Front. Astron. Space Sci. Frontiers in Astronomy and Space Sciences Front. Astron. Space Sci. 2296-987X Frontiers Media S.A. 699688 10.3389/fspas.2021.699688 Astronomy and Space Sciences Review Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems Langenfeld et al. Optimizing Nitrogen Fixation and Recycling Langenfeld Noah J. 1 * Kusuma Paul 1 Wallentine Tyler 2 Criddle Craig S. 3 Seefeldt Lance C. 2 Bugbee Bruce 1 Crop Physiology Laboratory, Utah State University, Logan, UT, United States Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States

Edited by: Cyprien Verseux, University of Bremen, Germany

Reviewed by: Ruddy Wattiez, University of Mons, Belgium

Josep M. Trigo-Rodríguez, Consejo Superior de Investigaciones Científicas (CSIC), Spain

Rodney Venterea, United States Department of Agriculture (USDA), United States

*Correspondence: Noah J. Langenfeld, noah.langenfeld@usu.edu

This article was submitted to Astrobiology, a section of the journal Frontiers in Astronomy and Space Sciences

18 06 2021 2021 8 699688 24 04 2021 07 06 2021 Copyright © 2021 Langenfeld, Kusuma, Wallentine, Criddle, Seefeldt and Bugbee. 2021 Langenfeld, Kusuma, Wallentine, Criddle, Seefeldt and Bugbee

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Nitrogen (N) recycling is essential for efficient food production in regenerative life support systems. Crew members with a high workload need 90–100 g of protein per person per day, which is about 14 g of N, or 1 mole of N, per person per day. Most of this N is excreted through urine with 85% as urea. Plants take up N predominantly as nitrate and ammonium, but direct uptake as urea is possible in small amounts. Efficient N recycling requires maintenance of pH of waste streams below about 7 to minimize the volatilization of N to ammonia. In aerobic reactors, continuous aerobic conditions are needed to minimize production and volatilization of nitrous oxide. N is not well recycled on Earth. The energy intensive Haber–Bosh process supplies most of the N for crop production in terrestrial agriculture. Bacterial fixation of dinitrogen to ammonium is also energy intensive. Recycling of N from plant and human waste streams is necessary to minimize the need for N fixation. Here we review approaches and potential for N fixation and recycling in regenerative life support systems. Initial estimates indicate that nearly all the N from human and plant waste streams can be recovered in forms usable for plants.

nitrogen nitrogen recycling regenerative life support nitrogen fixation nitrogen on Mars Utah Agricultural Experiment Station10.13039/100007199 National Aeronautics and Space Administration10.13039/100000104

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Human habitation on extraterrestrial surfaces presents a challenge due to their distance from Earth and inhospitable conditions for life. Earth’s moon has virtually no atmosphere, and the thin atmosphere of Mars is dominated by carbon dioxide (CO2) with small amounts of nitrogen (N) and oxygen (Owen et al., 1977). Because of the thin atmospheres of the Moon and Mars, there will be minimal protection from dangerous short-wave radiation from the Sun and incoming meteorites, meaning that early missions will likely take place in largely closed habitats and must rely on supplies brought from Earth to sustain crew members (CMs). This creates a supply dependency, which can lead to problems if unforeseen challenges arise during extended missions. International space agencies have funded decades of research to promote the development of advanced life support systems for CMs to maintain self-sustainability by producing food and oxygen (Wheeler, 2010). Although optimizing plant growth has been a large research topic, little work has been funded to study nutrient recycling. A related study nearly 25 years ago (discussed later) was funded in the United States by the National Aeronautics and Space Administration (NASA) to model mass balance of N in a closed system (Loader et al., 1997).

      In the short term, bioavailable N must either be shipped from Earth or fixed from atmospheric dinitrogen gas (N2). We expect it to be highly cost effective to recycle N. N is likely present in small amounts of Lunar and Martian regolith in addition to being a small component of the Martian atmosphere (Kerridge, 2001). Existing surface N may come from the solar wind or from carbonaceous chondrite meteorites, which have been found to contain amino acids (Cronin and Pizzarello, 1983). Changes in atmospheric composition over time may have resulted in higher or lower levels of N in the past, which may now be locked away in untapped deposits (Klingler et al., 1989; Gebauer et al., 2020). These N reserves represent a possible source for N that may be mined in the future once colonies are established on extraterrestrial surfaces. This review focuses on in situ resource utilization of N by fixing it directly from the atmosphere.

      Recycling becomes paramount, especially as mission duration and scope increase. N is an essential plant macronutrient that presents a rich opportunity for recycling due to its well-understood transformations between organic and inorganic forms. N recycling must rely on integrated waste collection, separation, and processing components. Waste must be collected and source separated for successful recovery of N from human excreta. Urea must then be removed and concentrated from the liquid phase before being efficiently hydrolyzed to ammonium to minimize volatilization as ammonia gas and maximize N recovery. Plant and human waste can be proportionally fed into a combination of aerobic and anaerobic digesters to promote nitrification and mineralization. These processes produce ammonium and nitrate that can be used as a N source for plants, which produce food, completing the cycle. Optimizing every step in the cycle decreases the amount of N2 that must be recovered from the atmosphere through bacterial N fixation. Here we review approaches for recycling N and progress on microbial N fixation for advanced life support systems.

      Fixing Nitrogen

      The N cycle on Earth is shown in Figure 1. The atmosphere of Earth is about 79% inert N2. N2 is fixed into bioavailable ammonium by archaea and bacteria (either free-living or plant-associated) and by the Haber–Bosch process, with the biological and industrial processes each accounting for approximately 50% of globally fixed N. Both approaches are energy intensive and require large amounts of either adenosine triphosphate (ATP) or fossil fuels, respectively (Fowler et al., 2013). This fixed N can be rapidly taken up by plants and assimilated into proteins (Xu et al., 2012).

      Conversions between nitrogen forms in the nitrogen cycle on Earth. The long convex line represents the surface of Earth with anoxic conversions below ground and oxic conversions above ground.

      Nitrogen Transformations

      Ammonium that has been fixed from the atmosphere can be converted to nitrate by naturally occurring nitrifying bacteria or through industrial production. Biological nitrification occurs across two steps when Nitrosomonas spp. oxidize ammonium to nitrite and Nitrobacter spp. oxidize nitrite to nitrate (Gee et al., 1990). Plants can then uptake either ammonium or nitrate. N is transferred from plants to animals as proteins. After hydrogen, carbon, and oxygen, N comprises the highest quantity of all essential nutrients on a mole basis in both plants and animals. This is because N is a major component of proteins, as well as nucleic acids, chlorophylls, and defensive compounds (Mu et al., 2016; Stein and Klotz, 2016).

      When proteins degrade in mammalian cells, the N is converted to urea and is discarded by the organism through urine and sweat. Waste products also include other nitrogenous compounds in small amounts such as creatinine, ammonium bicarbonate, and ammonium citrate (Verostko et al., 2004). Urea is a stable molecule that will hydrolyze unaided with a half-life of 3.6 years to form two molecules of ammonia and one molecule of carbonic acid (Zerner, 1991). The enzyme urease, both free and in bacteria, catalyzes the conversion of urea to ammonia above pH five and increases the reaction rate by four orders of magnitude compared to unaided hydrolysis (Amtul et al., 2002; Udert et al., 2003). Urease is found in both bacteria and plants, but not in animals. Animals must excrete urea as a waste product before it builds up to toxic concentrations. Urea is the most common N fertilizer applied to crops with almost 60% of all N fertilizers being urea (Davis et al., 2016). Urea applied to the soil is hydrolyzed by urease in naturally occurring bacteria for plant uptake or is taken up in small amounts through plant cells by transporters, where it is later hydrolyzed and assimilated into proteins (Wang et al., 2008).

