Front. Astron. Space Sci. Frontiers in Astronomy and Space Sciences Front. Astron. Space Sci. 2296-987X Frontiers Media S.A. 789563 10.3389/fspas.2021.789563 Astronomy and Space Sciences Perspective Terraform Sustainability Assessment Framework for Bioregenerative Life Support Systems Irons and Irons Terraform Sustainability Assessment Framework Irons Morgan A. 1 * Irons Lee G. 2 School of Integrative Plant Science, Field of Soil and Crop Sciences, Cornell University, Ithaca, NY, United States Norfolk Institute LLC, Norfolk, VA, United States

Edited by: Cyprien Verseux, University of Bremen, Germany

Reviewed by: Kazuharu Bamba, Fukushima University, Japan

Milan S. Dimitrijevic, Astronomical Observatory, Serbia

*Correspondence: Morgan A. Irons, mai57@cornell.edu

This article was submitted to Astrobiology, a section of the journal Frontiers in Astronomy and Space Sciences

10 12 2021 2021 8 789563 05 10 2021 09 11 2021 Copyright © 2021 Irons and Irons. 2021 Irons and Irons

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

In this perspective paper, we raise attention to the lack of methods or data to measure claims of sustainability for bioregenerative life support system designs and propose a method for quantifying sustainability. Even though sustainability is used as a critical mission criterion for deep space exploration, there result is a lack of coherence in the literature with the use of the word sustainability and the application of the criterion. We review a Generalized Resilient Design Framework for quantifying the engineered resilience of any environmental control and life support system and explain how it carries assumptions that do not fit the assumptions of sustainability that come out of environmental science. We explain bioregenerative life support system sustainability in the context of seven theoretical frameworks: a planet with soil, biogeochemical cycles, and ecosystem services provided to humans; human consumption of natural resources as loads and disturbances; supply chains as extensions of natural resources engineering application of; forced and natural cycles; bioregenerative systems as fragmented ecosystems; ecosystems as a network of consumer-resource interactions with critical factors occurring at ecosystem control points; and stability of human consumer resources. We then explain the properties of environmental stability and propose a method of quantifying resistance and resilience that are impacted by disturbances, extend this method to quantifying consistence and persistence that are impacted by feedback from loads. Finally, we propose a Terraform Sustainability Assessment Framework for normalizing the quantified sustainability properties of a bioregenerative life support system using the Earth model to control for variance.

sustainability resilience bioregenerative life support system ECLSS space habitation supply chain fragmented ecosystem terraform

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1 Introduction

      Across literature and popular science articles on bioregenerative life support systems (BLSSs), the word sustainable is commonly used as a critical mission criterion for deep space exploration (e.g., NASA 2012; Skibba 2018; Andrews 2019; NASA 2020; Kozyrovska et al., 2021; Maiwald et al., 2021). However, sustainability is not well-defined in the schema of BLSS. When the presentation and explanation of BLSS technologies that lay claim to sustainability are not accompanied by a discussion of parameters that would allow a measurement of sustainability, then such claims fall flat. The lack of supporting sustainability data is not surprising, considering that an understanding of sustainability is a relatively recent development among biological and environmental system researchers on Earth (e.g., Primmer and Furman 2012; Nimmo et al., 2015; Donohue et al., 2016; Pimm et al., 2019). The lack of coherence also could be a result of the BLSS concept growing out of the preceding development of non-biological, non-regenerative schema of the environmental control and life support system (ECLSS). ECLSS designs involve a system life cycle that depends upon the ability to maintain and repair the ECLSS during its useful life and then replace it with a new system at the end of its limited, useful life. Sustainable and limited are opposite outcomes.

      Within the context of a limited, useful life, ECLSS developers still needed a way to measure the capability of an ECLSS to operate in the adverse conditions of space. The concept of system resilience has been defined in the field of risk analysis by Haimes (2009) as “the ability of the system to withstand a major disruption within an acceptable degradation of parameters and to recover within an acceptable time and composite costs and risks.” The noted challenges in quantifying a measure of resilience are that 1) one must identify the multitude of disruption scenarios specific to the design of the system in question and necessarily apply a probabilistic scoring system to a limited set of classes of disruptions, and 2) given the inherent limited life of engineered systems, resilience will degrade over time, thus further constraining the time frame of scoring (Haimes 2009). The two challenges have been addressed specifically for ECLSSs using a Generalized Resilient Design Framework (GRDF) that limits disturbances to the failure of parts within the system; approximates all part failures to happen with equal, low probabilities; and considers such resilience only within a maximum, useful lifetime period during which the probability of any given part failing does not change (Matelli and Goebel 2018). The generalized resilient design framework for quantifying resilience can be applied to any ECLSS. We will refer to this as engineered resilience.

      There is one fundamental difference between a BLSS and an ECLSS that makes engineered resilience insufficient to the task of defining the sustainability of a BLSS: the BLSS has one or more living biological components, whereas the ECLSS is fundamentally non-regenerative. An ECLSS has no inherent ability in its nature to maintain or repair itself. Even with human intervention in maintenance and repair of an ECLSS, the cost of such maintenance or repair eventually exceeds the cost of replacing the ECLSS entirely, thus reaching the end of its useful life. The bioregenerative nature of the biological components of a BLSS are specifically utilized to give the BLSS the ability to theoretically function indefinitely without replacement. BLSS system developers use the word sustainability in the same way environmental scientists use it because the BLSS is literally intended to be a living environment. The flip side of this coin is the potential for a 100% die off scenario in which the bioregenerative portion of both main lines and redundant lines fail in quick succession. The big difference between non-regenerative parts and bioregenerative elements is that failed non-regenerative parts can be replaced and systems returned to full function. Bioregenerative elements that fail 100% are at risk of quickly failing at 100% again due to undetected and unknown environmental conditions, such as the presence of an alien biological vector or mutated-Earth pathogen, which could require years to figure out and resolve. Space explorers do not have years to fix a down life support system. Sustainable BLSS designs must take this into consideration.

