Front. Astron. Space Sci. Frontiers in Astronomy and Space Sciences Front. Astron. Space Sci. 2296-987X Frontiers Media S.A. 789428 10.3389/fspas.2021.789428 Astronomy and Space Sciences Mini Review Synthetic Approaches to Complex Organic Molecules in the Cold Interstellar Medium Herbst and Garrod Approaches to Complex Organic Molecules Herbst Eric 1 2 * Garrod Robin T. 1 2 Department of Chemistry, University of Virginia, Charlottesville, VA, United States Department of Astronomy, University of Virginia, Charlottesville, VA, United States

Edited by: Cristina Puzzarini, University of Bologna, Italy

Reviewed by: Martin Robert Stewart McCoustra, Heriot-Watt University, United Kingdom

Barbara Michela Giuliano, Max Planck Institute for Extraterrestrial Physics, Germany

*Correspondence: Eric Herbst, eh2ef@virginia.edu

This article was submitted to Astrochemistry, a section of the journal Frontiers in Astronomy and Space Sciences

03 01 2022 2021 8 789428 04 10 2021 01 11 2021 Copyright © 2022 Herbst and Garrod. 2022 Herbst and Garrod

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The observation and synthesis of organic molecules in interstellar space is one of the most exciting and rapidly growing topics in astrochemistry. Spectroscopic observations especially with millimeter and submillimeter waves have resulted in the detection of more than 250 molecules in the interstellar clouds from which stars and planets are ultimately formed. In this review, we focus on the diverse suggestions made to explain the formation of Complex Organic Molecules (COMs) in the low-temperature interstellar medium. The dominant mechanisms at such low temperatures are still a matter of dispute, with both gas-phase and granular processes, occurring on and in ice mantles, thought to play a role. Granular mechanisms include both diffusive and nondiffusive processes. A granular explanation is strengthened by experiments at 10 K that indicate that the synthesis of large molecules on granular ice mantles under space-like conditions is exceedingly efficient, with and without external radiation. In addition, the bombardment of carbon-containing ice mantles in the laboratory by cosmic rays, which are mainly high-energy protons, can lead to organic species even at low temperatures. For processes on dust grains to be competitive at low temperatures, however, non-thermal desorption mechanisms must be invoked to explain why the organic molecules are detected in the gas phase. Although much remains to be learned, a better understanding of low-temperature organic syntheses in space will add both to our understanding of unusual chemical processes and the role of molecules in stellar evolution.

complex organic molecules interstellar medium astrochemistry nondiffusive motion radiative association radiolysis

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Although found in a wide variety of interstellar regions, “complex” organic molecules (abbreviated COMs or iCOMs) were first detected in and are still associated with warm, dense concentrations of gas and dust within interstellar clouds, known as hot cores, that are actively forming stars (Herbst and van Dishoeck 2009). The partially saturated aliphatic COMs are certainly not complex by terrestrial standards, but range in size from 6–13 atoms and contain oxygen and nitrogen as well as carbon and hydrogen. Examples include dimethyl ether (CH3OCH3), methyl formate (HCOOCH3), and n- and iso-propyl cyanide (C3H7CN; (CH3)2CHCN). In general, COMs tend to be terrestrial-like in nature, whereas another class of molecules, known as “carbon chains” are quite exotic. Carbon chains are linear and unsaturated molecules consisting mainly of carbon atoms, including negative and positive ions as well as radicals such as CnH (n = 2–8) and the cyanopolyynes HC2nCN (n = 1–5).

      Carbon chains were initially associated exclusively with gas-phase formation reactions, especially via ion-molecule reactions, in cold cores at 10 K. The ion-molecule synthesis terminates when positive ions react with electrons in dissociative recombination reactions (Herbst and Millar 2008; Herbst 2017). As a simple example regarding hydrocarbons, consider the reaction C + + C 2 H 2 C 3 H + + H followed by the dissociative recombination reaction C 3 H + +  e C 3 + H Such processes can lead to increasingly unsaturated species as size grows, unless reactions between ions and H2 can counter them (e.g., C3H+ + H2). These ion-H2 reactions often do not occur, however (McEwan et al., 1999). Nowadays, it is understood that neutral-neutral gas-phase chemistry can also play a significant role in the gas-phase formation of carbon chains.

