. Snellen I. A. G. Brogi M. Birkby J. L. (2015). A Search for TiO in the Optical High-Resolution Transmission Spectrum of HD 209458b: Hindrance Due to Inaccuracies in the Line Database. Astron. Astrophys. 575, A20. 10.1051/0004-6361/201424794 Huang X. Schwenke D. W. Freedman R. S. Lee T. J. (2017). Ames-2016 Line Lists for 13 Isotopologues of CO2: Updates, Consistency, and Remaining Issues. J. Quant. Spectrosc. Radiat. Transf. 203, 224241. 10.1016/j.jqsrt.2017.04.026 Huang X. Schwenke D. W. Lee T. J. (2019a). Isotopologue Consistency of Semi-empirically Computed Infrared Line Lists and Further Improvement for Rare Isotopologues: CO2 and SO2 Case Studies. J. Quant. Spectrosc. Radiat. Transf. 230, 222246. 10.1016/j.jqsrt.2019.03.002 Huang X. Schwenke D. W. Lee T. J. (2019b). Quantitative Validation of Ames IR Intensity and New Line Lists for 32/33/34S16O2, 32S18O2 and 16O32S18O. J. Quant. Spectrosc. Radiat. Transf. 225, 327336. 10.1016/j.jqsrt.2018.11.039 Line M. Brogi M. Bean J. Gandhi S. Zalesky J. Parmentier V. (2021). A Precise Carbon and Oxygen Abundance Determination in a Hot jupiter Atmosphere. Nature 598, 580584. López-Puertas M. Taylor F. W. (2001). Non-LTE Radiative Transfer in the Atmosphere,, Vol. 3. World Scientific. Madhusudhan N. (2019). Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects. Ann. Rev. Astron. Astrophys 57, 617663. 10.1146/annurev-astro-081817-051846 McKemmish L. K. Borsovszky J. Goodhew K. L. Sheppard S. Bennett A. F. V. Martin A. D. J. (2018). MARVEL Analysis of the Measured High-Resolution Spectra of 90Zr16O. Astrophys. J. 867, 33. 10.3847/1538-4357/aadd19 McKemmish L. K. Masseron T. Hoeijmakers J. Pérez-Mesa V. V. Grimm S. L. Yurchenko S. N. (2019). ExoMol Molecular Line Lists – XXXIII. The Spectrum of Titanium Oxide. Mon. Not. R. Astron. Soc. 488, 28362854. 10.1093/mnras/stz1818 McKemmish L. K. Masseron T. Sheppard S. Sandeman E. Schofield Z. Furtenbacher T. (2017). MARVEL Analysis of the Measured High-Resolution Spectra of 48Ti16O. Astrophys. J. Suppl. 228, 15. 10.3847/1538-4365/228/2/15 McKemmish L. K. Syme A. M. Borsovszky J. Yurchenko S. N. Tennyson J. Furtenbacher T. (2020). Incorportating New Experiments in Diatomic Spectral Databases: An Update to the 12C2 MARVEL Database and ExoMok Line List of 12C2 . Mon. Not. R. Astron. Soc. 497, 10811097. 10.1093/mnras/staa1954 McKemmish L. K. Syme A. M. Bowesman C. A. Kefela K. Yurchenko S. N. Tennyson J. (2022). A Combined Approach to Generating Line Lists for High Accuracy Studies of Exoplanets and Other Hot Astronomical Objects. Mon. Not. R. Astron. Soc. Min M. (2017). Random Sampling Technique for Ultra-fast Computations of Molecular Opacities for Exoplanet Atmospheres. Astron. Astrophys. 607, A9. 10.1051/0004-6361/201731612 Pannier E. Laux C. O. (2019). RADIS: A Nonequilibrium Line-By-Line Radiative Code for CO2 and HITRAN-like Database Species. J. Quant. Spectrosc. Radiat. Transf. 222-223, 1225. 10.1016/j.jqsrt.2018.09.027 Pavlenko Y. V. Yurchenko S. N. McKemmish L. K. Tennyson J. (2020). Analysis of the TiO Isotopologues in Stellar Optical Spectra. Astron. Astrophys. 42, A77. 