      According to the Oxford English Dictionary (2004), environmentally sustainable is the “degree to which a process or enterprise is able to be maintained or continued while avoiding the long-term depletion of natural resources.” Similarly, the United Nations Educational, Scientific and Cultural Organization (2017) defines sustainable engineering as the “process of using resources in a way that does not compromise the environment or deplete the materials for future generations.” Four contextual elements are implied in these definitions, the first being that sustainment is endless, the second being that humans are being sustained, the third being that a natural environment is involved, and the fourth being that the functions of the natural environment have a critical, natural-resource basis. Different from engineered resilience, sustainability is a term that has arisen out of environmental science and natural resource management in the context of excessive human activities impacting our Earth ecological systems and environment (Du Pisani 2006). Instead of a probability that excessive human activity will result in adverse impacts to the environment, both the excessive human activity and the adverse impacts have been shown to exist. Environmental scientists look at whether ecological systems and the environment can continue to function in the presence of the excessive human activity. Additionally, environmental sustainability is not defined by the useful life of Earth’s ecological systems and environment. A sustainable ecological system continues to support humans indefinitely under human activity. Thus, the assumptions that have been developed for a generalized resilient design framework to calculate engineered resilience of an ECLSS do not fit the assumptions of sustainability that come out of environmental science. In the context of environmental science, the sustainability of a BLSS is its capability to continue functioning indefinitely under nominal and potentially abnormal human activity in the course of expected and unplanned events. Any quantitative method of assessing sustainability must apply these assumptions. This is vital, considering environmental failure endangering human life is a very real risk for a spaceship or off-Earth colony.

      In this perspective paper, we start by explaining the basis of BLSS sustainability in the context of the following theoretical frameworks: (2.1) a planetary (e.g. Earth): basis, in which biogeochemical cycles based in the soil are driven by planetary and solar forces out of which emerge environmental processes; (2.2) human consumption and disruption of natural resources and environmental processes acting as loads and disturbances that impact the entire system; (2.3) the human use of supply chains to artificially extend natural resources to anywhere they are needed, including space; (2.4) engineered elements of the BLSS working on a spectrum of forced and natural cycles; (2.5) bioregenerative elements of the BLSS functioning as fragmented ecosystems; (2.6) stability of the overall system being governed as critical factors identified by consumer-resource interactions disproportionately influencing the ecosystem at control points; and (2.7) sustainability of the BLSS and its ecosystem services network defined by stability of the human consumer resource(s) produced by the BLSS under human loads and impacted by disturbances. We then explain the properties of environmental stability, examine a method of quantifying resistance and resilience that are impacted by disturbances, extend this method to quantifying consistence and persistence that are impacted by feedback from loads, and propose a Sustainability Assessment Framework using the human consumer resources as the critical factors in these calculations. Finally, we propose a framework for normalizing the quantified sustainability properties of a BLSS using the Earth model to control for variance. The result is the Terraform Sustainability Assessment Framework, a method for quantifying the sustainability of a BLSS, and a framework that can be used to improve BLSS designs.

      2 The Environmental Basis of Sustainability 2.1 Soil, Biogeochemical Cycles, and Ecosystem Services

      Earth’s human-sustaining environment is broadly the result of biogeochemical cycles (interactions of living things, minerals, and chemicals in cycles) that provide the essential elements required for interactions between the environment’s biotic and abiotic components. Biogeochemical cycles are driven in complex ways by interactions in the soil, as the soil is where water, air, geological minerals, organic matter, microbes, plants, and other organisms interact chemically and physically, driven by solar, gravitational, and geo-thermal energy to produce the systems that make up the natural environment. When we refer to sustainability, we are referring to the fundamental ability of a soil-based biosphere to sustain humans. The implication is that, for a BLSS that utilizes biological functions to be sustainable and thus provide the necessary services required for human survival, the sustainability of those biological functions can only be based on the natural environment and the “root” soil basis from which the biological elements of the BLSS derive.

      The Millennium Ecosystem Assessment (2003) proposed a framework to assess how the natural environment enables human life through ecosystem services — a framework now used by scientists, policymakers and government agencies around the world to assess resource use and conservation (Millennium Ecosystem Assessment 2005; Daily and Matson 2008; Fisher et al., 2009; Primmer and Furman 2012; FAO 2021). The framework proposed four categories of ecosystem services, starting with supporting services (e.g., biogeochemical cycles, biodiversity, soil formation, photosynthesis) that then support regulating services (e.g., biological control, carbon storage sequestration, air quality, climate regulation) that then regulate provisioning services that relate to human needs (e.g., clean air to breathe) and cultural services that relate to the development of society (e.g., education, recreation, custom, commerce, governance). Without the basis of supporting services, in which soil is a critical part, ecosystems would not exist. With an estimated 95% of the food consumed by humans being produced from the soil (FAO 2015), humans are dependent on the sustainability of a soil-basis for survival. Furthermore, ecological system theory defines the sustainability of Earth’s biosphere in terms of the stability of natural cycles and processes under varying load feedbacks and disturbances (Benedetti-Cecchi 2003; García Molinos and Donohue 2011; Moreno-Mateos et al., 2017). To assess the sustainability of BLSS, we need to explore ecosystem stability in the context of a system sustaining humans (providing provisioning services) while experiencing loads and disturbances.