      Unlike the case of carbon chains, the formation of COMs has been thought to occur mainly during the stellar warm up from cold cores to hot cores initially involving diffusive reactions on grains leading to more saturated species, albeit for most species only strongly at higher temperatures than 10 K (Viti et al., 2004). These reactions proceed mainly through recombination of radical species on granular surfaces; the precursor radicals are formed from more standard species by photodissociation (Garrod, 2008; Garrod et al., 2008; Garrod 2013). As star-formation proceeds and temperatures rise, thermal desorption gradually occurs, until by 100 K, COMs can be detected in the gas phase.

      Although for some time the gradual warm up of star-forming cores was thought to be a pre-requisite for COM chemistry, it was eventually realized that the warm-up scenario was not the whole story because a number of gaseous COMs—principally dimethyl ether and methyl formate—were detected in the gas of cold cores at temperatures such as 10 K, which are lower than believed efficient for COM production on grains (Bacmann et al., 2012). Suggestions were then made that gas-phase processes could lead to these COMs at such low temperatures (Balucani et al., 2015). The major process suggested is known as radiative association, and is discussed below. Other suggestions involving novel surface processes have also been made (Jin and Garrod 2020), and the situation remains unresolved today. Meanwhile, carbon-chain species were also found in warmer regions than cold cores, and this chemistry, named warm carbon-chain chemistry, is thought to start with the desorption of volatile species on icy dust grains such as methane at temperatures as low as 30 K, which initiates a second phase of carbon chain formation via gas-phase ion-neutral processes (Sakai and Yamamoto 2013).

      Most recently, following infrared detection of a general class of polycyclic aromatic hydrocarbons (PAH’s) without the ability to observe individual PAH’s, a third class of molecules involving small gaseous aromatic species, e.g., benzonitrile (C6H5CN) and cyano-naphthalene (C10H7CN), was detected via rotational emission, first in the cold core TMC-1 (McGuire et al., 2018; McGuire et al., 2021) and subsequently in other sources as well (Burkhardt et al., 2021). The syntheses of these species, typically containing a CN group to increase their polarity, are not well understood. Indeed, instead of the standard bottom-up chemistry, it has even been suggested that a top-down chemistry is responsible. Other possibilities are based on the reactions of benzene with carbon chains (Shingledecker et al., 2021).

      In this minireview, we focus on the production of COMs in low temperature regions. The order of presentation of the diverse synthetic mechanisms thought to produce COMs at low temperatures is as follows: 1) new mechanisms involving nondiffusive processes to produce COMs on cold grains, 2) radiolysis caused by cosmic ray bombardment on icy grains, and 3) gas phase processes, mainly radiative association, a type of reaction in which two molecules collide to form a complex, which can be stabilized by emission of radiation, normally by vibrational emission in the ground electronic state (Herbst 1980a; Herbst, 1980b; Herbst 1985; Vuitton et al., 2012).

      Formation on Cold Grain Surfaces

      It has been assumed for quite some time that surface reactions proceed via a random diffusive motion in which atoms or molecules move from site to site over barriers known as diffusive barriers, which are often estimated at 0.3–0.5 of the desorption energy. At very low temperatures, only weakly bound atoms and diatomic species, with low diffusive barriers, can move rapidly enough to be a major cause of reaction. Nevertheless, there is good experimental evidence that moving H atoms can hydrogenate atoms or diatoms into saturated species such as the conversion of CO into methanol and of C atoms into methane (Watanabe and Kouchi 2002). The newly produced molecules can be ejected from the surface of the icy mantle by reactive desorption if the reactions are sufficiently exothermic. Other desorption mechanisms include photodesorption, and cosmic ray desorption (radiolysis), which can occur via sputtering or heating of the whole grain. These diffusive reactions involving H atoms and heavier species are probably not enough to produce COMs larger than methanol at temperatures of 10 K, although some suggestions to this effect have been made (Chuang et al., 2017). More evidence indicates that the lowest temperatures at which diffusion is important with the exception of hydrogen are 20 K and higher. For example, diffusive neutral-neutral surface reactions involving radicals are thought to be dominant from 20 to 30 K upwards.