      Atmospheric Losses

      In addition to waste products from living organisms, decomposition of dead organisms and organic matter by decomposers (detritivores, bacteria, and fungus) releases organic N as ammonium and nitrate back into the soil. N that has been energetically fixed to ammonium and nitrate can be lost back to the atmosphere through abiotic and biotic processes, respectively. Ammonium can volatilize to ammonia gas under alkaline conditions and escape to the atmosphere. Oxidation of ammonium by ammonia-oxidizing microorganisms produces a hydroxylamine intermediate that can be oxidized to nitric oxide, then to nitrite, and then to nitrate or reduced to nitrous oxide and N2 (Soler-Jofra et al., 2021). The bacterial process of annamox can also oxidize ammonium to N2 using either nitric oxide or nitrite as an oxidant while producing water (Stein and Klotz, 2016). While both nitrification and denitrification can produce nitrous oxide, the major products of nitrification are nitrite and nitrate, and the major product of denitrification is N2 (Heil et al., 2016; Wrage-Mönnig et al., 2018).

      Extraterrestrial Nitrogen Cycle

      The atmosphere on Earth is dominated by N (79% N2 gas), but the Martian atmosphere is dominated by CO2 and contains less than 2% N2 gas by volume (Mahaffy et al., 2013). In space or extraterrestrial surfaces, industrial N2 fixation will not initially be feasible due to the large amount of energy and infrastructure needed. Instead of industrial fixation, early inhabitants must either bring N reserves from Earth or fix N using bacteria. Bringing large initial N stocks from Earth as a N gas (N2 or ammonia) or a solid (nitrate salt) can be challenging due to transport difficulties and overall N percentage. For example, ammonia gas is 82% N on a mass basis, while salts have a much lower percentage. Frequent resupply is currently impractical with extended mission durations, and bacterial N fixation represents the most feasible option. Recovery of N with minimal volatilization is essential to reduce the resources (launch mass/equivalent system mass) necessary to support bacterial N fixation. The volumetric and chemical demands of a biological N fixation system to support a manned mission are expected to be significant, even with high N recovery in fixation, composting, and human waste integration. An infrastructure capable of efficient N recovery at each step will allow N fixation to focus mainly on replenishing unrecovered N and will drastically reduce volumetric, chemical, and energetic demands required for fixation.

      An overview of N recycling on Mars is provided in Figure 2. N2 from the Martian atmosphere will be fixed by N-fixing microbes in bioreactors. Biological fixation is still possible even with the much lower percentage of atmospheric N on Mars compared to Earth (Klingler et al., 1989). This step transforms N2 into organic N in the form of proteins. These proteins must be degraded to plant-available N (ammonium) through anaerobic digestion. Small amounts of N are lost during anaerobic digestion as gaseous and recalcitrant forms. Plants may be grown hydroponically or in media and must be fed a combination of ammonium and nitrate to overcome toxicity issues/physiological disorders. Half of the plant biomass is edible, while the other half is inedible and must be composted in an aerobic digester. This aerobic digestor can also take in hydrolyzed urea from human urine and output nitrate for plants, but minor gaseous losses are again possible. Feces can also be composted in a digester to recover N that is fed back to plants. This simple overview shows how recycling of N can greatly reduce the demand for atmospheric N fixation.

      The nitrogen (N) cycle on Mars in an advanced life support system. N values are provided in moles of N per person per day and estimated gaseous losses are shown with sinuous arrows. N fixation requirement is higher than the N output based on current recovery values of N from bacterial biomass.

      Loader et al. (1997) appear to be the first group to publish a simple model for mass balance of N for regenerative life support. The authors envisioned fixing N from the life-support module atmosphere with an aquaculture unit providing additional protein. Their model suggests that denitrification might be a 12% gaseous loss. A well-designed plant production system with adequate aeration should have minimal denitrification. They did not include an anaerobic reactor, make mention of N recycling from urine, and did not include loss as recalcitrant N. While their separate nitrification and aerobic bioreactors produce nitrate and ammonium, our model specifies separate bioreactors to produce bioavailable N. Their model estimated similar values for plant uptake, harvest index, and human N requirements.

      Nitrogen Requirements

      Adult humans excrete about the same amount of N as they ingest on a daily basis. The daily N requirement is determined by the N required to replenish spent proteins and nucleic acids. This can be calculated based on replenishment of excreted N as shown in Table 1 or based on the requirements of ingested nitrogen.

      Daily nitrogen (N) replenishment requirements for a crew member (CM) in an advanced life support system.

      Component N requirement (N CM−1 d−1)
      g mol
      Urine (L) 1,500
      N in urine (g L−1) 8.1
      Total N from urine 12.2 0.87
      Fecal matter (g) 123
      Dry mass (%) 25
      N in feces (%) 5–7
      Total N from feces 1.8 0.13
      Daily CM N loss/replenishment 14 1
      Plant harvest index (%) 50
      Total plant N requirement 28 2
      N loss after bacterial fixation (%) 20
      N fixation requirement 35 2.5

      Values for N are presented as grams and as moles in bold. Units for all other assumptions are provided in the first column. Harvest index is the percent of total plant biomass in edible food. Here, it is assumed that N is allocated equally between edible and inedible plant biomass.

      Requirements Based on Excreted Nitrogen

      About 90% of the nitrogen discarded by humans is found in urine (Heinonen-Tanski and van Wijk-Sijbesma, 2005). CMs are estimated to produce on average 1.5 kg urine CM−1 d−1 (Anderson et al., 2018). The concentration of urea in typical adult human urine is 13.4 gL−1 with ammonium salts contributing 4.1 gL−1 and organic compounds contributing 5.4 gL−1 (Putnam, 1971). The total N concentration across the urine waste products equates to 8.1 gL−1 or 12.2 gN CM−1 d−1. Daily fecal excretion is estimated to be about 123 g CM−1 d−1. Feces is about 5–7% N on a dry mass basis, which represents 25% of the wet mass (Harder et al., 2019). N lost in solid excreta therefore represents an additional requirement of 1.8 gN CM−1 d−1. This equates to a daily N replacement of about 14 g N, or 1 mole of N, per person per day.

      Requirement Based on Ingested Nitrogen

      A CM is expected to consume about 3,000 kcal (12,550 kJ) per day due to high mission workloads (Cooper et al., 2011). If 16% of the daily intake is protein, and protein provides a gross energy of 5.1 kcalg−1 protein, a daily intake of about 94 g protein would be required (Hormoz, 2013; Anderson et al., 2018). The daily N requirement is therefore 15 gN CM−1 d−1assuming 16% N in protein. These values are based on food exported from Earth (Anderson et al., 2018). Ideally, this caloric intake would be split between initial food supply and food grown in transit or on extraterrestrial surfaces. Mission costs increase when the initial supply is increased (Cahill and Hardiman, 2020), and optimal food production reduces dependence on food resupply. The calculated N requirement based on both crew input and output is about 14 gN CM−1 d−1.

      Total Nitrogen Required

      Assuming 14 gN per CM per day, four CMs over a standard 967-days mission would require 54 kg of N to replace that lost to urine excretion (Anderson et al., 2018).

      However, about half of the N in plant biomass is not in an edible form. Harvest index is the ratio of edible to total biomass and varies from 20% in peanut (Arachis hypogaea) and sweet potato (Ipomoea batatas) to 90% in lettuce (Lactuca sativa) and spinach (Spinacia oleracea), with an average value of 50% for common crops (Wheeler et al., 2003; Anderson et al., 2018). This means that the N required to grow the food is doubled to 28 gN CM−1 d−1. This must come primarily from ammonium and nitrate.

      Nitrogen-Fixing Bacteria

      Without recovery, capture of N must come directly and entirely from the atmosphere. On Earth, this process is split between microbial production and Haber-Bosch industrial production. The energy and mass requirements to fix N using the Haber-Bosch process are likely prohibitively expensive. A more efficient approach, especially on a small scale, is to use bacterial fixation through the enzyme nitrogenase. This can be accomplished by fixing N from the atmosphere of an enclosed life support system or from the Martian atmosphere, although the lower partial pressure of N2 must be considered (Klingler et al., 1989; Mahaffy et al., 2013).