      2.2 Human Activity: Loads and Disturbances

      Just as provisioning services provided by Earth’s environment are described in terms of human needs, loads on provisioning services are specific to human activities. All other activities that naturally occur within the environment (e.g., animals feeding on plants and on other animals), are part of the environment and are not considered to be loads in the context of sustainability. Human activities include not just the loads of the humans themselves (e.g., eating food and breathing) but also the loads of the infrastructure and industry that humans build and operate (e.g., urbanization, intensive agriculture, and the resulting increase in greenhouse gas emissions that load the Earth biosphere and contribute to climate change). Infrastructure and industry are built up and expanded using supply chains. Supply chains act as artificial extensions of provisioning services to multiply the use of consumable resources and extend the use of the resources to humans in locations where the resources would not naturally be available. Thus, supply chains must then be considered as both part of the environmental processes and part of the loads in the determination of sustainability of the environment.

      In ecology, a disturbance is any event “that disrupts the structure of an ecosystem, community, or population, and changes resource availability or the physical environment” (White and Pickett 1985). Disturbances can act on any parts of a system’s natural cycles (e.g., Müller et al., 2002; Tylianakis et al., 2008; Jentsch and White 2019) and its supply chains (e.g., Davis 1993; Christopher and Lee 2004; Bhatnagar and Sohal 2005; Hobbs 2020), not just the points of the natural cycles and supply chains where human consumption normally occurs. Disruptions can greatly reduce or eliminate the availability of provisioning services and the resources they provide. As artificial extensions of provisioning services and resources, supply chains introduce additional potential types and points of disturbances.

      2.3 Supply Chain Sustainability

      Supply chain sustainability to load and disturbance is built upon performance factors affecting, for example, a supply chain’s production flexibility, lead time, demand variability response, inventory, and overall product and service quality (Davis 1993; Levy 1995; Bhatnagar and Sohal 2005; Sreedevi and Saranga 2017). Location-specific factors include access to resources, cost, infrastructure, and geographic distance to the end-customer (Levy 1995; Bhatnagar and Sohal 2005). Relational factors are the various activities along the value chain of a product or service and the associated costs to link each into the supply chain (Levy 1995). Supply chain performance analysis has shown that the greater the quantity of performance factors, the more susceptible the supply chain is to natural disturbances such as weather events, and human disturbances such as distorted information, border closings, strikes, and socioeconomic fluctuations (e.g., Lee et al., 1997; Kleindorfer and Saad 2005; FAO et al., 2020; Hobbs 2020). Thus, supply chains with long paths and the need to reduce lead times commonly have increased risk of disturbance to meeting supply, process, and demand. With a smaller margin of error, the cost to maintain or recover efficiency in the short term increases and sustainability degrades in the long term.

      The 2020 COVID-19 Pandemic almost immediately revealed how unstable our long-but-efficient supply chains are to sudden disturbances. The uncharacteristic freezing temperatures in Texas in 2021 also revealed how even localized supply chains (e.g., Texas electric grid) with minimal relational factors and shorter geographical distances can be disrupted by disturbances. The Texas cold wave of 2021 also demonstrated the catastrophic levels of failure that result when risk mitigation steps and adaptive management plans are not in place to recover or create pre-disturbance sustainability in supply chains (Blackmon 2021; Calma 2021; Krauss et al., 2021).

      Engineered life support systems derive their sustainability from long, artificial supply chains that extend across Earth and out into space as the systems rely on resupply from the provisioning services of Earth to maintain operation (e.g., the ISS). An alternative to using Earth as a basis for sustainability that we will mention here (but leave detailed discussion to another paper) is to use another planetary body, such as Mars, as a basis (e.g., Kading and Straub 2015; Irons 2018; Berliner et al., 2021). For example, Irons (2018) proposes a “quasi-closed agroecological system” that utilizes ecological buffer zones, in situ resources, and ecosystem service reservoirs to establish natural cycles independent of supply chains from Earth.

      2.4 Engineered vs. Bioregenerative Resilience (Revisited From Introduction)

      It is noteworthy to consider the assumption that BLSS is inherently more sustainable than ECLSS due to the presence of bioregenerative components. For any given functional objective and the best available ECLSS and BLSS technologies that can be selected to meet the objective, sustainability will be affected by the engineered resilience of the non-regenerative parts of the system (Haimes 2009; Matelli and Goebel 2018) and the particular supply chains needed for the given technology to provision maintenance materials, repair parts, and consumable materials. The expectation is that sustainability is heavily weighted by both ECLSS/BLSS design and supply chain performance under load, and the risk mitigations, and adaptive management plans prepared for the common and unique disturbance points.

      A theoretical advantage in sustainability of a BLSS over an ECLSS emerges as internal, non-regenerative components of the design of a BLSS are replaced with bioregenerative components, eliminating potential non-regenerative part failure points and reducing the need for supply chains for replacement parts. A theoretical advantage in sustainability of a BLSS over an ECLSS also emerges when the bioregenerative function is applied in a natural cycle that is more adaptive to loads and disturbances, rather than a forced cycle that has fixed steady state modes that are non-adaptive (Figure 1). When operated closer to a natural cycle, the implication is that it becomes more dependent on local, naturally renewable resources and buffering capacities and less dependent on supply chains, making it more adaptable to recovery from unplanned disruptive events (Irons 2018). Based upon this implication, operating a BLSS within a natural cycle with few or no supply chains would make it inherently more sustainable.

      Adaptability of bioregenerative life support systems (BLSS) in forced and natural cycles. (A) Approach in which a bioregenerative life support system is designed within engineered system processes and are expected to meet specific steady state parameters through forced cycle management. (B) Approach in which a bioregenerative life support system is designed within natural cycles with minimal to no forced cycle management.

      2.5 Fragmented Ecosystems

      An area of research and ecosystem management here on Earth that is highly relevant to the question of sustainability of a BLSS is that of fragmented ecosystems. Fragmented ecosystems, such as isolated forests resulting from clear-cutting practices and segmented agricultural fields, experience constant edge effects such as wind, temperature fluctuations, and pest disturbances, that negatively affect the populations and communities that are openly exposed to those elements. The stability and quality of such systems is constantly under threat of habitat degradation, loss of connectivity to biogeochemical cycle inputs and outputs, and the loss of biodiversity and genetic movement through the system (Fahrig 2003; Hanski 2011; Wilson et al., 2016). A BLSS operated with need for a supply chain from Earth is effectively a fragmented ecosystem, considering the biological elements within the engineered system will have a large “edge” comprised of the supply chain between it and the Earth-basis ecosystem from which is derived the resources needed by the BLSS.