      A recent suggestion based on some initial research (Fedoseev et al., 2015, 2017; Theulé et al., 2013; see also; Theulé 2020) concerns surface reactants that can undergo reactions without significant motion if they lie close enough together. This idea has been worked out in some detail and further refined by Jin and Garrod (2020). One mechanism includes an initial diffusive reaction involving a light atom such as hydrogen to form a product, which upon formation lies adjacent to another atom or molecule, which can lie beneath the newly formed product or next to it. The adjacent species are close enough to react without undergoing any diffusion, and so the second reaction happens “instantaneously” unless there is some chemical activation energy. For example, the surface formation of CO2 from CO + O has both diffusive barriers and a chemical activation barrier so is quite slow. But if we consider the diffusive process between atomic oxygen and hydrogen to produce the radical OH, which is rapid, and a subsequent nondiffusive “instantaneous” reaction between the newly formed OH with an adjacent CO, a reaction leading to CO2 + H, the process is certainly enhanced in rate. This series of two processes is known as a three-body process, in analogy to such a process in the gas. Another “three-body” mechanism consists of an initial photodissociation to cause a stable surface molecule to dissociate into a radical, which is formed next to or over another species, so that a near instantaneous reaction can take place. It is currently unclear if, as mentioned by reviewer 1, water ice has a catalytic effect on nondiffusive motion, similar to the local effect of liquid water. As for the utility of TST, which the reviewer also mentions, we use a variant for diffusive motion leading to reaction, which is a different process.

      A third process starts with a metastable species, also formed by photodissociation. A prime example is the metastable O (1D) atom, formed directly on the surface through photodissociation of O2, which lives long enough (approx. 1,000 s) to react with virtually any species next to it or lying right below it. The reaction between photodissociatively-formed O (1D) and methane has been studied in the laboratory at low temperatures by Bergner et al. (2017); the reaction leads to surface methanol and formaldehyde. Reactions involving O (1D) and larger hydrocarbons are likely to eventually lead to COMs. Carder et al. (2021) studied the analogous surface process involving methane that would occur in the cold interstellar medium and found that the mechanism leading to methanol formation is virtually equal in rate to the standard synthesis of the hydrogenation of surface CO via multiple diffusive hydrogen atom reactions albeit at somewhat higher temperatures (20 K).

      Some of the “three-body” surface mechanisms can be much faster than normal diffusion at low temperatures, although are not always so, and so are now regarded as a likely source of oxygen-containing COMs in cold sources as well as sources undergoing warm up. A number of experiments, including those with and without radiation (Chuang et al., 2016, 2017; Fedoseev et al., 2015, 2017), have shown that during deposition on cold icy surfaces, reactions on surfaces can lead to COMs rather quickly; an initial process is shown in Figure 1. In order for the process shown to be efficient, the mechanism is likely to occur via rapid nondiffusive processes, although the details of the processes, which lead to species as large as glycine, are not fully understood (Ioppolo et al., 2021).

      Surface synthesis of glycolaldehyde, ethylene glycol, and possibly methyl formate at low temperatures, as studied by the Leiden group. Figure copied by permission of Oxford University Press from the article by Chuang et al. in Monthly Notices of the Royal Astronomical Society, vol. 455, page 702 (2015).