10.1051/0004-6361/202037863 Polyansky O. L. Jensen P. Tennyson J. (1994). A Spectroscopically Determined Potential Energy Surface for the Ground State of O: a New Level of Accuracy. J. Chem. Phys. 101, 76517657. Polyansky O. L. Kyuberis A. A. Lodi L. Tennyson J. Ovsyannikov R. I. Zobov N. (2017). ExoMol Molecular Line Lists XIX: High Accuracy Computed Line Lists for O and O. Mon. Not. R. Astron. Soc. 466, 13631371. 10.1093/mnras/stw3125 Polyansky O. L. Kyuberis A. A. Zobov N. F. Tennyson J. Yurchenko S. N. Lodi L. (2018). ExoMol Molecular Line Lists XXX: a Complete High-Accuracy Line List for Water. Mon. Not. R. Astron. Soc. 480, 25972608. 10.1093/mnras/sty1877 Qu Q. Cooper B. Yurchenko S. N. Tennyson J. (2021). A Spectroscopic Model for the Low-Lying Electronic States of NO. J. Chem. Phys. 154, 074112. 10.1063/5.0038527 Rey M. Nikitin A. V. Babikov Y. L. Tyuterev V. G. (2016). TheoReTS – an Information System for Theoretical Spectra Based on Variational Predictions from Molecular Potential Energy and Dipole Moment Surfaces. J. Mol. Spectrosc. 327, 138158. 10.1016/j.jms.2016.04.006 Rey M. Nikitin A. V. Tyuterev V. G. (2014). Theoretical Hot Methane Line List up T=2000 K for Astrophysical Applications. Astrophys. J. 789, 2. 10.1088/0004-637X/789/1/2 Rey M. Nikitin A. V. Tyuterev V. G. (2017). Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-Continuum Absorption/Emission Modeling for Astrophysical Applications. Astrophys. J. 847, 105. 10.3847/1538-4357/aa8909 Serindag D. B. Snellen I. A. G. Mollière P. (2021). Measuring Titanium Isotope Ratios in Exoplanet Atmospheres. Astron. Astrophys. 645, A90. 10.1051/0004-6361/202039135 Sinitsa L. N. Serdyukov V. I. Polovtseva E. R. Bykov A. D. Scherbakov A. P. (2021). LED-based Fourier Transform Spectroscopy of H2 17O in the Range of 17000-20000 cm−1. 5ν, 5ν + δ and 6ν Resonance Polyads. J. Quant. Spectrosc. Radiat. Transf. 271, 107749. 10.1016/j.jqsrt.2021.107749 Snellen I. (2014). High-dispersion Spectroscopy of Extrasolar Planets: from CO in Hot Jupiters to in Exo-Earths. Phil. Trans. R. Soc. Lond. A 372, 20130075. 10.1098/rsta.2013.0075 Spake J. J. Sing D. K. Wakeford H. R. Nikolov N. Mikal-Evans T. Deming D. (2020). Abundance Measurements of H2O and Carbon-Bearing Species in the Atmosphere of WASP-127b Confirm its Supersolar Metallicity. Mon. Not. R. Astron. Soc. 500, 40424064. 10.1093/mnras/staa3116 Swain M. R. Vasisht G. Tinetti G. (2008). The Presence of Methane in the Atmosphere of an Extrasolar Planet. Nature 452, 329331. 10.1038/nature06823 Syme A.-M. McKemmish L. K. (2020). Experimental Energy Levels of 12C14N through MARVEL Analysis. Mon. Not. R. Astron. Soc. 499, 2539. 10.1093/mnras/staa2791 Tennyson J. (2012). Accurate Variational Calculations for Line Lists to Model the Vibration Rotation Spectra of Hot Astrophysical Atmospheres. Wires Comput. Mol. Sci. 2, 698715. 10.1002/wcms.94 Tennyson J. Bernath P. F. Brown L. R. Campargue A. Carleer M. R. Császár A. G. (2009). IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part I. Energy Levels and Transition Wavenumbers for O and O. J. Quant. Spectrosc. Radiat. Transf. 110, 573596. 