      One example of a BLSS that could require a supply chain is a hydroponics system. In addition to the edge effect of the supply chain, hydroponics systems create edge environments along plant roots that would have otherwise been protected and buffered by a natural soil environment microbiome on Earth. An edge effect the plant may experience is exposure to pathogens that would have otherwise been kept at bay by a soil’s microbiome. A field-based agricultural system in an artificial habitation module, even if it uses natural Earth soil, will also have an edge where plantings end along the engineered boundary and would have a separate edge associated with a supply chain if fertilizer additions are required to support the load of crop production. Edge environments are more susceptible to disturbances and load feedbacks and can be a place to measure the most critical factors that will limit the sustainability of a BLSS.

      2.6 Ecosystem Stability and Control Points

      Maintaining a human presence in space over the long-term using BLSS implies the system must have stability under nominal and potentially abnormal load conditions, as well as both expected and unplanned disturbance events. Stability of forced cycle engineered systems has commonly been defined as an asymptotic measure of whether a system maintains an equilibrium state under load and how quickly it returns to its equilibrium state following a disturbance or shock event (Holling 1996). However, the goal of a BLSS is to support or produce a natural cycle. Stability of natural-cycle systems over a long term will not necessarily be restricted and asymptotic. In comparison, naturally cycling ecosystems are complex networks of individual species and groups of species that interact with the biotic and abiotic environment, creating unique and redundant functions and processes (Gray et al., 2021) made up of consumer-resource (i.e. producer) interactions that can vary over time and not necessarily around a mean (Benedetti-Cecchi 2003; Inouye 2005). Perturbations of varying magnitude, duration, and frequency over different spatial and temporal scales will elicit a range of responses that may affect the ecosystem immediately or may have long term effects that are not measurable on small time scales (Sousa 1984; Müller et al., 2002; Tylianakis et al., 2008; Pincebourde et al., 2012; Donohue et al., 2016; Jentsch and White 2019).

      Considering the variance of the large number of consumer-resource interactions comprising the complex network of an ecosystem, quantifying stability as a binary measure of single dimension (i.e., output is nominal or off-nominal) as is done with forced-cycle engineered systems is inaccurate and non-predictive for measuring the sustainability of a natural cycle system and can lead to ineffective management (Donohue et al., 2016; Pimm et al., 2019). The marine resources industry is a key example of how management of marine ecosystems is shifting away from focusing on single species stability and single ecosystem service management to ecosystem-based management—a management strategy that incorporates all ecosystem interactions, including those of humans, into the research and adaptive management of the system (Pikitch et al., 2004; Tam et al., 2017). The multi-dimensional approach of such a management strategy should be applied to assessing the stability of a BLSS. However, the large number of potential factors represented by all the consumer-resource, send-receive, force-action interactions that make up the operation of a BLSS can be daunting. An approach is needed to select a subset of critical factors out of all interactions.

      Ecosystem control points provide such an approach. In Bernhardt et al. (2017), ecosystem control points are defined as “areas of the landscape that exert disproportionate influence on the biogeochemical behavior of the ecosystem under study.” For soil, these ecosystem control points are places where the movement of water and gases result in the transport, accumulation and export, and delivery of reactants to support permanent and activated biogeochemical activity. The concept of ecosystem control points can be applied to the process of an ecosystem service being delivered to humans by an Earth biogeochemical soil basis, a network of supply chains, and a BLSS comprised of non-regenerative parts combined with bioregenerative elements. One identifies the ecosystem control pointsto select a subset of all interactions and factors. This requires a careful analysis to identify the measurable, disproportionately influencing factors of the biogeochemical cycles and environmental processes, supply chains, non-regenerative subsystems of the BLSS, and bioregenerative subsystems of the BLSS. These disproportionately influencing factors are called critical factors.

      Finally, the myriad possible ways that a system can be impacted by load feedbacks and disturbances necessitates limiting them to classes of load feedbacks and disturbances (Haimes 2009). For the BLSS schema, we recommend the following classes: non-regenerative part failure, biotic feed stock loss, pathogen and toxin introduction, mutation of biotic elements, unplanned load/leak, bioregenerative overgrowth. Classes of load feedbacks and disturbances for the ecosystem services on Earth and the associated supply chains that support the BLSS from Earth should also be utilized in the analysis. The BLSS development team should include biologists, environmental scientists, and supply chain experts to help with this analysis.

      2.7 Sustainability of Life Support Systems in Space

      To meet the mission criterion for a sustainable human presence in space, engineered life support systems tend to be defined by six functional objectives: 1) maintain closed-loop atmospheric pressure and composition within optimal parameters, 2) manage closed-loop water cycling, storage, and wastewater; 3) produce and store food to meet crew caloric and nutrition needs, 4) manage and recycle waste, 5) generate efficient energy for the system, and 6) ensure crew safety (e.g., Eckart 1996; NASA 2017). Table 1 shows how these six functional objectives are supported by the ecosystem services network (i.e., Earth environment basis of natural cycles and the ecological services provided by such cycles, and the supply chains that extend the resulting provisioning services to the location of humans in space) and the ECLSS or BLSS that convert the provisioned resources provided by the supply chain into the resources that meet human consumer need. Table 1 also identifies the human loads and space-based infrastructure and industry loads that impact the sustainability of the whole system.

      Life support system functional objectives in the context of natural and forced cycle lead services and human loads.