      Radiolysis

      Cosmic rays are high energy nuclei and electrons with relativistic velocities at nearly the speed of light, with a wide range of energies ranging from keV to much higher values. The most abundant constituents of the cosmic ray spectrum are simple protons, and their strong interaction with granular ice mantles, an example of radiolysis, can produce COMs from carbon-containing species via sequences of reactions involving the intermediate formation of electrons, ions, and radicals, as the cosmic rays penetrate through the ice. Many experiments have been done, mainly with either high energy protons or electrons, but the details of the chemistry have been mainly lacking until quite recently. The dominant parameter obtained in experiments is known as the G factor, which is the number of molecules produced or destroyed per 100 eV of incoming energy. Matching experimental and theoretical G values is a necessity for understanding the complex chemistry. The successful sequence of reactions introduced by Shingledecker and Herbst (2018) is as follows. Starting with a species in or on an ice mantle, which is labeled A, MeV protons produce A+ ions and electrons; these can recombine to form highly electronically excited neutrals A*, which can partially dissociate into B* and C* excited neutral radicals. Less energetic fragments, designated B and C, can be produced by reactions between weakly excited A species and electrons to form excited species A*, which, however, can dissociate into weakly excited B and C. The excited species A*, B*, and C*, known as suprathermal (electronically excited) neutral species, can react with thermal neutral species without barriers because the suprathermal energy exceeds any activation energy, thus forming the final radiolysis products. Theoretical radiolysis papers published concerning the formation of COMs include Shingledecker et al., 2018 and the recent paper by Paulive et al. (2021), which shows that radiolysis greatly enhances the rate of production of methyl formate, glycolaldehyde, and acetic acid at low temperatures. Wakelam et al. (2021) have recently published a paper on cosmic ray sputtering emphasizing the importance of experimental work.

      Low-Temperature Gas-phase Processes

      Radiative association can occur between ions and neutral species and between pairs of neutral species. Both of these processes can lead to hydrogen-rich products if the reactants themselves are well saturated; the products can either be COMs or precursors to COMs. But, in the case that the product is an ion, dissociative recombination with electrons can reduce the saturation significantly since the products tend to fragment more significantly than the loss of a single hydrogen atom from the molecular skeleton.

      To determine whether radiative association is a useful approach to low temperature COM production in space, it is necessary to have some knowledge of the reaction rate coefficients. It is, however, very difficult to measure radiative association in the laboratory because it can be detected only at very low densities and because it occurs rather slowly unless the following conditions are met: very low density, very low temperature, a deep potential well, strong infrared emission, and a complex with a large enough number of atoms to last for a relatively long time before redissociation, so that radiative stabilization can occur. Complications include competitive product channels, sometimes accompanied by roaming. Nevertheless, with a very low density experimental apparatus such as found in an ion trap, it is possible to measure the association rate for ion-neutral systems in the radiative, or low density, regime, or to extrapolate from the border of the ternary regime (Gerlich and Hornung 1992). At higher densities, radiative association is indeed eclipsed by ternary association, in which the complex is stabilized by collisions. This stabilization can occur at densities as low as 1010–1011 cm−3. At even higher densities ternary association is saturated when all collisions lead to the product. In the density range between radiative association and ternary association (up to circa 1016 cm−3) it is possible to convert a measured ternary association reaction into radiative association by an assortment of approximate methods (Smith and Adams 1981; Gerlich and Hornung 1992).

      In addition there are several purely theoretical approaches to obtain low temperature radiative association rate coefficients, one of which, a phase space approach, calculates the rate of production directly using a long-range capture potential (Herbst 1985) and the other, an RRKM or a variable transition state approach, which calculates the rate of complex dissociation followed by detailed balancing to obtain the radiative association rate (Ryzhov et al., 1996; Vuitton et al., 2012).

      It may be possible to form reasonable abundances of COMs via radiative association between the methyl ion (CH3 +) and larger neutrals despite the subsequent destruction of the ion product via dissociative recombination with electrons. The fact that the methyl ion can be depleted by reaction with H2 albeit slowly makes it less abundant by 1–2 orders of magnitude than the C+ ion throughout much of the lifetime of a cold core. Nevertheless, this abundance can lead to the moderate production of some COMs.