10.1016/j.jqsrt.2009.02.014 Tennyson J. Bernath P. F. Brown L. R. Campargue A. Carleer M. R. Császár A. G. (2010). IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD16O, HD17O, and O. J. Quant. Spectrosc. Radiat. Transf. 111, 21602184. 10.1016/j.jqsrt.2010.06.012 Tennyson J. Bernath P. F. Brown L. R. Campargue A. Carleer M. R. Császár A. G. (2013a). IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part III. Energy Levels and Transition Wavenumbers for O. J. Quant. Spectrosc. Radiat. Transf. 117, 2980. 10.1016/j.jqsrt.2012.10.002 Tennyson J. Bernath P. F. Brown L. R. Campargue A. Császár A. G. Daumont L. (2014a). A Database of Water Transitions from Experiment and Theory (IUPAC Technical Report). Pure Appl. Chem. 86, 7183. 10.1515/pac-2014-5012 Tennyson J. Bernath P. F. Brown L. R. Campargue A. Császár A. G. Daumont L. (2014b). IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part IV. Energy Levels and Transition Wavenumbers for O, O and O. J. Quant. Spectrosc. Radiat. Transf. 142, 93108. 10.1016/j.jqsrt.2014.03.019 Tennyson J. Hill C. Yurchenko S. N . (2013b). Data Structures for ExoMol: Molecular Line Lists for Exoplanet and Other Atmospheres. in” international conference on atomic and molecular data and their applications ICAMDATA-2012 (AIP, New York) 1545, 186195. 10.1063/1.4815853 Tennyson J. Yurchenko S. N. (2012). ExoMol: Molecular Line Lists for Exoplanet and Other Atmospheres. Mon. Not. R. Astron. Soc. 425, 2133. 10.1111/j.1365-2966.2012.21440.x Tennyson J. Yurchenko S. N. (2017). Laboratory Spectra of Hot Molecules: Data Needs for Hot Super-earth Exoplanets. Mol. Astrophys. 8, 118. 10.1016/j.molap.2017.05.002 Tennyson J. Yurchenko S. N. (2018). The ExoMol Atlas of Molecular Opacities. Atoms 6, 26. 10.3390/atoms6020026 Tennyson J. Yurchenko S. N. Al-Refaie A. F. Clark V. H. J. Chubb K. L. Conway E. K. (2020). The 2020 Release of the ExoMol Database: Molecular Line Lists for Exoplanet and Other Hot Atmospheres. J. Quant. Spectrosc. Radiat. Transf. 255, 107228. 10.1016/j.jqsrt.2020.107228 Tinetti G. Encrenaz T. Coustenis A. (2013). Spectroscopy of Planetary Atmospheres in Our Galaxy. Astron. Astrophys. Rev. 21, 165. 10.1007/s00159-013-0063-6 Tinetti G. Tennyson J. Griffiths C. A. Waldmann I. (2012). Water in Exoplanets. Phil. Trans. R. Soc. Lond. A 370, 27492764. 10.1098/rsta.2011.0338 Tinetti G. Vidal-Madjar A. Liang M.-C. Beaulieu J.-P. Yung Y. Carey S. (2007). Water Vapour in the Atmosphere of a Transiting Extrasolar Planet. Nature 448, 169171. 10.1038/nature06002 Tóbiás R. Furtenbacher T. Császár A. G. Naumenko O. V. Tennyson J. Flaud J.-M. (2018). Critical Evaluation of Measured Rotational-Vibrational Transitions ofFour Sulphur Isotopologues of S16O2 . J. Quant. Spectrosc. Radiat. Transf. 208, 152163. 10.1016/j.jqsrt.2018.01.006 Tobias R. Furtenbacher T. Simko I. Csaszar A. G. Diouf M. L. Cozijn F. M. J. (2020). Spectroscopic-network-assisted Precision Spectroscopy and its Application to Water. Nat. Comms. 11, 1708. 10.1038/s41467-020-15430-6 Tóbiás R. Furtenbacher T. Tennyson J. Császár A. G. (2019). Accurate Empirical Rovibrational Energies and Transitions of O. Phys. Chem. Chem. Phys. 21, 34733495. 