      Natural cycle lead (Earth Basis) Forced cycle lead Natural cycle lead Typical functional objectives Loads
      Supporting services Regulating services Provisioning services Supply chain ECLSS or BLSS BLSS Human Infrastructure and industry
      Biogeochemical cycles, biodiversity, soil formation, photosynthesis Decomposition, evapotranspiration, biological control, carbon storage/sequestration (soil), air quality regulation, climate regulation Clean air to breath Maintain atmospheric composition Maintain closed-loop atmospheric pressure and composition Absorbs O2 Absorbs O2
      Produces: CO2, VOCs, Airborne particulate Produces: CO2, VOCs, Airborne particulate
      Water cycle, soil creation, photosynthesis, biodiversity, habitat Climate regulation, water regulation and purification, soil formation; primary productivity, air quality regulation Clean water for drinking and personal hygiene Manage water cycling and storage Manage closed-loop water cycling, storage, and wastewater Uses water Uses water
      Produces gray water Produces gray water
      Produces black water
      Biogeochemical cycles, nutrient cycling, photosynthesis, biodiversity, habitat Pollination, climate regulation, water regulation and purification, biological control, erosion control, atmospheric regulation, disease regulation Biodiversity to agricultural system Produce and store food Produce and store food to meet crew caloric and nutrition needs Eats food Uses plant material for spare parts
      Produces food waste
      Nutrient cycling, biogeochemical cycles, soil formation, microbial primary productivity Decomposition, carbon storage, climate regulation, water regulation, biological control, atmospherics Waste recycling Manage waste Manage and recycle waste Produces trash Produces industrial waste
      Depending on energy source—water cycling, sunlight Depending on energy source: water regulation, climate regulation Sunlight, wind, flowing water, gravitational potential energy, biomass, other Generate energy Generate efficient energy for the system Consumes energy Consumes energy
      Produces heat Produces heat
      All All Raw materials and biodiversity for adaptation, human health and adaptability to known and unknown disturbances Produce spare parts and consumables for engineered systems Ensure crew safety Subject to unplanned events Consumes material
      Safeguard against known disturbances Produces material waste
      Produces additional hazards for humans

      These load points are the final consumer-resource interactions in the complex network that make up the BLSS and its connection back to Earth and the soil basis. As such, the measures of resources directly consumed by humans are the dependent variable critical factors (DVCFs) of the independent variable critical factors (IVCFs) measured at the control points. The IVCFs can be impacted by feedbacks of the human loads (i.e., IVCFs pulled out of nominal by human load rates) and by disturbances (i.e. expected and unplanned events). Thus, the stability of the BLSS is dependent upon the stability of the human resource DVCF when the IVCFs are impacted. We define the sustainability of a BLSS to be the stability of the human resource DVCF produced by a BLSS in response to human load and disruption impacts on IVCFs at the environmental control points of the BLSS and its ecosystem services network. We apply this definition in our development of a Terraform Sustainability Assessment Framework.

      3 Terraform Sustainability Assessment Framework 3.1 Quantifying Sustainability

      Studies to assess the stability of ecosystem critical factors have used variability, persistence, resistance, and resilience as properties of ecological stability (Pimm 1984). Where the challenge lies in quantifying these stability properties is a lack of clear definitions of the terms and a lack in understanding of how to capture the complexity and variety of ecosystem responses to disturbances (Donohue et al., 2016; Pimm et al., 2019).

      Nimmo et al. (2015) proposes quantifying resistance and resilience as R s =   X 2 / X 1 R l =   X 3 / X 1 R s Resistance ( R s ) is the ratio of the minimum level to which a critical factor ( X ) drops due to a disturbance ( X 2 ) to its value prior to disturbance ( X 1 ), and defined as “the ability to maintain functional output immediately following a disturbance.” Resilience ( R l ) is the difference of the resistance ratio ( R s ) and the ratio of the value to which the critical factor recovers following the drop ( X 3 ) to its value prior to disturbance ( X 1 ), defined as “the ability to return to functional output after a disturbance has passed.” Resistance and resilience, as described here, are the stability properties associated with disturbances.

      As resistance and resilience relate to disturbances, variability and persistence relate to load feedback processes. However, whereas variability is defined as how much a critical factor drops as a result of feedback from a load, we propose to use what we call consistence that we define as “the ability to maintain functional output immediately upon establishment of a load.” Persistence is “the ability to return to functional output while loading is ongoing.” Equations for consistence and persistence would then follow the same model as resistance and resilience C =   Y 2 / Y 1 P =   Y 3 / Y 1 C where consistence ( C ) is the ratio of the minimum level to which a critical factor ( Y ) drops under load feedback ( Y 2 ) to its value prior to loading ( Y 1 ), and persistence ( P ) is the difference of the consistence ratio ( C ) and the ratio of the value to which the critical factor recovers following the drop while still under load ( Y 3 ) to its value prior to loading ( Y 1 ). For clarification, symbols “X” and “Y” are used to differentiate disturbance critical factors ( X ) and load feedback critical factors ( Y ). It is worth noting that a given critical factor could be impacted by both disturbances and load feedbacks.

      When X and Y are selected to be the same human resource DVCF of a BLSS, the stability properties represent measures of sustainability for the BLSS, as we defined in subsection 2.7. Ecosystem control points and the associated IVCFs for the given BLSS and its classes of disturbances and load feedbacks must be selected to meet five caveats identified by Nimmo et al. (2015) for use of these equations. The theories and methods discussed in section 2 enable the BLSS developer to meet the caveats. With these theories and methods, BLSS developers can perform analyses to predict how feedbacks from human loads and impacts from disturbances uniquely and commonly affect IVCFs. BLSS developers can then perform computer simulations and physical tests to see how the classes of selected load feedbacks and disturbances affect any given IVCF (while controlling for the other IVCFs), and how the affected IVCF impacts the particular human resource DVCF produced by the BLSS. Values of the human resource DVCF prior to disturbance/loading (X1/Y1), immediately following disturbance/loading (X2/Y2), and at a later time following disturbance/loading (X3/Y3) are then used to calculate resistance, resilience, consistence, and persistence. Using this Sustainability Assessment Framework, values of these four properties of sustainability can be calculated for the worst-case scenario of each class of disturbance and load feedback for each BLSS.