      The simplest radiative association involving methyl ions occurs with H2: CH 3 + + H 2 CH 5 + + h ν

      This system has been studied by ternary conversion and by theory (Gerlich and Hornung 1992). Once produced, CH5 + can undergo dissociative recombination to produce the dominant heavy products CH3 and CH2; CH4 is detected at only approximately 5% of the total carbonaceous products (Semaniak et al., 1998). This low branching fraction is likely to be common. A quite recent approach to low-temperature COM production can bypass the dissociative recombination step if there is a sufficient abundance of ammonia, based on the fact that ammonia has a very high proton affinity (Taquet et al., 2016.) Reactions between protonated molecules and ammonia will form the neutral molecule exclusively (along with NH4 +), unlike the case of dissociative recombination. Consider the formation of dimethyl ether from the precursor protonated ion via dissociative recombination: CH 3 O ( H ) CH 3 + + e CH 3 OCH 3 + H , where the measured branching fraction for the dimethyl ether channel is a low 0.07 (Hamberg et al., 2010). On the other hand, the competitive proton exchange reaction with ammonia CH 3 O ( H ) CH 3 + + NH 3 CH 3 OCH 3 + NH 4 + is exothermic by 50 kJ/mol, and produces dimethyl ether. Depending on the abundance of ammonia, reaction (5) and similar reactions with other protonated species can affect the production of COMs (Taquet et al., 2016; Garrod et al., 2021). Ammonia abundances may be too low, however, other than in hot cores or shocked regions.

      Many other examples of COMs produced via the CH3 + radiative association-dissociative recombination sequence have been discussed in the literature, some based on experiments involving ternary systems or low-density experiments such as achieved in ion-cyclotron resonance machines, some obtained by theory, and some simply estimated. Examples include methanol, ethanol, acetonitrile, propionitrile, and methyl isocyanide. Smith and Adams, 1981, Gerlich and Hornung (1992), Smith (1992), and Huntress and Mitchell (1979) have reported and tabulated a significant number of radiative association reactions between CH3 + and large neutral species leading to COMs. Dissociative recombination measurements involving storage rings exist but are not common, necessitating estimates of branching fractions. The reliability of some of the radiative association research is uncertain. Despite this problem, radiative association experiments involving ions are infrequently undertaken today, yet a renewal of interest in ion-molecule radiative association reactions would probably be needed to revive interest in the importance of the subject in the interstellar medium.

      The case of neutral-neutral radiative association reactions had not been considered significantly in an astronomical context until quite recently (Balucani et al., 2015). No experimental measurements exist in this field to the best of our knowledge, but theoretical calculations are being undertaken. One example concerns the radiative association between the radicals CH3 and CH3O to produce dimethyl ether: CH 3 + CH 3 O CH 3 OCH 3 +   h ν ,

      The methoxy radical can be produced by the reaction between OH and CH3OH, which has been studied at a variety of temperatures by several groups using the CRESU apparatus. The reaction is quite rapid at 11.7 K in the laboratory so can occur at the 10 K temperature in cold cores (Ocaña et al., 2019). As regards the production of dimethyl ether, the phase space theoretical approach of Herbst (1985) has been utilized, and shows a rate coefficient for radiative association of only slightly below the collisional limit   3 × 10 11 c m 3 s 1 at a temperature of 10 K. Once dimethyl ether is formed, it can lead to the production of methyl formate by reacting with halogen atoms to form the radical CH3OCH2, which then reacts with atomic oxygen to form methyl formate (HCOOCH3) (Balucani et al., 2015). When put into current simulations of cold core chemistry, this sequence comes somewhat behind granular processes in forming the observed values of these two COMs, which are the two dominant larger COMs found in cold cores. Similar neutral-neutral radiative association processes have been invoked to occur in the upper reaches of the molecule-rich atmosphere of Titan, the large moon of Saturn (Vuitton et al., 2012).

      To make further progress in extending the use of neutral-neutral gas-phase chemistry to form cold COMs, one possibility is to consider radical—radical radiative association reactions analogous to reaction (6). As an example, one could study the reaction between the hydroxymethyl radical (CH2OH) and formyl radical (HCO) to form glycolaldehyde (CH2OHCHO), or the reaction of the hydroxymethyl radical and methyl to produce ethanol. Analogous association reactions can also occur on granular surfaces, where the excess reaction energy can be transferred to the grains. At 10 K, however, heavy species diffuse only slowly. To enhance the rate of COM formation on grain surfaces, one must consider a faster approach to surface chemistry - surface chemistry without diffusion - as discussed above.