      Nitrogenase

      Nitrogenase uses ATP to reduce N2 to two molecules of ammonia, consuming electrons in the process (Newton, 2007). ATP required to fix N2 can be produced through consumption of reduced carbon compounds or light reactions, depending on chemotrophic or phototrophic metabolism (Soundararajan et al., 2019). At a biologically relevant pH, ammonia is in the protonated ammonium form and is assimilated to glutamate by glutamate and glutamine synthetase for use in proteins (Nagatani et al., 1971). N fixation efficiency of nitrogenase is largely determined by oxygen concentrations with anaerobic conditions leading to the highest efficiency (Mortenson, 1978).

      Cyanobacteria

      Plant-associated bacteria, such as rhizobia in legumes, have long been known to be productive N fixers (Franche et al., 2009). They form associations with plant roots and form nodules, which provide the host plant with N. Growing non-leguminous plants in regenerative life support systems requires free-living N-fixing bacteria, such as heterotrophic Azotobacter spp. or photosynthetic cyanobacteria (Meeks and Elhai, 2002; Inomura et al., 2017). Early work with cyanobacteria in regenerative life support systems was carried out at NASA Ames by Packer et al. (1986). Major cellular components, such as protein, glycogen, and sugars, were higher when the cyanobacteria Nostoc muscorum were grown under white light compared to blue light. They also characterized extreme oxygen sensitivity to nitrogenase as stated above. Cyanobacteria have continued to be a promising resource for regenerative life support systems, though recent work has focused on producing carbon compounds such as ethanol instead of fixing N (Zhou and Gibbons, 2015). Cyanobacteria are capable of N fixation under aerobic conditions and would be valuable for integration with oxygen-containing components of life support systems (Stal, 2015). Combining cyanobacterial means of N fixation with anaerobic methods can add to life support system versatility.

      Purple Non-sulfur Bacteria

      Multiple species of purple non-sulfur bacteria (PNSB) are also ideal for N fixation, especially because of their accumulation of compounds beneficial for plants and their ability to switch between multiple metabolic methods (Sakarika et al., 2020). Rhodopseudomonas palustris TN110, a strain of a widespread PNSB, was shown by Sakpirom et al. (2017) to contain all three nitrogenase isozymes (Mo–Fe, V–Fe, and Fe–Fe) and released the highest concentration of ammonium among 235 tested isolates. This makes R. palustris a valuable asset to a potential biological N fixation system and has been the basis for the N fixation and recovery systems described below.

      Recovery of Nitrogen from Bacteria

      Once fixed by bacteria, N must be transformed into bioavailable forms for plant uptake. When applied to the root-zone, both living and dead PNSB cells have been shown to increase edible biomass across many species (Sakarika et al., 2020). In addition to supplying N, it is possible that PNSB may indirectly promote plant growth by promoting the growth of other microorganisms which release plant growth promoting substances (PGPS), such as auxins. Kondo et al. (2008) found reduced growth of spinach (S. oleracea) and komatsuna (Brassica rapa var. perviridis) when applying PNSB to sterilized soil, demonstrating a possible interaction with other soil microorganisms. Rice (Oryza sativa) yield was enhanced when a biofertilizer comprising of PNSB at a concentration of 108 cells g−1 was applied at 0.75 kgha−1, although no distinction was made between growth promotion due to release of N or other PGPS (Kantachote et al., 2016). Substitution of PNSB for synthetic N did not significantly change the fruit mass of tomato, but malic and phosphoric acid content were increased, contributing to higher fruit quality (Kondo et al., 2010).

      Few studies have quantified the recovery of N from PNSB for use as a fertilizer. The most closely related studies have focused on determining quantities and rates of ammonia production in ruminants. Hyper-ammonia-producing (HAB) gram-positive bacteria isolated from the intestines of ruminants can ferment amino acids to ammonia (Bento et al., 2015). Eschenlauer et al. (2002) reported ammonia production rates of 1.8–19.7 nmol ammonia per mg of protein per min from HAB grown on trypticase. The ammonia production rate of HAB in ruminants varies considerably based on diet and has been found to be higher in vitro than in vivo (Taghavi-Nezhad et al., 2014). Capture of ammonia under acidic conditions will lead to protonation, preventing loss of N through volatilization.

      Nitrogen Requirement Without Recycling

      Preliminary studies from our laboratory indicate 80% of total N from R. palustris can be recovered as ammonium if the pH is rigorously controlled at 7. If we assume 28 gN CM−1 d−1 from plants combined with an 80% recovery efficiency from PNSB this leads to a final total of 35 gN CM−1 d−1 that must be fixed by bacteria. This number can be significantly reduced if N is recycled.

      Optimizing Nitrogen Recovery

      Optimizing N recovery involves increasing the efficiency of recovery from excreta and maximizing the recovery of bioavailable N (ammonium and nitrate) from anaerobic and aerobic digestion of human and plant wastes. Minimizing volatile losses and/or maximizing recovery of volatiles further improves N recovery. Selecting for crop cultivars with a high harvest index minimizes inedible plant materials and helps to improve the recovery efficiency.

      Nitrogen Recovery from Urine

      The simplest method to apply N to plants from urine is direct application following sterilization. Direct application of urine has been shown to improve plant growth compared to no fertilizer controls, but its use is complicated by low levels of bioavailable N, odor, and salt build-up in the substrate (Salisbury et al., 1997; Pandorf et al., 2019). N must be extracted from the urea in urine and transformed to bioavailable forms to alleviate these issues. This consists of four steps: sterilization, volume reduction, stabilization, and recovery (Maurer et al., 2006). Many methods have been developed to accomplish these tasks, though they vary in simplicity, expense, volume requirements, and efficiency.

      Nitrogen Forms in Urine

      The N from protein degradation is converted into urea, which is the dominant N form in the waste stream. Urea comprises over one half of the total dissolved solids and 75–90% of the discarded N in human urine (Rose et al., 2015; Simha and Ganesapillai, 2017). The remaining N is bound in other N-containing compounds such as creatinine and ammonium salts. Urea excretion from the human body varies based on diet, with the average adult human producing about 500 L of urine per year, equating to about 20 g urea CM−1 d−1 (Lind et al., 2001; Amtul et al., 2002). Urea can be fed directly to plants in the root zone, but it is taken up very slowly. Unaided urea hydrolysis is slow, but will eventually proceed due to bacterial contamination (Elliot, 1986). Supplementing the growing media with small amounts of urease has the potential to significantly increase the rate of hydrolysis (Figure 3).

      Rate of urea hydrolysis to ammonium with (3.2 enzyme units L−1) and without (0 enzyme units L−1) the addition of urease from Jack bean (Canavalia ensiformis).

      Sterilization

      Urine exits the body as a sterile liquid (Simha, 2013). Pathogens from unhealthy humans and fecal contamination from incomplete source separation compromise sterility (Höglund et al., 2002; Santos et al., 2004). Sterilization involves processes to eliminate pathogens from the waste stream to reduce contamination of downstream products. Urine may be sterilized by heat, pressure, or ultraviolet light, but these methods require energy. Alternatively, storage at low pH for weeks to months can inactivate viruses, inhibit pathogens, combat the rise in pH due to urea hydrolysis, and reduce ammonia volatilization (Hellström et al., 1999; Patel et al., 2020). If acidic conditions are maintained, no N is lost during the sterilization process.

      Volume Reduction and Water Recovery

      The volume of urine must be condensed following sterilization to both recycle water and collect the valuable metabolites. Evaporation energy requirements to remove water can be minimized by vapor-compression distillation to generate additional heat for evaporation and to recover 85% of the energy used compared to standard evaporation (Wood, 1982). Urea can also be separated from the liquid phase through freeze/thaw cycles. When urine begins to freeze, the ice that forms has minimal solutes. These solutes, such as urea, remain dissolved in the unfrozen portion. Removal of the distilled frozen water effectively concentrates the dissolved solids while concurrently purifying water for other uses. Lind et al. (2001) found that freezing and melting urine samples could concentrate more than 80% of the original N into a much lower volume. Reverse osmosis may also be used to remove water from urine and concentrate solutes. Ammonia recovery during reverse osmosis has been found to be about 70%, but higher recoveries may be possible if acidification is used to prevent volatilization (Thörneby et al., 1999). An 80% recovery rate means 16 g urea CM−1 d−1 can be recovered as ammonium following volume reduction.