      3.2 Normalizing to Terraform Specific Stabilities

      The Sustainability Assessment Framework we have provided thus far quantifies sustainability of a BLSS as a measure of four properties of stability of human resource DVCFs; however, we still have not accounted for the effect of variance of consumer-resource interactions on the measurements of critical factors. We next propose a Terraform Sustainability Assessment Framework to account for the effect of variance on an assessment of BLSS stability by comparing the four stability properties we can calculate for a BLSS to those of a functionally equivalent Earth environment model under proportional load and disturbance effects. We are controlling the effect of variance on the sustainability calculations of a BLSS by normalizing the stability properties to those of an equivalent (in bioregenerative aspects) Earth environment that would also be affected by variance. Any influence of variance on the X3 and Y3 critical factors of Equations 2, 4, respectively, would be assumed to be in play in both the BLSS and Earth model environment(s), and thus, their influence on the calculations is controlled for in the normalization. The results are four new terms that we call terraform specific stabilities: terraform specific resistance ( R s T ), terraform specific resilience ( R l T ), terraform specific consistence ( C T ), and terraform specific persistence ( P T ). R s T = R s B L S S / R s E R l T = R l B L S S / R l E C T = C B L S S / C E P T = P B L S S / P E where each normalization is the ratio of the value of a BLSS stability property (e.g., R s B L S S ) to the stability property of the proportional Earth model (e.g., R s E ). We use the word terraform for the normalized properties considering the calculations are developed on the basis of Earth sustainability; thus, any BLSS that achieves terraform specific stabilities of 1 has effectively terraformed the human habitation supported by the BLSS, making it as sustainable as an equivalent system on Earth.

      3.3 Designing for Sustainability

      Finally, we recommend a formalized and adaptable approach (Figure 2) to using the Terraform Sustainability Assessment Framework for BLSS system developers to assess and quantify sustainability. The assessment can be performed on a BLSS design at any phase of development as a tool for iterative improvement of the design and associated risk and adaptive management plans. Development teams should be staffed with engineers, supply chain experts, environmental scientists, ecologists, and science specialists (e.g., soil scientists) to ensure valid application of the theories we utilized to develop this framework.

      Proposed Terraform Sustainability Assessment Framework process flow.

      By defining terraform specific stability properties of BLSSs on the basis of proportional Earth models, we provide a tool to assist in the purposeful advancement of BLSS designs towards the ideal of no longer requiring Earth supply chains. Our hope is that previously unknown questions and development challenges will be discovered in the process of analyzing and managing the sustainability of any given BLSS using this framework. We encourage the development of case studies of BLSS designs using our proposed Terraform Sustainability Assessment Framework. Such case studies will not only help with the development of more sustainable life support for space but also the development of technologies that can be used for sustainable practices on Earth.

      4 Conclusion

      Terraforming has always been a concept in the realm of science fiction. However, it is an idea that has its roots in the science of Earth biogeochemistry, soil formation, and ecological system succession. By modeling the BLSS as an extension of the ecosystem services provided to humans on Earth and then applying theoretical developments of environmental science, we have provided a definition of sustainability of a BLSS and a framework for quantifying it, normalizing it, and applying it to design. Use of this framework will now provide research and development teams and program managers with a way to assess claims of sustainability of BLSS technologies. It also provides a tool for ongoing improvement of BLSS designs, making them more bioregenerative and more naturally cycling, as well as development of system complexes of BLSS systems (terraform life support systems—TFLSS) that will provide all human consumption resources for space explorers of the future. The ultimate objective is to move the science and engineering toward local, scalable terraforming on other planets. To support this endeavor, we see the need for new disciplines in astroecology, extraterrestrial biospherics, and terraform engineering. We encourage career researchers, early career scientists, and students to build on this perspective paper through multidisciplinary, collaborative research with the objective of building these new disciplines.

      Data Availability Statement

      The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

      Author Contributions

      All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

      Funding

      MI was supported by a National Science Foundation Graduate Research Fellowship. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The publication fee was covered through a fellowship held by MI by Norfolk Institute, a non-profit organization that supports research in human resilience.

      Conflict of Interest

      Author LI is on the Board of Directors of Norfolk Institute LLC which operates as a non-profit entity.

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      We thank Johannes Lehmann (Cornell University) for providing advisement and discussion. We thank colleagues in the Lehmann Lab at Cornell University for useful discussions on the subject matter. We thank Jim Heffernan (Duke University), Justin Wright (Duke University), and Daniel Richter (Duke University) for early advisement on applying environmental and ecological sciences to space environments. We thank the National Science Foundation for providing funding through its Graduate Research Fellowship Program.