      Discussion

      In this brief minireview, we have discussed some of the synthetic approaches to the production of COMs in the cold regions of interstellar clouds. At present, it appears as if the granular approaches—nondiffusive processes and irradiation via cosmic ray bombardment—are slightly more efficient than gas-phase reactions, mainly radiative association. But much more research on radiative association reactions is needed to confirm this hypothesis. In the realm of radiative association, it does appear that neutral-neutral systems are more likely to be of more importance than ion-neutral systems, mainly because the products of neutral-neutral reactions do not have to cope with the rapid destruction caused by dissociative recombination.

      Author Contributions

      EH wrote the initial draft of the manuscript, while RTG revised it and was responsible for the science behind the nondiffusive mechanism.

      Funding

      This work was funded by the National Science Foundation (US) Division of Astronomical Sciences through Grant AST-19-06489.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Bacmann A. Taquet V. Faure A. Kahane C. Ceccarelli C. (2012). Detection of Complex Organic Molecules in a Prestellar Core: a New challenge for Astrochemical Models. A&A 541, L12. 10.1051/0004-6361/201219207 Balucani N. Ceccarelli C. Taquet V. (2015). Formation of Complex Organic Molecules in Cold Objects: the Role of Gas-phase Reactions. MNRAS 449, L16L20. 10.1093/mnrasl/slv009 Bergner J. B. Öberg K. I. Rajappan M. (2017). Methanol Formation via Oxygen Insertion Chemistry in Ices. ApJ 845, 29. 10.3847/1538-4357/aa7d09 Burkhardt A. M. Loomis R. A. Shingledecker C. N. Lee K. L. K. Remijan A. J. McCarthy M. C. (2021). Ubiquitous Aromatic Carbon Chemistry at the Earliest Stages of star Formation. Nat. Astron. 5, 181187. 10.1038/s41550-020-01253-4 Carder J. T. Ochs W. Herbst E. (2021). Modelling the Insertion of O(1D) into Methane on the Surface of Interstellar Ice Mantles. MNRAS 508, 15261532. 10.1093/mnras/stab2619 Chuang K.-J. Fedoseev G. Ioppolo S. van Dishoeck E. F. Linnartz H. (2016). H-atom Addition and Abstraction Reactions in Mixed CO, H2CO and CH3OH Ices - an Extended View on Complex Organic Molecule Formation. MNRAS 455, 17021712. 10.1093/mnras/stv2288 Chuang K.-J. Fedoseev G. Qasim D. Ioppolo S. van Dishoeck E. F. Linnartz H. (2017). Production of Complex Organic molecules: H-Atom Addition versus UV Irradiation. Mon. Not. R. Astron. Soc. 467, 25522565. 10.1093/mnras/stx222 Fedoseev G. Chuang K.-J. Ioppolo S. Qasim D. Dishoeck E. F. v. Linnartz H. (2017). Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions. ApJ 842, 52. 10.3847/1538-4357/aa74dc Fedoseev G. Cuppen H. M. Ioppolo S. Lamberts T. Linnartz H. (2015). Experimental Evidence for Glycolaldehyde and Ethylene Glycol Formation by Surface Hydrogenation of CO Molecules under Dense Molecular Cloud Conditions. MNRAS 448, 12881297. 10.1093/mnras/stu2603 Garrod R. T. (2008). A New Modified-Rate Approach for Gas-Grain Chemical Simulations. A&A 491, 239251. 10.1051/0004-6361:200810518 Garrod R. T. (2013). A Three-phase Chemical Model of Hot Cores: The Formation of Glycine. ApJ 765, 60. 