      Stabilization

      Stabilization of condensed urine is essential to minimize volatilization of ammonium to ammonia gas. Released ammonia causes unpleasant odors and becomes difficult to capture in the gas phase. When urea is hydrolyzed in water, ammonium, CO2, and hydroxide are released, causing the pH of the solution to increase. Alkaline pH causes ammonium to de-protonate and volatilize to ammonia gas. Acidification is therefore necessary to both maintain neutral pH for optimal microbial activity in an aqueous system and prevent the loss of ammonia gas as shown in Figure 4 (Hellström et al., 1999; Maurer et al., 2006). CO2 must be vented or additionally recycled during this step to prevent build-up to toxic levels.

      Percent abundance of ammonia and ammonium across a range of pH values in a closed system. The pKa of ammonium is shown as a dashed line.

      Recent Recovery Systems

      Recovering urea and/or ammonium from urine is the most important step in N recovery from human waste. The pH must be rigorously controlled during the processes to prevent escape of ammonia gas. Current systems take the urea in urine and convert it to ammonium, nitrate, or a mix that can be fed to plants as their principal N sources. A recent example is the two-step Valorization of Urine Nutrients in Africa (VUNA) process where aeration is used for oxidation of organic matter and nitrification, converting half the ammonium in the urine into nitrate, a step that is completed when the pH has fallen to 6.20–6.25. At this point, the VUNA process uses vacuum distillation for recovery of water and a solution that is rich in ammonium nitrate (Udert and Wächter, 2012; Fumasoli et al., 2016).

      Ammonium Recovery

      Although energy consumption is high for recovery, volume reduction of urine can reduce the energy requirement by 58% (Maurer et al., 2003). Tun et al. (2016) studied filters for reducing water volume and concentrating ammonium from urine using membrane distillation following acidification. They found a combination PTFE/PP filter reduced the amount of ammonium transferred in relation to water to as low as 6.91 × 10–5 g-N/g-H2O. Some of these processes have been implemented in long-term studies to quantify N recovery from urine for simulated space missions. Beler-Baykal et al. (2011) utilized the natural conversion of urea to ammonium over six weeks to transform the N in urine into a bioavailable form before passing it through a column of clinoptilolite for separation to recover about 86% of the original N. An additional benefit of the use of clinoptilolite was the elimination of salinity from the waste stream, a valuable attribute to eliminate salt stress in plants. Simha et al. (2018) used a regenerative activated carbon column to achieve 90% recovery of urea from urine concentrate after multiple passes through their system. Fu et al. (2016) studied a 105 days crewed simulated closed ecosystem and were able to recover 20.5% of N from urine using simple distillation. However, this recovered N was stored instead of fed to plants, which were fertilized with pre-formed plant minerals stored from the beginning of the study.

      Nitrification

      Recent work has used synthetic microbial communities to complete nitrification directly in fresh diluted urine. This method bypasses the separate aerobic digestion step where nitrification may normally be present. Though previous stabilization steps still apply, Christiaens et al. (2019) were able to achieve N production rates of 29 mg nitrate L−1 d−1 in 10% diluted urine even under high sodium pressures. Udert and Wächter (2012) developed a system combining distillation with nitrification to completely recover nutrients from urine. Controlling pH for optimal nitrification led to 97% N recovery in the form of ammonium nitrate. Feng et al. (2008) showed up to 95% of the original ammonium could be converted to nitrate under high dissolved oxygen levels with rigorous solution pH control. These processes present alternative methods that may save space and resources in comparison to separate dedicated bioreactors.

      Significant nitrification occurs in all agricultural soils and there is great potential to enhance nitrification in the root zone in a regenerative system. Controlled watering would optimize aeration, and the process could be supplemented by adding nitrifying organisms.

      Current Recovery Work

      We are currently optimizing small scale bioreactors to convert the urea in urine into ammonium. A peristaltic pump is used to move solution from a bottom reservoir to the top of the column where it flows through perlite under continuous recirculation (Figure 5). Initial results show that ammonia volatilization is minimized when the pH is controlled near neutral (Figure 6). Our diagram assumes that we can achieve 100% recovery of ammonium from urine (Figure 2).

      Recirculating columns controlled at pH 7 with perlite as a substrate for the conversion of urea into ammonium.

      Ammonia gas volatilization over time determined by the amount of ammonium remaining in solution controlled at 3 pH values.

      Nitrogen Recovery from Inedible Plant Biomass and Solid Waste

      The most bioavailable forms of N for plants are ammonium and nitrate. Their interaction in plant nutrition is complex, and optimal ratios may vary among species. Plants commonly show no deficiencies or toxicities when only fed nitrate as a nitrogen source, but they often exhibit toxicity effects when ammonium is the sole source (Britto and Kronzucker, 2002; Miller et al., 2007; Esteban et al., 2016). This may be due to nutrient imbalances caused by a preference for ammonium uptake over nitrate uptake leading to pH imbalance (Imas et al., 1997). Savvas et al. (2006) studied ammonium as a nitrogen source from 0 to 30% of total nitrogen and found 30% ammonium produced plants with the highest dry mass, though all treatments appeared healthy with no noticeable deficiencies or toxicities. Yield among some species can decrease as the fraction of N from ammonium is increased beyond 25% (Britto and Kronzucker, 2002). In a previous NASA funded project at Utah State University, Hooten (1998) found no decrease in the yield of wheat under 80% ammonium as an N source when the pH in the hydroponic solution was rigorously controlled at pH 6. If this approach can be expanded to other crops, it would significantly decrease the amount of N that must be nitrified.

      No plant is completely edible (100% harvest index). Roots, stems, and in the case of fruiting plants, leaves, are inedible biomass and frequently discarded on Earth. This inedible plant waste must be digested to recover the N. Composting plant material relies on bacteria to convert the unusable biomass (proteins) into useful nutrients (ammonium and nitrate). Heat, moisture, and sometimes oxygen are required to sustain the microbial breakdown. Methane, nitrous oxide, and ammonia are all released as byproducts by microbes during the composting process (Brown et al., 2008). The N in ammonia must be captured to optimize recovery efficiency. This may be achieved by capturing the gas and bubbling it through an acidic solution to protonate the ammonia to ammonium. Current field composting studies of plant material indicate poor N recovery. Hartz et al. (2000) studied over 30 compost amendments ranging from animal manure to plant yard waste. N recovery in manure was about 15–16% while N recovery in plant waste was only 1–2%. Chalk et al. (2013) reviewed recent literature on N recovery in compost and found a maximum recovery of N from manure to be 38% and N recovery form plant waste to range from 8–26%. The composting process is also slow in addition to being inefficient.

      Digestion of Wastes

      Alternative and more efficient means of composting involve both aerobic and anaerobic digestion. These processes are currently being investigated and implemented on Earth for food waste recycling to both produce useable compost and generate clean energy. Both digestion procedures are more rigorous, efficient, and contained composting methods to capture the maximum number of useable byproducts possible with minimal wasted energy or heat losses.

      Aerobic Digestion

      Aerobic digestion utilizes aerobic microorganisms to break down proteins and oxidizes N to nitrate while releasing CO2 and water. The digestion process requires constant agitation and aeration to maintain aerobic conditions and promote microbial degradation of waste (Layden et al., 2007). Aerobic digestion is commonly used in waste water treatment facilities on Earth to stabilize fecal matter, food wastes, and microbial bio-solids (Khalili et al., 2000). Additional volatile losses of nitrous oxide present a considerable recovery challenge and can add an additional 20% daily loss of N (Figure 2). The product is a stable material (no objectionable odor, acceptable and slow decay rate, disinfected) that can facilitate conversion of Martian regolith into soil. During NASA’s Breadboard project, potato yield of plants grown with liquid effluent from aerobic digestion of inedible plant biomass were within 10% of control yields (Mackowiak et al., 1997). Recalcitrant nutrients accumulated over time, but final potato composition was comparable to control tubers. While N was not specifically studied, this project illustrates the compatibility of aerobic digestion effluent with crops in regenerative life support systems.