10.1039/c8cp05169k Tsiaras A. Waldmann I. P. Tinetti G. Tennyson J. Yurchenko S. N. (2019). Water Vapour in the Atmosphere of the Habitable-Zone Eight-Earth-Mass Planet K2 18b. Nat. Astron. 3, 10861091. 10.1038/s41550-019-0878-9 Tsiaras A. Waldmann I. P. Zingales T. Rocchetto M. Morello G. Damiano M. (2018). A Population Study of Gaseous Exoplanets. Astron. J. 155, 156. 10.3847/1538-3881/aaaf75 Wang Y. Owens A. Tennyson J. Yurchenko S. N. (2020). MARVEL Analysis of the Measured High-Resolution Rovibronic Spectra of the Calcium Monohydroxide Radical (CaOH). Astrophys. J. Suppl. 248, 9. 10.3847/1538-4365/ab85cb Western C. M. (2017). PGOPHER: A Program for Simulating Rotational, Vibrational and Electronic Spectra. J. Quant. Spectrosc. Radiat. Transf. 186, 221242. 10.1016/j.jqsrt.2016.04.010 Wong A. Bernath P. F. Rey M. Nikitin A. V. Tyuterev V. G. (2019). Atlas of Experimental and Theoretical High-Temperature Methane Cross Sections from T = 295 to 1000 K in the Near-Infrared. Astrophys. J. Suppl. 240, 4. 10.3847/1538-4365/aaed39 Wong A. Yurchenko S. N. Bernath P. Mueller H. S. P. McConkey S. Tennyson J. (2017). ExoMol Line List XXI: Nitric Oxide (NO). Mon. Not. R. Astron. Soc. 470, 882897. 10.1093/mnras/stx1211 Wright S. O. M. Waldmann I. Yurchenko S. N. (2021). Non-Local thermal Equilibrium Spectra of Atmospheric Molecules of Exoplanets. Astrophys. J. Submitted. Yurchenko S. N. Al-Refaie A. F. Tennyson J. (2018a). ExoCross: A General Program for Generating Spectra from Molecular Line Lists. Astron. Astrophys. 614, A131. 10.1051/0004-6361/201732531 Yurchenko S. N. Amundsen D. S. Tennyson J. Waldmann I. P. (2017). A Hybrid Line List for CH4 and Hot Methane Continuum. Astron. Astrophys. 605, A95. 10.1051/0004-6361/201731026 Yurchenko S. N. Tennyson J. (2014). ExoMol Line Lists IV: The Rotation-Vibration Spectrum of Methane up to 1500 K. Mon. Not. R. Astron. Soc. 440, 16491661. 10.1093/mnras/stu326 Yurchenko S. N. Tennyson J. Bailey J. Hollis M. D. J. Tinetti G. (2014). Spectrum of Hot Methane in Astronomical Objects Using a Comprehensive Computed Line List. Proc. Nat. Acad. Sci. 111, 93799383. 10.1073/pnas.1324219111 Yurchenko S. N. Williams H. Leyland P. C. Lodi L. Tennyson J. (2018b). ExoMol Line Lists XXVIII: The Rovibronic Spectrum of AlH. Mon. Not. R. Astron. Soc. 479, 14011411. 10.1093/mnras/sty1524 Zhang Y. Snellen I. A. G. Bohn A. J. Molliere P. Ginski C. Hoeijmakers H. J. (2021). The 13CO-rich Atmosphere of a Young Accreting Super-Jupiter. Nature 595, 370. 10.1038/s41586-021-03616-x Zhou Y. Apai D. Bedin L. R. Lew B. W. P. Schneider G. Burgasser A. J. (2020). Cloud Atlas: High-Precision HST/WFC3/IR Time-Resolved Observations of Directly Imaged Exoplanet HD 106906b. Astron. J. 159, 140. 10.3847/1538-3881/ab6f65
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.iotjia.com.cn
      www.happyfc500.com.cn
      ftfmmt.com.cn
      gdhangfa.com.cn
      lwsegb.com.cn
      www.rjkyie.com.cn
      qhchain.com.cn
      www.udxw.com.cn
      www.thirdxcx.org.cn
      www.rycgc.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p