10.1088/0004-637X/765/1/60 Garrod R. T. Jin M. Matis K. A. Jones D. Willis E. R. Herbst E. (2021). Formation of Complex Organic Molecules in Hot Molecular Cores through Nondiffusive Grain-Surface and Ice-Mantle Chemistry. arXiv. Garrod R. T. Weaver S. L. W. Herbst E. (2008). Complex Chemistry in Star‐forming Regions: An Expanded Gas‐Grain Warm‐up Chemical Model. ApJ 682, 283302. 10.1086/588035 Gerlich D. Horning S. (1992). Experimental Investigation of Radiative Association Processes as Related to Interstellar Chemistry. Chem. Rev. 92, 15091539. 10.1021/cr00015a003 Hamberg M. Zhaunerchyk V. Vigren E. Kaminska M. Kashperka I. Zhang M. (2010). Experimental Studies of the Dissociative Recombination of ions CD3OCD2 + and (CD3)2OD+ Unknown Node Mtable Found in MathML Fragment. A&A 522, A90. 10.1051/0004-6361/201014774 Herbst E. (1980a). A New Look at Radiative Association in Dense Interstellar Clouds. ApJ 237, 462470. 10.1086/157889 Herbst E. (1980b). An Additional Uncertainty in Calculated Radiative Association Rates of Molecular Formation at Low Temperatures. ApJ 241, 197199. 10.1086/158331 Herbst E. Millar T. J. (2008). “The Chemistry of Cold Interstellar Cloud Cores,” in Low Temperatures and Cold Molecules. Editor Smith I. W. M. (London, UK: Imperial College Press), 154. 10.1142/9781848162105_0001 Herbst E. (1985). Radiative Association Rate Coefficients under Shocked Conditions in Interstellar Clouds - the Case of CH3 (+) + H2 . Astron. Astrophys. 153, 151156. Herbst E. (2017). The Synthesis of Large Interstellar Molecules. Int. Rev. Phys. Chem. 36, 287331. 10.1080/0144235X.2017.1293974 Herbst E. van Dishoeck E. F. (2009). Complex Organic Interstellar Molecules. Annu. Rev. Astron. Astrophys. 47, 427480. 10.1146/annurev-astro-082708-101654 Huntress W. T. J. Jr. Mitchell G. F. (1979). The Synthesis of Complex Molecules in Interstellar Clouds. ApJ 231, 456467. 10.1086/157207 Ioppolo S. Fedoseev G. Chuang K.-J. Cuppen H. M. Clements A. R. Jin M. (2021). A Non-Energetic Mechanism for Glycine Formation in the Interstellar Medium. Nat. Astron. 5, 197205. 10.1038/s41550-020-01249-0 Jin M. Garrod R. T. (2020). Formation of Complex Organic Molecules in Cold Interstellar Environments through Nondiffusive Grain-Surface and Ice-Mantle Chemistry. ApJS 249, 2630. 10.3847/1538-4365/ab9ec8 McEwan M. J. Scott G. B. I. Adams N. G. Babcock L. M. Terzieva R. Herbst E. (1999). New H and H2 Reactions with Small Hydrocarbon Ions and Their Roles in Benzene Synthesis in Dense Interstellar Clouds. ApJ 513, 287293. 10.1086/306861 McGuire B. A. Burkhardt A. M. Kalenskii S. Shingledecker C. N. Remijan A. J. Herbst E. (2018). Detection of the Aromatic Molecule Benzonitrile (c-C6H5CN) in the Interstellar Medium. Science 359, 202205. 10.1126/science.aao4890 McGuire B. A. Loomis R. A. Burkhardt A. M. Lee K. L. K. Shingledecker C. N. Charnley S. B. (2021). Detection of Two Interstellar Polycyclic Aromatic Hydrocarbons via Spectral Matched Filtering. Science 371, 12651269. 10.1126/science.abb7535 Ocaña A. J. Blázquez S. Potapov A. Ballesteros B. Canosa A. Antiñolo M. (2019). Gas-phase Reactivity of CH3OH toward OH at Interstellar Temperatures (11.7-177.5 K): Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 21, 69426957. 