      Anaerobic Digestion

      Anaerobic digestion also uses anaerobic microorganisms to break down wastes into ammonium while releasing methane as a byproduct. The process can be dry or wet depending on the level of moisture. Dry fermentation anaerobic digestion has higher methane yields, lower water inputs, and reduced energy requirements compared to wet fermentation (Luning et al., 2003). The generated methane can be used as a clean energy source and the ammonium can be fed to plants or into additional nitrification digesters to be converted to nitrate. Microbes, much like plants, often show toxicity symptoms and reproductive challenges at high levels of ammonium. This feedback loop poses challenges for anaerobic digestion if it is to sustain a continuous ammonium output without negatively impacting microbial populations (Shapovalov et al., 2020). The remaining bio-solids from digesters in advanced life support systems can be added to plant substrates for slow, extended release of nutrients or tilled into the Martian regolith to begin developing a soil base for future in situ agriculture. This recalcitrant N can be 10% from anaerobic digestion on a daily basis that must be replaced through bacterial fixation.

      Digestion Comparisons

      A visual comparison of aerobic and anaerobic digestion is shown in Table 2. Aerobic digestion is much faster than anaerobic digestion, but it requires higher energy inputs to maintain adequate oxygen levels. A combination of these two systems allows production of both nitrate and ammonium for plant fertilizers. Their input quantities can be manipulated to produce the desired ratios of both N species. An important consideration in both anaerobic and aerobic digestion is the use of batch or continuous throughput methods. Batch digestion involves adding wastes, processing through digestion over a set time period, and removing the desired byproducts before restarting the process. Continuous throughput methods would have an initial waste supply and continue adding additional waste while simultaneously removing byproducts for fuel or fertilizers. Most research has focused on the efficiency of methane produced from both systems. Batch systems with dual solid and liquid phases have shown increased methane production compared to continuous systems when unwanted contaminants were separated from bulk waste prior to digestion (Chowdhury and Fulford, 1992; Zhang et al., 2013). Ammonium is likely to follow this trend as another valuable microbial byproduct.

      A relative comparison of aerobic and anaerobic digestion.

      Aerobic digestion Anaerobic digestion
      Community structure Aerobic heterotrophs and autotrophic nitrifying bacteria Fermenting bacteria, acetogens, and methanogens
      Oxygen input Fully aerobic Strictly anaerobic
      Digestion time Short Long
      Energy inputs High Low
      Nitrogen product Nitrate Ammonium
      Byproducts Carbon dioxide, water, stabilized recalcitrant biomass Carbon dioxide, methane, stabilized recalcitrant biomass

      Aerobic digestion is faster, but higher energy inputs are required. Byproducts from both reactors can be combusted for use as a fuel source.

      A combination of both methods will likely be the best approach due to the inevitable buildup of recalcitrant bio-solids that must eventually be eliminated from the digesters. This method is termed semi-continuous and involves coordinated input of waste and removal of byproducts over a set time frame before cleaning and restarting the digester. The process is similar to industrial aquaponics systems on Earth that use continuous throughput mineralization tanks to convert organic fish wastes into inorganic N forms useable by plants.

      Nitrogen Recovery from Bacteria

      The biomass of N-fixing bacteria is rich in nutrients essential for plant growth. They can serve as a valuable N source and fertilizer supplement if applied to plants. Although little work has been done to quantify the release of N from N-fixing bacteria, quantitative studies have compared plant harvest parameters in response to applications of live and dead cells. Sakarika et al. (2020) compiled data from many studies to compare effects of PNSB used as a biofertilizer. The application of PNSB generally increased crop yield, but there was no difference in the effects of living or dead cells. Tomato yield and lycopene content were significantly enhanced from the application of both living and dead cells (21–98% and 42–50%, respectively) (Lee et al., 2008).

      Culturing Purple Non-sulfur Bacteria

      The N fixation rates of most PNSB are high. Rhodopseudomonas palustris is a diazotroph that possesses three different nitrogenase enzymes and photoheterotrophic metabolic capability. It also has high metabolic versatility and is capable of photoheterotrophic, diazotrophic, photoautotrophic, and non-diazotrophic metabolism (Soundararajan et al., 2019). Since CO2 fixation and N fixation compete for ATP, carbon sources can be provided to maximize N fixation (Larimer et al., 2004). Rhodopseudomonas palustris NifA* has been genetically engineered to have reduced inhibition of nitrogenase at high ammonium concentrations (Adessi et al., 2012). This strain is typically cultured under photoheterotrophic conditions to maximize biomass N content. Although photons provided from sunlight are an option to drive bacterial photosynthesis, this would require a system that utilizes solar fiber optics and concentrating mirrors, which has a higher equivalent system mass than a system that utilizes light-emitting diodes (LEDs) and photovoltaics (Hardy et al., 2020). LED systems can be designed to output specific wavelengths of photons, and R. palustris appears to be able to use photons with wavelengths between 400 and 900 nm for photosynthesis with relatively similar efficiencies (Soundararajan et al., 2019). Acetate or wastewater organics are provided as a readily available food source along with ample N2 gas. Maximizing N biomass output will raise demand for available organic compounds, but these compounds can be obtained from waste, heterotrophic metabolism of R. palustris may stand to be an overall benefit.

      Bacterial Nitrogen Sources

      Rhodopseudomonas palustris can obtain N through urease-facilitated urea hydrolysis or N fixation via nitrogenase (Malofeeva, 1979). This suggests that N remediation and fixation may occur simultaneously. In non-engineered strains, nitrogenase activity would decrease during urease catabolism as ammonium levels rise and prevent nitrogenase expression (Adessi et al., 2012). It is unlikely that urease or its activity inhibits R. palustris NifA* given its nitrogenase desensitization to elevated ammonium concentrations. Since urease activity is not limited by ATP, whereas nitrogenase activity is, it is likely that nitrogenase would be deprioritized under energy limiting conditions. Urea degradation can occur if urea is readily available. Once urease catalysis ceases, N fixation will become the primary means of N acquisition, though both processes can occur simultaneously if urea and N2 are present. Remediation of N via urea hydrolysis can directly serve to treat wastewater, and N losses can be compensated by nitrogenase activity. This forms a valuable part of the Martian N cycle in which N fixation and remediation can occur in tandem. The major barrier to this process and the implementation of such a system is the removal of inhibitory components, such as those present in sludge or wastewater soap content. Preparing wastewater for integration with N fixation and recovery systems will therefore likely demand considerable upstream processing.

      Optimizing <italic>R. palustris</italic> Growth

      In regenerative life support systems, N-fixing bacterial biomass would serve as a principal N source for crops. Within cells, most of the N is contained in amino acids. Bacterial cells must be broken down by other microbes which mineralize the organic N to ammonium. The pH of this process must be controlled to both allow for an optimal bacterial environment and prevent the volatilization of ammonia gas. Culturing R. palustris is optimized when it is provided with an input of N2 (80%) and CO2 (20%) to facilitate N fixation and pH control. The system must also account for lighting conditions, stirring mechanisms, heating, and the energy required to extract and replenish media during and after harvest. Our current culture system (Figure 7.) has a total power demand of approximately 100 WL−1 of media to provide these conditions, from which approximately 0.1 and 0.05 g of N per liter day can be produced from acetate and wastewater media, respectively. We have demonstrated the N recovery process from bacteria can take about 6 weeks without the intentional inoculation of additional microbes and recover 80% of the N. Eventual recovery systems will use both anaerobic and aerobic digesters to achieve desired products and implement specific bacterial strains with high digestion capabilities to increase both the speed and recovery efficiency of biological N fixation.

      Photobioreactors used for nitrogen (N) recycling. Wastewater reactor (left) obtains N from atmospheric dinitrogen gas and wastewater while fixing reactor (right) obtains N from atmospheric gas alone.