      References Andrews R. G. (2019). Can Spaceflight Save the Planet. Scientific American. Available at: https://www.scientificamerican.com/article/can-spaceflight-save-the-planet/?fbclid=IwAR3KkEfpWsCkPrU_jiUHdFQTOciu6Ulu-GMdKom0cWv8wdBUZDNxnL_rVA4 . Benedetti-Cecchi L. (2003). The Importance of the Variance Around the Mean Effect Size of Ecological Processes. Ecology 84, 23352346. 10.1890/02-8011 Berliner A. J. Hilzinger J. M. Abel A. J. McNulty M. J. Makrygiorgos G. Averesch N. J. H. (2021). Towards a Biomanufactory on Mars. Front. Astron. Space Sci. 8, 711550. 10.3389/fspas.2021.711550 Bernhardt E. S. Blaszczak J. R. Ficken C. D. Fork M. L. Kaiser K. E. Seybold E. C. (2017). Control Points in Ecosystems: Moving beyond the Hot Spot Hot Moment Concept. Ecosystems 20, 665682. 10.1007/s10021-016-0103-y Bhatnagar R. Sohal A. (2005). Supply Chain Competitiveness: Measuring the Impact of Location Factors, Uncertainty and Manufacturing Practices. Technovation 25, 443456. 10.1016/s0166-4972(03)00172-x Blackmon D. (2021). Texas Must Fix its Chronic Power Grid Resiliency Issues or Risk Becoming Another California. New York, New York: Forbes. Available at: https://www.forbes.com/sites/davidblackmon/2021/02/15/texas-must-fix-its-chronic-power-grid-resiliency-issues-or-risk-becoming-another-california/?sh=7344ef45279c . Calma J. (2021). Texas Has Work to Do to Avoid Another Energy Crisis. New York, New York: The Verge. Available at: https://www.theverge.com/2021/2/17/22288292/texas-grid-upgrade-disaster-planning-power-outage-energy-crisis . Christopher M. Lee H. (2004). Mitigating Supply Chain Risk through Improved Confidence. Int. Jnl Phys. Dist Log Manage. 34, 388396. 10.1108/09600030410545436 Daily G. C. Matson P. A. (2008). From Theory to Implementation. Proc. Natl. Acad. Sci. 105 (28), 94559456. 10.1073/pnas.0804960105 Davis T. (1993). Effective Supply Chain Management. Sloan Manag. Rev. 34, 3546. Donohue I. Hillebrand H. Montoya J. M. Petchey O. L. Pimm S. L. Fowler M. S. (2016). Navigating the Complexity of Ecological Stability. Ecol. Lett. 19, 11721185. 10.1111/ele.12648 Du Pisani J. A. (2006). Sustainable Development - Historical Roots of the Concept. Environ. Sci. 3 (2), 8396. 10.1080/15693430600688831 Eckart P. (1996). “Physico-Chemical versus Bioregenerative Life Support,” in Spaceflight Life Support and Biospherics. Editors Markley L. Larson W. L. Münch R. E. Shea J. F. (Torrance, CA: Microcosm, Inc.), 125174. Fahrig L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487515. 10.1146/annurev.ecolsys.34.011802.132419 FAO (2021). Ecosystem Services & Biodiversity (ESB). Available at: http://www.fao.org/ecosystem-services-biodiversity/en/ . FAO (2015). Healthy Soils Are the Basis for Healthy Food Production. Available at: http://www.fao.org/soils-2015/news/news-detail/en/c/277682/ . FAO, IFAD, UNICEF, WFP and WHO (2020). “What Is Driving the Cost of Nutritious Foods,” in The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets (Rome: FAO), 115138. Fisher B. Turner R. K. Morling P. (2009). Defining and Classifying Ecosystem Services for Decision Making. Ecol. Econ. 68 (3), 643653. 10.1016/j.ecolecon.2008.09.014 García Molinos J. Donohue I. (2011). Temporal Variability within Disturbance Events Regulates Their Effects on Natural Communities. Oecologia 166, 795806. 10.1007/s00442-011-1923-2 Gray C. Ma A. McLaughlin O. Petit S. Woodward G. Bohan D. A. (2021). Ecological Plasticity Governs Ecosystem Services in Multilayer Networks. Commun. Biol. 4, 17. 10.1038/s42003-020-01547-3 Haimes Y. Y. (2009). On the Definition of Resilience in Systems. Risk Anal. 29 (4), 498501. 10.1111/j.1539-6924.2009.01216.x Hanski I. (2011). Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation. AMBIO 40, 248255. 10.1007/s13280-011-0147-3 Hobbs J. E. (2020). Food Supply Chains during the COVID‐19 Pandemic. Can. J. Agric. Economics/Revue canadienne d'agroeconomie 68, 171176. 10.1111/cjag.12237 Holling C. S. (1996). “Engineering Resilience versus Ecological Resilience,” in Engineering within Ecological Constraints. Editor Schulze P. E. (Washington D.C.: National Academy Press), 3143. Inouye B. D. (2005). The Importance of the Variance Around the Mean Effect Size of Ecological Processes: Comment. Ecology 86 (1), 262265. 10.1890/03-3180 Irons M. A. (2018). “Ecological System Model for a Self-Sustaining and Resilient Human Habitation on the Moon and Mars and for Food Security and Climate Change Mitigation Anywhere on Earth,”. U.S. Patent No 9,970,208 (Washington, D.C: U.S. Patent and Trademark Office). Jentsch A. White P. (2019). A Theory of Pulse Dynamics and Disturbance in Ecology. Ecology 100, 115. 10.1002/ecy.2734 Kading B. Straub J. (2015). Utilizing In-Situ Resources and 3D Printing Structures for a Manned Mars mission. Acta Astronautica 107, 317326. 10.1016/j.actaastro.2014.11.036 Kleindorfer P. R. Saad G. H. (2005). Managing Disruption Risks in Supply Chains. Prod. Operations Manag. 14, 5368. 10.1111/j.1937-5956.2005.tb00009.x Kozyrovska N. Reva O. Podolich O. Kukharenko O. Orlovska I. Terzova V. (2021). To Other Planets with Upgraded Millennial Kombucha in Rhythms of Sustainability and Health Support. Front. Astron. Space Sci. 8, 701158. 