10.1039/c9cp00439d Paulive A. Shingledecker C. N. Herbst E. (2020). The Role of Radiolysis in the Modelling of C2H4O2 Isomers and Dimethyl Ether in Cold Dark Clouds. MNRAS 500, 34143424. 10.1093/mnras/staa3458 Ryzhov V. Klippenstein S. J. Dunbar R. C. (1996). Radiative Association of NO+ with 3-Pentanone: Rate, Binding Energy, and Temperature Dependence. J. Am. Chem. Soc. 118, 54625468. 10.1021/ja953183b Sakai N. Yamamoto S. (2013). Warm Carbon-Chain Chemistry. Chem. Rev. 113, 89819015. 10.1021/cr4001308 Semaniak J. Larson A. Le Padellec A. Strömholm C. Larsson M. Rosén S. (1998). Dissociative Recombination and Excitation of CH5 +: Absolute Cross Sections and Branching Fractions. ApJ 498, 886895. 10.1086/305581 Shingledecker C. N. Herbst E. (2018). A General Method for the Inclusion of Radiation Chemistry in Astrochemical Models. Phys. Chem. Chem. Phys. 20, 53595367. 10.1039/C7CP05901A Shingledecker C. N. Lee K. L. K. Wandishin J. T. Balucani N. Burkhardt A. M. Charnley S. B. (2021). Detection of Interstellar H2CCCHC3N. A&A 652, L12. 10.1051/0004-6361/202140698 Shingledecker C. N. Tennis J. Gal R. L. Herbst E. (2018). On Cosmic-Ray-driven Grain Chemistry in Cold Core Models. ApJ 861, 2015. 10.3847/1538-4357/aac5ee Smith D. Adams N. G. (1981). Some Positive Ion Reactions with H2: Interstellar Implications. Monthly Notices R. Astronomical Soc. 197, 377384. 10.1093/mnras/197.2.377 Smith D. (1992). The Ion Chemistry of Interstellar Clouds. Chem. Rev. 92, 14731485. 10.1021/cr00015a001 Taquet V. Wirström E. S. Charnley S. B. (2016). Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts. ApJ 821 (46), 46. 10.3847/0004-637X/821/1/46 Theulé P. (2020). “Chemical Dynamics in Interstellar Ice,” in Laboratory Astrophysics: from Observations to Interpretation, IAU Symposium 350. Editors Salama F. Linnartz H. . 10.1017/S1743921319008342 Theulé P. Duvernay F. Danger G. Borget F. Bossa J. B. Vinogradoff V. (2013). Thermal Reactions in Interstellar Ice: A Step towards Molecular Complexity in the Interstellar Medium. Adv. Space Res. 52, 15671579. 10.1016/j.asr.2013.06.034 Viti S. Collings M. P. Dever J. W. McCoustra M. R. S. Williams D. A. (2004). Evaporation of Ices Near Massive Stars: Models Based on Laboratory Temperature Programmed Desorption Data. Monthly Notices R. Astronomical Soc. 354, 11411145. 10.1111/j.1365-2966.2004.08273.x Vuitton V. Yelle R. V. Lavvas P. Klippenstein S. J. (2012). Rapid Association Reactions at Low Pressure: Impact on the Formation of Hydrocarbons on Titan. ApJ 744, 11. 10.1088/0004-637X/744/1/11 Wakelam V. Dartois E. Chabot M. Spezzano S. Navarro,-Almaida D. Loison J.-C. (2021). Efficiency of Non-thermal Desorptions in Cold-Core Conditions. A&A 652, A63. 10.1051/0004-6361/202039855 Watanabe N. Kouchi A. (2002). Efficient Formation of Formaldehyde and Methanol by the Addition of Hydrogen Atoms to CO in H2O-CO Ice at 10 K. Astrophys. J. 571, L173L176. 10.1086/341412
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hexlabs.com.cn
      www.humsocc.org.cn
      edssss.com.cn
      www.hengfen.com.cn
      www.srchain.com.cn
      www.pjrbtd.com.cn
      www.ru4.com.cn
      www.pietqb.com.cn
      mka518.org.cn
      wzhdyj.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p