      Conclusion

      N recycling is essential to efficient regenerative life support. Recycling of N is complex and requires many steps, but can be accomplished with high efficiency. Microbial systems can recover N from the atmosphere, and well-designed bioreactors can efficiently recover N from inedible plant waste, urine, and feces. Efficient N recovery can reduce the amount of atmospheric N2 that must be fixed by nearly 10-fold (Table 1 compared to Figure 2). N losses will inevitably occur, but recycling systems can minimize losses and maximize self-sustainability for long-term space missions.

      Future Research

      Many areas of N recycling in an advanced life support system are prime candidates for future research to increase N recovery. Urea hydrolysis requires acidic conditions to avoid volatile ammonia losses. Further work is needed to improve both the speed and recovery efficiency of N as ammonium. The extent to which composting can occur in the root zone is also not well studied. The requirement for nitrification is minimized if plants can be fed higher levels of ammonium. Optimization of both speed and efficiency are paramount to this effort. Improving N fixation efficiency can reduce the resources required for bacterial N fixation. Future research will seek to achieve 100% N recovery for a fully regenerative life support system.

      Author Contributions

      NL, PK, and TW contributed to the original draft of the manuscript. CC, LS, and BB guided the editing process, literature search, and design of figures.

      Funding

      This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 9465; the NASA-CUBES (Grant Number NNX17AJ31G).