10.3389/fspas.2021.701158 Krauss C. Fernandez M. Penn I. Rojas R. (2021). How Texas' Drive for Energy Independence Set it up for Disaster. New York, New York: The New York Times. ISSN 0362-4331. Available at: https://www.nytimes.com/2021/02/21/us/texas-electricity-ercot-blackouts.html . Lee H. L. Padmanabhan V. Whang S. (1997). The Bullwhip Effect in Supply Chains. Sloan Manag. Rev. 38, 93102. Levy D. L. (1995). International Sourcing and Supply Chain Stability. J. Int. Bus Stud. 26, 343360. 10.1057/palgrave.jibs.8490177 Maiwald V. Schubert D. Quantius D. Zabel P. (2021). From Space Back to Earth: Supporting Sustainable Development with Spaceflight Technologies. Sustain. Earth 4, 116. 10.1186/s42055-021-00042-9 Matelli J. A. Goebel K. (2018). Resilience Evaluation of the Environmental Control and Life Support System of a Spacecraft for Deep Space Travel. Acta Astronautica 152, 360369. 10.1016/j.actaastro.2018.08.045 Millennium Ecosystem Assessment (2003). “Ecosystems and Their Services,” in Ecosystems and Human Well-Being: A Framework for Assessment (Washington D.C.: Island Press), 4962. Millennium Ecosystem Assessment (2005). “How Have Ecosystem Services and Their Uses Changed,” in Ecosystems and Human Well-Being: Synthesis (Washington D.C.: Island Press), 3948. Moreno-Mateos D. Barbier E. B. Jones P. C. Jones H. P. Aronson J. López-López J. A. (2017). Anthropogenic Ecosystem Disturbance and the Recovery Debt. Nat. Commun. 8, 16. 10.1038/ncomms14163 Müller A. K. Westergaard K. Christensen S. Sørensen S. J. (2002). The Diversity and Function of Soil Microbial Communities Exposed to Different Disturbances. Microb. Ecol. 44, 4958. 10.1007/s00248-001-0042-8 NASA (2017). Life Support Systems: Sustaining Humans beyond Earth. Available at: https://www.nasa.gov/content/life-support-systems . NASA (2020). NASA’s Plan for Sustained Lunar Exploration and Development. Available at: https://www.nasa.gov/feature/nasa-outlines-lunar-surface-sustainability-concept . NASA (2012). Voyages: Charting the Course for Sustainable Human Space Exploration. Available at: https://www.nasa.gov/exploration/whyweexplore/voyages-report.html . Nimmo D. G. Mac Nally R. Cunningham S. C. Haslem A. Bennett A. F. (2015). Vive la résistance: reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516523. 10.1016/j.tree.2015.07.008 Oxford English Dictionary (2004). “Environmentally Sustainable,” in Oxford English Dictionary 2nd Ed (Oxford: Oxford University Press). Pikitch E. K. Santora C. Babcock E. A. Bakun A. Bonfil R. ConoverDayton D. O. P. (2004). Ecosystem-based Fishery Management. Science 305, 346347. 10.1126/science.1098222 Pimm S. L. Donohue I. Montoya J. M. Loreau M. (2019). Measuring Resilience Is Essential to Understand it. Nat. Sustain. 2, 895897. 10.1038/s41893-019-0399-7 Pimm S. L. (1984). The Complexity and Stability of Ecosystems. Nature 307, 321326. 10.1038/307321a0 Pincebourde S. Sanford E. Casas J. Helmuth B. (2012). Temporal Coincidence of Environmental Stress Events Modulates Predation Rates. Ecol. Lett. 15, 680688. 10.1111/j.1461-0248.2012.01785.x Primmer E. Furman E. (2012). Operationalising Ecosystem Service Approaches for Governance: Do Measuring, Mapping and Valuing Integrate Sector-specific Knowledge Systems. Ecosystem Serv. 1, 8592. 10.1016/j.ecoser.2012.07.008 Skibba R. (2018). Greening the Future of Outer Space: A Team of Scientists and Policy Experts Want to Develop Space Sustainably for Future Generations. Smithsonian Magazine. Available at: https://www.smithsonianmag.com/science-nature/greening-future-outer-space-180969212/?fbclid=IwAR2gAO1hRW9aORATdMv55lWIO3XI0ym2xlGqORI2lYxXC5VGMjiSFgea6SI . Sousa W. P. (1984). The Role of Disturbance in Natural Communities. Annu. Rev. Ecol. Syst. 15, 353391. 10.1146/annurev.es.15.110184.002033 Sreedevi R. Saranga H. (2017). Uncertainty and Supply Chain Risk: the Moderating Role of Supply Chain Flexibility in Risk Mitigation. Int. J. Prod. Econ. 193, 332342. 10.1016/j.ijpe.2017.07.024 Tam J. C. Link J. S. Rossberg A. G. Rogers S. I. Levin P. S. Rochet M.-J. (2017). Towards Ecosystem-Based Management: Identifying Operational Food-Web Indicators for marine Ecosystems. Int. Counc. Exploration Sea J. Mar. Sci. 74, 20402052. 10.1093/icesjms/fsw230 Tylianakis J. M. Didham R. K. Bascompte J. Wardle D. A. (2008). Global Change and Species Interactions in Terrestrial Ecosystems. Ecol. Lett. 11, 13511363. 10.1111/j.1461-0248.2008.01250.x United Nations Educational, Scientific and Cultural Organization (2017). Sustainable Engineering. Available at: http://www.unesco.org/new/en/natural-sciences/science-technology/engineering/sustainable-engineering/ . White P. S. Pickett S. T. A. (1985). “Natural Disturbance and Patch Dynamics: an Introduction,” in The Ecology of Natural Disturbance and Patch Dynamics. Editors Pickett S. T. A. White P. S. (New York, NY: Academic Press), 313. 10.1016/b978-0-08-050495-7.50006-5 Wilson M. C. Chen X.-Y. Corlett R. T. Didham R. K. Ding P. Holt R. D. (20162016). Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges. Landscape Ecol. 31, 219227. 10.1007/s10980-015-0312-3
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hcyxgs.org.cn
      hisealine.org.cn
      www.jssjnj.com.cn
      ilijia.com.cn
      honorvip.com.cn
      jo15.com.cn
      iyork.com.cn
      www.szsubway.com.cn
      soulpapa.com.cn
      www.myjinkou.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p