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Adessi A. McKinlay J. B. Harwood C. S. De Philippis R. (2012). A Rhodopseudomonas Palustris nifA* Mutant Produces H2 from -containing Vegetable Wastes. Int. J. Hydrogen Energ. 37, 1589315900. 10.1016/j.ijhydene.2012.08.009 Amtul Z. Atta-ur-Rahman B. S. P. Siddiqui R. Choudhary M. (2002). Chemistry and Mechanism of Urease Inhibition. CMC 9, 13231348. 10.2174/0929867023369853 Anderson M. S. Ewert M. K. Keener J. F. (2018). Life Support Baseline Values and Assumptions Document. Available at: https://ntrs.nasa.gov/api/citations/20180001338/downloads/20180001338.pdf (Accessed April 22, 2021). Beler-Baykal B. Allar A. D. Bayram S. (2011). Nitrogen Recovery from Source-Separated Human Urine Using Clinoptilolite and Preliminary Results of its Use as Fertilizer. Water Sci. Technol. 63, 811817. 10.2166/wst.2011.324 Bento C. de Azevedo A. Detmann E. Mantovani H. (2015). Biochemical and Genetic Diversity of Carbohydrate-Fermenting and Obligate Amino Acid-Fermenting Hyper-Ammonia-Producing Bacteria from Nellore Steers Fed Tropical Forages and Supplemented with Casein. BMC Microbiol. 15, 28. 10.1186/s12866-015-0369-9 Britto D. T. Kronzucker H. J. (2002). NH4+ Toxicity in Higher Plants: a Critical Review. J. Plant Physiol. 159, 567584. 10.1078/0176-1617-0774 Brown S. Kruger C. Subler S. (2008). Greenhouse Gas Balance for Composting Operations. J. Environ. Qual. 37, 13961410. 10.2134/jeq2007.0453 Cahill T. Hardiman G. (2020). Nutritional Challenges and Countermeasures for Space Travel. Nutr. Bull. 45, 98105. 10.1111/nbu.12422 Chalk P. M. Magalhães A. M. T. Inácio C. T. (2013). Towards an Understanding of the Dynamics of Compost N in the Soil-Plant-Atmosphere System Using 15N Tracer. Plant Soil 362, 373388. 10.1007/s11104-012-1358-5 Chowdhury R. B. S. Fulford D. J. (1992). Batch and Semi-continuous Anaerobic Digestion Systems. Renew. Energ. 2, 391400. 10.1016/0960-1481(92)90072-B Christiaens M. E. R. De Paepe J. Ilgrande C. De Vrieze J. Barys J. Teirlinck P. (2019). Urine Nitrification with a Synthetic Microbial Community. Syst. Appl. Microbiol. 42, 126021. 10.1016/j.syapm.2019.126021 Cooper M. Douglas G. Perchonok M. (2011). Developing the NASA Food System for Long-Duration Missions. J. Food Sci. 76, R40R48. 10.1111/j.1750-3841.2010.01982.x Cronin J. R. Pizzarello S. (1983). Amino Acids in Meteorites. Adv. Space Res. 3, 518. 10.1016/0273-1177(83)90036-4 Davis A. M. Tink M. Rohde K. Brodie J. E. (2016). Urea Contributions to Dissolved 'organic' Nitrogen Losses from Intensive, Fertilised Agriculture. Agric. Ecosyst. Environ. 223, 190196. 10.1016/j.agee.2016.03.006 Elliot G. (1986). Urea Hydrolysis in Potting media. J. Amer. Soc. Hort. Sci. 111, 862866. Eschenlauer S. C. P. McKain N. Walker N. D. McEwan N. R. Newbold C. J. Wallace R. J. (2002). Ammonia Production by Ruminal Microorganisms and Enumeration, Isolation, and Characterization of Bacteria Capable of Growth on Peptides and Amino Acids from the Sheep Rumen. Appl. Environ. Microbiol. 68, 49254931. 10.1128/aem.68.10.4925-4931.2002 Esteban R. Ariz I. Cruz C. Moran J. F. (2016). Review: Mechanisms of Ammonium Toxicity and the Quest for Tolerance. Plant Sci. 248, 92101. 10.1016/j.plantsci.2016.04.008 Feng D. Wu Z. Xu S. (2008). Nitrification of Human Urine for its Stabilization and Nutrient Recycling. Bioresour. Technol. 99, 62996304. 10.1016/j.biortech.2007.12.007 Fowler D. Coyle M. Skiba U. Sutton M. A. Cape J. N. Reis S. (2013). The Global Nitrogen Cycle in the Twenty-First century. Phil. Trans. R. Soc. B 368, 20130164. 10.1098/rstb.2013.0164 Franche C. Lindström K. Elmerich C. (2009). Nitrogen-fixing Bacteria Associated with Leguminous and Non-leguminous Plants. Plant Soil 321, 3559. 10.1007/s11104-008-9833-8 Fu Y. Li L. Xie B. Dong C. Wang M. Jia B. (2016). How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars. Astrobiology 16, 925936. 10.1089/ast.2016.1477 Fumasoli A. Etter B. Sterkele B. Morgenroth E. Udert K. M. (2016). Operating a Pilot-Scale Nitrification/distillation Plant for Complete Nutrient Recovery from Urine. Water Sci. Technol. 73, 215222. 10.2166/wst.2015.485 Gebauer S. Grenfell J. L. Lammer H. de Vera J.-P. P. Sproß L. Airapetian V. S. (2020). Atmospheric Nitrogen when Life Evolved on Earth. Astrobiology 20, 14131426. 10.1089/ast.2019.2212 Gee C. S. Pfeffer J. T. Suidan M. T. (1990). Nitrosomonas and NitrobacterInteractions in Biological Nitrification. J. Environ. Eng. 116, 417. 10.1061/(asce)0733-9372(1990)116:1(4) Harder R. Wielemaker R. Larsen T. A. Zeeman G. Öberg G. (2019). Recycling Nutrients Contained in Human Excreta to Agriculture: Pathways, Processes, and Products. Crit. Rev. Environ. Sci. Technol. 49, 695743. 10.1080/10643389.2018.1558889 Hardy J. M. Kusuma P. Bugbee B. Wheeler R. Ewert M. (2020). “Providing Photons for Food in Regenerative Life Support: A Comparative Analysis of Solar Fiber Optic and Electric Light Systems,” in International Conference on Environmental Systems, 112. Available at: https://ttu-ir.tdl.org/handle/2346/86378 (Accessed April 22, 2021). Hartz T. K. Mitchell J. P. Giannini C. (2000). Nitrogen and Carbon Mineralization Dynamics of Manures and Composts. HortSci 35, 209212. 10.21273/HORTSCI.35.2.209 Heil J. Vereecken H. Brüggemann N. (2016). A Review of Chemical Reactions of Nitrification Intermediates and Their Role in Nitrogen Cycling and Nitrogen Trace Gas Formation in Soil. Eur. J. Soil Sci. 67, 2339. 10.1111/ejss.12306 Heinonen-Tanski H. van Wijk-Sijbesma C. (2005). Human Excreta for Plant Production. Bioresour. Technol. 96, 403411. 10.1016/j.biortech.2003.10.036 Hellström D. Johansson E. Grennberg K. (1999). Storage of Human Urine: Acidification as a Method to Inhibit Decomposition of Urea. Ecol. Eng. 12, 253269. 10.1016/S0925-8574(98)00074-3 Höglund C. Stenström T. A. Ashbolt N. (2002). Microbial Risk Assessment of Source-Separated Urine Used in Agriculture. Waste Manag. Res. 20, 150161. 10.1177/0734242X0202000207 Hooten T. (1998). Ammonium and Nitrate Effects on Growth, Development and Nutrient Uptake of Hydroponic Wheat. Available at: https://digitalcommons.usu.edu/etd/6748/ (Accessed April 22, 2021). Hormoz S. (2013). Amino Acid Composition of Proteins Reduces Deleterious Impact of Mutations. Sci. Rep. 3, 2919. 10.1038/srep02919 Imas P. Bar-Yosef B. Kafkafi U. Ganmore-Neumann R. (1997). Release of Carboxylic Anions and Protons by Tomato Roots in Response to Ammonium Nitrate Ratio and pH in Nutrient Solution. Plant Soil 191, 2734. 10.1023/A:1004214814504 Inomura K. Bragg J. Follows M. J. (2017). A Quantitative Analysis of the Direct and Indirect Costs of Nitrogen Fixation: A Model Based on Azotobacter Vinelandii . ISME J. 11, 166175. 10.1038/ismej.2016.97 Kantachote D. Nunkaew T. Kantha T. Chaiprapat S. (2016). Biofertilizers from Rhodopseudomonas Palustris Strains to Enhance rice Yields and Reduce Methane Emissions. Appl. Soil Ecol. 100, 154161. 10.1016/j.apsoil.2015.12.015 Kerridge J. F. (2001). Isotopic Variability of Nitrogen in Lunar Regolith. Sci 293, 1947a. 10.1126/science.293.5537.1947a Khalili N. R. Chaib E. Parulekar S. J. Nykiel D. (2000). Performance Enhancement of Batch Aerobic Digesters via Addition of Digested Sludge. J. Hazard. Mater. 76, 91102. 10.1016/S0304-3894(00)00172-2 Klingler J. M. Mancinelli R. L. White M. R. (1989). Biological Nitrogen Fixation under Primordial Martian Partial Pressures of Dinitrogen. Adv. Space Res. 9, 173176. 10.1016/0273-1177(89)90225-1 Kondo K. Nakata N. Nishihara E. (2008). Effect of Purple Non-sulfur Bacterium (Rhodobacter Sphaeroides) Application on the Growth and Quality of Spinach and Komatsuna. Jpn. Soc. Agr. Technol. Mgt. 14, 198203. 10.17660/actahortic.2007.761.81 Kondo K. Nakata N. Nishihara E. (2010). Effect of the Purple Non-sulfur Bacterium (Rhodobacter Sphaeroides) on the Brix, Titratable Acidity, Ascorbic Acid, Organic Acid, Lycopene, and β-carotene in Tomato Fruit. J. Food Agr. Environ. 8, 743746. Larimer F. W. Chain P. Hauser L. Lamerdin J. Malfatti S. Do L. (2004). Complete Genome Sequence of the Metabolically Versatile Photosynthetic Bacterium Rhodopseudomonas Palustris . Nat. Biotechnol. 22, 5561. 10.1038/nbt923 Layden N. M. Mavinic D. S. Kelly H. G. Moles R. Bartlett J. (2007). Autothermal Thermophilic Aerobic Digestion (ATAD) - Part I: Review of Origins, Design, and Process Operation. J. Environ. Eng. Sci. 6, 665678. 10.1139/S07-015 Lee K.-H. Koh R.-H. Song H.-G. (2008). Enhancement of Growth and Yield of Tomato by Rhodopseudomonas Sp. Under Greenhouse Conditions. J. Microbiol. 46, 641646. 10.1007/s12275-008-0159-2 Lind B.-B. Ban Z. Bydén S. (2001). Volume Reduction and Concentration of Nutrients in Human Urine. Ecol. Eng. 16, 561566. 10.1016/S0925-8574(00)00107-5 Loader C. A. Garland J. L. Raychaudhuri S. Wheeler R. M. (1997). A Simple Mass Balance Model of Nitrogen Flow in a Bioregenerative Life Support System. Life Support. Biosph. Sci. 4, 3141. Luning L. van Zundert E. H. M. Brinkmann A. J. F. (2003). Comparison of Dry and Wet Digestion for Solid Waste. Water Sci. Technol. 48, 1520. 10.2166/wst.2003.0210 Mackowiak C. L. Wheeler R. M. Stutte G. W. Yorio N. C. Sager J. C. (1997). Use of Biologically Reclaimed Minerals for Continuous Hydroponic Potato Production in a CELSS. Adv. Space Res. 20, 18151820. 10.1016/S0273-1177(97)00846-6 Mahaffy P. R. Webster C. R. Atreya S. K. Franz H. Wong M. Conrad P. G. (2013). Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science 341, 263266. 10.1126/science.1237966 Malofeeva I. V. (1979). Use of Urea by Purple Bacteria. Mikrobiologiia 48, 411417. Maurer M. Pronk W. Larsen T. A. (2006). Treatment Processes for Source-Separated Urine. Water Res. 40, 31513166. 10.1016/j.watres.2006.07.012 Maurer M. Schwegler P. Larsen T. A. (2003). Nutrients in Urine: Energetic Aspects of Removal and Recovery. Water Sci. Technol. 48, 3746. 10.2166/wst.2003.0011 Meeks J. C. Elhai J. (2002). Regulation of Cellular Differentiation in Filamentous Cyanobacteria in Free-Living and Plant-Associated Symbiotic Growth States. MMBR 66, 94121. 10.1128/MMBR.66.1.94-121.2002 Miller A. J. Fan X. Orsel M. Smith S. J. Wells D. M. (2007). Nitrate Transport and Signalling. J. Exp. Bot. 58, 22972306. 10.1093/jxb/erm066 Mortenson L. E. (1978). Regulation of Nitrogen Fixation. Curr. Top. Cell. Regul 13. (Elsevier), 179232. 10.1016/B978-0-12-152813-3.50010-0 Mu X. Chen Q. Chen F. Yuan L. Mi G. (2016). Within-leaf Nitrogen Allocation in Adaptation to Low Nitrogen Supply in maize during Grain-Filling Stage. Front. Plant Sci. 7, 699. 10.3389/fpls.2016.00699 Nagatani H. Shimizu M. Valentine R. C. (1971). The Mechanism of Ammonia Assimilation in Nitrogen Fixing Bacteria. Archiv. Mikrobiol. 79, 164175. 10.1007/BF00424923 Newton W. E. (2007). “Physiology, Biochemistry, and Molecular Biology of Nitrogen Fixation,” in Biology of the Nitrogen Cycle (Amsterdam: Elsevier), 109129. 10.1016/B978-044452857-5.50009-6 Owen T. Biemann K. Rushneck D. R. Biller J. E. Howarth D. W. Lafleur A. L. (1977). The Composition of the Atmosphere at the Surface of Mars. J. Geophys. Res. 82, 46354639. 10.1029/JS082i028p04635 Packer L. Fry I. Belkin S. (1986). Application of Photosynthetic N2-Fixing Cyanobacteria to the CELSS Program. Available at: https://ntrs.nasa.gov/citations/19860010458 (Accessed April 22, 2021). Pandorf M. Hochmuth G. Boyer T. H. (2019). Human Urine as a Fertilizer in the Cultivation of Snap Beans (Phaseolus vulgaris) and Turnips (Brassica Rapa). J. Agric. Food Chem. 67, 5062. 10.1021/acs.jafc.8b06011 Patel A. Mungray A. A. Mungray A. K. (2020). Technologies for the Recovery of Nutrients, Water and Energy from Human Urine: A Review. Chemosphere 259, 127372. 10.1016/j.chemosphere.2020.127372 Putnam D. F. (1971). Composition and Concentrative Properties of Human Urine. Available at: https://ntrs.nasa.gov/api/citations/19710023044/downloads/19710023044.pdf (Accessed April 22, 2021). Rose C. Parker A. Jefferson B. Cartmell E. (2015). The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit. Rev. Environ. Sci. Technol. 45, 18271879. 10.1080/10643389.2014.1000761 Sakarika M. Spanoghe J. Sui Y. Wambacq E. Grunert O. Haesaert G. (2020). Purple Non‐sulphur Bacteria and Plant Production: Benefits for Fertilization, Stress Resistance and the Environment. Microb. Biotechnol. 13, 13361365. 10.1111/1751-7915.13474 Sakpirom J. Kantachote D. Nunkaew T. Khan E. (2017). Characterizations of Purple Non-sulfur Bacteria Isolated from Paddy fields, and Identification of Strains with Potential for Plant Growth-Promotion, Greenhouse Gas Mitigation and Heavy Metal Bioremediation. Res. Microbiol. 168, 266275. 10.1016/j.resmic.2016.12.001 Salisbury F. B. Gitelson J. I. Lisovsky G. M. (1997). Bios-3: Siberian Experiments in Bioregenerative Life Support. BioScience 47, 575585. 10.2307/1313164 Santos R. L. S. Manfrinatto J. A. Cia E. M. M. Carvalho R. B. Quadros K. R. S. Alves-Filho G. (2004). Urine Cytology as a Screening Method for Polyoma Virus Active Infection. Transplant. Proc. 36, 899901. 10.1016/j.transproceed.2004.03.111 Savvas D. Passam H. C. Olympios C. Nasi E. Moustaka E. Mantzos N. (2006). Effects of Ammonium Nitrogen on Lettuce Grown on Pumice in a Closed Hydroponic System. HortSci 41, 16671673. 10.21273/HORTSCI.41.7.1667 Shapovalov Y. Zhadan S. Bochmann G. Salyuk A. Nykyforov V. (2020). Dry Anaerobic Digestion of Chicken Manure: A Review. Appl. Sci. 10, 78257849. 10.3390/app10217825 Simha P. Ganesapillai M. (2017). Ecological Sanitation and Nutrient Recovery from Human Urine: How Far Have We Come? A Review. Sustain. Environ. Res. 27, 107116. 10.1016/j.serj.2016.12.001 Simha P. (2013). Nutrient Recovery Systems for Human Urine—Ways to Realize Closed Loop Sanitation and Future Sustainable Agricultural Systems. Intl. J. Sci. Res. Publ. 3, 2227. 10.1007/bf00150148 Simha P. Zabaniotou A. Ganesapillai M. (2018). Continuous Urea-Nitrogen Recycling from Human Urine: A Step towards Creating a Human Excreta Based Bio-Economy. J. Clean. Prod. 172, 41524161. 10.1016/j.jclepro.2017.01.062 Soler-Jofra A. Pérez J. van Loosdrecht M. C. M. (2021). Hydroxylamine and the Nitrogen Cycle: A Review. Water Res. 190, 116723. 10.1016/j.watres.2020.116723 Soundararajan M. Ledbetter R. Kusuma P. Zhen S. Ludden P. Bugbee B. (2019). Phototrophic N2 and CO2 Fixation Using a Rhodopseudomonas Palustris-H2 Mediated Electrochemical System with Infrared Photons. Front. Microbiol. 10, 1817. 10.3389/fmicb.2019.01817 Stal L. J. (2015). “Nitrogen Fixation in Cyanobacteria,” in eLS. Editors John W Sons L (Chichester, UK: John Wiley & Sons), 19. 10.1002/9780470015902.a0021159.pub2 Stein L. Y. Klotz M. G. (2016). The Nitrogen Cycle. Curr. Biol. 26, R94R98. 10.1016/j.cub.2015.12.021 Taghavi-Nezhad M. Alipour D. Flythe M. D. Zamani P. Khodakaramian G. (2014). The Effect of Essential Oils of Zataria Multiflora and Mentha Spicata on the In Vitro Rumen Fermentation, and Growth and Deaminative Activity of Amino Acid-Fermenting Bacteria Isolated from Mehraban Sheep. Anim. Prod. Sci. 54, 299. 10.1071/AN12244 Thörneby L. Persson K. Trägårdh G. (1999). Treatment of Liquid Effluents from Dairy Cattle and Pigs Using Reverse Osmosis. J. Agric. Eng. Res. 73, 159170. 10.1006/jaer.1998.0405 Tun L. L. Jeong D. Jeong S. Cho K. Lee S. Bae H. (2016). Dewatering of Source-Separated Human Urine for Nitrogen Recovery by Membrane Distillation. J. Membr. Sci. 512, 1320. 10.1016/j.memsci.2016.04.004 Udert K. M. Larsen T. A. Biebow M. Gujer W. (2003). Urea Hydrolysis and Precipitation Dynamics in a Urine-Collecting System. Water Res. 37, 25712582. 10.1016/S0043-1354(03)00065-4 Udert K. M. Wächter M. (2012). Complete Nutrient Recovery from Source-Separated Urine by Nitrification and Distillation. Water Res. 46, 453464. 10.1016/j.watres.2011.11.020 Verostko C. E. Carrier C. Finger B. W. (2004). Ersatz Wastewater Formulations for Testing Water Recovery Systems. London: SAE International, Technical Paper 2004-01-2448. 10.4271/2004-01-2448 Wang W.-H. Köhler B. Cao F.-Q. Liu L.-H. (2008). Molecular and Physiological Aspects of Urea Transport in Higher Plants. Plant Sci. 175, 467477. 10.1016/j.plantsci.2008.05.018 Wheeler M. Sager J. C. Prince R. P. Knott W. M. Mackowiak C. L. Stutte G. W. (2003). Crop Production for Advanced Life Support Systems - Observations from the Kennedy Space Center Breadboard Project. Available at: https://ntrs.nasa.gov/api/citations/20030032422/downloads/20030032422.pdf (Accessed April 22, 2021). Wheeler R. (2010). Plants for Human Life Support in Space: From Myers to Mars. Gravit. Space Biol 23, 2536. 10.2514/6.2008-7922 Wood F. C. (1982). The Changing Face of Desalination - A Consulting Engineer's Viewpoint. Desalination 42, 1725. 10.1016/S0011-9164(00)88737-8 Wrage-Mönnig N. Horn M. A. Well R. Müller C. Velthof G. Oenema O. (2018). The Role of Nitrifier Denitrification in the Production of Nitrous Oxide Revisited. Soil Biol. Biochem. 123, A3A16. 10.1016/j.soilbio.2018.03.020 Xu G. Fan X. Miller A. J. (2012). Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 63, 153182. 10.1146/annurev-arplant-042811-105532 Zerner B. (1991). Recent Advances in the Chemistry of an Old Enzyme, Urease. Bioorg. Chem. 19, 116131. 10.1016/0045-2068(91)90048-T Zhang C. Su H. Tan T. (2013). Batch and Semi-continuous Anaerobic Digestion of Food Waste in a Dual Solid-Liquid System. Bioresour. Technol. 145, 1016. 10.1016/j.biortech.2013.03.030 Zhou R. Gibbons W. (2015). Genetically Engineered Cyanobacteria. Available at: https://ntrs.nasa.gov/citations/20150004038 (Accessed April 22, 2021).
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hrpogg.com.cn
      emqmqo.com.cn
      luoteng.com.cn
      www.lcgydyj.com.cn
      www.obsmo.org.cn
      szdybh.com.cn
      mokkori.com.cn
      www.wdmice.com.cn
      www.nychain.com.cn
      xfcztd.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p